| ... | ... |
@@ -7,628 +7,658 @@ |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_BELMANN_FORD_H |
|
| 20 |
#define LEMON_BELMANN_FORD_H |
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 |
/// |
|
| 26 | 25 |
|
| 27 | 26 |
#include <lemon/bits/path_dump.h> |
| 28 | 27 |
#include <lemon/core.h> |
| 29 | 28 |
#include <lemon/error.h> |
| 30 | 29 |
#include <lemon/maps.h> |
| 30 |
#include <lemon/path.h> |
|
| 31 | 31 |
|
| 32 | 32 |
#include <limits> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
| 37 | 37 |
/// |
| 38 |
/// It defines all computational operations and constants which are |
|
| 39 |
/// used in the Bellman-Ford algorithm. The default implementation |
|
| 40 |
/// is based on the numeric_limits class. If the numeric type does not |
|
| 41 |
/// have infinity value then the maximum value is used as extremal |
|
| 42 |
/// |
|
| 38 |
/// This operation traits class defines all computational operations |
|
| 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 40 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 41 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 42 |
/// value is used as extremal infinity value. |
|
| 43 | 43 |
template < |
| 44 |
typename Value, |
|
| 45 |
bool has_infinity = std::numeric_limits<Value>::has_infinity> |
|
| 44 |
typename V, |
|
| 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 46 | 46 |
struct BellmanFordDefaultOperationTraits {
|
| 47 |
/// \e |
|
| 48 |
typedef V Value; |
|
| 47 | 49 |
/// \brief Gives back the zero value of the type. |
| 48 | 50 |
static Value zero() {
|
| 49 | 51 |
return static_cast<Value>(0); |
| 50 | 52 |
} |
| 51 | 53 |
/// \brief Gives back the positive infinity value of the type. |
| 52 | 54 |
static Value infinity() {
|
| 53 | 55 |
return std::numeric_limits<Value>::infinity(); |
| 54 | 56 |
} |
| 55 | 57 |
/// \brief Gives back the sum of the given two elements. |
| 56 | 58 |
static Value plus(const Value& left, const Value& right) {
|
| 57 | 59 |
return left + right; |
| 58 | 60 |
} |
| 59 |
/// \brief Gives back true only if the first value less than |
|
| 61 |
/// \brief Gives back \c true only if the first value is less than |
|
| 62 |
/// the second. |
|
| 60 | 63 |
static bool less(const Value& left, const Value& right) {
|
| 61 | 64 |
return left < right; |
| 62 | 65 |
} |
| 63 | 66 |
}; |
| 64 | 67 |
|
| 65 |
template <typename Value> |
|
| 66 |
struct BellmanFordDefaultOperationTraits<Value, false> {
|
|
| 68 |
template <typename V> |
|
| 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 70 |
typedef V Value; |
|
| 67 | 71 |
static Value zero() {
|
| 68 | 72 |
return static_cast<Value>(0); |
| 69 | 73 |
} |
| 70 | 74 |
static Value infinity() {
|
| 71 | 75 |
return std::numeric_limits<Value>::max(); |
| 72 | 76 |
} |
| 73 | 77 |
static Value plus(const Value& left, const Value& right) {
|
| 74 | 78 |
if (left == infinity() || right == infinity()) return infinity(); |
| 75 | 79 |
return left + right; |
| 76 | 80 |
} |
| 77 | 81 |
static bool less(const Value& left, const Value& right) {
|
| 78 | 82 |
return left < right; |
| 79 | 83 |
} |
| 80 | 84 |
}; |
| 81 | 85 |
|
| 82 | 86 |
/// \brief Default traits class of BellmanFord class. |
| 83 | 87 |
/// |
| 84 | 88 |
/// Default traits class of BellmanFord class. |
| 85 |
/// \param _Digraph Digraph type. |
|
| 86 |
/// \param _LegthMap Type of length map. |
|
| 87 |
|
|
| 89 |
/// \param GR The type of the digraph. |
|
| 90 |
/// \param LEN The type of the length map. |
|
| 91 |
template<typename GR, typename LEN> |
|
| 88 | 92 |
struct BellmanFordDefaultTraits {
|
| 89 |
/// The digraph type the algorithm runs on. |
|
| 90 |
typedef _Digraph Digraph; |
|
| 93 |
/// The type of the digraph the algorithm runs on. |
|
| 94 |
typedef GR Digraph; |
|
| 91 | 95 |
|
| 92 | 96 |
/// \brief The type of the map that stores the arc lengths. |
| 93 | 97 |
/// |
| 94 | 98 |
/// The type of the map that stores the arc lengths. |
| 95 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 96 |
typedef _LengthMap LengthMap; |
|
| 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 100 |
typedef LEN LengthMap; |
|
| 97 | 101 |
|
| 98 |
// The type of the length of the arcs. |
|
| 99 |
typedef typename _LengthMap::Value Value; |
|
| 102 |
/// The type of the arc lengths. |
|
| 103 |
typedef typename LEN::Value Value; |
|
| 100 | 104 |
|
| 101 | 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 102 | 106 |
/// |
| 103 |
/// It defines the infinity type on the given Value type |
|
| 104 |
/// and the used operation. |
|
| 107 |
/// It defines the used operations and the infinity value for the |
|
| 108 |
/// given \c Value type. |
|
| 105 | 109 |
/// \see BellmanFordDefaultOperationTraits |
| 106 | 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 107 | 111 |
|
| 108 | 112 |
/// \brief The type of the map that stores the last arcs of the |
| 109 | 113 |
/// shortest paths. |
| 110 | 114 |
/// |
| 111 | 115 |
/// The type of the map that stores the last |
| 112 | 116 |
/// arcs of the shortest paths. |
| 113 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 114 |
/// |
|
| 115 |
|
|
| 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 116 | 119 |
|
| 117 |
/// \brief Instantiates a PredMap. |
|
| 120 |
/// \brief Instantiates a \c PredMap. |
|
| 118 | 121 |
/// |
| 119 | 122 |
/// This function instantiates a \ref PredMap. |
| 120 |
/// \param digraph is the digraph, to which we would like to define the PredMap. |
|
| 121 |
static PredMap *createPredMap(const _Digraph& digraph) {
|
|
| 122 |
|
|
| 123 |
/// \param g is the digraph to which we would like to define the |
|
| 124 |
/// \ref PredMap. |
|
| 125 |
static PredMap *createPredMap(const GR& g) {
|
|
| 126 |
return new PredMap(g); |
|
| 123 | 127 |
} |
| 124 | 128 |
|
| 125 |
/// \brief The type of the map that stores the |
|
| 129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 126 | 130 |
/// |
| 127 |
/// The type of the map that stores the dists of the nodes. |
|
| 128 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 129 |
/// |
|
| 130 |
typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
|
| 131 |
|
|
| 131 |
/// The type of the map that stores the distances of the nodes. |
|
| 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 132 | 134 |
|
| 133 |
/// \brief Instantiates a DistMap. |
|
| 135 |
/// \brief Instantiates a \c DistMap. |
|
| 134 | 136 |
/// |
| 135 | 137 |
/// This function instantiates a \ref DistMap. |
| 136 |
/// \param digraph is the digraph, to which we would like to define the |
|
| 137 |
/// \ref DistMap |
|
| 138 |
static DistMap *createDistMap(const _Digraph& digraph) {
|
|
| 139 |
return new DistMap(digraph); |
|
| 138 |
/// \param g is the digraph to which we would like to define the |
|
| 139 |
/// \ref DistMap. |
|
| 140 |
static DistMap *createDistMap(const GR& g) {
|
|
| 141 |
return new DistMap(g); |
|
| 140 | 142 |
} |
| 141 | 143 |
|
| 142 | 144 |
}; |
| 143 | 145 |
|
| 144 | 146 |
/// \brief %BellmanFord algorithm class. |
| 145 | 147 |
/// |
| 146 | 148 |
/// \ingroup shortest_path |
| 147 |
/// This class provides an efficient implementation of \c Bellman-Ford |
|
| 148 |
/// algorithm. The arc lengths are passed to the algorithm using a |
|
| 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 151 |
/// <tt>O(ne)</tt>. |
|
| 152 |
/// |
|
| 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 155 |
/// should not contain directed cycles with negative total length. |
|
| 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 157 |
/// algorithm instead, since it is more efficient. |
|
| 158 |
/// |
|
| 159 |
/// The arc lengths are passed to the algorithm using a |
|
| 149 | 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 150 |
/// kind of length. |
|
| 161 |
/// kind of length. The type of the length values is determined by the |
|
| 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 151 | 163 |
/// |
| 152 |
/// The Bellman-Ford algorithm solves the shortest path from one node |
|
| 153 |
/// problem when the arcs can have negative length but the digraph should |
|
| 154 |
/// not contain cycles with negative sum of length. If we can assume |
|
| 155 |
/// that all arc is non-negative in the digraph then the dijkstra algorithm |
|
| 156 |
/// |
|
| 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 166 |
/// it can be used easier. |
|
| 157 | 167 |
/// |
| 158 |
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
|
| 159 |
/// |
|
| 160 |
/// The type of the length is determined by the |
|
| 161 |
/// \ref concepts::ReadMap::Value "Value" of the length map. |
|
| 162 |
/// |
|
| 163 |
/// \param _Digraph The digraph type the algorithm runs on. The default value |
|
| 164 |
/// is \ref ListDigraph. The value of _Digraph is not used directly by |
|
| 165 |
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
| 166 |
/// \param _LengthMap This read-only ArcMap determines the lengths of the |
|
| 167 |
/// arcs. The default map type is \ref concepts::Digraph::ArcMap |
|
| 168 |
/// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
|
| 169 |
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
| 170 |
/// \param _Traits Traits class to set various data types used by the |
|
| 171 |
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
|
| 172 |
/// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
|
| 173 |
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
|
| 174 |
/// |
|
| 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 169 |
/// The default type is \ref ListDigraph. |
|
| 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 171 |
/// the lengths of the arcs. The default map type is |
|
| 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 175 | 173 |
#ifdef DOXYGEN |
| 176 |
template <typename |
|
| 174 |
template <typename GR, typename LEN, typename TR> |
|
| 177 | 175 |
#else |
| 178 |
template <typename _Digraph, |
|
| 179 |
typename _LengthMap=typename _Digraph::template ArcMap<int>, |
|
| 180 |
|
|
| 176 |
template <typename GR=ListDigraph, |
|
| 177 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 181 | 179 |
#endif |
| 182 | 180 |
class BellmanFord {
|
| 183 | 181 |
public: |
| 184 | 182 |
|
| 185 |
typedef _Traits Traits; |
|
| 186 | 183 |
///The type of the underlying digraph. |
| 187 |
typedef typename |
|
| 184 |
typedef typename TR::Digraph Digraph; |
|
| 185 |
|
|
| 186 |
/// \brief The type of the arc lengths. |
|
| 187 |
typedef typename TR::LengthMap::Value Value; |
|
| 188 |
/// \brief The type of the map that stores the arc lengths. |
|
| 189 |
typedef typename TR::LengthMap LengthMap; |
|
| 190 |
/// \brief The type of the map that stores the last |
|
| 191 |
/// arcs of the shortest paths. |
|
| 192 |
typedef typename TR::PredMap PredMap; |
|
| 193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 194 |
typedef typename TR::DistMap DistMap; |
|
| 195 |
/// The type of the paths. |
|
| 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 198 |
/// "operation traits class" of the algorithm. |
|
| 199 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 200 |
|
|
| 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 202 |
typedef TR Traits; |
|
| 203 |
|
|
| 204 |
private: |
|
| 188 | 205 |
|
| 189 | 206 |
typedef typename Digraph::Node Node; |
| 190 | 207 |
typedef typename Digraph::NodeIt NodeIt; |
| 191 | 208 |
typedef typename Digraph::Arc Arc; |
| 192 | 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 193 |
|
|
| 194 |
/// \brief The type of the length of the arcs. |
|
| 195 |
typedef typename _Traits::LengthMap::Value Value; |
|
| 196 |
/// \brief The type of the map that stores the arc lengths. |
|
| 197 |
typedef typename _Traits::LengthMap LengthMap; |
|
| 198 |
/// \brief The type of the map that stores the last |
|
| 199 |
/// arcs of the shortest paths. |
|
| 200 |
typedef typename _Traits::PredMap PredMap; |
|
| 201 |
/// \brief The type of the map that stores the dists of the nodes. |
|
| 202 |
typedef typename _Traits::DistMap DistMap; |
|
| 203 |
/// \brief The operation traits. |
|
| 204 |
typedef typename _Traits::OperationTraits OperationTraits; |
|
| 205 |
private: |
|
| 206 |
/// Pointer to the underlying digraph. |
|
| 207 |
const Digraph *digraph; |
|
| 208 |
/// Pointer to the length map |
|
| 209 |
const LengthMap *length; |
|
| 210 |
///Pointer to the map of predecessors arcs. |
|
| 210 |
|
|
| 211 |
// Pointer to the underlying digraph. |
|
| 212 |
const Digraph *_gr; |
|
| 213 |
// Pointer to the length map |
|
| 214 |
const LengthMap *_length; |
|
| 215 |
// Pointer to the map of predecessors arcs. |
|
| 211 | 216 |
PredMap *_pred; |
| 212 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
| 213 |
bool local_pred; |
|
| 214 |
// |
|
| 217 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 218 |
bool _local_pred; |
|
| 219 |
// Pointer to the map of distances. |
|
| 215 | 220 |
DistMap *_dist; |
| 216 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
| 217 |
bool local_dist; |
|
| 221 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 222 |
bool _local_dist; |
|
| 218 | 223 |
|
| 219 | 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 220 | 225 |
MaskMap *_mask; |
| 221 | 226 |
|
| 222 | 227 |
std::vector<Node> _process; |
| 223 | 228 |
|
| 224 |
|
|
| 229 |
// Creates the maps if necessary. |
|
| 225 | 230 |
void create_maps() {
|
| 226 | 231 |
if(!_pred) {
|
| 227 |
local_pred = true; |
|
| 228 |
_pred = Traits::createPredMap(*digraph); |
|
| 232 |
_local_pred = true; |
|
| 233 |
_pred = Traits::createPredMap(*_gr); |
|
| 229 | 234 |
} |
| 230 | 235 |
if(!_dist) {
|
| 231 |
local_dist = true; |
|
| 232 |
_dist = Traits::createDistMap(*digraph); |
|
| 236 |
_local_dist = true; |
|
| 237 |
_dist = Traits::createDistMap(*_gr); |
|
| 233 | 238 |
} |
| 234 |
_mask = new MaskMap(* |
|
| 239 |
_mask = new MaskMap(*_gr, false); |
|
| 235 | 240 |
} |
| 236 | 241 |
|
| 237 | 242 |
public : |
| 238 | 243 |
|
| 239 | 244 |
typedef BellmanFord Create; |
| 240 | 245 |
|
| 241 |
/// \name Named |
|
| 246 |
/// \name Named Template Parameters |
|
| 242 | 247 |
|
| 243 | 248 |
///@{
|
| 244 | 249 |
|
| 245 | 250 |
template <class T> |
| 246 |
struct |
|
| 251 |
struct SetPredMapTraits : public Traits {
|
|
| 247 | 252 |
typedef T PredMap; |
| 248 | 253 |
static PredMap *createPredMap(const Digraph&) {
|
| 249 | 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 250 | 255 |
return 0; // ignore warnings |
| 251 | 256 |
} |
| 252 | 257 |
}; |
| 253 | 258 |
|
| 254 |
/// \brief \ref named-templ-param "Named parameter" for setting PredMap |
|
| 255 |
/// type |
|
| 256 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 260 |
/// \c PredMap type. |
|
| 257 | 261 |
/// |
| 262 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 263 |
/// \c PredMap type. |
|
| 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 258 | 265 |
template <class T> |
| 259 | 266 |
struct SetPredMap |
| 260 |
: public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
|
|
| 261 |
typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
| 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 262 | 269 |
}; |
| 263 | 270 |
|
| 264 | 271 |
template <class T> |
| 265 |
struct |
|
| 272 |
struct SetDistMapTraits : public Traits {
|
|
| 266 | 273 |
typedef T DistMap; |
| 267 | 274 |
static DistMap *createDistMap(const Digraph&) {
|
| 268 | 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 269 | 276 |
return 0; // ignore warnings |
| 270 | 277 |
} |
| 271 | 278 |
}; |
| 272 | 279 |
|
| 273 |
/// \brief \ref named-templ-param "Named parameter" for setting DistMap |
|
| 274 |
/// type |
|
| 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 281 |
/// \c DistMap type. |
|
| 275 | 282 |
/// |
| 276 |
/// \ref named-templ-param "Named parameter" for setting DistMap type |
|
| 277 |
/// |
|
| 283 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 284 |
/// \c DistMap type. |
|
| 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 278 | 286 |
template <class T> |
| 279 | 287 |
struct SetDistMap |
| 280 |
: public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
|
|
| 281 |
typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
|
| 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 282 | 290 |
}; |
| 283 |
|
|
| 291 |
|
|
| 284 | 292 |
template <class T> |
| 285 |
struct |
|
| 293 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 286 | 294 |
typedef T OperationTraits; |
| 287 | 295 |
}; |
| 288 | 296 |
|
| 289 | 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 290 |
/// OperationTraits type |
|
| 298 |
/// \c OperationTraits type. |
|
| 291 | 299 |
/// |
| 292 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
|
| 293 |
/// type |
|
| 300 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 301 |
/// \c OperationTraits type. |
|
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 294 | 303 |
template <class T> |
| 295 | 304 |
struct SetOperationTraits |
| 296 |
: public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
|
|
| 297 |
typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
|
| 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 298 | 307 |
Create; |
| 299 | 308 |
}; |
| 300 | 309 |
|
| 301 | 310 |
///@} |
| 302 | 311 |
|
| 303 | 312 |
protected: |
| 304 | 313 |
|
| 305 | 314 |
BellmanFord() {}
|
| 306 | 315 |
|
| 307 | 316 |
public: |
| 308 | 317 |
|
| 309 | 318 |
/// \brief Constructor. |
| 310 | 319 |
/// |
| 311 |
/// \param _graph the digraph the algorithm will run on. |
|
| 312 |
/// \param _length the length map used by the algorithm. |
|
| 313 |
BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
|
| 314 |
digraph(&_graph), length(&_length), |
|
| 315 |
_pred(0), local_pred(false), |
|
| 316 |
_dist(0), local_dist(false), _mask(0) {}
|
|
| 320 |
/// Constructor. |
|
| 321 |
/// \param g The digraph the algorithm runs on. |
|
| 322 |
/// \param length The length map used by the algorithm. |
|
| 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 324 |
_gr(&g), _length(&length), |
|
| 325 |
_pred(0), _local_pred(false), |
|
| 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 317 | 327 |
|
| 318 | 328 |
///Destructor. |
| 319 | 329 |
~BellmanFord() {
|
| 320 |
if(local_pred) delete _pred; |
|
| 321 |
if(local_dist) delete _dist; |
|
| 330 |
if(_local_pred) delete _pred; |
|
| 331 |
if(_local_dist) delete _dist; |
|
| 322 | 332 |
if(_mask) delete _mask; |
| 323 | 333 |
} |
| 324 | 334 |
|
| 325 | 335 |
/// \brief Sets the length map. |
| 326 | 336 |
/// |
| 327 | 337 |
/// Sets the length map. |
| 328 |
/// \return \c (*this) |
|
| 329 |
BellmanFord &lengthMap(const LengthMap &m) {
|
|
| 330 |
|
|
| 338 |
/// \return <tt>(*this)</tt> |
|
| 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 340 |
_length = ↦ |
|
| 331 | 341 |
return *this; |
| 332 | 342 |
} |
| 333 | 343 |
|
| 334 |
/// \brief Sets the map |
|
| 344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 335 | 345 |
/// |
| 336 |
/// Sets the map storing the predecessor arcs. |
|
| 337 |
/// If you don't use this function before calling \ref run(), |
|
| 338 |
/// it will allocate one. The destuctor deallocates this |
|
| 339 |
/// automatically allocated map, of course. |
|
| 340 |
/// \return \c (*this) |
|
| 341 |
BellmanFord &predMap(PredMap &m) {
|
|
| 342 |
|
|
| 346 |
/// Sets the map that stores the predecessor arcs. |
|
| 347 |
/// If you don't use this function before calling \ref run() |
|
| 348 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 349 |
/// The destructor deallocates this automatically allocated map, |
|
| 350 |
/// of course. |
|
| 351 |
/// \return <tt>(*this)</tt> |
|
| 352 |
BellmanFord &predMap(PredMap &map) {
|
|
| 353 |
if(_local_pred) {
|
|
| 343 | 354 |
delete _pred; |
| 344 |
|
|
| 355 |
_local_pred=false; |
|
| 345 | 356 |
} |
| 346 |
_pred = & |
|
| 357 |
_pred = ↦ |
|
| 347 | 358 |
return *this; |
| 348 | 359 |
} |
| 349 | 360 |
|
| 350 |
/// \brief Sets the map |
|
| 361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 351 | 362 |
/// |
| 352 |
/// Sets the map storing the distances calculated by the algorithm. |
|
| 353 |
/// If you don't use this function before calling \ref run(), |
|
| 354 |
/// it will allocate one. The destuctor deallocates this |
|
| 355 |
/// automatically allocated map, of course. |
|
| 356 |
/// \return \c (*this) |
|
| 357 |
BellmanFord &distMap(DistMap &m) {
|
|
| 358 |
|
|
| 363 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 364 |
/// by the algorithm. |
|
| 365 |
/// If you don't use this function before calling \ref run() |
|
| 366 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 367 |
/// The destructor deallocates this automatically allocated map, |
|
| 368 |
/// of course. |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
BellmanFord &distMap(DistMap &map) {
|
|
| 371 |
if(_local_dist) {
|
|
| 359 | 372 |
delete _dist; |
| 360 |
|
|
| 373 |
_local_dist=false; |
|
| 361 | 374 |
} |
| 362 |
_dist = & |
|
| 375 |
_dist = ↦ |
|
| 363 | 376 |
return *this; |
| 364 | 377 |
} |
| 365 | 378 |
|
| 366 |
/// \name Execution control |
|
| 367 |
/// The simplest way to execute the algorithm is to use |
|
| 368 |
/// one of the member functions called \c run(...). |
|
| 369 |
/// \n |
|
| 370 |
/// If you need more control on the execution, |
|
| 371 |
/// first you must call \ref init(), then you can add several source nodes |
|
| 372 |
/// with \ref addSource(). |
|
| 373 |
/// Finally \ref start() will perform the actual path |
|
| 374 |
/// |
|
| 379 |
/// \name Execution Control |
|
| 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 381 |
/// one of the member functions called \ref run().\n |
|
| 382 |
/// If you need better control on the execution, you have to call |
|
| 383 |
/// \ref init() first, then you can add several source nodes |
|
| 384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 385 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 386 |
/// \ref limitedStart(). |
|
| 375 | 387 |
|
| 376 | 388 |
///@{
|
| 377 | 389 |
|
| 378 | 390 |
/// \brief Initializes the internal data structures. |
| 379 | 391 |
/// |
| 380 |
/// Initializes the internal data structures. |
|
| 392 |
/// Initializes the internal data structures. The optional parameter |
|
| 393 |
/// is the initial distance of each node. |
|
| 381 | 394 |
void init(const Value value = OperationTraits::infinity()) {
|
| 382 | 395 |
create_maps(); |
| 383 |
for (NodeIt it(* |
|
| 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 384 | 397 |
_pred->set(it, INVALID); |
| 385 | 398 |
_dist->set(it, value); |
| 386 | 399 |
} |
| 387 | 400 |
_process.clear(); |
| 388 | 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
| 389 |
for (NodeIt it(* |
|
| 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 390 | 403 |
_process.push_back(it); |
| 391 | 404 |
_mask->set(it, true); |
| 392 | 405 |
} |
| 393 | 406 |
} |
| 394 | 407 |
} |
| 395 | 408 |
|
| 396 | 409 |
/// \brief Adds a new source node. |
| 397 | 410 |
/// |
| 398 |
/// Adds a new source node. The optional second parameter is the |
|
| 399 |
/// initial distance of the node. It just sets the distance of the |
|
| 400 |
/// |
|
| 411 |
/// This function adds a new source node. The optional second parameter |
|
| 412 |
/// is the initial distance of the node. |
|
| 401 | 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
| 402 | 414 |
_dist->set(source, dst); |
| 403 | 415 |
if (!(*_mask)[source]) {
|
| 404 | 416 |
_process.push_back(source); |
| 405 | 417 |
_mask->set(source, true); |
| 406 | 418 |
} |
| 407 | 419 |
} |
| 408 | 420 |
|
| 409 | 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
| 410 | 422 |
/// |
| 411 | 423 |
/// If the algoritm calculated the distances in the previous round |
| 412 |
/// exactly for all at most \f$ k \f$ length path lengths then it will |
|
| 413 |
/// calculate the distances exactly for all at most \f$ k + 1 \f$ |
|
| 414 |
/// length path lengths. With \f$ k \f$ iteration this function |
|
| 415 |
/// calculates the at most \f$ k \f$ length path lengths. |
|
| 424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 425 |
/// will calculate the distances exactly for the paths of at most |
|
| 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 427 |
/// calculates the shortest path distances exactly for the paths |
|
| 428 |
/// consisting of at most \c k arcs. |
|
| 416 | 429 |
/// |
| 417 | 430 |
/// \warning The paths with limited arc number cannot be retrieved |
| 418 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
| 419 |
/// need the shortest path and not just the distance you should store |
|
| 420 |
/// after each iteration the \ref predMap() map and manually build |
|
| 421 |
/// the path. |
|
| 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 432 |
/// need the shortest paths and not only the distances, you should |
|
| 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 434 |
/// and build the path manually. |
|
| 422 | 435 |
/// |
| 423 | 436 |
/// \return \c true when the algorithm have not found more shorter |
| 424 | 437 |
/// paths. |
| 438 |
/// |
|
| 439 |
/// \see ActiveIt |
|
| 425 | 440 |
bool processNextRound() {
|
| 426 | 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 427 | 442 |
_mask->set(_process[i], false); |
| 428 | 443 |
} |
| 429 | 444 |
std::vector<Node> nextProcess; |
| 430 | 445 |
std::vector<Value> values(_process.size()); |
| 431 | 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 432 | 447 |
values[i] = (*_dist)[_process[i]]; |
| 433 | 448 |
} |
| 434 | 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 435 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
|
|
| 436 |
Node target = digraph->target(it); |
|
| 437 |
|
|
| 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 451 |
Node target = _gr->target(it); |
|
| 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 438 | 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 439 | 454 |
_pred->set(target, it); |
| 440 | 455 |
_dist->set(target, relaxed); |
| 441 | 456 |
if (!(*_mask)[target]) {
|
| 442 | 457 |
_mask->set(target, true); |
| 443 | 458 |
nextProcess.push_back(target); |
| 444 | 459 |
} |
| 445 | 460 |
} |
| 446 | 461 |
} |
| 447 | 462 |
} |
| 448 | 463 |
_process.swap(nextProcess); |
| 449 | 464 |
return _process.empty(); |
| 450 | 465 |
} |
| 451 | 466 |
|
| 452 | 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
| 453 | 468 |
/// |
| 454 |
/// If the algorithm calculated the distances in the |
|
| 455 |
/// previous round at least for all at most k length paths then it will |
|
| 456 |
/// calculate the distances at least for all at most k + 1 length paths. |
|
| 457 |
/// This function does not make it possible to calculate strictly the |
|
| 458 |
/// at most k length minimal paths, this is why it is |
|
| 459 |
/// called just weak round. |
|
| 460 |
/// |
|
| 469 |
/// If the algorithm calculated the distances in the previous round |
|
| 470 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 471 |
/// will calculate the distances at least for the paths of at most |
|
| 472 |
/// <tt>k+1</tt> arcs. |
|
| 473 |
/// This function does not make it possible to calculate the shortest |
|
| 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 475 |
/// this is why it is called weak round. |
|
| 476 |
/// |
|
| 477 |
/// \return \c true when the algorithm have not found more shorter |
|
| 478 |
/// paths. |
|
| 479 |
/// |
|
| 480 |
/// \see ActiveIt |
|
| 461 | 481 |
bool processNextWeakRound() {
|
| 462 | 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 463 | 483 |
_mask->set(_process[i], false); |
| 464 | 484 |
} |
| 465 | 485 |
std::vector<Node> nextProcess; |
| 466 | 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 467 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
|
|
| 468 |
Node target = digraph->target(it); |
|
| 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 488 |
Node target = _gr->target(it); |
|
| 469 | 489 |
Value relaxed = |
| 470 |
OperationTraits::plus((*_dist)[_process[i]], (* |
|
| 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 471 | 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 472 | 492 |
_pred->set(target, it); |
| 473 | 493 |
_dist->set(target, relaxed); |
| 474 | 494 |
if (!(*_mask)[target]) {
|
| 475 | 495 |
_mask->set(target, true); |
| 476 | 496 |
nextProcess.push_back(target); |
| 477 | 497 |
} |
| 478 | 498 |
} |
| 479 | 499 |
} |
| 480 | 500 |
} |
| 481 | 501 |
_process.swap(nextProcess); |
| 482 | 502 |
return _process.empty(); |
| 483 | 503 |
} |
| 484 | 504 |
|
| 485 | 505 |
/// \brief Executes the algorithm. |
| 486 | 506 |
/// |
| 487 |
/// \pre init() must be called and at least one node should be added |
|
| 488 |
/// with addSource() before using this function. |
|
| 507 |
/// Executes the algorithm. |
|
| 489 | 508 |
/// |
| 490 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
| 491 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 492 |
/// computes |
|
| 493 |
/// - The shortest path tree. |
|
| 494 |
/// - |
|
| 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 510 |
/// in order to compute the shortest path to each node. |
|
| 511 |
/// |
|
| 512 |
/// The algorithm computes |
|
| 513 |
/// - the shortest path tree (forest), |
|
| 514 |
/// - the distance of each node from the root(s). |
|
| 515 |
/// |
|
| 516 |
/// \pre init() must be called and at least one root node should be |
|
| 517 |
/// added with addSource() before using this function. |
|
| 495 | 518 |
void start() {
|
| 496 |
int num = countNodes(* |
|
| 519 |
int num = countNodes(*_gr) - 1; |
|
| 497 | 520 |
for (int i = 0; i < num; ++i) {
|
| 498 | 521 |
if (processNextWeakRound()) break; |
| 499 | 522 |
} |
| 500 | 523 |
} |
| 501 | 524 |
|
| 502 | 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
| 503 | 526 |
/// |
| 504 |
/// \pre init() must be called and at least one node should be added |
|
| 505 |
/// with addSource() before using this function. |
|
| 527 |
/// Executes the algorithm and checks the negative cycles. |
|
| 506 | 528 |
/// |
| 507 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
| 508 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 509 |
/// computes |
|
| 510 |
/// - The shortest path tree. |
|
| 511 |
/// - |
|
| 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 530 |
/// in order to compute the shortest path to each node and also checks |
|
| 531 |
/// if the digraph contains cycles with negative total length. |
|
| 532 |
/// |
|
| 533 |
/// The algorithm computes |
|
| 534 |
/// - the shortest path tree (forest), |
|
| 535 |
/// - the distance of each node from the root(s). |
|
| 512 | 536 |
/// |
| 513 | 537 |
/// \return \c false if there is a negative cycle in the digraph. |
| 538 |
/// |
|
| 539 |
/// \pre init() must be called and at least one root node should be |
|
| 540 |
/// added with addSource() before using this function. |
|
| 514 | 541 |
bool checkedStart() {
|
| 515 |
int num = countNodes(* |
|
| 542 |
int num = countNodes(*_gr); |
|
| 516 | 543 |
for (int i = 0; i < num; ++i) {
|
| 517 | 544 |
if (processNextWeakRound()) return true; |
| 518 | 545 |
} |
| 519 | 546 |
return _process.empty(); |
| 520 | 547 |
} |
| 521 | 548 |
|
| 522 |
/// \brief Executes the algorithm with |
|
| 549 |
/// \brief Executes the algorithm with arc number limit. |
|
| 523 | 550 |
/// |
| 524 |
/// \pre init() must be called and at least one node should be added |
|
| 525 |
/// with addSource() before using this function. |
|
| 551 |
/// Executes the algorithm with arc number limit. |
|
| 526 | 552 |
/// |
| 527 |
/// This method runs the %BellmanFord algorithm from the root |
|
| 528 |
/// node(s) in order to compute the shortest path lengths with at |
|
| 529 |
/// |
|
| 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 554 |
/// in order to compute the shortest path distance for each node |
|
| 555 |
/// using only the paths consisting of at most \c num arcs. |
|
| 556 |
/// |
|
| 557 |
/// The algorithm computes |
|
| 558 |
/// - the limited distance of each node from the root(s), |
|
| 559 |
/// - the predecessor arc for each node. |
|
| 530 | 560 |
/// |
| 531 | 561 |
/// \warning The paths with limited arc number cannot be retrieved |
| 532 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
| 533 |
/// need the shortest path and not just the distance you should store |
|
| 534 |
/// after each iteration the \ref predMap() map and manually build |
|
| 535 |
/// the path. |
|
| 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 563 |
/// need the shortest paths and not only the distances, you should |
|
| 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 565 |
/// and build the path manually. |
|
| 536 | 566 |
/// |
| 537 |
/// The algorithm computes |
|
| 538 |
/// - The predecessor arc from each node. |
|
| 539 |
/// |
|
| 567 |
/// \pre init() must be called and at least one root node should be |
|
| 568 |
/// added with addSource() before using this function. |
|
| 540 | 569 |
void limitedStart(int num) {
|
| 541 | 570 |
for (int i = 0; i < num; ++i) {
|
| 542 | 571 |
if (processNextRound()) break; |
| 543 | 572 |
} |
| 544 | 573 |
} |
| 545 | 574 |
|
| 546 |
/// \brief Runs |
|
| 575 |
/// \brief Runs the algorithm from the given root node. |
|
| 547 | 576 |
/// |
| 548 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
| 549 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 550 |
/// computes |
|
| 551 |
/// - The shortest path tree. |
|
| 552 |
/// - |
|
| 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 578 |
/// node \c s in order to compute the shortest path to each node. |
|
| 553 | 579 |
/// |
| 554 |
/// \note d.run(s) is just a shortcut of the following code. |
|
| 555 |
///\code |
|
| 556 |
/// d.init(); |
|
| 557 |
/// d.addSource(s); |
|
| 558 |
/// d.start(); |
|
| 559 |
///\endcode |
|
| 580 |
/// The algorithm computes |
|
| 581 |
/// - the shortest path tree (forest), |
|
| 582 |
/// - the distance of each node from the root(s). |
|
| 583 |
/// |
|
| 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 585 |
/// \code |
|
| 586 |
/// bf.init(); |
|
| 587 |
/// bf.addSource(s); |
|
| 588 |
/// bf.start(); |
|
| 589 |
/// \endcode |
|
| 560 | 590 |
void run(Node s) {
|
| 561 | 591 |
init(); |
| 562 | 592 |
addSource(s); |
| 563 | 593 |
start(); |
| 564 | 594 |
} |
| 565 | 595 |
|
| 566 |
/// \brief Runs %BellmanFord algorithm with limited path length |
|
| 567 |
/// from node \c s. |
|
| 596 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 597 |
/// number limit. |
|
| 568 | 598 |
/// |
| 569 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
| 570 |
/// in order to compute the shortest path with at most \c len arcs |
|
| 571 |
/// to each node. The algorithm computes |
|
| 572 |
/// - The shortest path tree. |
|
| 573 |
/// - |
|
| 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 600 |
/// node \c s in order to compute the shortest path distance for each |
|
| 601 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 574 | 602 |
/// |
| 575 |
/// \note d.run(s, num) is just a shortcut of the following code. |
|
| 576 |
///\code |
|
| 577 |
/// d.init(); |
|
| 578 |
/// d.addSource(s); |
|
| 579 |
/// d.limitedStart(num); |
|
| 580 |
///\endcode |
|
| 603 |
/// The algorithm computes |
|
| 604 |
/// - the limited distance of each node from the root(s), |
|
| 605 |
/// - the predecessor arc for each node. |
|
| 606 |
/// |
|
| 607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 609 |
/// need the shortest paths and not only the distances, you should |
|
| 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 611 |
/// and build the path manually. |
|
| 612 |
/// |
|
| 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 614 |
/// \code |
|
| 615 |
/// bf.init(); |
|
| 616 |
/// bf.addSource(s); |
|
| 617 |
/// bf.limitedStart(num); |
|
| 618 |
/// \endcode |
|
| 581 | 619 |
void run(Node s, int num) {
|
| 582 | 620 |
init(); |
| 583 | 621 |
addSource(s); |
| 584 | 622 |
limitedStart(num); |
| 585 | 623 |
} |
| 586 | 624 |
|
| 587 | 625 |
///@} |
| 588 | 626 |
|
| 589 |
/// \name Query Functions |
|
| 590 |
/// The result of the %BellmanFord algorithm can be obtained using these |
|
| 591 |
/// functions.\n |
|
| 592 |
/// Before the use of these functions, |
|
| 593 |
/// either run() or start() must be called. |
|
| 594 |
|
|
| 595 |
///@{
|
|
| 596 |
|
|
| 597 |
/// \brief |
|
| 627 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 598 | 628 |
/// |
| 599 |
/// Lemon iterator for get the active nodes. This class provides a |
|
| 600 |
/// common style lemon iterator which gives back a subset of the |
|
| 601 |
/// nodes. The iterated nodes are active in the algorithm after |
|
| 602 |
/// the last phase so these should be checked in the next phase to |
|
| 603 |
/// |
|
| 629 |
/// This class provides a common style LEMON iterator that traverses |
|
| 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 631 |
/// phase. These nodes should be checked in the next phase to |
|
| 632 |
/// find augmenting arcs outgoing from them. |
|
| 604 | 633 |
class ActiveIt {
|
| 605 | 634 |
public: |
| 606 | 635 |
|
| 607 | 636 |
/// \brief Constructor. |
| 608 | 637 |
/// |
| 609 |
/// Constructor for |
|
| 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 639 |
/// instance. |
|
| 610 | 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 611 | 641 |
{
|
| 612 | 642 |
_index = _algorithm->_process.size() - 1; |
| 613 | 643 |
} |
| 614 | 644 |
|
| 615 | 645 |
/// \brief Invalid constructor. |
| 616 | 646 |
/// |
| 617 | 647 |
/// Invalid constructor. |
| 618 | 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 619 | 649 |
|
| 620 |
/// \brief Conversion to |
|
| 650 |
/// \brief Conversion to \c Node. |
|
| 621 | 651 |
/// |
| 622 |
/// Conversion to |
|
| 652 |
/// Conversion to \c Node. |
|
| 623 | 653 |
operator Node() const {
|
| 624 | 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 625 | 655 |
} |
| 626 | 656 |
|
| 627 | 657 |
/// \brief Increment operator. |
| 628 | 658 |
/// |
| 629 | 659 |
/// Increment operator. |
| 630 | 660 |
ActiveIt& operator++() {
|
| 631 | 661 |
--_index; |
| 632 | 662 |
return *this; |
| 633 | 663 |
} |
| 634 | 664 |
|
| ... | ... |
@@ -637,406 +667,444 @@ |
| 637 | 667 |
} |
| 638 | 668 |
bool operator!=(const ActiveIt& it) const {
|
| 639 | 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
| 640 | 670 |
} |
| 641 | 671 |
bool operator<(const ActiveIt& it) const {
|
| 642 | 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
| 643 | 673 |
} |
| 644 | 674 |
|
| 645 | 675 |
private: |
| 646 | 676 |
const BellmanFord* _algorithm; |
| 647 | 677 |
int _index; |
| 648 | 678 |
}; |
| 679 |
|
|
| 680 |
/// \name Query Functions |
|
| 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 682 |
/// functions.\n |
|
| 683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 684 |
|
|
| 685 |
///@{
|
|
| 649 | 686 |
|
| 650 |
|
|
| 687 |
/// \brief The shortest path to the given node. |
|
| 688 |
/// |
|
| 689 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 690 |
/// |
|
| 691 |
/// \warning \c t should be reached from the root(s). |
|
| 692 |
/// |
|
| 693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 694 |
/// using this function. |
|
| 695 |
Path path(Node t) const |
|
| 696 |
{
|
|
| 697 |
return Path(*_gr, *_pred, t); |
|
| 698 |
} |
|
| 699 |
|
|
| 700 |
/// \brief The distance of the given node from the root(s). |
|
| 701 |
/// |
|
| 702 |
/// Returns the distance of the given node from the root(s). |
|
| 703 |
/// |
|
| 704 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 705 |
/// the return value of this function is undefined. |
|
| 706 |
/// |
|
| 707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 708 |
/// using this function. |
|
| 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 651 | 710 |
|
| 652 |
/// \brief Gives back the shortest path. |
|
| 653 |
/// |
|
| 654 |
/// Gives back the shortest path. |
|
| 655 |
/// \pre The \c t should be reachable from the source. |
|
| 656 |
Path path(Node t) |
|
| 657 |
{
|
|
| 658 |
|
|
| 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 712 |
/// the given node. |
|
| 713 |
/// |
|
| 714 |
/// This function returns the 'previous arc' of the shortest path |
|
| 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 717 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 718 |
/// |
|
| 719 |
/// The shortest path tree used here is equal to the shortest path |
|
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// |
|
| 722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 723 |
/// using this function. |
|
| 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 725 |
|
|
| 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 727 |
/// the given node. |
|
| 728 |
/// |
|
| 729 |
/// This function returns the 'previous node' of the shortest path |
|
| 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 732 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 733 |
/// |
|
| 734 |
/// The shortest path tree used here is equal to the shortest path |
|
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// |
|
| 737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 738 |
/// using this function. |
|
| 739 |
Node predNode(Node v) const {
|
|
| 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 741 |
} |
|
| 742 |
|
|
| 743 |
/// \brief Returns a const reference to the node map that stores the |
|
| 744 |
/// distances of the nodes. |
|
| 745 |
/// |
|
| 746 |
/// Returns a const reference to the node map that stores the distances |
|
| 747 |
/// of the nodes calculated by the algorithm. |
|
| 748 |
/// |
|
| 749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 750 |
/// using this function. |
|
| 751 |
const DistMap &distMap() const { return *_dist;}
|
|
| 752 |
|
|
| 753 |
/// \brief Returns a const reference to the node map that stores the |
|
| 754 |
/// predecessor arcs. |
|
| 755 |
/// |
|
| 756 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 757 |
/// arcs, which form the shortest path tree (forest). |
|
| 758 |
/// |
|
| 759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 760 |
/// using this function. |
|
| 761 |
const PredMap &predMap() const { return *_pred; }
|
|
| 762 |
|
|
| 763 |
/// \brief Checks if a node is reached from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 766 |
/// |
|
| 767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 768 |
/// using this function. |
|
| 769 |
bool reached(Node v) const {
|
|
| 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 659 | 771 |
} |
| 660 | 772 |
|
| 661 |
|
|
| 662 |
// TODO : implement negative cycle |
|
| 663 |
// /// \brief Gives back a negative cycle. |
|
| 664 |
// /// |
|
| 665 |
// /// This function gives back a negative cycle. |
|
| 666 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
| 667 |
// /// an empty path. |
|
| 668 |
// Path negativeCycle() {
|
|
| 669 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
| 670 |
// for (ActiveIt it(*this); it != INVALID; ++it) {
|
|
| 671 |
// if (state[it] == 0) {
|
|
| 672 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 673 |
// if (state[t] == 0) {
|
|
| 674 |
// state[t] = 1; |
|
| 675 |
// } else if (state[t] == 2) {
|
|
| 676 |
// break; |
|
| 677 |
// } else {
|
|
| 678 |
// p.clear(); |
|
| 679 |
// typename Path::Builder b(p); |
|
| 680 |
// b.setStartNode(t); |
|
| 681 |
// b.pushFront(predArc(t)); |
|
| 682 |
// for(Node s = predNode(t); s != t; s = predNode(s)) {
|
|
| 683 |
// b.pushFront(predArc(s)); |
|
| 684 |
// } |
|
| 685 |
// b.commit(); |
|
| 686 |
// return true; |
|
| 687 |
// } |
|
| 688 |
// } |
|
| 689 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 690 |
// if (state[t] == 1) {
|
|
| 691 |
// state[t] = 2; |
|
| 692 |
// } else {
|
|
| 693 |
// break; |
|
| 694 |
// } |
|
| 695 |
// } |
|
| 696 |
// } |
|
| 697 |
// } |
|
| 698 |
// return false; |
|
| 699 |
// } |
|
| 700 |
|
|
| 701 |
/// \brief The distance of a node from the root. |
|
| 702 |
/// |
|
| 703 |
/// Returns the distance of a node from the root. |
|
| 704 |
/// \pre \ref run() must be called before using this function. |
|
| 705 |
/// \warning If node \c v in unreachable from the root the return value |
|
| 706 |
/// of this funcion is undefined. |
|
| 707 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 708 |
|
|
| 709 |
/// \brief Returns the 'previous arc' of the shortest path tree. |
|
| 710 |
/// |
|
| 711 |
/// For a node \c v it returns the 'previous arc' of the shortest path |
|
| 712 |
/// tree, i.e. it returns the last arc of a shortest path from the root |
|
| 713 |
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
|
| 714 |
/// if \c v=s. The shortest path tree used here is equal to the shortest |
|
| 715 |
/// path tree used in \ref predNode(). |
|
| 716 |
/// \pre \ref run() must be called before using |
|
| 717 |
/// this function. |
|
| 718 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 719 |
|
|
| 720 |
/// \brief Returns the 'previous node' of the shortest path tree. |
|
| 721 |
/// |
|
| 722 |
/// For a node \c v it returns the 'previous node' of the shortest path |
|
| 723 |
/// tree, i.e. it returns the last but one node from a shortest path from |
|
| 724 |
/// the root to \c /v. It is INVALID if \c v is unreachable from the root |
|
| 725 |
/// or if \c v=s. The shortest path tree used here is equal to the |
|
| 726 |
/// shortest path tree used in \ref predArc(). \pre \ref run() must be |
|
| 727 |
/// called before using this function. |
|
| 728 |
Node predNode(Node v) const {
|
|
| 729 |
return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
|
| 730 |
} |
|
| 731 |
|
|
| 732 |
/// \brief Returns a reference to the NodeMap of distances. |
|
| 733 |
/// |
|
| 734 |
/// Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
| 735 |
/// be called before using this function. |
|
| 736 |
const DistMap &distMap() const { return *_dist;}
|
|
| 737 |
|
|
| 738 |
/// \brief Returns a reference to the shortest path tree map. |
|
| 739 |
/// |
|
| 740 |
/// Returns a reference to the NodeMap of the arcs of the |
|
| 741 |
/// shortest path tree. |
|
| 742 |
/// \pre \ref run() must be called before using this function. |
|
| 743 |
const PredMap &predMap() const { return *_pred; }
|
|
| 744 |
|
|
| 745 |
/// \brief Checks if a node is reachable from the root. |
|
| 746 |
/// |
|
| 747 |
/// Returns \c true if \c v is reachable from the root. |
|
| 748 |
/// \pre \ref run() must be called before using this function. |
|
| 749 |
/// |
|
| 750 |
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
|
|
| 773 |
// TODO: implement negative cycle |
|
| 774 |
// /// \brief Gives back a negative cycle. |
|
| 775 |
// /// |
|
| 776 |
// /// This function gives back a negative cycle. |
|
| 777 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
| 778 |
// /// an empty path. |
|
| 779 |
// Path negativeCycle() {
|
|
| 780 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
| 781 |
// for (ActiveIt it(*this); it != INVALID; ++it) {
|
|
| 782 |
// if (state[it] == 0) {
|
|
| 783 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 784 |
// if (state[t] == 0) {
|
|
| 785 |
// state[t] = 1; |
|
| 786 |
// } else if (state[t] == 2) {
|
|
| 787 |
// break; |
|
| 788 |
// } else {
|
|
| 789 |
// p.clear(); |
|
| 790 |
// typename Path::Builder b(p); |
|
| 791 |
// b.setStartNode(t); |
|
| 792 |
// b.pushFront(predArc(t)); |
|
| 793 |
// for(Node s = predNode(t); s != t; s = predNode(s)) {
|
|
| 794 |
// b.pushFront(predArc(s)); |
|
| 795 |
// } |
|
| 796 |
// b.commit(); |
|
| 797 |
// return true; |
|
| 798 |
// } |
|
| 799 |
// } |
|
| 800 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 801 |
// if (state[t] == 1) {
|
|
| 802 |
// state[t] = 2; |
|
| 803 |
// } else {
|
|
| 804 |
// break; |
|
| 805 |
// } |
|
| 806 |
// } |
|
| 807 |
// } |
|
| 808 |
// } |
|
| 809 |
// return false; |
|
| 810 |
// } |
|
| 751 | 811 |
|
| 752 | 812 |
///@} |
| 753 | 813 |
}; |
| 754 | 814 |
|
| 755 |
/// \brief Default traits class of |
|
| 815 |
/// \brief Default traits class of bellmanFord() function. |
|
| 756 | 816 |
/// |
| 757 |
/// Default traits class of BellmanFord function. |
|
| 758 |
/// \param _Digraph Digraph type. |
|
| 759 |
/// \param _LengthMap Type of length map. |
|
| 760 |
template <typename _Digraph, typename _LengthMap> |
|
| 817 |
/// Default traits class of bellmanFord() function. |
|
| 818 |
/// \tparam GR The type of the digraph. |
|
| 819 |
/// \tparam LEN The type of the length map. |
|
| 820 |
template <typename GR, typename LEN> |
|
| 761 | 821 |
struct BellmanFordWizardDefaultTraits {
|
| 762 |
/// \brief The digraph type the algorithm runs on. |
|
| 763 |
typedef _Digraph Digraph; |
|
| 822 |
/// The type of the digraph the algorithm runs on. |
|
| 823 |
typedef GR Digraph; |
|
| 764 | 824 |
|
| 765 | 825 |
/// \brief The type of the map that stores the arc lengths. |
| 766 | 826 |
/// |
| 767 | 827 |
/// The type of the map that stores the arc lengths. |
| 768 | 828 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 769 |
typedef |
|
| 829 |
typedef LEN LengthMap; |
|
| 770 | 830 |
|
| 771 |
/// \brief The value type of the length map. |
|
| 772 |
typedef typename _LengthMap::Value Value; |
|
| 831 |
/// The type of the arc lengths. |
|
| 832 |
typedef typename LEN::Value Value; |
|
| 773 | 833 |
|
| 774 | 834 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 775 | 835 |
/// |
| 776 |
/// It defines the infinity type on the given Value type |
|
| 777 |
/// and the used operation. |
|
| 836 |
/// It defines the used operations and the infinity value for the |
|
| 837 |
/// given \c Value type. |
|
| 778 | 838 |
/// \see BellmanFordDefaultOperationTraits |
| 779 | 839 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 780 | 840 |
|
| 781 | 841 |
/// \brief The type of the map that stores the last |
| 782 | 842 |
/// arcs of the shortest paths. |
| 783 | 843 |
/// |
| 784 |
/// The type of the map that stores the last |
|
| 785 |
/// arcs of the shortest paths. |
|
| 786 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 787 |
typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
|
| 844 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 845 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 846 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 788 | 847 |
|
| 789 |
/// \brief Instantiates a PredMap. |
|
| 848 |
/// \brief Instantiates a \c PredMap. |
|
| 790 | 849 |
/// |
| 791 |
/// This function instantiates a \ref PredMap. |
|
| 792 |
static PredMap *createPredMap(const _Digraph &) {
|
|
| 793 |
|
|
| 850 |
/// This function instantiates a \ref PredMap. |
|
| 851 |
/// \param g is the digraph to which we would like to define the |
|
| 852 |
/// \ref PredMap. |
|
| 853 |
static PredMap *createPredMap(const GR &g) {
|
|
| 854 |
return new PredMap(g); |
|
| 794 | 855 |
} |
| 795 |
|
|
| 856 |
|
|
| 857 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 796 | 858 |
/// |
| 797 |
/// The type of the map that stores the dists of the nodes. |
|
| 798 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 799 |
typedef NullMap<typename Digraph::Node, Value> DistMap; |
|
| 800 |
/// \brief Instantiates a DistMap. |
|
| 859 |
/// The type of the map that stores the distances of the nodes. |
|
| 860 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 861 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 862 |
|
|
| 863 |
/// \brief Instantiates a \c DistMap. |
|
| 801 | 864 |
/// |
| 802 | 865 |
/// This function instantiates a \ref DistMap. |
| 803 |
static DistMap *createDistMap(const _Digraph &) {
|
|
| 804 |
return new DistMap(); |
|
| 866 |
/// \param g is the digraph to which we would like to define the |
|
| 867 |
/// \ref DistMap. |
|
| 868 |
static DistMap *createDistMap(const GR &g) {
|
|
| 869 |
return new DistMap(g); |
|
| 805 | 870 |
} |
| 871 |
|
|
| 872 |
///The type of the shortest paths. |
|
| 873 |
|
|
| 874 |
///The type of the shortest paths. |
|
| 875 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 876 |
typedef lemon::Path<Digraph> Path; |
|
| 806 | 877 |
}; |
| 807 | 878 |
|
| 808 |
/// \brief Default traits used by |
|
| 879 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 809 | 880 |
/// |
| 810 |
/// To make it easier to use BellmanFord algorithm |
|
| 811 |
/// we have created a wizard class. |
|
| 812 |
/// This \ref BellmanFordWizard class needs default traits, |
|
| 813 |
/// as well as the \ref BellmanFord class. |
|
| 814 |
/// The \ref BellmanFordWizardBase is a class to be the default traits of the |
|
| 815 |
/// \ref BellmanFordWizard class. |
|
| 816 |
/// \todo More named parameters are required... |
|
| 817 |
template<class _Digraph,class _LengthMap> |
|
| 881 |
/// Default traits class used by BellmanFordWizard. |
|
| 882 |
/// \tparam GR The type of the digraph. |
|
| 883 |
/// \tparam LEN The type of the length map. |
|
| 884 |
template <typename GR, typename LEN> |
|
| 818 | 885 |
class BellmanFordWizardBase |
| 819 |
: public BellmanFordWizardDefaultTraits< |
|
| 886 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 820 | 887 |
|
| 821 |
typedef BellmanFordWizardDefaultTraits< |
|
| 888 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 822 | 889 |
protected: |
| 823 |
|
|
| 890 |
// Type of the nodes in the digraph. |
|
| 824 | 891 |
typedef typename Base::Digraph::Node Node; |
| 825 | 892 |
|
| 826 |
|
|
| 893 |
// Pointer to the underlying digraph. |
|
| 827 | 894 |
void *_graph; |
| 828 |
|
|
| 895 |
// Pointer to the length map |
|
| 829 | 896 |
void *_length; |
| 830 |
// |
|
| 897 |
// Pointer to the map of predecessors arcs. |
|
| 831 | 898 |
void *_pred; |
| 832 |
// |
|
| 899 |
// Pointer to the map of distances. |
|
| 833 | 900 |
void *_dist; |
| 834 |
///Pointer to the source node. |
|
| 835 |
Node _source; |
|
| 901 |
//Pointer to the shortest path to the target node. |
|
| 902 |
void *_path; |
|
| 903 |
//Pointer to the distance of the target node. |
|
| 904 |
void *_di; |
|
| 836 | 905 |
|
| 837 | 906 |
public: |
| 838 | 907 |
/// Constructor. |
| 839 | 908 |
|
| 840 |
/// This constructor does not require parameters, therefore it initiates |
|
| 841 |
/// all of the attributes to default values (0, INVALID). |
|
| 842 |
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
|
| 843 |
_dist(0), _source(INVALID) {}
|
|
| 909 |
/// This constructor does not require parameters, it initiates |
|
| 910 |
/// all of the attributes to default values \c 0. |
|
| 911 |
BellmanFordWizardBase() : |
|
| 912 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 844 | 913 |
|
| 845 | 914 |
/// Constructor. |
| 846 | 915 |
|
| 847 |
/// This constructor requires some parameters, |
|
| 848 |
/// listed in the parameters list. |
|
| 849 |
/// Others are initiated to 0. |
|
| 850 |
/// \param digraph is the initial value of \ref _graph |
|
| 851 |
/// \param length is the initial value of \ref _length |
|
| 852 |
/// \param source is the initial value of \ref _source |
|
| 853 |
BellmanFordWizardBase(const _Digraph& digraph, |
|
| 854 |
const _LengthMap& length, |
|
| 855 |
Node source = INVALID) : |
|
| 856 |
_graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
|
| 857 |
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
|
| 858 |
_pred(0), _dist(0), _source(source) {}
|
|
| 916 |
/// This constructor requires two parameters, |
|
| 917 |
/// others are initiated to \c 0. |
|
| 918 |
/// \param gr The digraph the algorithm runs on. |
|
| 919 |
/// \param len The length map. |
|
| 920 |
BellmanFordWizardBase(const GR& gr, |
|
| 921 |
const LEN& len) : |
|
| 922 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 923 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 924 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 859 | 925 |
|
| 860 | 926 |
}; |
| 861 | 927 |
|
| 862 |
/// |
|
| 928 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 929 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 930 |
/// |
|
| 931 |
/// This auxiliary class is created to implement the |
|
| 932 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 933 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 934 |
/// It does not have own \ref run() method, it uses the |
|
| 935 |
/// functions and features of the plain \ref BellmanFord. |
|
| 936 |
/// |
|
| 937 |
/// This class should only be used through the \ref bellmanFord() |
|
| 938 |
/// function, which makes it easier to use the algorithm. |
|
| 939 |
template<class TR> |
|
| 940 |
class BellmanFordWizard : public TR {
|
|
| 941 |
typedef TR Base; |
|
| 863 | 942 |
|
| 864 |
/// This class is created to make it easier to use BellmanFord algorithm. |
|
| 865 |
/// It uses the functions and features of the plain \ref BellmanFord, |
|
| 866 |
/// but it is much simpler to use it. |
|
| 867 |
/// |
|
| 868 |
/// Simplicity means that the way to change the types defined |
|
| 869 |
/// in the traits class is based on functions that returns the new class |
|
| 870 |
/// and not on templatable built-in classes. |
|
| 871 |
/// When using the plain \ref BellmanFord |
|
| 872 |
/// the new class with the modified type comes from |
|
| 873 |
/// the original class by using the :: |
|
| 874 |
/// operator. In the case of \ref BellmanFordWizard only |
|
| 875 |
/// a function have to be called and it will |
|
| 876 |
/// return the needed class. |
|
| 877 |
/// |
|
| 878 |
/// It does not have own \ref run method. When its \ref run method is called |
|
| 879 |
/// it initiates a plain \ref BellmanFord class, and calls the \ref |
|
| 880 |
/// BellmanFord::run method of it. |
|
| 881 |
template<class _Traits> |
|
| 882 |
class BellmanFordWizard : public _Traits {
|
|
| 883 |
typedef _Traits Base; |
|
| 884 |
|
|
| 885 |
///The type of the underlying digraph. |
|
| 886 |
typedef typename |
|
| 943 |
typedef typename TR::Digraph Digraph; |
|
| 887 | 944 |
|
| 888 | 945 |
typedef typename Digraph::Node Node; |
| 889 | 946 |
typedef typename Digraph::NodeIt NodeIt; |
| 890 | 947 |
typedef typename Digraph::Arc Arc; |
| 891 | 948 |
typedef typename Digraph::OutArcIt ArcIt; |
| 892 | 949 |
|
| 893 |
///The type of the map that stores the arc lengths. |
|
| 894 |
typedef typename _Traits::LengthMap LengthMap; |
|
| 895 |
|
|
| 896 |
///The type of the length of the arcs. |
|
| 950 |
typedef typename TR::LengthMap LengthMap; |
|
| 897 | 951 |
typedef typename LengthMap::Value Value; |
| 898 |
|
|
| 899 |
///\brief The type of the map that stores the last |
|
| 900 |
///arcs of the shortest paths. |
|
| 901 |
typedef typename _Traits::PredMap PredMap; |
|
| 902 |
|
|
| 903 |
///The type of the map that stores the dists of the nodes. |
|
| 904 |
typedef typename |
|
| 952 |
typedef typename TR::PredMap PredMap; |
|
| 953 |
typedef typename TR::DistMap DistMap; |
|
| 954 |
typedef typename TR::Path Path; |
|
| 905 | 955 |
|
| 906 | 956 |
public: |
| 907 | 957 |
/// Constructor. |
| 908 |
BellmanFordWizard() : |
|
| 958 |
BellmanFordWizard() : TR() {}
|
|
| 909 | 959 |
|
| 910 | 960 |
/// \brief Constructor that requires parameters. |
| 911 | 961 |
/// |
| 912 | 962 |
/// Constructor that requires parameters. |
| 913 | 963 |
/// These parameters will be the default values for the traits class. |
| 914 |
BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
|
| 915 |
Node src = INVALID) |
|
| 916 |
|
|
| 964 |
/// \param gr The digraph the algorithm runs on. |
|
| 965 |
/// \param len The length map. |
|
| 966 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 967 |
: TR(gr, len) {}
|
|
| 917 | 968 |
|
| 918 | 969 |
/// \brief Copy constructor |
| 919 |
BellmanFordWizard(const |
|
| 970 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 920 | 971 |
|
| 921 | 972 |
~BellmanFordWizard() {}
|
| 922 | 973 |
|
| 923 |
/// \brief Runs |
|
| 974 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 924 | 975 |
/// |
| 925 |
/// Runs BellmanFord algorithm from a given node. |
|
| 926 |
/// The node can be given by the \ref source function. |
|
| 927 |
void run() {
|
|
| 928 |
LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
|
| 929 |
|
|
| 976 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 977 |
/// node in order to compute the shortest path to each node. |
|
| 978 |
void run(Node s) {
|
|
| 979 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 930 | 980 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 931 | 981 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 932 | 982 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 933 | 983 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 934 |
bf.run( |
|
| 984 |
bf.run(s); |
|
| 935 | 985 |
} |
| 936 | 986 |
|
| 937 |
/// \brief Runs |
|
| 987 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 988 |
/// between \c s and \c t. |
|
| 938 | 989 |
/// |
| 939 |
/// Runs BellmanFord algorithm from the given node. |
|
| 940 |
/// \param src is the given source. |
|
| 941 |
void run(Node src) {
|
|
| 942 |
Base::_source = src; |
|
| 943 |
|
|
| 990 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 991 |
/// in order to compute the shortest path to node \c t. |
|
| 992 |
/// Actually, it computes the shortest path to each node, but using |
|
| 993 |
/// this function you can retrieve the distance and the shortest path |
|
| 994 |
/// for a single target node easier. |
|
| 995 |
/// |
|
| 996 |
/// \return \c true if \c t is reachable form \c s. |
|
| 997 |
bool run(Node s, Node t) {
|
|
| 998 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 999 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 1000 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 1001 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 1002 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 1003 |
bf.run(s); |
|
| 1004 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 1005 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 1006 |
return bf.reached(t); |
|
| 944 | 1007 |
} |
| 945 | 1008 |
|
| 946 | 1009 |
template<class T> |
| 947 |
struct |
|
| 1010 |
struct SetPredMapBase : public Base {
|
|
| 948 | 1011 |
typedef T PredMap; |
| 949 | 1012 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 950 |
|
|
| 1013 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 951 | 1014 |
}; |
| 952 | 1015 |
|
| 953 |
///\brief \ref named-templ-param "Named parameter" |
|
| 954 |
///function for setting PredMap type |
|
| 1016 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1017 |
/// the predecessor map. |
|
| 955 | 1018 |
/// |
| 956 |
/// \ref named-templ-param "Named parameter" |
|
| 957 |
///function for setting PredMap type |
|
| 958 |
/// |
|
| 1019 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1020 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 959 | 1021 |
template<class T> |
| 960 |
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
|
| 961 |
{
|
|
| 1022 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 962 | 1023 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 963 |
return BellmanFordWizard< |
|
| 1024 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 964 | 1025 |
} |
| 965 | 1026 |
|
| 966 | 1027 |
template<class T> |
| 967 |
struct |
|
| 1028 |
struct SetDistMapBase : public Base {
|
|
| 968 | 1029 |
typedef T DistMap; |
| 969 | 1030 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 970 |
|
|
| 1031 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 971 | 1032 |
}; |
| 972 | 1033 |
|
| 973 |
///\brief \ref named-templ-param "Named parameter" |
|
| 974 |
///function for setting DistMap type |
|
| 1034 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1035 |
/// the distance map. |
|
| 975 | 1036 |
/// |
| 976 |
/// \ref named-templ-param "Named parameter" |
|
| 977 |
///function for setting DistMap type |
|
| 978 |
/// |
|
| 1037 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1038 |
/// the map that stores the distances of the nodes calculated |
|
| 1039 |
/// by the algorithm. |
|
| 979 | 1040 |
template<class T> |
| 980 |
BellmanFordWizard< |
|
| 1041 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 981 | 1042 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 982 |
return BellmanFordWizard< |
|
| 1043 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 983 | 1044 |
} |
| 984 | 1045 |
|
| 985 | 1046 |
template<class T> |
| 986 |
struct DefOperationTraitsBase : public Base {
|
|
| 987 |
typedef T OperationTraits; |
|
| 988 |
|
|
| 1047 |
struct SetPathBase : public Base {
|
|
| 1048 |
typedef T Path; |
|
| 1049 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 989 | 1050 |
}; |
| 990 |
|
|
| 991 |
///\brief \ref named-templ-param "Named parameter" |
|
| 992 |
|
|
| 1051 |
|
|
| 1052 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1053 |
/// the shortest path to the target node. |
|
| 993 | 1054 |
/// |
| 994 |
/// \ref named-templ-param "Named parameter" |
|
| 995 |
///function for setting OperationTraits type |
|
| 1055 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1056 |
/// the shortest path to the target node. |
|
| 1057 |
template<class T> |
|
| 1058 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1059 |
{
|
|
| 1060 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1061 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1062 |
} |
|
| 1063 |
|
|
| 1064 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1065 |
/// the distance of the target node. |
|
| 996 | 1066 |
/// |
| 997 |
template<class T> |
|
| 998 |
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
|
|
| 999 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
| 1000 |
} |
|
| 1001 |
|
|
| 1002 |
/// \brief Sets the source node, from which the BellmanFord algorithm runs. |
|
| 1003 |
/// |
|
| 1004 |
/// Sets the source node, from which the BellmanFord algorithm runs. |
|
| 1005 |
/// \param src is the source node. |
|
| 1006 |
BellmanFordWizard<_Traits>& source(Node src) {
|
|
| 1007 |
|
|
| 1067 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1068 |
/// the distance of the target node. |
|
| 1069 |
BellmanFordWizard dist(const Value &d) |
|
| 1070 |
{
|
|
| 1071 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1008 | 1072 |
return *this; |
| 1009 | 1073 |
} |
| 1010 | 1074 |
|
| 1011 | 1075 |
}; |
| 1012 | 1076 |
|
| 1013 |
/// \brief Function type interface for BellmanFord |
|
| 1077 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1078 |
/// algorithm. |
|
| 1014 | 1079 |
/// |
| 1015 | 1080 |
/// \ingroup shortest_path |
| 1016 |
/// Function type interface for BellmanFord |
|
| 1081 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1082 |
/// algorithm. |
|
| 1017 | 1083 |
/// |
| 1018 | 1084 |
/// This function also has several \ref named-templ-func-param |
| 1019 | 1085 |
/// "named parameters", they are declared as the members of class |
| 1020 | 1086 |
/// \ref BellmanFordWizard. |
| 1021 |
/// The following |
|
| 1022 |
/// example shows how to use these parameters. |
|
| 1023 |
///\code |
|
| 1024 |
/// bellmanford(g,length,source).predMap(preds).run(); |
|
| 1025 |
/// |
|
| 1087 |
/// The following examples show how to use these parameters. |
|
| 1088 |
/// \code |
|
| 1089 |
/// // Compute shortest path from node s to each node |
|
| 1090 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1091 |
/// |
|
| 1092 |
/// // Compute shortest path from s to t |
|
| 1093 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1094 |
/// \endcode |
|
| 1026 | 1095 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| 1027 | 1096 |
/// to the end of the parameter list. |
| 1028 | 1097 |
/// \sa BellmanFordWizard |
| 1029 | 1098 |
/// \sa BellmanFord |
| 1030 |
template<class _Digraph, class _LengthMap> |
|
| 1031 |
BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
| 1032 |
bellmanFord(const _Digraph& digraph, |
|
| 1033 |
const _LengthMap& length, |
|
| 1034 |
typename _Digraph::Node source = INVALID) {
|
|
| 1035 |
return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
| 1036 |
|
|
| 1099 |
template<typename GR, typename LEN> |
|
| 1100 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1101 |
bellmanFord(const GR& digraph, |
|
| 1102 |
const LEN& length) |
|
| 1103 |
{
|
|
| 1104 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1037 | 1105 |
} |
| 1038 | 1106 |
|
| 1039 | 1107 |
} //END OF NAMESPACE LEMON |
| 1040 | 1108 |
|
| 1041 | 1109 |
#endif |
| 1042 | 1110 |
|
0 comments (0 inline)