| ... |
... |
@@ -23,219 +23,224 @@
|
| 23 |
23 |
#include <functional>
|
| 24 |
24 |
#include <vector>
|
| 25 |
25 |
|
| 26 |
26 |
#include <lemon/bits/utility.h>
|
| 27 |
27 |
#include <lemon/bits/traits.h>
|
| 28 |
28 |
|
| 29 |
29 |
///\file
|
| 30 |
30 |
///\ingroup maps
|
| 31 |
31 |
///\brief Miscellaneous property maps
|
| 32 |
32 |
|
| 33 |
33 |
#include <map>
|
| 34 |
34 |
|
| 35 |
35 |
namespace lemon {
|
| 36 |
36 |
|
| 37 |
37 |
/// \addtogroup maps
|
| 38 |
38 |
/// @{
|
| 39 |
39 |
|
| 40 |
40 |
/// Base class of maps.
|
| 41 |
41 |
|
| 42 |
42 |
/// Base class of maps. It provides the necessary type definitions
|
| 43 |
43 |
/// required by the map %concepts.
|
| 44 |
44 |
template<typename K, typename V>
|
| 45 |
45 |
class MapBase {
|
| 46 |
46 |
public:
|
| 47 |
47 |
/// \biref The key type of the map.
|
| 48 |
48 |
typedef K Key;
|
| 49 |
49 |
/// \brief The value type of the map.
|
| 50 |
50 |
/// (The type of objects associated with the keys).
|
| 51 |
51 |
typedef V Value;
|
| 52 |
52 |
};
|
| 53 |
53 |
|
| 54 |
54 |
|
| 55 |
55 |
/// Null map. (a.k.a. DoNothingMap)
|
| 56 |
56 |
|
| 57 |
57 |
/// This map can be used if you have to provide a map only for
|
| 58 |
58 |
/// its type definitions, or if you have to provide a writable map,
|
| 59 |
59 |
/// but data written to it is not required (i.e. it will be sent to
|
| 60 |
60 |
/// <tt>/dev/null</tt>).
|
| 61 |
61 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
| 62 |
62 |
///
|
| 63 |
63 |
/// \sa ConstMap
|
| 64 |
64 |
template<typename K, typename V>
|
| 65 |
65 |
class NullMap : public MapBase<K, V> {
|
| 66 |
66 |
public:
|
| 67 |
67 |
typedef MapBase<K, V> Parent;
|
| 68 |
68 |
typedef typename Parent::Key Key;
|
| 69 |
69 |
typedef typename Parent::Value Value;
|
| 70 |
70 |
|
| 71 |
71 |
/// Gives back a default constructed element.
|
| 72 |
72 |
Value operator[](const Key&) const { return Value(); }
|
| 73 |
73 |
/// Absorbs the value.
|
| 74 |
74 |
void set(const Key&, const Value&) {}
|
| 75 |
75 |
};
|
| 76 |
76 |
|
| 77 |
77 |
/// Returns a \ref NullMap class
|
| 78 |
78 |
|
| 79 |
79 |
/// This function just returns a \ref NullMap class.
|
| 80 |
80 |
/// \relates NullMap
|
| 81 |
81 |
template <typename K, typename V>
|
| 82 |
82 |
NullMap<K, V> nullMap() {
|
| 83 |
83 |
return NullMap<K, V>();
|
| 84 |
84 |
}
|
| 85 |
85 |
|
| 86 |
86 |
|
| 87 |
87 |
/// Constant map.
|
| 88 |
88 |
|
| 89 |
89 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
| 90 |
90 |
/// value to each key.
|
| 91 |
91 |
///
|
| 92 |
92 |
/// In other aspects it is equivalent to \ref NullMap.
|
| 93 |
93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
| 94 |
94 |
/// concept, but it absorbs the data written to it.
|
| 95 |
95 |
///
|
| 96 |
96 |
/// The simplest way of using this map is through the constMap()
|
| 97 |
97 |
/// function.
|
| 98 |
98 |
///
|
| 99 |
99 |
/// \sa NullMap
|
| 100 |
100 |
/// \sa IdentityMap
|
| 101 |
101 |
template<typename K, typename V>
|
| 102 |
102 |
class ConstMap : public MapBase<K, V> {
|
| 103 |
103 |
private:
|
| 104 |
104 |
V _value;
|
| 105 |
105 |
public:
|
| 106 |
106 |
typedef MapBase<K, V> Parent;
|
| 107 |
107 |
typedef typename Parent::Key Key;
|
| 108 |
108 |
typedef typename Parent::Value Value;
|
| 109 |
109 |
|
| 110 |
110 |
/// Default constructor
|
| 111 |
111 |
|
| 112 |
112 |
/// Default constructor.
|
| 113 |
113 |
/// The value of the map will be default constructed.
|
| 114 |
114 |
ConstMap() {}
|
| 115 |
115 |
|
| 116 |
116 |
/// Constructor with specified initial value
|
| 117 |
117 |
|
| 118 |
118 |
/// Constructor with specified initial value.
|
| 119 |
|
/// \param v is the initial value of the map.
|
|
119 |
/// \param v The initial value of the map.
|
| 120 |
120 |
ConstMap(const Value &v) : _value(v) {}
|
| 121 |
121 |
|
| 122 |
122 |
/// Gives back the specified value.
|
| 123 |
123 |
Value operator[](const Key&) const { return _value; }
|
| 124 |
124 |
|
| 125 |
125 |
/// Absorbs the value.
|
| 126 |
126 |
void set(const Key&, const Value&) {}
|
| 127 |
127 |
|
| 128 |
128 |
/// Sets the value that is assigned to each key.
|
| 129 |
129 |
void setAll(const Value &v) {
|
| 130 |
130 |
_value = v;
|
| 131 |
131 |
}
|
| 132 |
132 |
|
| 133 |
133 |
template<typename V1>
|
| 134 |
134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
| 135 |
135 |
};
|
| 136 |
136 |
|
| 137 |
137 |
/// Returns a \ref ConstMap class
|
| 138 |
138 |
|
| 139 |
139 |
/// This function just returns a \ref ConstMap class.
|
| 140 |
140 |
/// \relates ConstMap
|
| 141 |
141 |
template<typename K, typename V>
|
| 142 |
142 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 143 |
143 |
return ConstMap<K, V>(v);
|
| 144 |
144 |
}
|
| 145 |
145 |
|
|
146 |
template<typename K, typename V>
|
|
147 |
inline ConstMap<K, V> constMap() {
|
|
148 |
return ConstMap<K, V>();
|
|
149 |
}
|
|
150 |
|
| 146 |
151 |
|
| 147 |
152 |
template<typename T, T v>
|
| 148 |
153 |
struct Const {};
|
| 149 |
154 |
|
| 150 |
155 |
/// Constant map with inlined constant value.
|
| 151 |
156 |
|
| 152 |
157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
| 153 |
158 |
/// value to each key.
|
| 154 |
159 |
///
|
| 155 |
160 |
/// In other aspects it is equivalent to \ref NullMap.
|
| 156 |
161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
| 157 |
162 |
/// concept, but it absorbs the data written to it.
|
| 158 |
163 |
///
|
| 159 |
164 |
/// The simplest way of using this map is through the constMap()
|
| 160 |
165 |
/// function.
|
| 161 |
166 |
///
|
| 162 |
167 |
/// \sa NullMap
|
| 163 |
168 |
/// \sa IdentityMap
|
| 164 |
169 |
template<typename K, typename V, V v>
|
| 165 |
170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 166 |
171 |
public:
|
| 167 |
172 |
typedef MapBase<K, V> Parent;
|
| 168 |
173 |
typedef typename Parent::Key Key;
|
| 169 |
174 |
typedef typename Parent::Value Value;
|
| 170 |
175 |
|
| 171 |
176 |
/// Constructor.
|
| 172 |
177 |
ConstMap() {}
|
| 173 |
178 |
|
| 174 |
179 |
/// Gives back the specified value.
|
| 175 |
180 |
Value operator[](const Key&) const { return v; }
|
| 176 |
181 |
|
| 177 |
182 |
/// Absorbs the value.
|
| 178 |
183 |
void set(const Key&, const Value&) {}
|
| 179 |
184 |
};
|
| 180 |
185 |
|
| 181 |
186 |
/// Returns a \ref ConstMap class with inlined constant value
|
| 182 |
187 |
|
| 183 |
188 |
/// This function just returns a \ref ConstMap class with inlined
|
| 184 |
189 |
/// constant value.
|
| 185 |
190 |
/// \relates ConstMap
|
| 186 |
191 |
template<typename K, typename V, V v>
|
| 187 |
192 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 188 |
193 |
return ConstMap<K, Const<V, v> >();
|
| 189 |
194 |
}
|
| 190 |
195 |
|
| 191 |
196 |
|
| 192 |
197 |
/// Identity map.
|
| 193 |
198 |
|
| 194 |
199 |
/// This \ref concepts::ReadMap "read-only map" gives back the given
|
| 195 |
200 |
/// key as value without any modification.
|
| 196 |
201 |
///
|
| 197 |
202 |
/// \sa ConstMap
|
| 198 |
203 |
template <typename T>
|
| 199 |
204 |
class IdentityMap : public MapBase<T, T> {
|
| 200 |
205 |
public:
|
| 201 |
206 |
typedef MapBase<T, T> Parent;
|
| 202 |
207 |
typedef typename Parent::Key Key;
|
| 203 |
208 |
typedef typename Parent::Value Value;
|
| 204 |
209 |
|
| 205 |
210 |
/// Gives back the given value without any modification.
|
| 206 |
211 |
Value operator[](const Key &k) const {
|
| 207 |
212 |
return k;
|
| 208 |
213 |
}
|
| 209 |
214 |
};
|
| 210 |
215 |
|
| 211 |
216 |
/// Returns an \ref IdentityMap class
|
| 212 |
217 |
|
| 213 |
218 |
/// This function just returns an \ref IdentityMap class.
|
| 214 |
219 |
/// \relates IdentityMap
|
| 215 |
220 |
template<typename T>
|
| 216 |
221 |
inline IdentityMap<T> identityMap() {
|
| 217 |
222 |
return IdentityMap<T>();
|
| 218 |
223 |
}
|
| 219 |
224 |
|
| 220 |
225 |
|
| 221 |
226 |
/// \brief Map for storing values for integer keys from the range
|
| 222 |
227 |
/// <tt>[0..size-1]</tt>.
|
| 223 |
228 |
///
|
| 224 |
229 |
/// This map is essentially a wrapper for \c std::vector. It assigns
|
| 225 |
230 |
/// values to integer keys from the range <tt>[0..size-1]</tt>.
|
| 226 |
231 |
/// It can be used with some data structures, for example
|
| 227 |
232 |
/// \ref UnionFind, \ref BinHeap, when the used items are small
|
| 228 |
233 |
/// integers. This map conforms the \ref concepts::ReferenceMap
|
| 229 |
234 |
/// "ReferenceMap" concept.
|
| 230 |
235 |
///
|
| 231 |
236 |
/// The simplest way of using this map is through the rangeMap()
|
| 232 |
237 |
/// function.
|
| 233 |
238 |
template <typename V>
|
| 234 |
239 |
class RangeMap : public MapBase<int, V> {
|
| 235 |
240 |
template <typename V1>
|
| 236 |
241 |
friend class RangeMap;
|
| 237 |
242 |
private:
|
| 238 |
243 |
|
| 239 |
244 |
typedef std::vector<V> Vector;
|
| 240 |
245 |
Vector _vector;
|
| 241 |
246 |
|
| ... |
... |
@@ -520,193 +525,193 @@
|
| 520 |
525 |
/// binary functor and returns the combination of the two given maps
|
| 521 |
526 |
/// using the functor.
|
| 522 |
527 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
|
| 523 |
528 |
/// and \c f is of \c F, then for
|
| 524 |
529 |
/// \code
|
| 525 |
530 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
| 526 |
531 |
/// \endcode
|
| 527 |
532 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
|
| 528 |
533 |
///
|
| 529 |
534 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
|
| 530 |
535 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
|
| 531 |
536 |
/// \c M2::Value and \c M1::Value must be convertible to the
|
| 532 |
537 |
/// corresponding input parameter of \c F and the return type of \c F
|
| 533 |
538 |
/// must be convertible to \c V.
|
| 534 |
539 |
///
|
| 535 |
540 |
/// The simplest way of using this map is through the combineMap()
|
| 536 |
541 |
/// function.
|
| 537 |
542 |
///
|
| 538 |
543 |
/// \sa ComposeMap
|
| 539 |
544 |
///
|
| 540 |
545 |
/// \todo Check the requirements.
|
| 541 |
546 |
template<typename M1, typename M2, typename F,
|
| 542 |
547 |
typename V = typename F::result_type>
|
| 543 |
548 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 544 |
549 |
const M1 &_m1;
|
| 545 |
550 |
const M2 &_m2;
|
| 546 |
551 |
F _f;
|
| 547 |
552 |
public:
|
| 548 |
553 |
typedef MapBase<typename M1::Key, V> Parent;
|
| 549 |
554 |
typedef typename Parent::Key Key;
|
| 550 |
555 |
typedef typename Parent::Value Value;
|
| 551 |
556 |
|
| 552 |
557 |
/// Constructor
|
| 553 |
558 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
|
| 554 |
559 |
: _m1(m1), _m2(m2), _f(f) {}
|
| 555 |
560 |
/// \e
|
| 556 |
561 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
| 557 |
562 |
};
|
| 558 |
563 |
|
| 559 |
564 |
/// Returns a \ref CombineMap class
|
| 560 |
565 |
|
| 561 |
566 |
/// This function just returns a \ref CombineMap class.
|
| 562 |
567 |
///
|
| 563 |
568 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 564 |
569 |
/// values, then
|
| 565 |
570 |
/// \code
|
| 566 |
571 |
/// combineMap(m1,m2,std::plus<double>())
|
| 567 |
572 |
/// \endcode
|
| 568 |
573 |
/// is equivalent to
|
| 569 |
574 |
/// \code
|
| 570 |
575 |
/// addMap(m1,m2)
|
| 571 |
576 |
/// \endcode
|
| 572 |
577 |
///
|
| 573 |
578 |
/// This function is specialized for adaptable binary function
|
| 574 |
579 |
/// classes and C++ functions.
|
| 575 |
580 |
///
|
| 576 |
581 |
/// \relates CombineMap
|
| 577 |
582 |
template<typename M1, typename M2, typename F, typename V>
|
| 578 |
583 |
inline CombineMap<M1, M2, F, V>
|
| 579 |
584 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 580 |
585 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
| 581 |
586 |
}
|
| 582 |
587 |
|
| 583 |
588 |
template<typename M1, typename M2, typename F>
|
| 584 |
589 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
| 585 |
590 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 586 |
591 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
| 587 |
592 |
}
|
| 588 |
593 |
|
| 589 |
594 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
| 590 |
595 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
| 591 |
596 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 592 |
597 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
| 593 |
598 |
}
|
| 594 |
599 |
|
| 595 |
600 |
|
| 596 |
601 |
/// Converts an STL style (unary) functor to a map
|
| 597 |
602 |
|
| 598 |
603 |
/// This \ref concepts::ReadMap "read-only map" returns the value
|
| 599 |
604 |
/// of a given functor. Actually, it just wraps the functor and
|
| 600 |
605 |
/// provides the \c Key and \c Value typedefs.
|
| 601 |
606 |
///
|
| 602 |
607 |
/// Template parameters \c K and \c V will become its \c Key and
|
| 603 |
608 |
/// \c Value. In most cases they have to be given explicitly because
|
| 604 |
609 |
/// a functor typically does not provide \c argument_type and
|
| 605 |
610 |
/// \c result_type typedefs.
|
| 606 |
611 |
/// Parameter \c F is the type of the used functor.
|
| 607 |
612 |
///
|
| 608 |
613 |
/// The simplest way of using this map is through the functorToMap()
|
| 609 |
614 |
/// function.
|
| 610 |
615 |
///
|
| 611 |
616 |
/// \sa MapToFunctor
|
| 612 |
617 |
template<typename F,
|
| 613 |
618 |
typename K = typename F::argument_type,
|
| 614 |
619 |
typename V = typename F::result_type>
|
| 615 |
620 |
class FunctorToMap : public MapBase<K, V> {
|
| 616 |
|
const F &_f;
|
|
621 |
F _f;
|
| 617 |
622 |
public:
|
| 618 |
623 |
typedef MapBase<K, V> Parent;
|
| 619 |
624 |
typedef typename Parent::Key Key;
|
| 620 |
625 |
typedef typename Parent::Value Value;
|
| 621 |
626 |
|
| 622 |
627 |
/// Constructor
|
| 623 |
628 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
| 624 |
629 |
/// \e
|
| 625 |
630 |
Value operator[](const Key &k) const { return _f(k); }
|
| 626 |
631 |
};
|
| 627 |
632 |
|
| 628 |
633 |
/// Returns a \ref FunctorToMap class
|
| 629 |
634 |
|
| 630 |
635 |
/// This function just returns a \ref FunctorToMap class.
|
| 631 |
636 |
///
|
| 632 |
637 |
/// This function is specialized for adaptable binary function
|
| 633 |
638 |
/// classes and C++ functions.
|
| 634 |
639 |
///
|
| 635 |
640 |
/// \relates FunctorToMap
|
| 636 |
641 |
template<typename K, typename V, typename F>
|
| 637 |
642 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
| 638 |
643 |
return FunctorToMap<F, K, V>(f);
|
| 639 |
644 |
}
|
| 640 |
645 |
|
| 641 |
646 |
template <typename F>
|
| 642 |
647 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
|
| 643 |
648 |
functorToMap(const F &f)
|
| 644 |
649 |
{
|
| 645 |
650 |
return FunctorToMap<F, typename F::argument_type,
|
| 646 |
651 |
typename F::result_type>(f);
|
| 647 |
652 |
}
|
| 648 |
653 |
|
| 649 |
654 |
template <typename K, typename V>
|
| 650 |
655 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
| 651 |
656 |
return FunctorToMap<V (*)(K), K, V>(f);
|
| 652 |
657 |
}
|
| 653 |
658 |
|
| 654 |
659 |
|
| 655 |
660 |
/// Converts a map to an STL style (unary) functor
|
| 656 |
661 |
|
| 657 |
662 |
/// This class converts a map to an STL style (unary) functor.
|
| 658 |
663 |
/// That is it provides an <tt>operator()</tt> to read its values.
|
| 659 |
664 |
///
|
| 660 |
665 |
/// For the sake of convenience it also works as a usual
|
| 661 |
666 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
|
| 662 |
667 |
/// and the \c Key and \c Value typedefs also exist.
|
| 663 |
668 |
///
|
| 664 |
669 |
/// The simplest way of using this map is through the mapToFunctor()
|
| 665 |
670 |
/// function.
|
| 666 |
671 |
///
|
| 667 |
672 |
///\sa FunctorToMap
|
| 668 |
673 |
template <typename M>
|
| 669 |
674 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 670 |
675 |
const M &_m;
|
| 671 |
676 |
public:
|
| 672 |
677 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 673 |
678 |
typedef typename Parent::Key Key;
|
| 674 |
679 |
typedef typename Parent::Value Value;
|
| 675 |
680 |
|
| 676 |
681 |
typedef typename Parent::Key argument_type;
|
| 677 |
682 |
typedef typename Parent::Value result_type;
|
| 678 |
683 |
|
| 679 |
684 |
/// Constructor
|
| 680 |
685 |
MapToFunctor(const M &m) : _m(m) {}
|
| 681 |
686 |
/// \e
|
| 682 |
687 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 683 |
688 |
/// \e
|
| 684 |
689 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 685 |
690 |
};
|
| 686 |
691 |
|
| 687 |
692 |
/// Returns a \ref MapToFunctor class
|
| 688 |
693 |
|
| 689 |
694 |
/// This function just returns a \ref MapToFunctor class.
|
| 690 |
695 |
/// \relates MapToFunctor
|
| 691 |
696 |
template<typename M>
|
| 692 |
697 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 693 |
698 |
return MapToFunctor<M>(m);
|
| 694 |
699 |
}
|
| 695 |
700 |
|
| 696 |
701 |
|
| 697 |
702 |
/// \brief Map adaptor to convert the \c Value type of a map to
|
| 698 |
703 |
/// another type using the default conversion.
|
| 699 |
704 |
|
| 700 |
705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
|
| 701 |
706 |
/// "readable map" to another type using the default conversion.
|
| 702 |
707 |
/// The \c Key type of it is inherited from \c M and the \c Value
|
| 703 |
708 |
/// type is \c V.
|
| 704 |
709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
|
| 705 |
710 |
///
|
| 706 |
711 |
/// The simplest way of using this map is through the convertMap()
|
| 707 |
712 |
/// function.
|
| 708 |
713 |
template <typename M, typename V>
|
| 709 |
714 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 710 |
715 |
const M &_m;
|
| 711 |
716 |
public:
|
| 712 |
717 |
typedef MapBase<typename M::Key, V> Parent;
|