0
2
1
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
|
| 20 |
#define LEMON_HARTMANN_ORLIN_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of HartmannOrlin algorithm. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam LEN The type of the length map. |
|
| 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename LEN> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename LEN, |
|
| 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HartmannOrlinDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the length map |
|
| 53 |
typedef LEN LengthMap; |
|
| 54 |
/// The type of the arc lengths |
|
| 55 |
typedef typename LengthMap::Value Value; |
|
| 56 |
|
|
| 57 |
/// \brief The large value type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large value type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Value must be convertible to \c LargeValue. |
|
| 63 |
typedef double LargeValue; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addBack() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer value types |
|
| 77 |
template <typename GR, typename LEN> |
|
| 78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef LEN LengthMap; |
|
| 82 |
typedef typename LengthMap::Value Value; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeValue; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeValue; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup shortest_path |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
| 97 |
/// a minimum mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean length (cost) in a digraph. |
|
| 101 |
/// It is an improved version of \ref Karp "Karp's original algorithm", |
|
| 102 |
/// it applies an efficient early termination scheme. |
|
| 103 |
/// |
|
| 104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 105 |
/// \tparam LEN The type of the length map. The default |
|
| 106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 107 |
#ifdef DOXYGEN |
|
| 108 |
template <typename GR, typename LEN, typename TR> |
|
| 109 |
#else |
|
| 110 |
template < typename GR, |
|
| 111 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 112 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
|
| 113 |
#endif |
|
| 114 |
class HartmannOrlin |
|
| 115 |
{
|
|
| 116 |
public: |
|
| 117 |
|
|
| 118 |
/// The type of the digraph |
|
| 119 |
typedef typename TR::Digraph Digraph; |
|
| 120 |
/// The type of the length map |
|
| 121 |
typedef typename TR::LengthMap LengthMap; |
|
| 122 |
/// The type of the arc lengths |
|
| 123 |
typedef typename TR::Value Value; |
|
| 124 |
|
|
| 125 |
/// \brief The large value type |
|
| 126 |
/// |
|
| 127 |
/// The large value type used for internal computations. |
|
| 128 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 129 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 130 |
/// otherwise it is \c double. |
|
| 131 |
typedef typename TR::LargeValue LargeValue; |
|
| 132 |
|
|
| 133 |
/// The tolerance type |
|
| 134 |
typedef typename TR::Tolerance Tolerance; |
|
| 135 |
|
|
| 136 |
/// \brief The path type of the found cycles |
|
| 137 |
/// |
|
| 138 |
/// The path type of the found cycles. |
|
| 139 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 140 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 141 |
typedef typename TR::Path Path; |
|
| 142 |
|
|
| 143 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
|
| 144 |
typedef TR Traits; |
|
| 145 |
|
|
| 146 |
private: |
|
| 147 |
|
|
| 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 149 |
|
|
| 150 |
// Data sturcture for path data |
|
| 151 |
struct PathData |
|
| 152 |
{
|
|
| 153 |
bool found; |
|
| 154 |
LargeValue dist; |
|
| 155 |
Arc pred; |
|
| 156 |
PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) : |
|
| 157 |
found(f), dist(d), pred(p) {}
|
|
| 158 |
}; |
|
| 159 |
|
|
| 160 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 161 |
PathDataNodeMap; |
|
| 162 |
|
|
| 163 |
private: |
|
| 164 |
|
|
| 165 |
// The digraph the algorithm runs on |
|
| 166 |
const Digraph &_gr; |
|
| 167 |
// The length of the arcs |
|
| 168 |
const LengthMap &_length; |
|
| 169 |
|
|
| 170 |
// Data for storing the strongly connected components |
|
| 171 |
int _comp_num; |
|
| 172 |
typename Digraph::template NodeMap<int> _comp; |
|
| 173 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 174 |
std::vector<Node>* _nodes; |
|
| 175 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 176 |
|
|
| 177 |
// Data for the found cycles |
|
| 178 |
bool _curr_found, _best_found; |
|
| 179 |
LargeValue _curr_length, _best_length; |
|
| 180 |
int _curr_size, _best_size; |
|
| 181 |
Node _curr_node, _best_node; |
|
| 182 |
int _curr_level, _best_level; |
|
| 183 |
|
|
| 184 |
Path *_cycle_path; |
|
| 185 |
bool _local_path; |
|
| 186 |
|
|
| 187 |
// Node map for storing path data |
|
| 188 |
PathDataNodeMap _data; |
|
| 189 |
// The processed nodes in the last round |
|
| 190 |
std::vector<Node> _process; |
|
| 191 |
|
|
| 192 |
Tolerance _tolerance; |
|
| 193 |
|
|
| 194 |
public: |
|
| 195 |
|
|
| 196 |
/// \name Named Template Parameters |
|
| 197 |
/// @{
|
|
| 198 |
|
|
| 199 |
template <typename T> |
|
| 200 |
struct SetLargeValueTraits : public Traits {
|
|
| 201 |
typedef T LargeValue; |
|
| 202 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 203 |
}; |
|
| 204 |
|
|
| 205 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 206 |
/// \c LargeValue type. |
|
| 207 |
/// |
|
| 208 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 209 |
/// type. It is used for internal computations in the algorithm. |
|
| 210 |
template <typename T> |
|
| 211 |
struct SetLargeValue |
|
| 212 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 213 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 214 |
}; |
|
| 215 |
|
|
| 216 |
template <typename T> |
|
| 217 |
struct SetPathTraits : public Traits {
|
|
| 218 |
typedef T Path; |
|
| 219 |
}; |
|
| 220 |
|
|
| 221 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 222 |
/// \c %Path type. |
|
| 223 |
/// |
|
| 224 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 225 |
/// type of the found cycles. |
|
| 226 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 227 |
/// and it must have an \c addFront() function. |
|
| 228 |
template <typename T> |
|
| 229 |
struct SetPath |
|
| 230 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
|
|
| 231 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
|
| 232 |
}; |
|
| 233 |
|
|
| 234 |
/// @} |
|
| 235 |
|
|
| 236 |
public: |
|
| 237 |
|
|
| 238 |
/// \brief Constructor. |
|
| 239 |
/// |
|
| 240 |
/// The constructor of the class. |
|
| 241 |
/// |
|
| 242 |
/// \param digraph The digraph the algorithm runs on. |
|
| 243 |
/// \param length The lengths (costs) of the arcs. |
|
| 244 |
HartmannOrlin( const Digraph &digraph, |
|
| 245 |
const LengthMap &length ) : |
|
| 246 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
| 247 |
_best_found(false), _best_length(0), _best_size(1), |
|
| 248 |
_cycle_path(NULL), _local_path(false), _data(digraph) |
|
| 249 |
{}
|
|
| 250 |
|
|
| 251 |
/// Destructor. |
|
| 252 |
~HartmannOrlin() {
|
|
| 253 |
if (_local_path) delete _cycle_path; |
|
| 254 |
} |
|
| 255 |
|
|
| 256 |
/// \brief Set the path structure for storing the found cycle. |
|
| 257 |
/// |
|
| 258 |
/// This function sets an external path structure for storing the |
|
| 259 |
/// found cycle. |
|
| 260 |
/// |
|
| 261 |
/// If you don't call this function before calling \ref run() or |
|
| 262 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
| 263 |
/// structure. The destuctor deallocates this automatically |
|
| 264 |
/// allocated object, of course. |
|
| 265 |
/// |
|
| 266 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 267 |
/// "addFront()" function of the given path structure. |
|
| 268 |
/// |
|
| 269 |
/// \return <tt>(*this)</tt> |
|
| 270 |
HartmannOrlin& cycle(Path &path) {
|
|
| 271 |
if (_local_path) {
|
|
| 272 |
delete _cycle_path; |
|
| 273 |
_local_path = false; |
|
| 274 |
} |
|
| 275 |
_cycle_path = &path; |
|
| 276 |
return *this; |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
/// \name Execution control |
|
| 280 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 281 |
/// function.\n |
|
| 282 |
/// If you only need the minimum mean length, you may call |
|
| 283 |
/// \ref findMinMean(). |
|
| 284 |
|
|
| 285 |
/// @{
|
|
| 286 |
|
|
| 287 |
/// \brief Run the algorithm. |
|
| 288 |
/// |
|
| 289 |
/// This function runs the algorithm. |
|
| 290 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 291 |
/// and/or the arc lengths have been modified). |
|
| 292 |
/// |
|
| 293 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 294 |
/// |
|
| 295 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 296 |
/// \code |
|
| 297 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
| 298 |
/// \endcode |
|
| 299 |
bool run() {
|
|
| 300 |
return findMinMean() && findCycle(); |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Find the minimum cycle mean. |
|
| 304 |
/// |
|
| 305 |
/// This function finds the minimum mean length of the directed |
|
| 306 |
/// cycles in the digraph. |
|
| 307 |
/// |
|
| 308 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 309 |
bool findMinMean() {
|
|
| 310 |
// Initialization and find strongly connected components |
|
| 311 |
init(); |
|
| 312 |
findComponents(); |
|
| 313 |
|
|
| 314 |
// Find the minimum cycle mean in the components |
|
| 315 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 316 |
if (!initComponent(comp)) continue; |
|
| 317 |
processRounds(); |
|
| 318 |
|
|
| 319 |
// Update the best cycle (global minimum mean cycle) |
|
| 320 |
if ( _curr_found && (!_best_found || |
|
| 321 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
|
| 322 |
_best_found = true; |
|
| 323 |
_best_length = _curr_length; |
|
| 324 |
_best_size = _curr_size; |
|
| 325 |
_best_node = _curr_node; |
|
| 326 |
_best_level = _curr_level; |
|
| 327 |
} |
|
| 328 |
} |
|
| 329 |
return _best_found; |
|
| 330 |
} |
|
| 331 |
|
|
| 332 |
/// \brief Find a minimum mean directed cycle. |
|
| 333 |
/// |
|
| 334 |
/// This function finds a directed cycle of minimum mean length |
|
| 335 |
/// in the digraph using the data computed by findMinMean(). |
|
| 336 |
/// |
|
| 337 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 338 |
/// |
|
| 339 |
/// \pre \ref findMinMean() must be called before using this function. |
|
| 340 |
bool findCycle() {
|
|
| 341 |
if (!_best_found) return false; |
|
| 342 |
IntNodeMap reached(_gr, -1); |
|
| 343 |
int r = _best_level + 1; |
|
| 344 |
Node u = _best_node; |
|
| 345 |
while (reached[u] < 0) {
|
|
| 346 |
reached[u] = --r; |
|
| 347 |
u = _gr.source(_data[u][r].pred); |
|
| 348 |
} |
|
| 349 |
r = reached[u]; |
|
| 350 |
Arc e = _data[u][r].pred; |
|
| 351 |
_cycle_path->addFront(e); |
|
| 352 |
_best_length = _length[e]; |
|
| 353 |
_best_size = 1; |
|
| 354 |
Node v; |
|
| 355 |
while ((v = _gr.source(e)) != u) {
|
|
| 356 |
e = _data[v][--r].pred; |
|
| 357 |
_cycle_path->addFront(e); |
|
| 358 |
_best_length += _length[e]; |
|
| 359 |
++_best_size; |
|
| 360 |
} |
|
| 361 |
return true; |
|
| 362 |
} |
|
| 363 |
|
|
| 364 |
/// @} |
|
| 365 |
|
|
| 366 |
/// \name Query Functions |
|
| 367 |
/// The results of the algorithm can be obtained using these |
|
| 368 |
/// functions.\n |
|
| 369 |
/// The algorithm should be executed before using them. |
|
| 370 |
|
|
| 371 |
/// @{
|
|
| 372 |
|
|
| 373 |
/// \brief Return the total length of the found cycle. |
|
| 374 |
/// |
|
| 375 |
/// This function returns the total length of the found cycle. |
|
| 376 |
/// |
|
| 377 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 378 |
/// using this function. |
|
| 379 |
LargeValue cycleLength() const {
|
|
| 380 |
return _best_length; |
|
| 381 |
} |
|
| 382 |
|
|
| 383 |
/// \brief Return the number of arcs on the found cycle. |
|
| 384 |
/// |
|
| 385 |
/// This function returns the number of arcs on the found cycle. |
|
| 386 |
/// |
|
| 387 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 388 |
/// using this function. |
|
| 389 |
int cycleArcNum() const {
|
|
| 390 |
return _best_size; |
|
| 391 |
} |
|
| 392 |
|
|
| 393 |
/// \brief Return the mean length of the found cycle. |
|
| 394 |
/// |
|
| 395 |
/// This function returns the mean length of the found cycle. |
|
| 396 |
/// |
|
| 397 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 398 |
/// following code. |
|
| 399 |
/// \code |
|
| 400 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
| 401 |
/// \endcode |
|
| 402 |
/// |
|
| 403 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 404 |
/// using this function. |
|
| 405 |
double cycleMean() const {
|
|
| 406 |
return static_cast<double>(_best_length) / _best_size; |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Return the found cycle. |
|
| 410 |
/// |
|
| 411 |
/// This function returns a const reference to the path structure |
|
| 412 |
/// storing the found cycle. |
|
| 413 |
/// |
|
| 414 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 415 |
/// this function. |
|
| 416 |
const Path& cycle() const {
|
|
| 417 |
return *_cycle_path; |
|
| 418 |
} |
|
| 419 |
|
|
| 420 |
///@} |
|
| 421 |
|
|
| 422 |
private: |
|
| 423 |
|
|
| 424 |
// Initialization |
|
| 425 |
void init() {
|
|
| 426 |
if (!_cycle_path) {
|
|
| 427 |
_local_path = true; |
|
| 428 |
_cycle_path = new Path; |
|
| 429 |
} |
|
| 430 |
_cycle_path->clear(); |
|
| 431 |
_best_found = false; |
|
| 432 |
_best_length = 0; |
|
| 433 |
_best_size = 1; |
|
| 434 |
_cycle_path->clear(); |
|
| 435 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 436 |
_data[u].clear(); |
|
| 437 |
} |
|
| 438 |
|
|
| 439 |
// Find strongly connected components and initialize _comp_nodes |
|
| 440 |
// and _out_arcs |
|
| 441 |
void findComponents() {
|
|
| 442 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 443 |
_comp_nodes.resize(_comp_num); |
|
| 444 |
if (_comp_num == 1) {
|
|
| 445 |
_comp_nodes[0].clear(); |
|
| 446 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 447 |
_comp_nodes[0].push_back(n); |
|
| 448 |
_out_arcs[n].clear(); |
|
| 449 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 450 |
_out_arcs[n].push_back(a); |
|
| 451 |
} |
|
| 452 |
} |
|
| 453 |
} else {
|
|
| 454 |
for (int i = 0; i < _comp_num; ++i) |
|
| 455 |
_comp_nodes[i].clear(); |
|
| 456 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 457 |
int k = _comp[n]; |
|
| 458 |
_comp_nodes[k].push_back(n); |
|
| 459 |
_out_arcs[n].clear(); |
|
| 460 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 461 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 462 |
} |
|
| 463 |
} |
|
| 464 |
} |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
// Initialize path data for the current component |
|
| 468 |
bool initComponent(int comp) {
|
|
| 469 |
_nodes = &(_comp_nodes[comp]); |
|
| 470 |
int n = _nodes->size(); |
|
| 471 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 472 |
return false; |
|
| 473 |
} |
|
| 474 |
for (int i = 0; i < n; ++i) {
|
|
| 475 |
_data[(*_nodes)[i]].resize(n + 1); |
|
| 476 |
} |
|
| 477 |
return true; |
|
| 478 |
} |
|
| 479 |
|
|
| 480 |
// Process all rounds of computing path data for the current component. |
|
| 481 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
| 482 |
// node to node v containing exactly k arcs. |
|
| 483 |
void processRounds() {
|
|
| 484 |
Node start = (*_nodes)[0]; |
|
| 485 |
_data[start][0] = PathData(true, 0); |
|
| 486 |
_process.clear(); |
|
| 487 |
_process.push_back(start); |
|
| 488 |
|
|
| 489 |
int k, n = _nodes->size(); |
|
| 490 |
int next_check = 4; |
|
| 491 |
bool terminate = false; |
|
| 492 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
|
|
| 493 |
processNextBuildRound(k); |
|
| 494 |
if (k == next_check || k == n) {
|
|
| 495 |
terminate = checkTermination(k); |
|
| 496 |
next_check = next_check * 3 / 2; |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
for ( ; k <= n && !terminate; ++k) {
|
|
| 500 |
processNextFullRound(k); |
|
| 501 |
if (k == next_check || k == n) {
|
|
| 502 |
terminate = checkTermination(k); |
|
| 503 |
next_check = next_check * 3 / 2; |
|
| 504 |
} |
|
| 505 |
} |
|
| 506 |
} |
|
| 507 |
|
|
| 508 |
// Process one round and rebuild _process |
|
| 509 |
void processNextBuildRound(int k) {
|
|
| 510 |
std::vector<Node> next; |
|
| 511 |
Node u, v; |
|
| 512 |
Arc e; |
|
| 513 |
LargeValue d; |
|
| 514 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 515 |
u = _process[i]; |
|
| 516 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 517 |
e = _out_arcs[u][j]; |
|
| 518 |
v = _gr.target(e); |
|
| 519 |
d = _data[u][k-1].dist + _length[e]; |
|
| 520 |
if (!_data[v][k].found) {
|
|
| 521 |
next.push_back(v); |
|
| 522 |
_data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e); |
|
| 523 |
} |
|
| 524 |
else if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 525 |
_data[v][k] = PathData(true, d, e); |
|
| 526 |
} |
|
| 527 |
} |
|
| 528 |
} |
|
| 529 |
_process.swap(next); |
|
| 530 |
} |
|
| 531 |
|
|
| 532 |
// Process one round using _nodes instead of _process |
|
| 533 |
void processNextFullRound(int k) {
|
|
| 534 |
Node u, v; |
|
| 535 |
Arc e; |
|
| 536 |
LargeValue d; |
|
| 537 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 538 |
u = (*_nodes)[i]; |
|
| 539 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 540 |
e = _out_arcs[u][j]; |
|
| 541 |
v = _gr.target(e); |
|
| 542 |
d = _data[u][k-1].dist + _length[e]; |
|
| 543 |
if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) {
|
|
| 544 |
_data[v][k] = PathData(true, d, e); |
|
| 545 |
} |
|
| 546 |
} |
|
| 547 |
} |
|
| 548 |
} |
|
| 549 |
|
|
| 550 |
// Check early termination |
|
| 551 |
bool checkTermination(int k) {
|
|
| 552 |
typedef std::pair<int, int> Pair; |
|
| 553 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
| 554 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
|
| 555 |
int n = _nodes->size(); |
|
| 556 |
LargeValue length; |
|
| 557 |
int size; |
|
| 558 |
Node u; |
|
| 559 |
|
|
| 560 |
// Search for cycles that are already found |
|
| 561 |
_curr_found = false; |
|
| 562 |
for (int i = 0; i < n; ++i) {
|
|
| 563 |
u = (*_nodes)[i]; |
|
| 564 |
if (!_data[u][k].found) continue; |
|
| 565 |
for (int j = k; j >= 0; --j) {
|
|
| 566 |
if (level[u].first == i && level[u].second > 0) {
|
|
| 567 |
// A cycle is found |
|
| 568 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
|
| 569 |
size = level[u].second - j; |
|
| 570 |
if (!_curr_found || length * _curr_size < _curr_length * size) {
|
|
| 571 |
_curr_length = length; |
|
| 572 |
_curr_size = size; |
|
| 573 |
_curr_node = u; |
|
| 574 |
_curr_level = level[u].second; |
|
| 575 |
_curr_found = true; |
|
| 576 |
} |
|
| 577 |
} |
|
| 578 |
level[u] = Pair(i, j); |
|
| 579 |
u = _gr.source(_data[u][j].pred); |
|
| 580 |
} |
|
| 581 |
} |
|
| 582 |
|
|
| 583 |
// If at least one cycle is found, check the optimality condition |
|
| 584 |
LargeValue d; |
|
| 585 |
if (_curr_found && k < n) {
|
|
| 586 |
// Find node potentials |
|
| 587 |
for (int i = 0; i < n; ++i) {
|
|
| 588 |
u = (*_nodes)[i]; |
|
| 589 |
pi[u] = std::numeric_limits<LargeValue>::max(); |
|
| 590 |
for (int j = 0; j <= k; ++j) {
|
|
| 591 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
|
| 592 |
if (_data[u][j].found && _tolerance.less(d, pi[u])) {
|
|
| 593 |
pi[u] = d; |
|
| 594 |
} |
|
| 595 |
} |
|
| 596 |
} |
|
| 597 |
|
|
| 598 |
// Check the optimality condition for all arcs |
|
| 599 |
bool done = true; |
|
| 600 |
for (ArcIt a(_gr); a != INVALID; ++a) {
|
|
| 601 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
|
| 602 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
|
|
| 603 |
done = false; |
|
| 604 |
break; |
|
| 605 |
} |
|
| 606 |
} |
|
| 607 |
return done; |
|
| 608 |
} |
|
| 609 |
return (k == n); |
|
| 610 |
} |
|
| 611 |
|
|
| 612 |
}; //class HartmannOrlin |
|
| 613 |
|
|
| 614 |
///@} |
|
| 615 |
|
|
| 616 |
} //namespace lemon |
|
| 617 |
|
|
| 618 |
#endif //LEMON_HARTMANN_ORLIN_H |
| ... | ... |
@@ -26,6 +26,7 @@ |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/karp.h> |
| 29 |
#include <lemon/hartmann_orlin.h> |
|
| 29 | 30 |
#include <lemon/howard.h> |
| 30 | 31 |
|
| 31 | 32 |
#include "test_tools.h" |
| ... | ... |
@@ -150,6 +151,12 @@ |
| 150 | 151 |
checkConcept< MmcClassConcept<GR, float>, |
| 151 | 152 |
Karp<GR, concepts::ReadMap<GR::Arc, float> > >(); |
| 152 | 153 |
|
| 154 |
// HartmannOrlin |
|
| 155 |
checkConcept< MmcClassConcept<GR, int>, |
|
| 156 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
| 157 |
checkConcept< MmcClassConcept<GR, float>, |
|
| 158 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
| 159 |
|
|
| 153 | 160 |
// Howard |
| 154 | 161 |
checkConcept< MmcClassConcept<GR, int>, |
| 155 | 162 |
Howard<GR, concepts::ReadMap<GR::Arc, int> > >(); |
| ... | ... |
@@ -189,6 +196,12 @@ |
| 189 | 196 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
| 190 | 197 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
| 191 | 198 |
|
| 199 |
// HartmannOrlin |
|
| 200 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
| 201 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
| 202 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
| 203 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
| 204 |
|
|
| 192 | 205 |
// Howard |
| 193 | 206 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
| 194 | 207 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
0 comments (0 inline)