0
5
3
468
903
7
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
20 |
#define LEMON_BUCKET_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Bucket Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
namespace _bucket_heap_bits { |
|
33 |
|
|
34 |
template <bool MIN> |
|
35 |
struct DirectionTraits { |
|
36 |
static bool less(int left, int right) { |
|
37 |
return left < right; |
|
38 |
} |
|
39 |
static void increase(int& value) { |
|
40 |
++value; |
|
41 |
} |
|
42 |
}; |
|
43 |
|
|
44 |
template <> |
|
45 |
struct DirectionTraits<false> { |
|
46 |
static bool less(int left, int right) { |
|
47 |
return left > right; |
|
48 |
} |
|
49 |
static void increase(int& value) { |
|
50 |
--value; |
|
51 |
} |
|
52 |
}; |
|
53 |
|
|
54 |
} |
|
55 |
|
|
56 |
/// \ingroup auxdat |
|
57 |
/// |
|
58 |
/// \brief A Bucket Heap implementation. |
|
59 |
/// |
|
60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
61 |
/// is a data structure for storing items with specified values called \e |
|
62 |
/// priorities in such a way that finding the item with minimum priority is |
|
63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
64 |
/// only integer priorities and it stores for each priority in the |
|
65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
66 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
|
67 |
/// |
|
68 |
/// \param IM A read and write Item int map, used internally |
|
69 |
/// to handle the cross references. |
|
70 |
/// \param MIN If the given parameter is false then instead of the |
|
71 |
/// minimum value the maximum can be retrivied with the top() and |
|
72 |
/// prio() member functions. |
|
73 |
template <typename IM, bool MIN = true> |
|
74 |
class BucketHeap { |
|
75 |
|
|
76 |
public: |
|
77 |
/// \e |
|
78 |
typedef typename IM::Key Item; |
|
79 |
/// \e |
|
80 |
typedef int Prio; |
|
81 |
/// \e |
|
82 |
typedef std::pair<Item, Prio> Pair; |
|
83 |
/// \e |
|
84 |
typedef IM ItemIntMap; |
|
85 |
|
|
86 |
private: |
|
87 |
|
|
88 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
89 |
|
|
90 |
public: |
|
91 |
|
|
92 |
/// \brief Type to represent the items states. |
|
93 |
/// |
|
94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
96 |
/// heap's point of view, but may be useful to the user. |
|
97 |
/// |
|
98 |
/// The item-int map must be initialized in such way that it assigns |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
100 |
enum State { |
|
101 |
IN_HEAP = 0, ///< = 0. |
|
102 |
PRE_HEAP = -1, ///< = -1. |
|
103 |
POST_HEAP = -2 ///< = -2. |
|
104 |
}; |
|
105 |
|
|
106 |
public: |
|
107 |
/// \brief The constructor. |
|
108 |
/// |
|
109 |
/// The constructor. |
|
110 |
/// \param map should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
|
114 |
|
|
115 |
/// The number of items stored in the heap. |
|
116 |
/// |
|
117 |
/// \brief Returns the number of items stored in the heap. |
|
118 |
int size() const { return _data.size(); } |
|
119 |
|
|
120 |
/// \brief Checks if the heap stores no items. |
|
121 |
/// |
|
122 |
/// Returns \c true if and only if the heap stores no items. |
|
123 |
bool empty() const { return _data.empty(); } |
|
124 |
|
|
125 |
/// \brief Make empty this heap. |
|
126 |
/// |
|
127 |
/// Make empty this heap. It does not change the cross reference |
|
128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
129 |
/// should first clear the heap and after that you should set the |
|
130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
131 |
void clear() { |
|
132 |
_data.clear(); _first.clear(); _minimum = 0; |
|
133 |
} |
|
134 |
|
|
135 |
private: |
|
136 |
|
|
137 |
void relocate_last(int idx) { |
|
138 |
if (idx + 1 < int(_data.size())) { |
|
139 |
_data[idx] = _data.back(); |
|
140 |
if (_data[idx].prev != -1) { |
|
141 |
_data[_data[idx].prev].next = idx; |
|
142 |
} else { |
|
143 |
_first[_data[idx].value] = idx; |
|
144 |
} |
|
145 |
if (_data[idx].next != -1) { |
|
146 |
_data[_data[idx].next].prev = idx; |
|
147 |
} |
|
148 |
_iim[_data[idx].item] = idx; |
|
149 |
} |
|
150 |
_data.pop_back(); |
|
151 |
} |
|
152 |
|
|
153 |
void unlace(int idx) { |
|
154 |
if (_data[idx].prev != -1) { |
|
155 |
_data[_data[idx].prev].next = _data[idx].next; |
|
156 |
} else { |
|
157 |
_first[_data[idx].value] = _data[idx].next; |
|
158 |
} |
|
159 |
if (_data[idx].next != -1) { |
|
160 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
161 |
} |
|
162 |
} |
|
163 |
|
|
164 |
void lace(int idx) { |
|
165 |
if (int(_first.size()) <= _data[idx].value) { |
|
166 |
_first.resize(_data[idx].value + 1, -1); |
|
167 |
} |
|
168 |
_data[idx].next = _first[_data[idx].value]; |
|
169 |
if (_data[idx].next != -1) { |
|
170 |
_data[_data[idx].next].prev = idx; |
|
171 |
} |
|
172 |
_first[_data[idx].value] = idx; |
|
173 |
_data[idx].prev = -1; |
|
174 |
} |
|
175 |
|
|
176 |
public: |
|
177 |
/// \brief Insert a pair of item and priority into the heap. |
|
178 |
/// |
|
179 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
180 |
/// \param p The pair to insert. |
|
181 |
void push(const Pair& p) { |
|
182 |
push(p.first, p.second); |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Insert an item into the heap with the given priority. |
|
186 |
/// |
|
187 |
/// Adds \c i to the heap with priority \c p. |
|
188 |
/// \param i The item to insert. |
|
189 |
/// \param p The priority of the item. |
|
190 |
void push(const Item &i, const Prio &p) { |
|
191 |
int idx = _data.size(); |
|
192 |
_iim[i] = idx; |
|
193 |
_data.push_back(BucketItem(i, p)); |
|
194 |
lace(idx); |
|
195 |
if (Direction::less(p, _minimum)) { |
|
196 |
_minimum = p; |
|
197 |
} |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Returns the item with minimum priority. |
|
201 |
/// |
|
202 |
/// This method returns the item with minimum priority. |
|
203 |
/// \pre The heap must be nonempty. |
|
204 |
Item top() const { |
|
205 |
while (_first[_minimum] == -1) { |
|
206 |
Direction::increase(_minimum); |
|
207 |
} |
|
208 |
return _data[_first[_minimum]].item; |
|
209 |
} |
|
210 |
|
|
211 |
/// \brief Returns the minimum priority. |
|
212 |
/// |
|
213 |
/// It returns the minimum priority. |
|
214 |
/// \pre The heap must be nonempty. |
|
215 |
Prio prio() const { |
|
216 |
while (_first[_minimum] == -1) { |
|
217 |
Direction::increase(_minimum); |
|
218 |
} |
|
219 |
return _minimum; |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Deletes the item with minimum priority. |
|
223 |
/// |
|
224 |
/// This method deletes the item with minimum priority from the heap. |
|
225 |
/// \pre The heap must be non-empty. |
|
226 |
void pop() { |
|
227 |
while (_first[_minimum] == -1) { |
|
228 |
Direction::increase(_minimum); |
|
229 |
} |
|
230 |
int idx = _first[_minimum]; |
|
231 |
_iim[_data[idx].item] = -2; |
|
232 |
unlace(idx); |
|
233 |
relocate_last(idx); |
|
234 |
} |
|
235 |
|
|
236 |
/// \brief Deletes \c i from the heap. |
|
237 |
/// |
|
238 |
/// This method deletes item \c i from the heap, if \c i was |
|
239 |
/// already stored in the heap. |
|
240 |
/// \param i The item to erase. |
|
241 |
void erase(const Item &i) { |
|
242 |
int idx = _iim[i]; |
|
243 |
_iim[_data[idx].item] = -2; |
|
244 |
unlace(idx); |
|
245 |
relocate_last(idx); |
|
246 |
} |
|
247 |
|
|
248 |
|
|
249 |
/// \brief Returns the priority of \c i. |
|
250 |
/// |
|
251 |
/// This function returns the priority of item \c i. |
|
252 |
/// \pre \c i must be in the heap. |
|
253 |
/// \param i The item. |
|
254 |
Prio operator[](const Item &i) const { |
|
255 |
int idx = _iim[i]; |
|
256 |
return _data[idx].value; |
|
257 |
} |
|
258 |
|
|
259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
260 |
/// if \c i was already there. |
|
261 |
/// |
|
262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
264 |
/// \param i The item. |
|
265 |
/// \param p The priority. |
|
266 |
void set(const Item &i, const Prio &p) { |
|
267 |
int idx = _iim[i]; |
|
268 |
if (idx < 0) { |
|
269 |
push(i, p); |
|
270 |
} else if (Direction::less(p, _data[idx].value)) { |
|
271 |
decrease(i, p); |
|
272 |
} else { |
|
273 |
increase(i, p); |
|
274 |
} |
|
275 |
} |
|
276 |
|
|
277 |
/// \brief Decreases the priority of \c i to \c p. |
|
278 |
/// |
|
279 |
/// This method decreases the priority of item \c i to \c p. |
|
280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
281 |
/// p relative to \c Compare. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
void decrease(const Item &i, const Prio &p) { |
|
285 |
int idx = _iim[i]; |
|
286 |
unlace(idx); |
|
287 |
_data[idx].value = p; |
|
288 |
if (Direction::less(p, _minimum)) { |
|
289 |
_minimum = p; |
|
290 |
} |
|
291 |
lace(idx); |
|
292 |
} |
|
293 |
|
|
294 |
/// \brief Increases the priority of \c i to \c p. |
|
295 |
/// |
|
296 |
/// This method sets the priority of item \c i to \c p. |
|
297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
298 |
/// p relative to \c Compare. |
|
299 |
/// \param i The item. |
|
300 |
/// \param p The priority. |
|
301 |
void increase(const Item &i, const Prio &p) { |
|
302 |
int idx = _iim[i]; |
|
303 |
unlace(idx); |
|
304 |
_data[idx].value = p; |
|
305 |
lace(idx); |
|
306 |
} |
|
307 |
|
|
308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
309 |
/// never been in the heap. |
|
310 |
/// |
|
311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
313 |
/// otherwise. In the latter case it is possible that \c item will |
|
314 |
/// get back to the heap again. |
|
315 |
/// \param i The item. |
|
316 |
State state(const Item &i) const { |
|
317 |
int idx = _iim[i]; |
|
318 |
if (idx >= 0) idx = 0; |
|
319 |
return State(idx); |
|
320 |
} |
|
321 |
|
|
322 |
/// \brief Sets the state of the \c item in the heap. |
|
323 |
/// |
|
324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
325 |
/// manually clear the heap when it is important to achive the |
|
326 |
/// better time complexity. |
|
327 |
/// \param i The item. |
|
328 |
/// \param st The state. It should not be \c IN_HEAP. |
|
329 |
void state(const Item& i, State st) { |
|
330 |
switch (st) { |
|
331 |
case POST_HEAP: |
|
332 |
case PRE_HEAP: |
|
333 |
if (state(i) == IN_HEAP) { |
|
334 |
erase(i); |
|
335 |
} |
|
336 |
_iim[i] = st; |
|
337 |
break; |
|
338 |
case IN_HEAP: |
|
339 |
break; |
|
340 |
} |
|
341 |
} |
|
342 |
|
|
343 |
private: |
|
344 |
|
|
345 |
struct BucketItem { |
|
346 |
BucketItem(const Item& _item, int _value) |
|
347 |
: item(_item), value(_value) {} |
|
348 |
|
|
349 |
Item item; |
|
350 |
int value; |
|
351 |
|
|
352 |
int prev, next; |
|
353 |
}; |
|
354 |
|
|
355 |
ItemIntMap& _iim; |
|
356 |
std::vector<int> _first; |
|
357 |
std::vector<BucketItem> _data; |
|
358 |
mutable int _minimum; |
|
359 |
|
|
360 |
}; // class BucketHeap |
|
361 |
|
|
362 |
/// \ingroup auxdat |
|
363 |
/// |
|
364 |
/// \brief A Simplified Bucket Heap implementation. |
|
365 |
/// |
|
366 |
/// This class implements a simplified \e bucket \e heap data |
|
367 |
/// structure. It does not provide some functionality but it faster |
|
368 |
/// and simplier data structure than the BucketHeap. The main |
|
369 |
/// difference is that the BucketHeap stores for every key a double |
|
370 |
/// linked list while this class stores just simple lists. In the |
|
371 |
/// other way it does not support erasing each elements just the |
|
372 |
/// minimal and it does not supports key increasing, decreasing. |
|
373 |
/// |
|
374 |
/// \param IM A read and write Item int map, used internally |
|
375 |
/// to handle the cross references. |
|
376 |
/// \param MIN If the given parameter is false then instead of the |
|
377 |
/// minimum value the maximum can be retrivied with the top() and |
|
378 |
/// prio() member functions. |
|
379 |
/// |
|
380 |
/// \sa BucketHeap |
|
381 |
template <typename IM, bool MIN = true > |
|
382 |
class SimpleBucketHeap { |
|
383 |
|
|
384 |
public: |
|
385 |
typedef typename IM::Key Item; |
|
386 |
typedef int Prio; |
|
387 |
typedef std::pair<Item, Prio> Pair; |
|
388 |
typedef IM ItemIntMap; |
|
389 |
|
|
390 |
private: |
|
391 |
|
|
392 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
393 |
|
|
394 |
public: |
|
395 |
|
|
396 |
/// \brief Type to represent the items states. |
|
397 |
/// |
|
398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
400 |
/// heap's point of view, but may be useful to the user. |
|
401 |
/// |
|
402 |
/// The item-int map must be initialized in such way that it assigns |
|
403 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
404 |
enum State { |
|
405 |
IN_HEAP = 0, ///< = 0. |
|
406 |
PRE_HEAP = -1, ///< = -1. |
|
407 |
POST_HEAP = -2 ///< = -2. |
|
408 |
}; |
|
409 |
|
|
410 |
public: |
|
411 |
|
|
412 |
/// \brief The constructor. |
|
413 |
/// |
|
414 |
/// The constructor. |
|
415 |
/// \param map should be given to the constructor, since it is used |
|
416 |
/// internally to handle the cross references. The value of the map |
|
417 |
/// should be PRE_HEAP (-1) for each element. |
|
418 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
419 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
|
420 |
|
|
421 |
/// \brief Returns the number of items stored in the heap. |
|
422 |
/// |
|
423 |
/// The number of items stored in the heap. |
|
424 |
int size() const { return _num; } |
|
425 |
|
|
426 |
/// \brief Checks if the heap stores no items. |
|
427 |
/// |
|
428 |
/// Returns \c true if and only if the heap stores no items. |
|
429 |
bool empty() const { return _num == 0; } |
|
430 |
|
|
431 |
/// \brief Make empty this heap. |
|
432 |
/// |
|
433 |
/// Make empty this heap. It does not change the cross reference |
|
434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
435 |
/// should first clear the heap and after that you should set the |
|
436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
437 |
void clear() { |
|
438 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
439 |
} |
|
440 |
|
|
441 |
/// \brief Insert a pair of item and priority into the heap. |
|
442 |
/// |
|
443 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
444 |
/// \param p The pair to insert. |
|
445 |
void push(const Pair& p) { |
|
446 |
push(p.first, p.second); |
|
447 |
} |
|
448 |
|
|
449 |
/// \brief Insert an item into the heap with the given priority. |
|
450 |
/// |
|
451 |
/// Adds \c i to the heap with priority \c p. |
|
452 |
/// \param i The item to insert. |
|
453 |
/// \param p The priority of the item. |
|
454 |
void push(const Item &i, const Prio &p) { |
|
455 |
int idx; |
|
456 |
if (_free == -1) { |
|
457 |
idx = _data.size(); |
|
458 |
_data.push_back(BucketItem(i)); |
|
459 |
} else { |
|
460 |
idx = _free; |
|
461 |
_free = _data[idx].next; |
|
462 |
_data[idx].item = i; |
|
463 |
} |
|
464 |
_iim[i] = idx; |
|
465 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
466 |
_data[idx].next = _first[p]; |
|
467 |
_first[p] = idx; |
|
468 |
if (Direction::less(p, _minimum)) { |
|
469 |
_minimum = p; |
|
470 |
} |
|
471 |
++_num; |
|
472 |
} |
|
473 |
|
|
474 |
/// \brief Returns the item with minimum priority. |
|
475 |
/// |
|
476 |
/// This method returns the item with minimum priority. |
|
477 |
/// \pre The heap must be nonempty. |
|
478 |
Item top() const { |
|
479 |
while (_first[_minimum] == -1) { |
|
480 |
Direction::increase(_minimum); |
|
481 |
} |
|
482 |
return _data[_first[_minimum]].item; |
|
483 |
} |
|
484 |
|
|
485 |
/// \brief Returns the minimum priority. |
|
486 |
/// |
|
487 |
/// It returns the minimum priority. |
|
488 |
/// \pre The heap must be nonempty. |
|
489 |
Prio prio() const { |
|
490 |
while (_first[_minimum] == -1) { |
|
491 |
Direction::increase(_minimum); |
|
492 |
} |
|
493 |
return _minimum; |
|
494 |
} |
|
495 |
|
|
496 |
/// \brief Deletes the item with minimum priority. |
|
497 |
/// |
|
498 |
/// This method deletes the item with minimum priority from the heap. |
|
499 |
/// \pre The heap must be non-empty. |
|
500 |
void pop() { |
|
501 |
while (_first[_minimum] == -1) { |
|
502 |
Direction::increase(_minimum); |
|
503 |
} |
|
504 |
int idx = _first[_minimum]; |
|
505 |
_iim[_data[idx].item] = -2; |
|
506 |
_first[_minimum] = _data[idx].next; |
|
507 |
_data[idx].next = _free; |
|
508 |
_free = idx; |
|
509 |
--_num; |
|
510 |
} |
|
511 |
|
|
512 |
/// \brief Returns the priority of \c i. |
|
513 |
/// |
|
514 |
/// This function returns the priority of item \c i. |
|
515 |
/// \warning This operator is not a constant time function |
|
516 |
/// because it scans the whole data structure to find the proper |
|
517 |
/// value. |
|
518 |
/// \pre \c i must be in the heap. |
|
519 |
/// \param i The item. |
|
520 |
Prio operator[](const Item &i) const { |
|
521 |
for (int k = 0; k < _first.size(); ++k) { |
|
522 |
int idx = _first[k]; |
|
523 |
while (idx != -1) { |
|
524 |
if (_data[idx].item == i) { |
|
525 |
return k; |
|
526 |
} |
|
527 |
idx = _data[idx].next; |
|
528 |
} |
|
529 |
} |
|
530 |
return -1; |
|
531 |
} |
|
532 |
|
|
533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
534 |
/// never been in the heap. |
|
535 |
/// |
|
536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
538 |
/// otherwise. In the latter case it is possible that \c item will |
|
539 |
/// get back to the heap again. |
|
540 |
/// \param i The item. |
|
541 |
State state(const Item &i) const { |
|
542 |
int idx = _iim[i]; |
|
543 |
if (idx >= 0) idx = 0; |
|
544 |
return State(idx); |
|
545 |
} |
|
546 |
|
|
547 |
private: |
|
548 |
|
|
549 |
struct BucketItem { |
|
550 |
BucketItem(const Item& _item) |
|
551 |
: item(_item) {} |
|
552 |
|
|
553 |
Item item; |
|
554 |
int next; |
|
555 |
}; |
|
556 |
|
|
557 |
ItemIntMap& _iim; |
|
558 |
std::vector<int> _first; |
|
559 |
std::vector<BucketItem> _data; |
|
560 |
int _free, _num; |
|
561 |
mutable int _minimum; |
|
562 |
|
|
563 |
}; // class SimpleBucketHeap |
|
564 |
|
|
565 |
} |
|
566 |
|
|
567 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FIB_HEAP_H |
|
20 |
#define LEMON_FIB_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup auxdat |
|
24 |
///\brief Fibonacci Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <functional> |
|
28 |
#include <lemon/math.h> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup auxdat |
|
33 |
/// |
|
34 |
///\brief Fibonacci Heap. |
|
35 |
/// |
|
36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
37 |
///is a data structure for storing items with specified values called \e |
|
38 |
///priorities in such a way that finding the item with minimum priority is |
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
40 |
///one can change the priority of an item, add or erase an item, etc. |
|
41 |
/// |
|
42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
43 |
///heap. In case of many calls to these operations, it is better to use a |
|
44 |
///\ref BinHeap "binary heap". |
|
45 |
/// |
|
46 |
///\param PRIO Type of the priority of the items. |
|
47 |
///\param IM A read and writable Item int map, used internally |
|
48 |
///to handle the cross references. |
|
49 |
///\param CMP A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<PRIO>. |
|
51 |
/// |
|
52 |
///\sa BinHeap |
|
53 |
///\sa Dijkstra |
|
54 |
#ifdef DOXYGEN |
|
55 |
template <typename PRIO, typename IM, typename CMP> |
|
56 |
#else |
|
57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> > |
|
58 |
#endif |
|
59 |
class FibHeap { |
|
60 |
public: |
|
61 |
///\e |
|
62 |
typedef IM ItemIntMap; |
|
63 |
///\e |
|
64 |
typedef PRIO Prio; |
|
65 |
///\e |
|
66 |
typedef typename ItemIntMap::Key Item; |
|
67 |
///\e |
|
68 |
typedef std::pair<Item,Prio> Pair; |
|
69 |
///\e |
|
70 |
typedef CMP Compare; |
|
71 |
|
|
72 |
private: |
|
73 |
class Store; |
|
74 |
|
|
75 |
std::vector<Store> _data; |
|
76 |
int _minimum; |
|
77 |
ItemIntMap &_iim; |
|
78 |
Compare _comp; |
|
79 |
int _num; |
|
80 |
|
|
81 |
public: |
|
82 |
|
|
83 |
/// \brief Type to represent the items states. |
|
84 |
/// |
|
85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
87 |
/// heap's point of view, but may be useful to the user. |
|
88 |
/// |
|
89 |
/// The item-int map must be initialized in such way that it assigns |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
91 |
enum State { |
|
92 |
IN_HEAP = 0, ///< = 0. |
|
93 |
PRE_HEAP = -1, ///< = -1. |
|
94 |
POST_HEAP = -2 ///< = -2. |
|
95 |
}; |
|
96 |
|
|
97 |
/// \brief The constructor |
|
98 |
/// |
|
99 |
/// \c map should be given to the constructor, since it is |
|
100 |
/// used internally to handle the cross references. |
|
101 |
explicit FibHeap(ItemIntMap &map) |
|
102 |
: _minimum(0), _iim(map), _num() {} |
|
103 |
|
|
104 |
/// \brief The constructor |
|
105 |
/// |
|
106 |
/// \c map should be given to the constructor, since it is used |
|
107 |
/// internally to handle the cross references. \c comp is an |
|
108 |
/// object for ordering of the priorities. |
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
|
111 |
|
|
112 |
/// \brief The number of items stored in the heap. |
|
113 |
/// |
|
114 |
/// Returns the number of items stored in the heap. |
|
115 |
int size() const { return _num; } |
|
116 |
|
|
117 |
/// \brief Checks if the heap stores no items. |
|
118 |
/// |
|
119 |
/// Returns \c true if and only if the heap stores no items. |
|
120 |
bool empty() const { return _num==0; } |
|
121 |
|
|
122 |
/// \brief Make empty this heap. |
|
123 |
/// |
|
124 |
/// Make empty this heap. It does not change the cross reference |
|
125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
126 |
/// should first clear the heap and after that you should set the |
|
127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
128 |
void clear() { |
|
129 |
_data.clear(); _minimum = 0; _num = 0; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
133 |
/// if \c item was already there. |
|
134 |
/// |
|
135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
137 |
/// \ref increase(\c item, \c value) otherwise. |
|
138 |
void set (const Item& item, const Prio& value) { |
|
139 |
int i=_iim[item]; |
|
140 |
if ( i >= 0 && _data[i].in ) { |
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
143 |
} else push(item, value); |
|
144 |
} |
|
145 |
|
|
146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
147 |
/// |
|
148 |
/// Adds \c item to the heap with priority \c value. |
|
149 |
/// \pre \c item must not be stored in the heap. |
|
150 |
void push (const Item& item, const Prio& value) { |
|
151 |
int i=_iim[item]; |
|
152 |
if ( i < 0 ) { |
|
153 |
int s=_data.size(); |
|
154 |
_iim.set( item, s ); |
|
155 |
Store st; |
|
156 |
st.name=item; |
|
157 |
_data.push_back(st); |
|
158 |
i=s; |
|
159 |
} else { |
|
160 |
_data[i].parent=_data[i].child=-1; |
|
161 |
_data[i].degree=0; |
|
162 |
_data[i].in=true; |
|
163 |
_data[i].marked=false; |
|
164 |
} |
|
165 |
|
|
166 |
if ( _num ) { |
|
167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
169 |
_data[_minimum].right_neighbor=i; |
|
170 |
_data[i].left_neighbor=_minimum; |
|
171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i; |
|
172 |
} else { |
|
173 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
174 |
_minimum=i; |
|
175 |
} |
|
176 |
_data[i].prio=value; |
|
177 |
++_num; |
|
178 |
} |
|
179 |
|
|
180 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
181 |
/// |
|
182 |
/// This method returns the item with minimum priority relative to \c |
|
183 |
/// Compare. |
|
184 |
/// \pre The heap must be nonempty. |
|
185 |
Item top() const { return _data[_minimum].name; } |
|
186 |
|
|
187 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
188 |
/// |
|
189 |
/// It returns the minimum priority relative to \c Compare. |
|
190 |
/// \pre The heap must be nonempty. |
|
191 |
const Prio& prio() const { return _data[_minimum].prio; } |
|
192 |
|
|
193 |
/// \brief Returns the priority of \c item. |
|
194 |
/// |
|
195 |
/// It returns the priority of \c item. |
|
196 |
/// \pre \c item must be in the heap. |
|
197 |
const Prio& operator[](const Item& item) const { |
|
198 |
return _data[_iim[item]].prio; |
|
199 |
} |
|
200 |
|
|
201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
202 |
/// |
|
203 |
/// This method deletes the item with minimum priority relative to \c |
|
204 |
/// Compare from the heap. |
|
205 |
/// \pre The heap must be non-empty. |
|
206 |
void pop() { |
|
207 |
/*The first case is that there are only one root.*/ |
|
208 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
|
209 |
_data[_minimum].in=false; |
|
210 |
if ( _data[_minimum].degree!=0 ) { |
|
211 |
makeroot(_data[_minimum].child); |
|
212 |
_minimum=_data[_minimum].child; |
|
213 |
balance(); |
|
214 |
} |
|
215 |
} else { |
|
216 |
int right=_data[_minimum].right_neighbor; |
|
217 |
unlace(_minimum); |
|
218 |
_data[_minimum].in=false; |
|
219 |
if ( _data[_minimum].degree > 0 ) { |
|
220 |
int left=_data[_minimum].left_neighbor; |
|
221 |
int child=_data[_minimum].child; |
|
222 |
int last_child=_data[child].left_neighbor; |
|
223 |
|
|
224 |
makeroot(child); |
|
225 |
|
|
226 |
_data[left].right_neighbor=child; |
|
227 |
_data[child].left_neighbor=left; |
|
228 |
_data[right].left_neighbor=last_child; |
|
229 |
_data[last_child].right_neighbor=right; |
|
230 |
} |
|
231 |
_minimum=right; |
|
232 |
balance(); |
|
233 |
} // the case where there are more roots |
|
234 |
--_num; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Deletes \c item from the heap. |
|
238 |
/// |
|
239 |
/// This method deletes \c item from the heap, if \c item was already |
|
240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
241 |
void erase (const Item& item) { |
|
242 |
int i=_iim[item]; |
|
243 |
|
|
244 |
if ( i >= 0 && _data[i].in ) { |
|
245 |
if ( _data[i].parent!=-1 ) { |
|
246 |
int p=_data[i].parent; |
|
247 |
cut(i,p); |
|
248 |
cascade(p); |
|
249 |
} |
|
250 |
_minimum=i; //As if its prio would be -infinity |
|
251 |
pop(); |
|
252 |
} |
|
253 |
} |
|
254 |
|
|
255 |
/// \brief Decreases the priority of \c item to \c value. |
|
256 |
/// |
|
257 |
/// This method decreases the priority of \c item to \c value. |
|
258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
259 |
/// value relative to \c Compare. |
|
260 |
void decrease (Item item, const Prio& value) { |
|
261 |
int i=_iim[item]; |
|
262 |
_data[i].prio=value; |
|
263 |
int p=_data[i].parent; |
|
264 |
|
|
265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) { |
|
266 |
cut(i,p); |
|
267 |
cascade(p); |
|
268 |
} |
|
269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i; |
|
270 |
} |
|
271 |
|
|
272 |
/// \brief Increases the priority of \c item to \c value. |
|
273 |
/// |
|
274 |
/// This method sets the priority of \c item to \c value. Though |
|
275 |
/// there is no precondition on the priority of \c item, this |
|
276 |
/// method should be used only if it is indeed necessary to increase |
|
277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
278 |
/// method is inefficient. |
|
279 |
void increase (Item item, const Prio& value) { |
|
280 |
erase(item); |
|
281 |
push(item, value); |
|
282 |
} |
|
283 |
|
|
284 |
|
|
285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
286 |
/// been in the heap. |
|
287 |
/// |
|
288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
290 |
/// otherwise. In the latter case it is possible that \c item will |
|
291 |
/// get back to the heap again. |
|
292 |
State state(const Item &item) const { |
|
293 |
int i=_iim[item]; |
|
294 |
if( i>=0 ) { |
|
295 |
if ( _data[i].in ) i=0; |
|
296 |
else i=-2; |
|
297 |
} |
|
298 |
return State(i); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Sets the state of the \c item in the heap. |
|
302 |
/// |
|
303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
304 |
/// manually clear the heap when it is important to achive the |
|
305 |
/// better time _complexity. |
|
306 |
/// \param i The item. |
|
307 |
/// \param st The state. It should not be \c IN_HEAP. |
|
308 |
void state(const Item& i, State st) { |
|
309 |
switch (st) { |
|
310 |
case POST_HEAP: |
|
311 |
case PRE_HEAP: |
|
312 |
if (state(i) == IN_HEAP) { |
|
313 |
erase(i); |
|
314 |
} |
|
315 |
_iim[i] = st; |
|
316 |
break; |
|
317 |
case IN_HEAP: |
|
318 |
break; |
|
319 |
} |
|
320 |
} |
|
321 |
|
|
322 |
private: |
|
323 |
|
|
324 |
void balance() { |
|
325 |
|
|
326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
327 |
|
|
328 |
std::vector<int> A(maxdeg,-1); |
|
329 |
|
|
330 |
/* |
|
331 |
*Recall that now minimum does not point to the minimum prio element. |
|
332 |
*We set minimum to this during balance(). |
|
333 |
*/ |
|
334 |
int anchor=_data[_minimum].left_neighbor; |
|
335 |
int next=_minimum; |
|
336 |
bool end=false; |
|
337 |
|
|
338 |
do { |
|
339 |
int active=next; |
|
340 |
if ( anchor==active ) end=true; |
|
341 |
int d=_data[active].degree; |
|
342 |
next=_data[active].right_neighbor; |
|
343 |
|
|
344 |
while (A[d]!=-1) { |
|
345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
|
346 |
fuse(active,A[d]); |
|
347 |
} else { |
|
348 |
fuse(A[d],active); |
|
349 |
active=A[d]; |
|
350 |
} |
|
351 |
A[d]=-1; |
|
352 |
++d; |
|
353 |
} |
|
354 |
A[d]=active; |
|
355 |
} while ( !end ); |
|
356 |
|
|
357 |
|
|
358 |
while ( _data[_minimum].parent >=0 ) |
|
359 |
_minimum=_data[_minimum].parent; |
|
360 |
int s=_minimum; |
|
361 |
int m=_minimum; |
|
362 |
do { |
|
363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
364 |
s=_data[s].right_neighbor; |
|
365 |
} while ( s != m ); |
|
366 |
} |
|
367 |
|
|
368 |
void makeroot(int c) { |
|
369 |
int s=c; |
|
370 |
do { |
|
371 |
_data[s].parent=-1; |
|
372 |
s=_data[s].right_neighbor; |
|
373 |
} while ( s != c ); |
|
374 |
} |
|
375 |
|
|
376 |
void cut(int a, int b) { |
|
377 |
/* |
|
378 |
*Replacing a from the children of b. |
|
379 |
*/ |
|
380 |
--_data[b].degree; |
|
381 |
|
|
382 |
if ( _data[b].degree !=0 ) { |
|
383 |
int child=_data[b].child; |
|
384 |
if ( child==a ) |
|
385 |
_data[b].child=_data[child].right_neighbor; |
|
386 |
unlace(a); |
|
387 |
} |
|
388 |
|
|
389 |
|
|
390 |
/*Lacing a to the roots.*/ |
|
391 |
int right=_data[_minimum].right_neighbor; |
|
392 |
_data[_minimum].right_neighbor=a; |
|
393 |
_data[a].left_neighbor=_minimum; |
|
394 |
_data[a].right_neighbor=right; |
|
395 |
_data[right].left_neighbor=a; |
|
396 |
|
|
397 |
_data[a].parent=-1; |
|
398 |
_data[a].marked=false; |
|
399 |
} |
|
400 |
|
|
401 |
void cascade(int a) { |
|
402 |
if ( _data[a].parent!=-1 ) { |
|
403 |
int p=_data[a].parent; |
|
404 |
|
|
405 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
406 |
else { |
|
407 |
cut(a,p); |
|
408 |
cascade(p); |
|
409 |
} |
|
410 |
} |
|
411 |
} |
|
412 |
|
|
413 |
void fuse(int a, int b) { |
|
414 |
unlace(b); |
|
415 |
|
|
416 |
/*Lacing b under a.*/ |
|
417 |
_data[b].parent=a; |
|
418 |
|
|
419 |
if (_data[a].degree==0) { |
|
420 |
_data[b].left_neighbor=b; |
|
421 |
_data[b].right_neighbor=b; |
|
422 |
_data[a].child=b; |
|
423 |
} else { |
|
424 |
int child=_data[a].child; |
|
425 |
int last_child=_data[child].left_neighbor; |
|
426 |
_data[child].left_neighbor=b; |
|
427 |
_data[b].right_neighbor=child; |
|
428 |
_data[last_child].right_neighbor=b; |
|
429 |
_data[b].left_neighbor=last_child; |
|
430 |
} |
|
431 |
|
|
432 |
++_data[a].degree; |
|
433 |
|
|
434 |
_data[b].marked=false; |
|
435 |
} |
|
436 |
|
|
437 |
/* |
|
438 |
*It is invoked only if a has siblings. |
|
439 |
*/ |
|
440 |
void unlace(int a) { |
|
441 |
int leftn=_data[a].left_neighbor; |
|
442 |
int rightn=_data[a].right_neighbor; |
|
443 |
_data[leftn].right_neighbor=rightn; |
|
444 |
_data[rightn].left_neighbor=leftn; |
|
445 |
} |
|
446 |
|
|
447 |
|
|
448 |
class Store { |
|
449 |
friend class FibHeap; |
|
450 |
|
|
451 |
Item name; |
|
452 |
int parent; |
|
453 |
int left_neighbor; |
|
454 |
int right_neighbor; |
|
455 |
int child; |
|
456 |
int degree; |
|
457 |
bool marked; |
|
458 |
bool in; |
|
459 |
Prio prio; |
|
460 |
|
|
461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
462 |
}; |
|
463 |
}; |
|
464 |
|
|
465 |
} //namespace lemon |
|
466 |
|
|
467 |
#endif //LEMON_FIB_HEAP_H |
|
468 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_RADIX_HEAP_H |
|
20 |
#define LEMON_RADIX_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Radix Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <lemon/error.h> |
|
28 |
|
|
29 |
namespace lemon { |
|
30 |
|
|
31 |
|
|
32 |
/// \ingroup auxdata |
|
33 |
/// |
|
34 |
/// \brief A Radix Heap implementation. |
|
35 |
/// |
|
36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
37 |
/// is a data structure for storing items with specified values called \e |
|
38 |
/// priorities in such a way that finding the item with minimum priority is |
|
39 |
/// efficient. This heap type can store only items with \e int priority. |
|
40 |
/// In a heap one can change the priority of an item, add or erase an |
|
41 |
/// item, but the priority cannot be decreased under the last removed |
|
42 |
/// item's priority. |
|
43 |
/// |
|
44 |
/// \param IM A read and writable Item int map, used internally |
|
45 |
/// to handle the cross references. |
|
46 |
/// |
|
47 |
/// \see BinHeap |
|
48 |
/// \see Dijkstra |
|
49 |
template <typename IM> |
|
50 |
class RadixHeap { |
|
51 |
|
|
52 |
public: |
|
53 |
typedef typename IM::Key Item; |
|
54 |
typedef int Prio; |
|
55 |
typedef IM ItemIntMap; |
|
56 |
|
|
57 |
/// \brief Exception thrown by RadixHeap. |
|
58 |
/// |
|
59 |
/// This Exception is thrown when a smaller priority |
|
60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
61 |
/// \see RadixHeap |
|
62 |
|
|
63 |
class UnderFlowPriorityError : public Exception { |
|
64 |
public: |
|
65 |
virtual const char* what() const throw() { |
|
66 |
return "lemon::RadixHeap::UnderFlowPriorityError"; |
|
67 |
} |
|
68 |
}; |
|
69 |
|
|
70 |
/// \brief Type to represent the items states. |
|
71 |
/// |
|
72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
75 |
/// |
|
76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
78 |
enum State { |
|
79 |
IN_HEAP = 0, |
|
80 |
PRE_HEAP = -1, |
|
81 |
POST_HEAP = -2 |
|
82 |
}; |
|
83 |
|
|
84 |
private: |
|
85 |
|
|
86 |
struct RadixItem { |
|
87 |
int prev, next, box; |
|
88 |
Item item; |
|
89 |
int prio; |
|
90 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
|
91 |
}; |
|
92 |
|
|
93 |
struct RadixBox { |
|
94 |
int first; |
|
95 |
int min, size; |
|
96 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
|
97 |
}; |
|
98 |
|
|
99 |
std::vector<RadixItem> data; |
|
100 |
std::vector<RadixBox> boxes; |
|
101 |
|
|
102 |
ItemIntMap &_iim; |
|
103 |
|
|
104 |
|
|
105 |
public: |
|
106 |
/// \brief The constructor. |
|
107 |
/// |
|
108 |
/// The constructor. |
|
109 |
/// |
|
110 |
/// \param map It should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
/// |
|
114 |
/// \param minimal The initial minimal value of the heap. |
|
115 |
/// \param capacity It determines the initial capacity of the heap. |
|
116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
117 |
: _iim(map) { |
|
118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) { |
|
121 |
extend(); |
|
122 |
} |
|
123 |
} |
|
124 |
|
|
125 |
/// The number of items stored in the heap. |
|
126 |
/// |
|
127 |
/// \brief Returns the number of items stored in the heap. |
|
128 |
int size() const { return data.size(); } |
|
129 |
/// \brief Checks if the heap stores no items. |
|
130 |
/// |
|
131 |
/// Returns \c true if and only if the heap stores no items. |
|
132 |
bool empty() const { return data.empty(); } |
|
133 |
|
|
134 |
/// \brief Make empty this heap. |
|
135 |
/// |
|
136 |
/// Make empty this heap. It does not change the cross reference |
|
137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
138 |
/// should first clear the heap and after that you should set the |
|
139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
140 |
void clear(int minimal = 0, int capacity = 0) { |
|
141 |
data.clear(); boxes.clear(); |
|
142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
144 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) { |
|
145 |
extend(); |
|
146 |
} |
|
147 |
} |
|
148 |
|
|
149 |
private: |
|
150 |
|
|
151 |
bool upper(int box, Prio pr) { |
|
152 |
return pr < boxes[box].min; |
|
153 |
} |
|
154 |
|
|
155 |
bool lower(int box, Prio pr) { |
|
156 |
return pr >= boxes[box].min + boxes[box].size; |
|
157 |
} |
|
158 |
|
|
159 |
/// \brief Remove item from the box list. |
|
160 |
void remove(int index) { |
|
161 |
if (data[index].prev >= 0) { |
|
162 |
data[data[index].prev].next = data[index].next; |
|
163 |
} else { |
|
164 |
boxes[data[index].box].first = data[index].next; |
|
165 |
} |
|
166 |
if (data[index].next >= 0) { |
|
167 |
data[data[index].next].prev = data[index].prev; |
|
168 |
} |
|
169 |
} |
|
170 |
|
|
171 |
/// \brief Insert item into the box list. |
|
172 |
void insert(int box, int index) { |
|
173 |
if (boxes[box].first == -1) { |
|
174 |
boxes[box].first = index; |
|
175 |
data[index].next = data[index].prev = -1; |
|
176 |
} else { |
|
177 |
data[index].next = boxes[box].first; |
|
178 |
data[boxes[box].first].prev = index; |
|
179 |
data[index].prev = -1; |
|
180 |
boxes[box].first = index; |
|
181 |
} |
|
182 |
data[index].box = box; |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Add a new box to the box list. |
|
186 |
void extend() { |
|
187 |
int min = boxes.back().min + boxes.back().size; |
|
188 |
int bs = 2 * boxes.back().size; |
|
189 |
boxes.push_back(RadixBox(min, bs)); |
|
190 |
} |
|
191 |
|
|
192 |
/// \brief Move an item up into the proper box. |
|
193 |
void bubble_up(int index) { |
|
194 |
if (!lower(data[index].box, data[index].prio)) return; |
|
195 |
remove(index); |
|
196 |
int box = findUp(data[index].box, data[index].prio); |
|
197 |
insert(box, index); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Find up the proper box for the item with the given prio. |
|
201 |
int findUp(int start, int pr) { |
|
202 |
while (lower(start, pr)) { |
|
203 |
if (++start == int(boxes.size())) { |
|
204 |
extend(); |
|
205 |
} |
|
206 |
} |
|
207 |
return start; |
|
208 |
} |
|
209 |
|
|
210 |
/// \brief Move an item down into the proper box. |
|
211 |
void bubble_down(int index) { |
|
212 |
if (!upper(data[index].box, data[index].prio)) return; |
|
213 |
remove(index); |
|
214 |
int box = findDown(data[index].box, data[index].prio); |
|
215 |
insert(box, index); |
|
216 |
} |
|
217 |
|
|
218 |
/// \brief Find up the proper box for the item with the given prio. |
|
219 |
int findDown(int start, int pr) { |
|
220 |
while (upper(start, pr)) { |
|
221 |
if (--start < 0) throw UnderFlowPriorityError(); |
|
222 |
} |
|
223 |
return start; |
|
224 |
} |
|
225 |
|
|
226 |
/// \brief Find the first not empty box. |
|
227 |
int findFirst() { |
|
228 |
int first = 0; |
|
229 |
while (boxes[first].first == -1) ++first; |
|
230 |
return first; |
|
231 |
} |
|
232 |
|
|
233 |
/// \brief Gives back the minimal prio of the box. |
|
234 |
int minValue(int box) { |
|
235 |
int min = data[boxes[box].first].prio; |
|
236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
237 |
if (data[k].prio < min) min = data[k].prio; |
|
238 |
} |
|
239 |
return min; |
|
240 |
} |
|
241 |
|
|
242 |
/// \brief Rearrange the items of the heap and makes the |
|
243 |
/// first box not empty. |
|
244 |
void moveDown() { |
|
245 |
int box = findFirst(); |
|
246 |
if (box == 0) return; |
|
247 |
int min = minValue(box); |
|
248 |
for (int i = 0; i <= box; ++i) { |
|
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
251 |
} |
|
252 |
int curr = boxes[box].first, next; |
|
253 |
while (curr != -1) { |
|
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
256 |
curr = next; |
|
257 |
} |
|
258 |
} |
|
259 |
|
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
data[data[index].prev].next = index; |
|
265 |
} else { |
|
266 |
boxes[data[index].box].first = index; |
|
267 |
} |
|
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
270 |
} |
|
271 |
_iim[data[index].item] = index; |
|
272 |
} |
|
273 |
data.pop_back(); |
|
274 |
} |
|
275 |
|
|
276 |
public: |
|
277 |
|
|
278 |
/// \brief Insert an item into the heap with the given priority. |
|
279 |
/// |
|
280 |
/// Adds \c i to the heap with priority \c p. |
|
281 |
/// \param i The item to insert. |
|
282 |
/// \param p The priority of the item. |
|
283 |
void push(const Item &i, const Prio &p) { |
|
284 |
int n = data.size(); |
|
285 |
_iim.set(i, n); |
|
286 |
data.push_back(RadixItem(i, p)); |
|
287 |
while (lower(boxes.size() - 1, p)) { |
|
288 |
extend(); |
|
289 |
} |
|
290 |
int box = findDown(boxes.size() - 1, p); |
|
291 |
insert(box, n); |
|
292 |
} |
|
293 |
|
|
294 |
/// \brief Returns the item with minimum priority. |
|
295 |
/// |
|
296 |
/// This method returns the item with minimum priority. |
|
297 |
/// \pre The heap must be nonempty. |
|
298 |
Item top() const { |
|
299 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
300 |
return data[boxes[0].first].item; |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Returns the minimum priority. |
|
304 |
/// |
|
305 |
/// It returns the minimum priority. |
|
306 |
/// \pre The heap must be nonempty. |
|
307 |
Prio prio() const { |
|
308 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
309 |
return data[boxes[0].first].prio; |
|
310 |
} |
|
311 |
|
|
312 |
/// \brief Deletes the item with minimum priority. |
|
313 |
/// |
|
314 |
/// This method deletes the item with minimum priority. |
|
315 |
/// \pre The heap must be non-empty. |
|
316 |
void pop() { |
|
317 |
moveDown(); |
|
318 |
int index = boxes[0].first; |
|
319 |
_iim[data[index].item] = POST_HEAP; |
|
320 |
remove(index); |
|
321 |
relocate_last(index); |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Deletes \c i from the heap. |
|
325 |
/// |
|
326 |
/// This method deletes item \c i from the heap, if \c i was |
|
327 |
/// already stored in the heap. |
|
328 |
/// \param i The item to erase. |
|
329 |
void erase(const Item &i) { |
|
330 |
int index = _iim[i]; |
|
331 |
_iim[i] = POST_HEAP; |
|
332 |
remove(index); |
|
333 |
relocate_last(index); |
|
334 |
} |
|
335 |
|
|
336 |
/// \brief Returns the priority of \c i. |
|
337 |
/// |
|
338 |
/// This function returns the priority of item \c i. |
|
339 |
/// \pre \c i must be in the heap. |
|
340 |
/// \param i The item. |
|
341 |
Prio operator[](const Item &i) const { |
|
342 |
int idx = _iim[i]; |
|
343 |
return data[idx].prio; |
|
344 |
} |
|
345 |
|
|
346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
347 |
/// if \c i was already there. |
|
348 |
/// |
|
349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
351 |
/// It may throw an \e UnderFlowPriorityException. |
|
352 |
/// \param i The item. |
|
353 |
/// \param p The priority. |
|
354 |
void set(const Item &i, const Prio &p) { |
|
355 |
int idx = _iim[i]; |
|
356 |
if( idx < 0 ) { |
|
357 |
push(i, p); |
|
358 |
} |
|
359 |
else if( p >= data[idx].prio ) { |
|
360 |
data[idx].prio = p; |
|
361 |
bubble_up(idx); |
|
362 |
} else { |
|
363 |
data[idx].prio = p; |
|
364 |
bubble_down(idx); |
|
365 |
} |
|
366 |
} |
|
367 |
|
|
368 |
|
|
369 |
/// \brief Decreases the priority of \c i to \c p. |
|
370 |
/// |
|
371 |
/// This method decreases the priority of item \c i to \c p. |
|
372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
373 |
/// \c should be greater or equal to the last removed item's priority. |
|
374 |
/// \param i The item. |
|
375 |
/// \param p The priority. |
|
376 |
void decrease(const Item &i, const Prio &p) { |
|
377 |
int idx = _iim[i]; |
|
378 |
data[idx].prio = p; |
|
379 |
bubble_down(idx); |
|
380 |
} |
|
381 |
|
|
382 |
/// \brief Increases the priority of \c i to \c p. |
|
383 |
/// |
|
384 |
/// This method sets the priority of item \c i to \c p. |
|
385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
386 |
/// \param i The item. |
|
387 |
/// \param p The priority. |
|
388 |
void increase(const Item &i, const Prio &p) { |
|
389 |
int idx = _iim[i]; |
|
390 |
data[idx].prio = p; |
|
391 |
bubble_up(idx); |
|
392 |
} |
|
393 |
|
|
394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
395 |
/// never been in the heap. |
|
396 |
/// |
|
397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
399 |
/// otherwise. In the latter case it is possible that \c item will |
|
400 |
/// get back to the heap again. |
|
401 |
/// \param i The item. |
|
402 |
State state(const Item &i) const { |
|
403 |
int s = _iim[i]; |
|
404 |
if( s >= 0 ) s = 0; |
|
405 |
return State(s); |
|
406 |
} |
|
407 |
|
|
408 |
/// \brief Sets the state of the \c item in the heap. |
|
409 |
/// |
|
410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
411 |
/// manually clear the heap when it is important to achive the |
|
412 |
/// better time complexity. |
|
413 |
/// \param i The item. |
|
414 |
/// \param st The state. It should not be \c IN_HEAP. |
|
415 |
void state(const Item& i, State st) { |
|
416 |
switch (st) { |
|
417 |
case POST_HEAP: |
|
418 |
case PRE_HEAP: |
|
419 |
if (state(i) == IN_HEAP) { |
|
420 |
erase(i); |
|
421 |
} |
|
422 |
_iim[i] = st; |
|
423 |
break; |
|
424 |
case IN_HEAP: |
|
425 |
break; |
|
426 |
} |
|
427 |
} |
|
428 |
|
|
429 |
}; // class RadixHeap |
|
430 |
|
|
431 |
} // namespace lemon |
|
432 |
|
|
433 |
#endif // LEMON_RADIX_HEAP_H |
... | ... |
@@ -59,6 +59,7 @@ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bfs.h \ |
61 | 61 |
lemon/bin_heap.h \ |
62 |
lemon/bucket_heap.h \ |
|
62 | 63 |
lemon/cbc.h \ |
63 | 64 |
lemon/circulation.h \ |
64 | 65 |
lemon/clp.h \ |
... | ... |
@@ -76,6 +77,7 @@ |
76 | 77 |
lemon/elevator.h \ |
77 | 78 |
lemon/error.h \ |
78 | 79 |
lemon/euler.h \ |
80 |
lemon/fib_heap.h \ |
|
79 | 81 |
lemon/full_graph.h \ |
80 | 82 |
lemon/glpk.h \ |
81 | 83 |
lemon/gomory_hu.h \ |
... | ... |
@@ -99,6 +101,7 @@ |
99 | 101 |
lemon/network_simplex.h \ |
100 | 102 |
lemon/path.h \ |
101 | 103 |
lemon/preflow.h \ |
104 |
lemon/radix_heap.h \ |
|
102 | 105 |
lemon/radix_sort.h \ |
103 | 106 |
lemon/random.h \ |
104 | 107 |
lemon/smart_graph.h \ |
... | ... |
@@ -33,23 +33,23 @@ |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
38 | 38 |
///A \e heap is a data structure for storing items with specified values |
39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
40 |
///priority is efficient. \c |
|
40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
42 | 42 |
///item, etc. |
43 | 43 |
/// |
44 | 44 |
///\tparam PR Type of the priority of the items. |
45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
46 | 46 |
///to handle the cross references. |
47 |
///\tparam |
|
47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
48 | 48 |
///The default is \c std::less<PR>. |
49 | 49 |
/// |
50 | 50 |
///\sa FibHeap |
51 | 51 |
///\sa Dijkstra |
52 |
template <typename PR, typename IM, typename |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 53 |
class BinHeap { |
54 | 54 |
|
55 | 55 |
public: |
... | ... |
@@ -62,7 +62,7 @@ |
62 | 62 |
///\e |
63 | 63 |
typedef std::pair<Item,Prio> Pair; |
64 | 64 |
///\e |
65 |
typedef |
|
65 |
typedef CMP Compare; |
|
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the items states. |
68 | 68 |
/// |
... | ... |
@@ -22,6 +22,7 @@ |
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 |
#include <map> |
|
25 | 26 |
|
26 | 27 |
#include <lemon/core.h> |
27 | 28 |
|
... | ... |
@@ -29,8 +30,6 @@ |
29 | 30 |
///\ingroup maps |
30 | 31 |
///\brief Miscellaneous property maps |
31 | 32 |
|
32 |
#include <map> |
|
33 |
|
|
34 | 33 |
namespace lemon { |
35 | 34 |
|
36 | 35 |
/// \addtogroup maps |
... | ... |
@@ -1818,7 +1817,7 @@ |
1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1818 |
/// |
1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1822 | 1821 |
/// - \b unique: different items get different ids, |
1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1823 |
/// delete other nodes). |
... | ... |
@@ -2281,7 +2280,7 @@ |
2281 | 2280 |
} |
2282 | 2281 |
|
2283 | 2282 |
/// \brief Gives back the item belonging to a \e RangeId |
2284 |
/// |
|
2283 |
/// |
|
2285 | 2284 |
/// Gives back the item belonging to a \e RangeId. |
2286 | 2285 |
Item operator()(int id) const { |
2287 | 2286 |
return _inv_map[id]; |
... | ... |
@@ -2338,6 +2337,903 @@ |
2338 | 2337 |
} |
2339 | 2338 |
}; |
2340 | 2339 |
|
2340 |
/// \brief Dynamic iterable \c bool map. |
|
2341 |
/// |
|
2342 |
/// This class provides a special graph map type which can store a |
|
2343 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
2344 |
/// For both \c true and \c false values it is possible to iterate on |
|
2345 |
/// the keys. |
|
2346 |
/// |
|
2347 |
/// This type is a reference map, so it can be modified with the |
|
2348 |
/// subscription operator. |
|
2349 |
/// |
|
2350 |
/// \tparam GR The graph type. |
|
2351 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2352 |
/// \c GR::Edge). |
|
2353 |
/// |
|
2354 |
/// \see IterableIntMap, IterableValueMap |
|
2355 |
/// \see CrossRefMap |
|
2356 |
template <typename GR, typename K> |
|
2357 |
class IterableBoolMap |
|
2358 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|
2359 |
private: |
|
2360 |
typedef GR Graph; |
|
2361 |
|
|
2362 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
2363 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
2364 |
|
|
2365 |
std::vector<K> _array; |
|
2366 |
int _sep; |
|
2367 |
|
|
2368 |
public: |
|
2369 |
|
|
2370 |
/// Indicates that the map is reference map. |
|
2371 |
typedef True ReferenceMapTag; |
|
2372 |
|
|
2373 |
/// The key type |
|
2374 |
typedef K Key; |
|
2375 |
/// The value type |
|
2376 |
typedef bool Value; |
|
2377 |
/// The const reference type. |
|
2378 |
typedef const Value& ConstReference; |
|
2379 |
|
|
2380 |
private: |
|
2381 |
|
|
2382 |
int position(const Key& key) const { |
|
2383 |
return Parent::operator[](key); |
|
2384 |
} |
|
2385 |
|
|
2386 |
public: |
|
2387 |
|
|
2388 |
/// \brief Reference to the value of the map. |
|
2389 |
/// |
|
2390 |
/// This class is similar to the \c bool type. It can be converted to |
|
2391 |
/// \c bool and it provides the same operators. |
|
2392 |
class Reference { |
|
2393 |
friend class IterableBoolMap; |
|
2394 |
private: |
|
2395 |
Reference(IterableBoolMap& map, const Key& key) |
|
2396 |
: _key(key), _map(map) {} |
|
2397 |
public: |
|
2398 |
|
|
2399 |
Reference& operator=(const Reference& value) { |
|
2400 |
_map.set(_key, static_cast<bool>(value)); |
|
2401 |
return *this; |
|
2402 |
} |
|
2403 |
|
|
2404 |
operator bool() const { |
|
2405 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
2406 |
} |
|
2407 |
|
|
2408 |
Reference& operator=(bool value) { |
|
2409 |
_map.set(_key, value); |
|
2410 |
return *this; |
|
2411 |
} |
|
2412 |
Reference& operator&=(bool value) { |
|
2413 |
_map.set(_key, _map[_key] & value); |
|
2414 |
return *this; |
|
2415 |
} |
|
2416 |
Reference& operator|=(bool value) { |
|
2417 |
_map.set(_key, _map[_key] | value); |
|
2418 |
return *this; |
|
2419 |
} |
|
2420 |
Reference& operator^=(bool value) { |
|
2421 |
_map.set(_key, _map[_key] ^ value); |
|
2422 |
return *this; |
|
2423 |
} |
|
2424 |
private: |
|
2425 |
Key _key; |
|
2426 |
IterableBoolMap& _map; |
|
2427 |
}; |
|
2428 |
|
|
2429 |
/// \brief Constructor of the map with a default value. |
|
2430 |
/// |
|
2431 |
/// Constructor of the map with a default value. |
|
2432 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
2433 |
: Parent(graph) { |
|
2434 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2435 |
Key it; |
|
2436 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2437 |
Parent::set(it, _array.size()); |
|
2438 |
_array.push_back(it); |
|
2439 |
} |
|
2440 |
_sep = (def ? _array.size() : 0); |
|
2441 |
} |
|
2442 |
|
|
2443 |
/// \brief Const subscript operator of the map. |
|
2444 |
/// |
|
2445 |
/// Const subscript operator of the map. |
|
2446 |
bool operator[](const Key& key) const { |
|
2447 |
return position(key) < _sep; |
|
2448 |
} |
|
2449 |
|
|
2450 |
/// \brief Subscript operator of the map. |
|
2451 |
/// |
|
2452 |
/// Subscript operator of the map. |
|
2453 |
Reference operator[](const Key& key) { |
|
2454 |
return Reference(*this, key); |
|
2455 |
} |
|
2456 |
|
|
2457 |
/// \brief Set operation of the map. |
|
2458 |
/// |
|
2459 |
/// Set operation of the map. |
|
2460 |
void set(const Key& key, bool value) { |
|
2461 |
int pos = position(key); |
|
2462 |
if (value) { |
|
2463 |
if (pos < _sep) return; |
|
2464 |
Key tmp = _array[_sep]; |
|
2465 |
_array[_sep] = key; |
|
2466 |
Parent::set(key, _sep); |
|
2467 |
_array[pos] = tmp; |
|
2468 |
Parent::set(tmp, pos); |
|
2469 |
++_sep; |
|
2470 |
} else { |
|
2471 |
if (pos >= _sep) return; |
|
2472 |
--_sep; |
|
2473 |
Key tmp = _array[_sep]; |
|
2474 |
_array[_sep] = key; |
|
2475 |
Parent::set(key, _sep); |
|
2476 |
_array[pos] = tmp; |
|
2477 |
Parent::set(tmp, pos); |
|
2478 |
} |
|
2479 |
} |
|
2480 |
|
|
2481 |
/// \brief Set all items. |
|
2482 |
/// |
|
2483 |
/// Set all items in the map. |
|
2484 |
/// \note Constant time operation. |
|
2485 |
void setAll(bool value) { |
|
2486 |
_sep = (value ? _array.size() : 0); |
|
2487 |
} |
|
2488 |
|
|
2489 |
/// \brief Returns the number of the keys mapped to \c true. |
|
2490 |
/// |
|
2491 |
/// Returns the number of the keys mapped to \c true. |
|
2492 |
int trueNum() const { |
|
2493 |
return _sep; |
|
2494 |
} |
|
2495 |
|
|
2496 |
/// \brief Returns the number of the keys mapped to \c false. |
|
2497 |
/// |
|
2498 |
/// Returns the number of the keys mapped to \c false. |
|
2499 |
int falseNum() const { |
|
2500 |
return _array.size() - _sep; |
|
2501 |
} |
|
2502 |
|
|
2503 |
/// \brief Iterator for the keys mapped to \c true. |
|
2504 |
/// |
|
2505 |
/// Iterator for the keys mapped to \c true. It works |
|
2506 |
/// like a graph item iterator, it can be converted to |
|
2507 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2508 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2509 |
/// \c INVALID. |
|
2510 |
class TrueIt : public Key { |
|
2511 |
public: |
|
2512 |
typedef Key Parent; |
|
2513 |
|
|
2514 |
/// \brief Creates an iterator. |
|
2515 |
/// |
|
2516 |
/// Creates an iterator. It iterates on the |
|
2517 |
/// keys mapped to \c true. |
|
2518 |
/// \param map The IterableBoolMap. |
|
2519 |
explicit TrueIt(const IterableBoolMap& map) |
|
2520 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
2521 |
_map(&map) {} |
|
2522 |
|
|
2523 |
/// \brief Invalid constructor \& conversion. |
|
2524 |
/// |
|
2525 |
/// This constructor initializes the iterator to be invalid. |
|
2526 |
/// \sa Invalid for more details. |
|
2527 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2528 |
|
|
2529 |
/// \brief Increment operator. |
|
2530 |
/// |
|
2531 |
/// Increment operator. |
|
2532 |
TrueIt& operator++() { |
|
2533 |
int pos = _map->position(*this); |
|
2534 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
2535 |
return *this; |
|
2536 |
} |
|
2537 |
|
|
2538 |
private: |
|
2539 |
const IterableBoolMap* _map; |
|
2540 |
}; |
|
2541 |
|
|
2542 |
/// \brief Iterator for the keys mapped to \c false. |
|
2543 |
/// |
|
2544 |
/// Iterator for the keys mapped to \c false. It works |
|
2545 |
/// like a graph item iterator, it can be converted to |
|
2546 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2547 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2548 |
/// \c INVALID. |
|
2549 |
class FalseIt : public Key { |
|
2550 |
public: |
|
2551 |
typedef Key Parent; |
|
2552 |
|
|
2553 |
/// \brief Creates an iterator. |
|
2554 |
/// |
|
2555 |
/// Creates an iterator. It iterates on the |
|
2556 |
/// keys mapped to \c false. |
|
2557 |
/// \param map The IterableBoolMap. |
|
2558 |
explicit FalseIt(const IterableBoolMap& map) |
|
2559 |
: Parent(map._sep < int(map._array.size()) ? |
|
2560 |
map._array.back() : INVALID), _map(&map) {} |
|
2561 |
|
|
2562 |
/// \brief Invalid constructor \& conversion. |
|
2563 |
/// |
|
2564 |
/// This constructor initializes the iterator to be invalid. |
|
2565 |
/// \sa Invalid for more details. |
|
2566 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2567 |
|
|
2568 |
/// \brief Increment operator. |
|
2569 |
/// |
|
2570 |
/// Increment operator. |
|
2571 |
FalseIt& operator++() { |
|
2572 |
int pos = _map->position(*this); |
|
2573 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
2574 |
return *this; |
|
2575 |
} |
|
2576 |
|
|
2577 |
private: |
|
2578 |
const IterableBoolMap* _map; |
|
2579 |
}; |
|
2580 |
|
|
2581 |
/// \brief Iterator for the keys mapped to a given value. |
|
2582 |
/// |
|
2583 |
/// Iterator for the keys mapped to a given value. It works |
|
2584 |
/// like a graph item iterator, it can be converted to |
|
2585 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2586 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2587 |
/// \c INVALID. |
|
2588 |
class ItemIt : public Key { |
|
2589 |
public: |
|
2590 |
typedef Key Parent; |
|
2591 |
|
|
2592 |
/// \brief Creates an iterator with a value. |
|
2593 |
/// |
|
2594 |
/// Creates an iterator with a value. It iterates on the |
|
2595 |
/// keys mapped to the given value. |
|
2596 |
/// \param map The IterableBoolMap. |
|
2597 |
/// \param value The value. |
|
2598 |
ItemIt(const IterableBoolMap& map, bool value) |
|
2599 |
: Parent(value ? |
|
2600 |
(map._sep > 0 ? |
|
2601 |
map._array[map._sep - 1] : INVALID) : |
|
2602 |
(map._sep < int(map._array.size()) ? |
|
2603 |
map._array.back() : INVALID)), _map(&map) {} |
|
2604 |
|
|
2605 |
/// \brief Invalid constructor \& conversion. |
|
2606 |
/// |
|
2607 |
/// This constructor initializes the iterator to be invalid. |
|
2608 |
/// \sa Invalid for more details. |
|
2609 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2610 |
|
|
2611 |
/// \brief Increment operator. |
|
2612 |
/// |
|
2613 |
/// Increment operator. |
|
2614 |
ItemIt& operator++() { |
|
2615 |
int pos = _map->position(*this); |
|
2616 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
2617 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
2618 |
return *this; |
|
2619 |
} |
|
2620 |
|
|
2621 |
private: |
|
2622 |
const IterableBoolMap* _map; |
|
2623 |
}; |
|
2624 |
|
|
2625 |
protected: |
|
2626 |
|
|
2627 |
virtual void add(const Key& key) { |
|
2628 |
Parent::add(key); |
|
2629 |
Parent::set(key, _array.size()); |
|
2630 |
_array.push_back(key); |
|
2631 |
} |
|
2632 |
|
|
2633 |
virtual void add(const std::vector<Key>& keys) { |
|
2634 |
Parent::add(keys); |
|
2635 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2636 |
Parent::set(keys[i], _array.size()); |
|
2637 |
_array.push_back(keys[i]); |
|
2638 |
} |
|
2639 |
} |
|
2640 |
|
|
2641 |
virtual void erase(const Key& key) { |
|
2642 |
int pos = position(key); |
|
2643 |
if (pos < _sep) { |
|
2644 |
--_sep; |
|
2645 |
Parent::set(_array[_sep], pos); |
|
2646 |
_array[pos] = _array[_sep]; |
|
2647 |
Parent::set(_array.back(), _sep); |
|
2648 |
_array[_sep] = _array.back(); |
|
2649 |
_array.pop_back(); |
|
2650 |
} else { |
|
2651 |
Parent::set(_array.back(), pos); |
|
2652 |
_array[pos] = _array.back(); |
|
2653 |
_array.pop_back(); |
|
2654 |
} |
|
2655 |
Parent::erase(key); |
|
2656 |
} |
|
2657 |
|
|
2658 |
virtual void erase(const std::vector<Key>& keys) { |
|
2659 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2660 |
int pos = position(keys[i]); |
|
2661 |
if (pos < _sep) { |
|
2662 |
--_sep; |
|
2663 |
Parent::set(_array[_sep], pos); |
|
2664 |
_array[pos] = _array[_sep]; |
|
2665 |
Parent::set(_array.back(), _sep); |
|
2666 |
_array[_sep] = _array.back(); |
|
2667 |
_array.pop_back(); |
|
2668 |
} else { |
|
2669 |
Parent::set(_array.back(), pos); |
|
2670 |
_array[pos] = _array.back(); |
|
2671 |
_array.pop_back(); |
|
2672 |
} |
|
2673 |
} |
|
2674 |
Parent::erase(keys); |
|
2675 |
} |
|
2676 |
|
|
2677 |
virtual void build() { |
|
2678 |
Parent::build(); |
|
2679 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2680 |
Key it; |
|
2681 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2682 |
Parent::set(it, _array.size()); |
|
2683 |
_array.push_back(it); |
|
2684 |
} |
|
2685 |
_sep = 0; |
|
2686 |
} |
|
2687 |
|
|
2688 |
virtual void clear() { |
|
2689 |
_array.clear(); |
|
2690 |
_sep = 0; |
|
2691 |
Parent::clear(); |
|
2692 |
} |
|
2693 |
|
|
2694 |
}; |
|
2695 |
|
|
2696 |
|
|
2697 |
namespace _maps_bits { |
|
2698 |
template <typename Item> |
|
2699 |
struct IterableIntMapNode { |
|
2700 |
IterableIntMapNode() : value(-1) {} |
|
2701 |
IterableIntMapNode(int _value) : value(_value) {} |
|
2702 |
Item prev, next; |
|
2703 |
int value; |
|
2704 |
}; |
|
2705 |
} |
|
2706 |
|
|
2707 |
/// \brief Dynamic iterable integer map. |
|
2708 |
/// |
|
2709 |
/// This class provides a special graph map type which can store an |
|
2710 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
2711 |
/// For each non-negative value it is possible to iterate on the keys |
|
2712 |
/// mapped to the value. |
|
2713 |
/// |
|
2714 |
/// This type is a reference map, so it can be modified with the |
|
2715 |
/// subscription operator. |
|
2716 |
/// |
|
2717 |
/// \note The size of the data structure depends on the largest |
|
2718 |
/// value in the map. |
|
2719 |
/// |
|
2720 |
/// \tparam GR The graph type. |
|
2721 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2722 |
/// \c GR::Edge). |
|
2723 |
/// |
|
2724 |
/// \see IterableBoolMap, IterableValueMap |
|
2725 |
/// \see CrossRefMap |
|
2726 |
template <typename GR, typename K> |
|
2727 |
class IterableIntMap |
|
2728 |
: protected ItemSetTraits<GR, K>:: |
|
2729 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
|
2730 |
public: |
|
2731 |
typedef typename ItemSetTraits<GR, K>:: |
|
2732 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
2733 |
|
|
2734 |
/// The key type |
|
2735 |
typedef K Key; |
|
2736 |
/// The value type |
|
2737 |
typedef int Value; |
|
2738 |
/// The graph type |
|
2739 |
typedef GR Graph; |
|
2740 |
|
|
2741 |
/// \brief Constructor of the map. |
|
2742 |
/// |
|
2743 |
/// Constructor of the map. It sets all values to -1. |
|
2744 |
explicit IterableIntMap(const Graph& graph) |
|
2745 |
: Parent(graph) {} |
|
2746 |
|
|
2747 |
/// \brief Constructor of the map with a given value. |
|
2748 |
/// |
|
2749 |
/// Constructor of the map with a given value. |
|
2750 |
explicit IterableIntMap(const Graph& graph, int value) |
|
2751 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
|
2752 |
if (value >= 0) { |
|
2753 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
2754 |
lace(it); |
|
2755 |
} |
|
2756 |
} |
|
2757 |
} |
|
2758 |
|
|
2759 |
private: |
|
2760 |
|
|
2761 |
void unlace(const Key& key) { |
|
2762 |
typename Parent::Value& node = Parent::operator[](key); |
|
2763 |
if (node.value < 0) return; |
|
2764 |
if (node.prev != INVALID) { |
|
2765 |
Parent::operator[](node.prev).next = node.next; |
|
2766 |
} else { |
|
2767 |
_first[node.value] = node.next; |
|
2768 |
} |
|
2769 |
if (node.next != INVALID) { |
|
2770 |
Parent::operator[](node.next).prev = node.prev; |
|
2771 |
} |
|
2772 |
while (!_first.empty() && _first.back() == INVALID) { |
|
2773 |
_first.pop_back(); |
|
2774 |
} |
|
2775 |
} |
|
2776 |
|
|
2777 |
void lace(const Key& key) { |
|
2778 |
typename Parent::Value& node = Parent::operator[](key); |
|
2779 |
if (node.value < 0) return; |
|
2780 |
if (node.value >= int(_first.size())) { |
|
2781 |
_first.resize(node.value + 1, INVALID); |
|
2782 |
} |
|
2783 |
node.prev = INVALID; |
|
2784 |
node.next = _first[node.value]; |
|
2785 |
if (node.next != INVALID) { |
|
2786 |
Parent::operator[](node.next).prev = key; |
|
2787 |
} |
|
2788 |
_first[node.value] = key; |
|
2789 |
} |
|
2790 |
|
|
2791 |
public: |
|
2792 |
|
|
2793 |
/// Indicates that the map is reference map. |
|
2794 |
typedef True ReferenceMapTag; |
|
2795 |
|
|
2796 |
/// \brief Reference to the value of the map. |
|
2797 |
/// |
|
2798 |
/// This class is similar to the \c int type. It can |
|
2799 |
/// be converted to \c int and it has the same operators. |
|
2800 |
class Reference { |
|
2801 |
friend class IterableIntMap; |
|
2802 |
private: |
|
2803 |
Reference(IterableIntMap& map, const Key& key) |
|
2804 |
: _key(key), _map(map) {} |
|
2805 |
public: |
|
2806 |
|
|
2807 |
Reference& operator=(const Reference& value) { |
|
2808 |
_map.set(_key, static_cast<const int&>(value)); |
|
2809 |
return *this; |
|
2810 |
} |
|
2811 |
|
|
2812 |
operator const int&() const { |
|
2813 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
2814 |
} |
|
2815 |
|
|
2816 |
Reference& operator=(int value) { |
|
2817 |
_map.set(_key, value); |
|
2818 |
return *this; |
|
2819 |
} |
|
2820 |
Reference& operator++() { |
|
2821 |
_map.set(_key, _map[_key] + 1); |
|
2822 |
return *this; |
|
2823 |
} |
|
2824 |
int operator++(int) { |
|
2825 |
int value = _map[_key]; |
|
2826 |
_map.set(_key, value + 1); |
|
2827 |
return value; |
|
2828 |
} |
|
2829 |
Reference& operator--() { |
|
2830 |
_map.set(_key, _map[_key] - 1); |
|
2831 |
return *this; |
|
2832 |
} |
|
2833 |
int operator--(int) { |
|
2834 |
int value = _map[_key]; |
|
2835 |
_map.set(_key, value - 1); |
|
2836 |
return value; |
|
2837 |
} |
|
2838 |
Reference& operator+=(int value) { |
|
2839 |
_map.set(_key, _map[_key] + value); |
|
2840 |
return *this; |
|
2841 |
} |
|
2842 |
Reference& operator-=(int value) { |
|
2843 |
_map.set(_key, _map[_key] - value); |
|
2844 |
return *this; |
|
2845 |
} |
|
2846 |
Reference& operator*=(int value) { |
|
2847 |
_map.set(_key, _map[_key] * value); |
|
2848 |
return *this; |
|
2849 |
} |
|
2850 |
Reference& operator/=(int value) { |
|
2851 |
_map.set(_key, _map[_key] / value); |
|
2852 |
return *this; |
|
2853 |
} |
|
2854 |
Reference& operator%=(int value) { |
|
2855 |
_map.set(_key, _map[_key] % value); |
|
2856 |
return *this; |
|
2857 |
} |
|
2858 |
Reference& operator&=(int value) { |
|
2859 |
_map.set(_key, _map[_key] & value); |
|
2860 |
return *this; |
|
2861 |
} |
|
2862 |
Reference& operator|=(int value) { |
|
2863 |
_map.set(_key, _map[_key] | value); |
|
2864 |
return *this; |
|
2865 |
} |
|
2866 |
Reference& operator^=(int value) { |
|
2867 |
_map.set(_key, _map[_key] ^ value); |
|
2868 |
return *this; |
|
2869 |
} |
|
2870 |
Reference& operator<<=(int value) { |
|
2871 |
_map.set(_key, _map[_key] << value); |
|
2872 |
return *this; |
|
2873 |
} |
|
2874 |
Reference& operator>>=(int value) { |
|
2875 |
_map.set(_key, _map[_key] >> value); |
|
2876 |
return *this; |
|
2877 |
} |
|
2878 |
|
|
2879 |
private: |
|
2880 |
Key _key; |
|
2881 |
IterableIntMap& _map; |
|
2882 |
}; |
|
2883 |
|
|
2884 |
/// The const reference type. |
|
2885 |
typedef const Value& ConstReference; |
|
2886 |
|
|
2887 |
/// \brief Gives back the maximal value plus one. |
|
2888 |
/// |
|
2889 |
/// Gives back the maximal value plus one. |
|
2890 |
int size() const { |
|
2891 |
return _first.size(); |
|
2892 |
} |
|
2893 |
|
|
2894 |
/// \brief Set operation of the map. |
|
2895 |
/// |
|
2896 |
/// Set operation of the map. |
|
2897 |
void set(const Key& key, const Value& value) { |
|
2898 |
unlace(key); |
|
2899 |
Parent::operator[](key).value = value; |
|
2900 |
lace(key); |
|
2901 |
} |
|
2902 |
|
|
2903 |
/// \brief Const subscript operator of the map. |
|
2904 |
/// |
|
2905 |
/// Const subscript operator of the map. |
|
2906 |
const Value& operator[](const Key& key) const { |
|
2907 |
return Parent::operator[](key).value; |
|
2908 |
} |
|
2909 |
|
|
2910 |
/// \brief Subscript operator of the map. |
|
2911 |
/// |
|
2912 |
/// Subscript operator of the map. |
|
2913 |
Reference operator[](const Key& key) { |
|
2914 |
return Reference(*this, key); |
|
2915 |
} |
|
2916 |
|
|
2917 |
/// \brief Iterator for the keys with the same value. |
|
2918 |
/// |
|
2919 |
/// Iterator for the keys with the same value. It works |
|
2920 |
/// like a graph item iterator, it can be converted to |
|
2921 |
/// the item type of the map, incremented with \c ++ operator, and |
|
2922 |
/// if the iterator leaves the last valid item, it will be equal to |
|
2923 |
/// \c INVALID. |
|
2924 |
class ItemIt : public Key { |
|
2925 |
public: |
|
2926 |
typedef Key Parent; |
|
2927 |
|
|
2928 |
/// \brief Invalid constructor \& conversion. |
|
2929 |
/// |
|
2930 |
/// This constructor initializes the iterator to be invalid. |
|
2931 |
/// \sa Invalid for more details. |
|
2932 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2933 |
|
|
2934 |
/// \brief Creates an iterator with a value. |
|
2935 |
/// |
|
2936 |
/// Creates an iterator with a value. It iterates on the |
|
2937 |
/// keys mapped to the given value. |
|
2938 |
/// \param map The IterableIntMap. |
|
2939 |
/// \param value The value. |
|
2940 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
|
2941 |
if (value < 0 || value >= int(_map->_first.size())) { |
|
2942 |
Parent::operator=(INVALID); |
|
2943 |
} else { |
|
2944 |
Parent::operator=(_map->_first[value]); |
|
2945 |
} |
|
2946 |
} |
|
2947 |
|
|
2948 |
/// \brief Increment operator. |
|
2949 |
/// |
|
2950 |
/// Increment operator. |
|
2951 |
ItemIt& operator++() { |
|
2952 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
2953 |
operator[](static_cast<Parent&>(*this)).next); |
|
2954 |
return *this; |
|
2955 |
} |
|
2956 |
|
|
2957 |
private: |
|
2958 |
const IterableIntMap* _map; |
|
2959 |
}; |
|
2960 |
|
|
2961 |
protected: |
|
2962 |
|
|
2963 |
virtual void erase(const Key& key) { |
|
2964 |
unlace(key); |
|
2965 |
Parent::erase(key); |
|
2966 |
} |
|
2967 |
|
|
2968 |
virtual void erase(const std::vector<Key>& keys) { |
|
2969 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2970 |
unlace(keys[i]); |
|
2971 |
} |
|
2972 |
Parent::erase(keys); |
|
2973 |
} |
|
2974 |
|
|
2975 |
virtual void clear() { |
|
2976 |
_first.clear(); |
|
2977 |
Parent::clear(); |
|
2978 |
} |
|
2979 |
|
|
2980 |
private: |
|
2981 |
std::vector<Key> _first; |
|
2982 |
}; |
|
2983 |
|
|
2984 |
namespace _maps_bits { |
|
2985 |
template <typename Item, typename Value> |
|
2986 |
struct IterableValueMapNode { |
|
2987 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
|
2988 |
Item prev, next; |
|
2989 |
Value value; |
|
2990 |
}; |
|
2991 |
} |
|
2992 |
|
|
2993 |
/// \brief Dynamic iterable map for comparable values. |
|
2994 |
/// |
|
2995 |
/// This class provides a special graph map type which can store an |
|
2996 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
2997 |
/// For each value it is possible to iterate on the keys mapped to |
|
2998 |
/// the value. |
|
2999 |
/// |
|
3000 |
/// The map stores for each value a linked list with |
|
3001 |
/// the items which mapped to the value, and the values are stored |
|
3002 |
/// in balanced binary tree. The values of the map can be accessed |
|
3003 |
/// with stl compatible forward iterator. |
|
3004 |
/// |
|
3005 |
/// This type is not reference map, so it cannot be modified with |
|
3006 |
/// the subscription operator. |
|
3007 |
/// |
|
3008 |
/// \tparam GR The graph type. |
|
3009 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
3010 |
/// \c GR::Edge). |
|
3011 |
/// \tparam V The value type of the map. It can be any comparable |
|
3012 |
/// value type. |
|
3013 |
/// |
|
3014 |
/// \see IterableBoolMap, IterableIntMap |
|
3015 |
/// \see CrossRefMap |
|
3016 |
template <typename GR, typename K, typename V> |
|
3017 |
class IterableValueMap |
|
3018 |
: protected ItemSetTraits<GR, K>:: |
|
3019 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
|
3020 |
public: |
|
3021 |
typedef typename ItemSetTraits<GR, K>:: |
|
3022 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
3023 |
|
|
3024 |
/// The key type |
|
3025 |
typedef K Key; |
|
3026 |
/// The value type |
|
3027 |
typedef V Value; |
|
3028 |
/// The graph type |
|
3029 |
typedef GR Graph; |
|
3030 |
|
|
3031 |
public: |
|
3032 |
|
|
3033 |
/// \brief Constructor of the map with a given value. |
|
3034 |
/// |
|
3035 |
/// Constructor of the map with a given value. |
|
3036 |
explicit IterableValueMap(const Graph& graph, |
|
3037 |
const Value& value = Value()) |
|
3038 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
|
3039 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3040 |
lace(it); |
|
3041 |
} |
|
3042 |
} |
|
3043 |
|
|
3044 |
protected: |
|
3045 |
|
|
3046 |
void unlace(const Key& key) { |
|
3047 |
typename Parent::Value& node = Parent::operator[](key); |
|
3048 |
if (node.prev != INVALID) { |
|
3049 |
Parent::operator[](node.prev).next = node.next; |
|
3050 |
} else { |
|
3051 |
if (node.next != INVALID) { |
|
3052 |
_first[node.value] = node.next; |
|
3053 |
} else { |
|
3054 |
_first.erase(node.value); |
|
3055 |
} |
|
3056 |
} |
|
3057 |
if (node.next != INVALID) { |
|
3058 |
Parent::operator[](node.next).prev = node.prev; |
|
3059 |
} |
|
3060 |
} |
|
3061 |
|
|
3062 |
void lace(const Key& key) { |
|
3063 |
typename Parent::Value& node = Parent::operator[](key); |
|
3064 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
3065 |
if (it == _first.end()) { |
|
3066 |
node.prev = node.next = INVALID; |
|
3067 |
_first.insert(std::make_pair(node.value, key)); |
|
3068 |
} else { |
|
3069 |
node.prev = INVALID; |
|
3070 |
node.next = it->second; |
|
3071 |
if (node.next != INVALID) { |
|
3072 |
Parent::operator[](node.next).prev = key; |
|
3073 |
} |
|
3074 |
it->second = key; |
|
3075 |
} |
|
3076 |
} |
|
3077 |
|
|
3078 |
public: |
|
3079 |
|
|
3080 |
/// \brief Forward iterator for values. |
|
3081 |
/// |
|
3082 |
/// This iterator is an stl compatible forward |
|
3083 |
/// iterator on the values of the map. The values can |
|
3084 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
3085 |
class ValueIterator |
|
3086 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
3087 |
friend class IterableValueMap; |
|
3088 |
private: |
|
3089 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
3090 |
: it(_it) {} |
|
3091 |
public: |
|
3092 |
|
|
3093 |
ValueIterator() {} |
|
3094 |
|
|
3095 |
ValueIterator& operator++() { ++it; return *this; } |
|
3096 |
ValueIterator operator++(int) { |
|
3097 |
ValueIterator tmp(*this); |
|
3098 |
operator++(); |
|
3099 |
return tmp; |
|
3100 |
} |
|
3101 |
|
|
3102 |
const Value& operator*() const { return it->first; } |
|
3103 |
const Value* operator->() const { return &(it->first); } |
|
3104 |
|
|
3105 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3106 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3107 |
|
|
3108 |
private: |
|
3109 |
typename std::map<Value, Key>::const_iterator it; |
|
3110 |
}; |
|
3111 |
|
|
3112 |
/// \brief Returns an iterator to the first value. |
|
3113 |
/// |
|
3114 |
/// Returns an stl compatible iterator to the |
|
3115 |
/// first value of the map. The values of the |
|
3116 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3117 |
/// range. |
|
3118 |
ValueIterator beginValue() const { |
|
3119 |
return ValueIterator(_first.begin()); |
|
3120 |
} |
|
3121 |
|
|
3122 |
/// \brief Returns an iterator after the last value. |
|
3123 |
/// |
|
3124 |
/// Returns an stl compatible iterator after the |
|
3125 |
/// last value of the map. The values of the |
|
3126 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3127 |
/// range. |
|
3128 |
ValueIterator endValue() const { |
|
3129 |
return ValueIterator(_first.end()); |
|
3130 |
} |
|
3131 |
|
|
3132 |
/// \brief Set operation of the map. |
|
3133 |
/// |
|
3134 |
/// Set operation of the map. |
|
3135 |
void set(const Key& key, const Value& value) { |
|
3136 |
unlace(key); |
|
3137 |
Parent::operator[](key).value = value; |
|
3138 |
lace(key); |
|
3139 |
} |
|
3140 |
|
|
3141 |
/// \brief Const subscript operator of the map. |
|
3142 |
/// |
|
3143 |
/// Const subscript operator of the map. |
|
3144 |
const Value& operator[](const Key& key) const { |
|
3145 |
return Parent::operator[](key).value; |
|
3146 |
} |
|
3147 |
|
|
3148 |
/// \brief Iterator for the keys with the same value. |
|
3149 |
/// |
|
3150 |
/// Iterator for the keys with the same value. It works |
|
3151 |
/// like a graph item iterator, it can be converted to |
|
3152 |
/// the item type of the map, incremented with \c ++ operator, and |
|
3153 |
/// if the iterator leaves the last valid item, it will be equal to |
|
3154 |
/// \c INVALID. |
|
3155 |
class ItemIt : public Key { |
|
3156 |
public: |
|
3157 |
typedef Key Parent; |
|
3158 |
|
|
3159 |
/// \brief Invalid constructor \& conversion. |
|
3160 |
/// |
|
3161 |
/// This constructor initializes the iterator to be invalid. |
|
3162 |
/// \sa Invalid for more details. |
|
3163 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
3164 |
|
|
3165 |
/// \brief Creates an iterator with a value. |
|
3166 |
/// |
|
3167 |
/// Creates an iterator with a value. It iterates on the |
|
3168 |
/// keys which have the given value. |
|
3169 |
/// \param map The IterableValueMap |
|
3170 |
/// \param value The value |
|
3171 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
|
3172 |
typename std::map<Value, Key>::const_iterator it = |
|
3173 |
map._first.find(value); |
|
3174 |
if (it == map._first.end()) { |
|
3175 |
Parent::operator=(INVALID); |
|
3176 |
} else { |
|
3177 |
Parent::operator=(it->second); |
|
3178 |
} |
|
3179 |
} |
|
3180 |
|
|
3181 |
/// \brief Increment operator. |
|
3182 |
/// |
|
3183 |
/// Increment Operator. |
|
3184 |
ItemIt& operator++() { |
|
3185 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
3186 |
operator[](static_cast<Parent&>(*this)).next); |
|
3187 |
return *this; |
|
3188 |
} |
|
3189 |
|
|
3190 |
|
|
3191 |
private: |
|
3192 |
const IterableValueMap* _map; |
|
3193 |
}; |
|
3194 |
|
|
3195 |
protected: |
|
3196 |
|
|
3197 |
virtual void add(const Key& key) { |
|
3198 |
Parent::add(key); |
|
3199 |
unlace(key); |
|
3200 |
} |
|
3201 |
|
|
3202 |
virtual void add(const std::vector<Key>& keys) { |
|
3203 |
Parent::add(keys); |
|
3204 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3205 |
lace(keys[i]); |
|
3206 |
} |
|
3207 |
} |
|
3208 |
|
|
3209 |
virtual void erase(const Key& key) { |
|
3210 |
unlace(key); |
|
3211 |
Parent::erase(key); |
|
3212 |
} |
|
3213 |
|
|
3214 |
virtual void erase(const std::vector<Key>& keys) { |
|
3215 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3216 |
unlace(keys[i]); |
|
3217 |
} |
|
3218 |
Parent::erase(keys); |
|
3219 |
} |
|
3220 |
|
|
3221 |
virtual void build() { |
|
3222 |
Parent::build(); |
|
3223 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3224 |
lace(it); |
|
3225 |
} |
|
3226 |
} |
|
3227 |
|
|
3228 |
virtual void clear() { |
|
3229 |
_first.clear(); |
|
3230 |
Parent::clear(); |
|
3231 |
} |
|
3232 |
|
|
3233 |
private: |
|
3234 |
std::map<Value, Key> _first; |
|
3235 |
}; |
|
3236 |
|
|
2341 | 3237 |
/// \brief Map of the source nodes of arcs in a digraph. |
2342 | 3238 |
/// |
2343 | 3239 |
/// SourceMap provides access for the source node of each arc in a digraph, |
... | ... |
@@ -2507,7 +3403,7 @@ |
2507 | 3403 |
/// in constant time. On the other hand, the values are updated automatically |
2508 | 3404 |
/// whenever the digraph changes. |
2509 | 3405 |
/// |
2510 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3406 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2511 | 3407 |
/// may provide alternative ways to modify the digraph. |
2512 | 3408 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2513 | 3409 |
/// features are used. For example the functions |
... | ... |
@@ -2523,7 +3419,7 @@ |
2523 | 3419 |
::ItemNotifier::ObserverBase { |
2524 | 3420 |
|
2525 | 3421 |
public: |
2526 |
|
|
3422 |
|
|
2527 | 3423 |
/// The graph type of InDegMap |
2528 | 3424 |
typedef GR Graph; |
2529 | 3425 |
typedef GR Digraph; |
... | ... |
@@ -2637,7 +3533,7 @@ |
2637 | 3533 |
/// in constant time. On the other hand, the values are updated automatically |
2638 | 3534 |
/// whenever the digraph changes. |
2639 | 3535 |
/// |
2640 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3536 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2641 | 3537 |
/// may provide alternative ways to modify the digraph. |
2642 | 3538 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2643 | 3539 |
/// features are used. For example the functions |
... | ... |
@@ -31,6 +31,9 @@ |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/bin_heap.h> |
34 |
#include <lemon/fib_heap.h> |
|
35 |
#include <lemon/radix_heap.h> |
|
36 |
#include <lemon/bucket_heap.h> |
|
34 | 37 |
|
35 | 38 |
#include "test_tools.h" |
36 | 39 |
|
... | ... |
@@ -183,5 +186,39 @@ |
183 | 186 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
184 | 187 |
} |
185 | 188 |
|
189 |
{ |
|
190 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
{ |
|
201 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
202 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
203 |
heapSortTest<IntHeap>(); |
|
204 |
heapIncreaseTest<IntHeap>(); |
|
205 |
|
|
206 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
207 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
208 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
209 |
} |
|
210 |
|
|
211 |
{ |
|
212 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
213 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
214 |
heapSortTest<IntHeap>(); |
|
215 |
heapIncreaseTest<IntHeap>(); |
|
216 |
|
|
217 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
218 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
219 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
220 |
} |
|
221 |
|
|
222 |
|
|
186 | 223 |
return 0; |
187 | 224 |
} |
... | ... |
@@ -23,6 +23,7 @@ |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 | 25 |
#include <lemon/list_graph.h> |
26 |
#include <lemon/smart_graph.h> |
|
26 | 27 |
|
27 | 28 |
#include "test_tools.h" |
28 | 29 |
|
... | ... |
@@ -494,5 +495,192 @@ |
494 | 495 |
it == map.endValue(), "Wrong value iterator"); |
495 | 496 |
} |
496 | 497 |
|
498 |
// Iterable bool map |
|
499 |
{ |
|
500 |
typedef SmartGraph Graph; |
|
501 |
typedef SmartGraph::Node Item; |
|
502 |
|
|
503 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
504 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
505 |
|
|
506 |
const int num = 10; |
|
507 |
Graph g; |
|
508 |
std::vector<Item> items; |
|
509 |
for (int i = 0; i < num; ++i) { |
|
510 |
items.push_back(g.addNode()); |
|
511 |
} |
|
512 |
|
|
513 |
Ibm map1(g, true); |
|
514 |
int n = 0; |
|
515 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
516 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
517 |
++n; |
|
518 |
} |
|
519 |
check(n == num, "Wrong number"); |
|
520 |
|
|
521 |
n = 0; |
|
522 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
523 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
524 |
++n; |
|
525 |
} |
|
526 |
check(n == num, "Wrong number"); |
|
527 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
528 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
529 |
|
|
530 |
map1[items[5]] = true; |
|
531 |
|
|
532 |
n = 0; |
|
533 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
534 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
535 |
++n; |
|
536 |
} |
|
537 |
check(n == num, "Wrong number"); |
|
538 |
|
|
539 |
map1[items[num / 2]] = false; |
|
540 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
541 |
|
|
542 |
n = 0; |
|
543 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
544 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
545 |
++n; |
|
546 |
} |
|
547 |
check(n == num - 1, "Wrong number"); |
|
548 |
|
|
549 |
n = 0; |
|
550 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
551 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
552 |
++n; |
|
553 |
} |
|
554 |
check(n == 1, "Wrong number"); |
|
555 |
|
|
556 |
map1[items[0]] = false; |
|
557 |
check(map1[items[0]] == false, "Wrong map value"); |
|
558 |
|
|
559 |
map1[items[num - 1]] = false; |
|
560 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
561 |
|
|
562 |
n = 0; |
|
563 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
564 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
565 |
++n; |
|
566 |
} |
|
567 |
check(n == num - 3, "Wrong number"); |
|
568 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
569 |
|
|
570 |
n = 0; |
|
571 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
572 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
573 |
++n; |
|
574 |
} |
|
575 |
check(n == 3, "Wrong number"); |
|
576 |
check(map1.falseNum() == 3, "Wrong number"); |
|
577 |
} |
|
578 |
|
|
579 |
// Iterable int map |
|
580 |
{ |
|
581 |
typedef SmartGraph Graph; |
|
582 |
typedef SmartGraph::Node Item; |
|
583 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
584 |
|
|
585 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
586 |
|
|
587 |
const int num = 10; |
|
588 |
Graph g; |
|
589 |
std::vector<Item> items; |
|
590 |
for (int i = 0; i < num; ++i) { |
|
591 |
items.push_back(g.addNode()); |
|
592 |
} |
|
593 |
|
|
594 |
Iim map1(g); |
|
595 |
check(map1.size() == 0, "Wrong size"); |
|
596 |
|
|
597 |
for (int i = 0; i < num; ++i) { |
|
598 |
map1[items[i]] = i; |
|
599 |
} |
|
600 |
check(map1.size() == num, "Wrong size"); |
|
601 |
|
|
602 |
for (int i = 0; i < num; ++i) { |
|
603 |
Iim::ItemIt it(map1, i); |
|
604 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
605 |
++it; |
|
606 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
607 |
} |
|
608 |
|
|
609 |
for (int i = 0; i < num; ++i) { |
|
610 |
map1[items[i]] = i % 2; |
|
611 |
} |
|
612 |
check(map1.size() == 2, "Wrong size"); |
|
613 |
|
|
614 |
int n = 0; |
|
615 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) { |
|
616 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
617 |
++n; |
|
618 |
} |
|
619 |
check(n == (num + 1) / 2, "Wrong number"); |
|
620 |
|
|
621 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) { |
|
622 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
623 |
++n; |
|
624 |
} |
|
625 |
check(n == num, "Wrong number"); |
|
626 |
|
|
627 |
} |
|
628 |
|
|
629 |
// Iterable value map |
|
630 |
{ |
|
631 |
typedef SmartGraph Graph; |
|
632 |
typedef SmartGraph::Node Item; |
|
633 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
634 |
|
|
635 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
636 |
|
|
637 |
const int num = 10; |
|
638 |
Graph g; |
|
639 |
std::vector<Item> items; |
|
640 |
for (int i = 0; i < num; ++i) { |
|
641 |
items.push_back(g.addNode()); |
|
642 |
} |
|
643 |
|
|
644 |
Ivm map1(g, 0.0); |
|
645 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
646 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
647 |
|
|
648 |
for (int i = 0; i < num; ++i) { |
|
649 |
map1.set(items[i], static_cast<double>(i)); |
|
650 |
} |
|
651 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
652 |
|
|
653 |
for (int i = 0; i < num; ++i) { |
|
654 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
655 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
656 |
++it; |
|
657 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
658 |
} |
|
659 |
|
|
660 |
for (Ivm::ValueIterator vit = map1.beginValue(); |
|
661 |
vit != map1.endValue(); ++vit) { |
|
662 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
663 |
"Wrong ValueIterator"); |
|
664 |
} |
|
665 |
|
|
666 |
for (int i = 0; i < num; ++i) { |
|
667 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
668 |
} |
|
669 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
670 |
|
|
671 |
int n = 0; |
|
672 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { |
|
673 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
674 |
++n; |
|
675 |
} |
|
676 |
check(n == (num + 1) / 2, "Wrong number"); |
|
677 |
|
|
678 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
|
679 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
680 |
++n; |
|
681 |
} |
|
682 |
check(n == num, "Wrong number"); |
|
683 |
|
|
684 |
} |
|
497 | 685 |
return 0; |
498 | 686 |
} |
0 comments (0 inline)