0
5
3
468
898
2
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
| 20 |
#define LEMON_BUCKET_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup auxdat |
|
| 23 |
///\file |
|
| 24 |
///\brief Bucket Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
namespace _bucket_heap_bits {
|
|
| 33 |
|
|
| 34 |
template <bool MIN> |
|
| 35 |
struct DirectionTraits {
|
|
| 36 |
static bool less(int left, int right) {
|
|
| 37 |
return left < right; |
|
| 38 |
} |
|
| 39 |
static void increase(int& value) {
|
|
| 40 |
++value; |
|
| 41 |
} |
|
| 42 |
}; |
|
| 43 |
|
|
| 44 |
template <> |
|
| 45 |
struct DirectionTraits<false> {
|
|
| 46 |
static bool less(int left, int right) {
|
|
| 47 |
return left > right; |
|
| 48 |
} |
|
| 49 |
static void increase(int& value) {
|
|
| 50 |
--value; |
|
| 51 |
} |
|
| 52 |
}; |
|
| 53 |
|
|
| 54 |
} |
|
| 55 |
|
|
| 56 |
/// \ingroup auxdat |
|
| 57 |
/// |
|
| 58 |
/// \brief A Bucket Heap implementation. |
|
| 59 |
/// |
|
| 60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 61 |
/// is a data structure for storing items with specified values called \e |
|
| 62 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 64 |
/// only integer priorities and it stores for each priority in the |
|
| 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 66 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
|
| 67 |
/// |
|
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 |
/// to handle the cross references. |
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// prio() member functions. |
|
| 73 |
template <typename IM, bool MIN = true> |
|
| 74 |
class BucketHeap {
|
|
| 75 |
|
|
| 76 |
public: |
|
| 77 |
/// \e |
|
| 78 |
typedef typename IM::Key Item; |
|
| 79 |
/// \e |
|
| 80 |
typedef int Prio; |
|
| 81 |
/// \e |
|
| 82 |
typedef std::pair<Item, Prio> Pair; |
|
| 83 |
/// \e |
|
| 84 |
typedef IM ItemIntMap; |
|
| 85 |
|
|
| 86 |
private: |
|
| 87 |
|
|
| 88 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
| 89 |
|
|
| 90 |
public: |
|
| 91 |
|
|
| 92 |
/// \brief Type to represent the items states. |
|
| 93 |
/// |
|
| 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 96 |
/// heap's point of view, but may be useful to the user. |
|
| 97 |
/// |
|
| 98 |
/// The item-int map must be initialized in such way that it assigns |
|
| 99 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 100 |
enum State {
|
|
| 101 |
IN_HEAP = 0, ///< = 0. |
|
| 102 |
PRE_HEAP = -1, ///< = -1. |
|
| 103 |
POST_HEAP = -2 ///< = -2. |
|
| 104 |
}; |
|
| 105 |
|
|
| 106 |
public: |
|
| 107 |
/// \brief The constructor. |
|
| 108 |
/// |
|
| 109 |
/// The constructor. |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
|
| 114 |
|
|
| 115 |
/// The number of items stored in the heap. |
|
| 116 |
/// |
|
| 117 |
/// \brief Returns the number of items stored in the heap. |
|
| 118 |
int size() const { return _data.size(); }
|
|
| 119 |
|
|
| 120 |
/// \brief Checks if the heap stores no items. |
|
| 121 |
/// |
|
| 122 |
/// Returns \c true if and only if the heap stores no items. |
|
| 123 |
bool empty() const { return _data.empty(); }
|
|
| 124 |
|
|
| 125 |
/// \brief Make empty this heap. |
|
| 126 |
/// |
|
| 127 |
/// Make empty this heap. It does not change the cross reference |
|
| 128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 129 |
/// should first clear the heap and after that you should set the |
|
| 130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 131 |
void clear() {
|
|
| 132 |
_data.clear(); _first.clear(); _minimum = 0; |
|
| 133 |
} |
|
| 134 |
|
|
| 135 |
private: |
|
| 136 |
|
|
| 137 |
void relocate_last(int idx) {
|
|
| 138 |
if (idx + 1 < int(_data.size())) {
|
|
| 139 |
_data[idx] = _data.back(); |
|
| 140 |
if (_data[idx].prev != -1) {
|
|
| 141 |
_data[_data[idx].prev].next = idx; |
|
| 142 |
} else {
|
|
| 143 |
_first[_data[idx].value] = idx; |
|
| 144 |
} |
|
| 145 |
if (_data[idx].next != -1) {
|
|
| 146 |
_data[_data[idx].next].prev = idx; |
|
| 147 |
} |
|
| 148 |
_iim[_data[idx].item] = idx; |
|
| 149 |
} |
|
| 150 |
_data.pop_back(); |
|
| 151 |
} |
|
| 152 |
|
|
| 153 |
void unlace(int idx) {
|
|
| 154 |
if (_data[idx].prev != -1) {
|
|
| 155 |
_data[_data[idx].prev].next = _data[idx].next; |
|
| 156 |
} else {
|
|
| 157 |
_first[_data[idx].value] = _data[idx].next; |
|
| 158 |
} |
|
| 159 |
if (_data[idx].next != -1) {
|
|
| 160 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
| 161 |
} |
|
| 162 |
} |
|
| 163 |
|
|
| 164 |
void lace(int idx) {
|
|
| 165 |
if (int(_first.size()) <= _data[idx].value) {
|
|
| 166 |
_first.resize(_data[idx].value + 1, -1); |
|
| 167 |
} |
|
| 168 |
_data[idx].next = _first[_data[idx].value]; |
|
| 169 |
if (_data[idx].next != -1) {
|
|
| 170 |
_data[_data[idx].next].prev = idx; |
|
| 171 |
} |
|
| 172 |
_first[_data[idx].value] = idx; |
|
| 173 |
_data[idx].prev = -1; |
|
| 174 |
} |
|
| 175 |
|
|
| 176 |
public: |
|
| 177 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 178 |
/// |
|
| 179 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
| 180 |
/// \param p The pair to insert. |
|
| 181 |
void push(const Pair& p) {
|
|
| 182 |
push(p.first, p.second); |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Insert an item into the heap with the given priority. |
|
| 186 |
/// |
|
| 187 |
/// Adds \c i to the heap with priority \c p. |
|
| 188 |
/// \param i The item to insert. |
|
| 189 |
/// \param p The priority of the item. |
|
| 190 |
void push(const Item &i, const Prio &p) {
|
|
| 191 |
int idx = _data.size(); |
|
| 192 |
_iim[i] = idx; |
|
| 193 |
_data.push_back(BucketItem(i, p)); |
|
| 194 |
lace(idx); |
|
| 195 |
if (Direction::less(p, _minimum)) {
|
|
| 196 |
_minimum = p; |
|
| 197 |
} |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Returns the item with minimum priority. |
|
| 201 |
/// |
|
| 202 |
/// This method returns the item with minimum priority. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 204 |
Item top() const {
|
|
| 205 |
while (_first[_minimum] == -1) {
|
|
| 206 |
Direction::increase(_minimum); |
|
| 207 |
} |
|
| 208 |
return _data[_first[_minimum]].item; |
|
| 209 |
} |
|
| 210 |
|
|
| 211 |
/// \brief Returns the minimum priority. |
|
| 212 |
/// |
|
| 213 |
/// It returns the minimum priority. |
|
| 214 |
/// \pre The heap must be nonempty. |
|
| 215 |
Prio prio() const {
|
|
| 216 |
while (_first[_minimum] == -1) {
|
|
| 217 |
Direction::increase(_minimum); |
|
| 218 |
} |
|
| 219 |
return _minimum; |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
/// \brief Deletes the item with minimum priority. |
|
| 223 |
/// |
|
| 224 |
/// This method deletes the item with minimum priority from the heap. |
|
| 225 |
/// \pre The heap must be non-empty. |
|
| 226 |
void pop() {
|
|
| 227 |
while (_first[_minimum] == -1) {
|
|
| 228 |
Direction::increase(_minimum); |
|
| 229 |
} |
|
| 230 |
int idx = _first[_minimum]; |
|
| 231 |
_iim[_data[idx].item] = -2; |
|
| 232 |
unlace(idx); |
|
| 233 |
relocate_last(idx); |
|
| 234 |
} |
|
| 235 |
|
|
| 236 |
/// \brief Deletes \c i from the heap. |
|
| 237 |
/// |
|
| 238 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 239 |
/// already stored in the heap. |
|
| 240 |
/// \param i The item to erase. |
|
| 241 |
void erase(const Item &i) {
|
|
| 242 |
int idx = _iim[i]; |
|
| 243 |
_iim[_data[idx].item] = -2; |
|
| 244 |
unlace(idx); |
|
| 245 |
relocate_last(idx); |
|
| 246 |
} |
|
| 247 |
|
|
| 248 |
|
|
| 249 |
/// \brief Returns the priority of \c i. |
|
| 250 |
/// |
|
| 251 |
/// This function returns the priority of item \c i. |
|
| 252 |
/// \pre \c i must be in the heap. |
|
| 253 |
/// \param i The item. |
|
| 254 |
Prio operator[](const Item &i) const {
|
|
| 255 |
int idx = _iim[i]; |
|
| 256 |
return _data[idx].value; |
|
| 257 |
} |
|
| 258 |
|
|
| 259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 260 |
/// if \c i was already there. |
|
| 261 |
/// |
|
| 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 264 |
/// \param i The item. |
|
| 265 |
/// \param p The priority. |
|
| 266 |
void set(const Item &i, const Prio &p) {
|
|
| 267 |
int idx = _iim[i]; |
|
| 268 |
if (idx < 0) {
|
|
| 269 |
push(i, p); |
|
| 270 |
} else if (Direction::less(p, _data[idx].value)) {
|
|
| 271 |
decrease(i, p); |
|
| 272 |
} else {
|
|
| 273 |
increase(i, p); |
|
| 274 |
} |
|
| 275 |
} |
|
| 276 |
|
|
| 277 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 278 |
/// |
|
| 279 |
/// This method decreases the priority of item \c i to \c p. |
|
| 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 281 |
/// p relative to \c Compare. |
|
| 282 |
/// \param i The item. |
|
| 283 |
/// \param p The priority. |
|
| 284 |
void decrease(const Item &i, const Prio &p) {
|
|
| 285 |
int idx = _iim[i]; |
|
| 286 |
unlace(idx); |
|
| 287 |
_data[idx].value = p; |
|
| 288 |
if (Direction::less(p, _minimum)) {
|
|
| 289 |
_minimum = p; |
|
| 290 |
} |
|
| 291 |
lace(idx); |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
/// \brief Increases the priority of \c i to \c p. |
|
| 295 |
/// |
|
| 296 |
/// This method sets the priority of item \c i to \c p. |
|
| 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 298 |
/// p relative to \c Compare. |
|
| 299 |
/// \param i The item. |
|
| 300 |
/// \param p The priority. |
|
| 301 |
void increase(const Item &i, const Prio &p) {
|
|
| 302 |
int idx = _iim[i]; |
|
| 303 |
unlace(idx); |
|
| 304 |
_data[idx].value = p; |
|
| 305 |
lace(idx); |
|
| 306 |
} |
|
| 307 |
|
|
| 308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 309 |
/// never been in the heap. |
|
| 310 |
/// |
|
| 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 313 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 314 |
/// get back to the heap again. |
|
| 315 |
/// \param i The item. |
|
| 316 |
State state(const Item &i) const {
|
|
| 317 |
int idx = _iim[i]; |
|
| 318 |
if (idx >= 0) idx = 0; |
|
| 319 |
return State(idx); |
|
| 320 |
} |
|
| 321 |
|
|
| 322 |
/// \brief Sets the state of the \c item in the heap. |
|
| 323 |
/// |
|
| 324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 325 |
/// manually clear the heap when it is important to achive the |
|
| 326 |
/// better time complexity. |
|
| 327 |
/// \param i The item. |
|
| 328 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 329 |
void state(const Item& i, State st) {
|
|
| 330 |
switch (st) {
|
|
| 331 |
case POST_HEAP: |
|
| 332 |
case PRE_HEAP: |
|
| 333 |
if (state(i) == IN_HEAP) {
|
|
| 334 |
erase(i); |
|
| 335 |
} |
|
| 336 |
_iim[i] = st; |
|
| 337 |
break; |
|
| 338 |
case IN_HEAP: |
|
| 339 |
break; |
|
| 340 |
} |
|
| 341 |
} |
|
| 342 |
|
|
| 343 |
private: |
|
| 344 |
|
|
| 345 |
struct BucketItem {
|
|
| 346 |
BucketItem(const Item& _item, int _value) |
|
| 347 |
: item(_item), value(_value) {}
|
|
| 348 |
|
|
| 349 |
Item item; |
|
| 350 |
int value; |
|
| 351 |
|
|
| 352 |
int prev, next; |
|
| 353 |
}; |
|
| 354 |
|
|
| 355 |
ItemIntMap& _iim; |
|
| 356 |
std::vector<int> _first; |
|
| 357 |
std::vector<BucketItem> _data; |
|
| 358 |
mutable int _minimum; |
|
| 359 |
|
|
| 360 |
}; // class BucketHeap |
|
| 361 |
|
|
| 362 |
/// \ingroup auxdat |
|
| 363 |
/// |
|
| 364 |
/// \brief A Simplified Bucket Heap implementation. |
|
| 365 |
/// |
|
| 366 |
/// This class implements a simplified \e bucket \e heap data |
|
| 367 |
/// structure. It does not provide some functionality but it faster |
|
| 368 |
/// and simplier data structure than the BucketHeap. The main |
|
| 369 |
/// difference is that the BucketHeap stores for every key a double |
|
| 370 |
/// linked list while this class stores just simple lists. In the |
|
| 371 |
/// other way it does not support erasing each elements just the |
|
| 372 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 373 |
/// |
|
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 375 |
/// to handle the cross references. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// prio() member functions. |
|
| 379 |
/// |
|
| 380 |
/// \sa BucketHeap |
|
| 381 |
template <typename IM, bool MIN = true > |
|
| 382 |
class SimpleBucketHeap {
|
|
| 383 |
|
|
| 384 |
public: |
|
| 385 |
typedef typename IM::Key Item; |
|
| 386 |
typedef int Prio; |
|
| 387 |
typedef std::pair<Item, Prio> Pair; |
|
| 388 |
typedef IM ItemIntMap; |
|
| 389 |
|
|
| 390 |
private: |
|
| 391 |
|
|
| 392 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
| 393 |
|
|
| 394 |
public: |
|
| 395 |
|
|
| 396 |
/// \brief Type to represent the items states. |
|
| 397 |
/// |
|
| 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 400 |
/// heap's point of view, but may be useful to the user. |
|
| 401 |
/// |
|
| 402 |
/// The item-int map must be initialized in such way that it assigns |
|
| 403 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 404 |
enum State {
|
|
| 405 |
IN_HEAP = 0, ///< = 0. |
|
| 406 |
PRE_HEAP = -1, ///< = -1. |
|
| 407 |
POST_HEAP = -2 ///< = -2. |
|
| 408 |
}; |
|
| 409 |
|
|
| 410 |
public: |
|
| 411 |
|
|
| 412 |
/// \brief The constructor. |
|
| 413 |
/// |
|
| 414 |
/// The constructor. |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 416 |
/// internally to handle the cross references. The value of the map |
|
| 417 |
/// should be PRE_HEAP (-1) for each element. |
|
| 418 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
| 419 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
|
| 420 |
|
|
| 421 |
/// \brief Returns the number of items stored in the heap. |
|
| 422 |
/// |
|
| 423 |
/// The number of items stored in the heap. |
|
| 424 |
int size() const { return _num; }
|
|
| 425 |
|
|
| 426 |
/// \brief Checks if the heap stores no items. |
|
| 427 |
/// |
|
| 428 |
/// Returns \c true if and only if the heap stores no items. |
|
| 429 |
bool empty() const { return _num == 0; }
|
|
| 430 |
|
|
| 431 |
/// \brief Make empty this heap. |
|
| 432 |
/// |
|
| 433 |
/// Make empty this heap. It does not change the cross reference |
|
| 434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 435 |
/// should first clear the heap and after that you should set the |
|
| 436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 437 |
void clear() {
|
|
| 438 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
| 439 |
} |
|
| 440 |
|
|
| 441 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 442 |
/// |
|
| 443 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
| 444 |
/// \param p The pair to insert. |
|
| 445 |
void push(const Pair& p) {
|
|
| 446 |
push(p.first, p.second); |
|
| 447 |
} |
|
| 448 |
|
|
| 449 |
/// \brief Insert an item into the heap with the given priority. |
|
| 450 |
/// |
|
| 451 |
/// Adds \c i to the heap with priority \c p. |
|
| 452 |
/// \param i The item to insert. |
|
| 453 |
/// \param p The priority of the item. |
|
| 454 |
void push(const Item &i, const Prio &p) {
|
|
| 455 |
int idx; |
|
| 456 |
if (_free == -1) {
|
|
| 457 |
idx = _data.size(); |
|
| 458 |
_data.push_back(BucketItem(i)); |
|
| 459 |
} else {
|
|
| 460 |
idx = _free; |
|
| 461 |
_free = _data[idx].next; |
|
| 462 |
_data[idx].item = i; |
|
| 463 |
} |
|
| 464 |
_iim[i] = idx; |
|
| 465 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
| 466 |
_data[idx].next = _first[p]; |
|
| 467 |
_first[p] = idx; |
|
| 468 |
if (Direction::less(p, _minimum)) {
|
|
| 469 |
_minimum = p; |
|
| 470 |
} |
|
| 471 |
++_num; |
|
| 472 |
} |
|
| 473 |
|
|
| 474 |
/// \brief Returns the item with minimum priority. |
|
| 475 |
/// |
|
| 476 |
/// This method returns the item with minimum priority. |
|
| 477 |
/// \pre The heap must be nonempty. |
|
| 478 |
Item top() const {
|
|
| 479 |
while (_first[_minimum] == -1) {
|
|
| 480 |
Direction::increase(_minimum); |
|
| 481 |
} |
|
| 482 |
return _data[_first[_minimum]].item; |
|
| 483 |
} |
|
| 484 |
|
|
| 485 |
/// \brief Returns the minimum priority. |
|
| 486 |
/// |
|
| 487 |
/// It returns the minimum priority. |
|
| 488 |
/// \pre The heap must be nonempty. |
|
| 489 |
Prio prio() const {
|
|
| 490 |
while (_first[_minimum] == -1) {
|
|
| 491 |
Direction::increase(_minimum); |
|
| 492 |
} |
|
| 493 |
return _minimum; |
|
| 494 |
} |
|
| 495 |
|
|
| 496 |
/// \brief Deletes the item with minimum priority. |
|
| 497 |
/// |
|
| 498 |
/// This method deletes the item with minimum priority from the heap. |
|
| 499 |
/// \pre The heap must be non-empty. |
|
| 500 |
void pop() {
|
|
| 501 |
while (_first[_minimum] == -1) {
|
|
| 502 |
Direction::increase(_minimum); |
|
| 503 |
} |
|
| 504 |
int idx = _first[_minimum]; |
|
| 505 |
_iim[_data[idx].item] = -2; |
|
| 506 |
_first[_minimum] = _data[idx].next; |
|
| 507 |
_data[idx].next = _free; |
|
| 508 |
_free = idx; |
|
| 509 |
--_num; |
|
| 510 |
} |
|
| 511 |
|
|
| 512 |
/// \brief Returns the priority of \c i. |
|
| 513 |
/// |
|
| 514 |
/// This function returns the priority of item \c i. |
|
| 515 |
/// \warning This operator is not a constant time function |
|
| 516 |
/// because it scans the whole data structure to find the proper |
|
| 517 |
/// value. |
|
| 518 |
/// \pre \c i must be in the heap. |
|
| 519 |
/// \param i The item. |
|
| 520 |
Prio operator[](const Item &i) const {
|
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 522 |
int idx = _first[k]; |
|
| 523 |
while (idx != -1) {
|
|
| 524 |
if (_data[idx].item == i) {
|
|
| 525 |
return k; |
|
| 526 |
} |
|
| 527 |
idx = _data[idx].next; |
|
| 528 |
} |
|
| 529 |
} |
|
| 530 |
return -1; |
|
| 531 |
} |
|
| 532 |
|
|
| 533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 534 |
/// never been in the heap. |
|
| 535 |
/// |
|
| 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 538 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 539 |
/// get back to the heap again. |
|
| 540 |
/// \param i The item. |
|
| 541 |
State state(const Item &i) const {
|
|
| 542 |
int idx = _iim[i]; |
|
| 543 |
if (idx >= 0) idx = 0; |
|
| 544 |
return State(idx); |
|
| 545 |
} |
|
| 546 |
|
|
| 547 |
private: |
|
| 548 |
|
|
| 549 |
struct BucketItem {
|
|
| 550 |
BucketItem(const Item& _item) |
|
| 551 |
: item(_item) {}
|
|
| 552 |
|
|
| 553 |
Item item; |
|
| 554 |
int next; |
|
| 555 |
}; |
|
| 556 |
|
|
| 557 |
ItemIntMap& _iim; |
|
| 558 |
std::vector<int> _first; |
|
| 559 |
std::vector<BucketItem> _data; |
|
| 560 |
int _free, _num; |
|
| 561 |
mutable int _minimum; |
|
| 562 |
|
|
| 563 |
}; // class SimpleBucketHeap |
|
| 564 |
|
|
| 565 |
} |
|
| 566 |
|
|
| 567 |
#endif |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FIB_HEAP_H |
|
| 20 |
#define LEMON_FIB_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <functional> |
|
| 28 |
#include <lemon/math.h> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup auxdat |
|
| 33 |
/// |
|
| 34 |
///\brief Fibonacci Heap. |
|
| 35 |
/// |
|
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 |
///one can change the priority of an item, add or erase an item, etc. |
|
| 41 |
/// |
|
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref BinHeap "binary heap". |
|
| 45 |
/// |
|
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 54 |
#ifdef DOXYGEN |
|
| 55 |
template <typename PRIO, typename IM, typename CMP> |
|
| 56 |
#else |
|
| 57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> > |
|
| 58 |
#endif |
|
| 59 |
class FibHeap {
|
|
| 60 |
public: |
|
| 61 |
///\e |
|
| 62 |
typedef IM ItemIntMap; |
|
| 63 |
///\e |
|
| 64 |
typedef PRIO Prio; |
|
| 65 |
///\e |
|
| 66 |
typedef typename ItemIntMap::Key Item; |
|
| 67 |
///\e |
|
| 68 |
typedef std::pair<Item,Prio> Pair; |
|
| 69 |
///\e |
|
| 70 |
typedef CMP Compare; |
|
| 71 |
|
|
| 72 |
private: |
|
| 73 |
class Store; |
|
| 74 |
|
|
| 75 |
std::vector<Store> _data; |
|
| 76 |
int _minimum; |
|
| 77 |
ItemIntMap &_iim; |
|
| 78 |
Compare _comp; |
|
| 79 |
int _num; |
|
| 80 |
|
|
| 81 |
public: |
|
| 82 |
|
|
| 83 |
/// \brief Type to represent the items states. |
|
| 84 |
/// |
|
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 87 |
/// heap's point of view, but may be useful to the user. |
|
| 88 |
/// |
|
| 89 |
/// The item-int map must be initialized in such way that it assigns |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 91 |
enum State {
|
|
| 92 |
IN_HEAP = 0, ///< = 0. |
|
| 93 |
PRE_HEAP = -1, ///< = -1. |
|
| 94 |
POST_HEAP = -2 ///< = -2. |
|
| 95 |
}; |
|
| 96 |
|
|
| 97 |
/// \brief The constructor |
|
| 98 |
/// |
|
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 100 |
/// used internally to handle the cross references. |
|
| 101 |
explicit FibHeap(ItemIntMap &map) |
|
| 102 |
: _minimum(0), _iim(map), _num() {}
|
|
| 103 |
|
|
| 104 |
/// \brief The constructor |
|
| 105 |
/// |
|
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 108 |
/// object for ordering of the priorities. |
|
| 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
| 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
|
| 111 |
|
|
| 112 |
/// \brief The number of items stored in the heap. |
|
| 113 |
/// |
|
| 114 |
/// Returns the number of items stored in the heap. |
|
| 115 |
int size() const { return _num; }
|
|
| 116 |
|
|
| 117 |
/// \brief Checks if the heap stores no items. |
|
| 118 |
/// |
|
| 119 |
/// Returns \c true if and only if the heap stores no items. |
|
| 120 |
bool empty() const { return _num==0; }
|
|
| 121 |
|
|
| 122 |
/// \brief Make empty this heap. |
|
| 123 |
/// |
|
| 124 |
/// Make empty this heap. It does not change the cross reference |
|
| 125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 126 |
/// should first clear the heap and after that you should set the |
|
| 127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 128 |
void clear() {
|
|
| 129 |
_data.clear(); _minimum = 0; _num = 0; |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 133 |
/// if \c item was already there. |
|
| 134 |
/// |
|
| 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 137 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 138 |
void set (const Item& item, const Prio& value) {
|
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 143 |
} else push(item, value); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c item to the heap with priority \c value. |
|
| 149 |
/// \pre \c item must not be stored in the heap. |
|
| 150 |
void push (const Item& item, const Prio& value) {
|
|
| 151 |
int i=_iim[item]; |
|
| 152 |
if ( i < 0 ) {
|
|
| 153 |
int s=_data.size(); |
|
| 154 |
_iim.set( item, s ); |
|
| 155 |
Store st; |
|
| 156 |
st.name=item; |
|
| 157 |
_data.push_back(st); |
|
| 158 |
i=s; |
|
| 159 |
} else {
|
|
| 160 |
_data[i].parent=_data[i].child=-1; |
|
| 161 |
_data[i].degree=0; |
|
| 162 |
_data[i].in=true; |
|
| 163 |
_data[i].marked=false; |
|
| 164 |
} |
|
| 165 |
|
|
| 166 |
if ( _num ) {
|
|
| 167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
| 168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
| 169 |
_data[_minimum].right_neighbor=i; |
|
| 170 |
_data[i].left_neighbor=_minimum; |
|
| 171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i; |
|
| 172 |
} else {
|
|
| 173 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
| 174 |
_minimum=i; |
|
| 175 |
} |
|
| 176 |
_data[i].prio=value; |
|
| 177 |
++_num; |
|
| 178 |
} |
|
| 179 |
|
|
| 180 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
| 181 |
/// |
|
| 182 |
/// This method returns the item with minimum priority relative to \c |
|
| 183 |
/// Compare. |
|
| 184 |
/// \pre The heap must be nonempty. |
|
| 185 |
Item top() const { return _data[_minimum].name; }
|
|
| 186 |
|
|
| 187 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
| 188 |
/// |
|
| 189 |
/// It returns the minimum priority relative to \c Compare. |
|
| 190 |
/// \pre The heap must be nonempty. |
|
| 191 |
const Prio& prio() const { return _data[_minimum].prio; }
|
|
| 192 |
|
|
| 193 |
/// \brief Returns the priority of \c item. |
|
| 194 |
/// |
|
| 195 |
/// It returns the priority of \c item. |
|
| 196 |
/// \pre \c item must be in the heap. |
|
| 197 |
const Prio& operator[](const Item& item) const {
|
|
| 198 |
return _data[_iim[item]].prio; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 202 |
/// |
|
| 203 |
/// This method deletes the item with minimum priority relative to \c |
|
| 204 |
/// Compare from the heap. |
|
| 205 |
/// \pre The heap must be non-empty. |
|
| 206 |
void pop() {
|
|
| 207 |
/*The first case is that there are only one root.*/ |
|
| 208 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
|
| 209 |
_data[_minimum].in=false; |
|
| 210 |
if ( _data[_minimum].degree!=0 ) {
|
|
| 211 |
makeroot(_data[_minimum].child); |
|
| 212 |
_minimum=_data[_minimum].child; |
|
| 213 |
balance(); |
|
| 214 |
} |
|
| 215 |
} else {
|
|
| 216 |
int right=_data[_minimum].right_neighbor; |
|
| 217 |
unlace(_minimum); |
|
| 218 |
_data[_minimum].in=false; |
|
| 219 |
if ( _data[_minimum].degree > 0 ) {
|
|
| 220 |
int left=_data[_minimum].left_neighbor; |
|
| 221 |
int child=_data[_minimum].child; |
|
| 222 |
int last_child=_data[child].left_neighbor; |
|
| 223 |
|
|
| 224 |
makeroot(child); |
|
| 225 |
|
|
| 226 |
_data[left].right_neighbor=child; |
|
| 227 |
_data[child].left_neighbor=left; |
|
| 228 |
_data[right].left_neighbor=last_child; |
|
| 229 |
_data[last_child].right_neighbor=right; |
|
| 230 |
} |
|
| 231 |
_minimum=right; |
|
| 232 |
balance(); |
|
| 233 |
} // the case where there are more roots |
|
| 234 |
--_num; |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
/// \brief Deletes \c item from the heap. |
|
| 238 |
/// |
|
| 239 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 241 |
void erase (const Item& item) {
|
|
| 242 |
int i=_iim[item]; |
|
| 243 |
|
|
| 244 |
if ( i >= 0 && _data[i].in ) {
|
|
| 245 |
if ( _data[i].parent!=-1 ) {
|
|
| 246 |
int p=_data[i].parent; |
|
| 247 |
cut(i,p); |
|
| 248 |
cascade(p); |
|
| 249 |
} |
|
| 250 |
_minimum=i; //As if its prio would be -infinity |
|
| 251 |
pop(); |
|
| 252 |
} |
|
| 253 |
} |
|
| 254 |
|
|
| 255 |
/// \brief Decreases the priority of \c item to \c value. |
|
| 256 |
/// |
|
| 257 |
/// This method decreases the priority of \c item to \c value. |
|
| 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 259 |
/// value relative to \c Compare. |
|
| 260 |
void decrease (Item item, const Prio& value) {
|
|
| 261 |
int i=_iim[item]; |
|
| 262 |
_data[i].prio=value; |
|
| 263 |
int p=_data[i].parent; |
|
| 264 |
|
|
| 265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 266 |
cut(i,p); |
|
| 267 |
cascade(p); |
|
| 268 |
} |
|
| 269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i; |
|
| 270 |
} |
|
| 271 |
|
|
| 272 |
/// \brief Increases the priority of \c item to \c value. |
|
| 273 |
/// |
|
| 274 |
/// This method sets the priority of \c item to \c value. Though |
|
| 275 |
/// there is no precondition on the priority of \c item, this |
|
| 276 |
/// method should be used only if it is indeed necessary to increase |
|
| 277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 278 |
/// method is inefficient. |
|
| 279 |
void increase (Item item, const Prio& value) {
|
|
| 280 |
erase(item); |
|
| 281 |
push(item, value); |
|
| 282 |
} |
|
| 283 |
|
|
| 284 |
|
|
| 285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 286 |
/// been in the heap. |
|
| 287 |
/// |
|
| 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 290 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 291 |
/// get back to the heap again. |
|
| 292 |
State state(const Item &item) const {
|
|
| 293 |
int i=_iim[item]; |
|
| 294 |
if( i>=0 ) {
|
|
| 295 |
if ( _data[i].in ) i=0; |
|
| 296 |
else i=-2; |
|
| 297 |
} |
|
| 298 |
return State(i); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
/// \brief Sets the state of the \c item in the heap. |
|
| 302 |
/// |
|
| 303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 304 |
/// manually clear the heap when it is important to achive the |
|
| 305 |
/// better time _complexity. |
|
| 306 |
/// \param i The item. |
|
| 307 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 308 |
void state(const Item& i, State st) {
|
|
| 309 |
switch (st) {
|
|
| 310 |
case POST_HEAP: |
|
| 311 |
case PRE_HEAP: |
|
| 312 |
if (state(i) == IN_HEAP) {
|
|
| 313 |
erase(i); |
|
| 314 |
} |
|
| 315 |
_iim[i] = st; |
|
| 316 |
break; |
|
| 317 |
case IN_HEAP: |
|
| 318 |
break; |
|
| 319 |
} |
|
| 320 |
} |
|
| 321 |
|
|
| 322 |
private: |
|
| 323 |
|
|
| 324 |
void balance() {
|
|
| 325 |
|
|
| 326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
| 327 |
|
|
| 328 |
std::vector<int> A(maxdeg,-1); |
|
| 329 |
|
|
| 330 |
/* |
|
| 331 |
*Recall that now minimum does not point to the minimum prio element. |
|
| 332 |
*We set minimum to this during balance(). |
|
| 333 |
*/ |
|
| 334 |
int anchor=_data[_minimum].left_neighbor; |
|
| 335 |
int next=_minimum; |
|
| 336 |
bool end=false; |
|
| 337 |
|
|
| 338 |
do {
|
|
| 339 |
int active=next; |
|
| 340 |
if ( anchor==active ) end=true; |
|
| 341 |
int d=_data[active].degree; |
|
| 342 |
next=_data[active].right_neighbor; |
|
| 343 |
|
|
| 344 |
while (A[d]!=-1) {
|
|
| 345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
|
| 346 |
fuse(active,A[d]); |
|
| 347 |
} else {
|
|
| 348 |
fuse(A[d],active); |
|
| 349 |
active=A[d]; |
|
| 350 |
} |
|
| 351 |
A[d]=-1; |
|
| 352 |
++d; |
|
| 353 |
} |
|
| 354 |
A[d]=active; |
|
| 355 |
} while ( !end ); |
|
| 356 |
|
|
| 357 |
|
|
| 358 |
while ( _data[_minimum].parent >=0 ) |
|
| 359 |
_minimum=_data[_minimum].parent; |
|
| 360 |
int s=_minimum; |
|
| 361 |
int m=_minimum; |
|
| 362 |
do {
|
|
| 363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
| 364 |
s=_data[s].right_neighbor; |
|
| 365 |
} while ( s != m ); |
|
| 366 |
} |
|
| 367 |
|
|
| 368 |
void makeroot(int c) {
|
|
| 369 |
int s=c; |
|
| 370 |
do {
|
|
| 371 |
_data[s].parent=-1; |
|
| 372 |
s=_data[s].right_neighbor; |
|
| 373 |
} while ( s != c ); |
|
| 374 |
} |
|
| 375 |
|
|
| 376 |
void cut(int a, int b) {
|
|
| 377 |
/* |
|
| 378 |
*Replacing a from the children of b. |
|
| 379 |
*/ |
|
| 380 |
--_data[b].degree; |
|
| 381 |
|
|
| 382 |
if ( _data[b].degree !=0 ) {
|
|
| 383 |
int child=_data[b].child; |
|
| 384 |
if ( child==a ) |
|
| 385 |
_data[b].child=_data[child].right_neighbor; |
|
| 386 |
unlace(a); |
|
| 387 |
} |
|
| 388 |
|
|
| 389 |
|
|
| 390 |
/*Lacing a to the roots.*/ |
|
| 391 |
int right=_data[_minimum].right_neighbor; |
|
| 392 |
_data[_minimum].right_neighbor=a; |
|
| 393 |
_data[a].left_neighbor=_minimum; |
|
| 394 |
_data[a].right_neighbor=right; |
|
| 395 |
_data[right].left_neighbor=a; |
|
| 396 |
|
|
| 397 |
_data[a].parent=-1; |
|
| 398 |
_data[a].marked=false; |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
void cascade(int a) {
|
|
| 402 |
if ( _data[a].parent!=-1 ) {
|
|
| 403 |
int p=_data[a].parent; |
|
| 404 |
|
|
| 405 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
| 406 |
else {
|
|
| 407 |
cut(a,p); |
|
| 408 |
cascade(p); |
|
| 409 |
} |
|
| 410 |
} |
|
| 411 |
} |
|
| 412 |
|
|
| 413 |
void fuse(int a, int b) {
|
|
| 414 |
unlace(b); |
|
| 415 |
|
|
| 416 |
/*Lacing b under a.*/ |
|
| 417 |
_data[b].parent=a; |
|
| 418 |
|
|
| 419 |
if (_data[a].degree==0) {
|
|
| 420 |
_data[b].left_neighbor=b; |
|
| 421 |
_data[b].right_neighbor=b; |
|
| 422 |
_data[a].child=b; |
|
| 423 |
} else {
|
|
| 424 |
int child=_data[a].child; |
|
| 425 |
int last_child=_data[child].left_neighbor; |
|
| 426 |
_data[child].left_neighbor=b; |
|
| 427 |
_data[b].right_neighbor=child; |
|
| 428 |
_data[last_child].right_neighbor=b; |
|
| 429 |
_data[b].left_neighbor=last_child; |
|
| 430 |
} |
|
| 431 |
|
|
| 432 |
++_data[a].degree; |
|
| 433 |
|
|
| 434 |
_data[b].marked=false; |
|
| 435 |
} |
|
| 436 |
|
|
| 437 |
/* |
|
| 438 |
*It is invoked only if a has siblings. |
|
| 439 |
*/ |
|
| 440 |
void unlace(int a) {
|
|
| 441 |
int leftn=_data[a].left_neighbor; |
|
| 442 |
int rightn=_data[a].right_neighbor; |
|
| 443 |
_data[leftn].right_neighbor=rightn; |
|
| 444 |
_data[rightn].left_neighbor=leftn; |
|
| 445 |
} |
|
| 446 |
|
|
| 447 |
|
|
| 448 |
class Store {
|
|
| 449 |
friend class FibHeap; |
|
| 450 |
|
|
| 451 |
Item name; |
|
| 452 |
int parent; |
|
| 453 |
int left_neighbor; |
|
| 454 |
int right_neighbor; |
|
| 455 |
int child; |
|
| 456 |
int degree; |
|
| 457 |
bool marked; |
|
| 458 |
bool in; |
|
| 459 |
Prio prio; |
|
| 460 |
|
|
| 461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
|
| 462 |
}; |
|
| 463 |
}; |
|
| 464 |
|
|
| 465 |
} //namespace lemon |
|
| 466 |
|
|
| 467 |
#endif //LEMON_FIB_HEAP_H |
|
| 468 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_RADIX_HEAP_H |
|
| 20 |
#define LEMON_RADIX_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup auxdat |
|
| 23 |
///\file |
|
| 24 |
///\brief Radix Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <lemon/error.h> |
|
| 28 |
|
|
| 29 |
namespace lemon {
|
|
| 30 |
|
|
| 31 |
|
|
| 32 |
/// \ingroup auxdata |
|
| 33 |
/// |
|
| 34 |
/// \brief A Radix Heap implementation. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. This heap type can store only items with \e int priority. |
|
| 40 |
/// In a heap one can change the priority of an item, add or erase an |
|
| 41 |
/// item, but the priority cannot be decreased under the last removed |
|
| 42 |
/// item's priority. |
|
| 43 |
/// |
|
| 44 |
/// \param IM A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// |
|
| 47 |
/// \see BinHeap |
|
| 48 |
/// \see Dijkstra |
|
| 49 |
template <typename IM> |
|
| 50 |
class RadixHeap {
|
|
| 51 |
|
|
| 52 |
public: |
|
| 53 |
typedef typename IM::Key Item; |
|
| 54 |
typedef int Prio; |
|
| 55 |
typedef IM ItemIntMap; |
|
| 56 |
|
|
| 57 |
/// \brief Exception thrown by RadixHeap. |
|
| 58 |
/// |
|
| 59 |
/// This Exception is thrown when a smaller priority |
|
| 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
| 61 |
/// \see RadixHeap |
|
| 62 |
|
|
| 63 |
class UnderFlowPriorityError : public Exception {
|
|
| 64 |
public: |
|
| 65 |
virtual const char* what() const throw() {
|
|
| 66 |
return "lemon::RadixHeap::UnderFlowPriorityError"; |
|
| 67 |
} |
|
| 68 |
}; |
|
| 69 |
|
|
| 70 |
/// \brief Type to represent the items states. |
|
| 71 |
/// |
|
| 72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 75 |
/// |
|
| 76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 78 |
enum State {
|
|
| 79 |
IN_HEAP = 0, |
|
| 80 |
PRE_HEAP = -1, |
|
| 81 |
POST_HEAP = -2 |
|
| 82 |
}; |
|
| 83 |
|
|
| 84 |
private: |
|
| 85 |
|
|
| 86 |
struct RadixItem {
|
|
| 87 |
int prev, next, box; |
|
| 88 |
Item item; |
|
| 89 |
int prio; |
|
| 90 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
|
|
| 91 |
}; |
|
| 92 |
|
|
| 93 |
struct RadixBox {
|
|
| 94 |
int first; |
|
| 95 |
int min, size; |
|
| 96 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
|
| 97 |
}; |
|
| 98 |
|
|
| 99 |
std::vector<RadixItem> data; |
|
| 100 |
std::vector<RadixBox> boxes; |
|
| 101 |
|
|
| 102 |
ItemIntMap &_iim; |
|
| 103 |
|
|
| 104 |
|
|
| 105 |
public: |
|
| 106 |
/// \brief The constructor. |
|
| 107 |
/// |
|
| 108 |
/// The constructor. |
|
| 109 |
/// |
|
| 110 |
/// \param map It should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
/// |
|
| 114 |
/// \param minimal The initial minimal value of the heap. |
|
| 115 |
/// \param capacity It determines the initial capacity of the heap. |
|
| 116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
| 117 |
: _iim(map) {
|
|
| 118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
|
| 121 |
extend(); |
|
| 122 |
} |
|
| 123 |
} |
|
| 124 |
|
|
| 125 |
/// The number of items stored in the heap. |
|
| 126 |
/// |
|
| 127 |
/// \brief Returns the number of items stored in the heap. |
|
| 128 |
int size() const { return data.size(); }
|
|
| 129 |
/// \brief Checks if the heap stores no items. |
|
| 130 |
/// |
|
| 131 |
/// Returns \c true if and only if the heap stores no items. |
|
| 132 |
bool empty() const { return data.empty(); }
|
|
| 133 |
|
|
| 134 |
/// \brief Make empty this heap. |
|
| 135 |
/// |
|
| 136 |
/// Make empty this heap. It does not change the cross reference |
|
| 137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 138 |
/// should first clear the heap and after that you should set the |
|
| 139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 140 |
void clear(int minimal = 0, int capacity = 0) {
|
|
| 141 |
data.clear(); boxes.clear(); |
|
| 142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 144 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
|
| 145 |
extend(); |
|
| 146 |
} |
|
| 147 |
} |
|
| 148 |
|
|
| 149 |
private: |
|
| 150 |
|
|
| 151 |
bool upper(int box, Prio pr) {
|
|
| 152 |
return pr < boxes[box].min; |
|
| 153 |
} |
|
| 154 |
|
|
| 155 |
bool lower(int box, Prio pr) {
|
|
| 156 |
return pr >= boxes[box].min + boxes[box].size; |
|
| 157 |
} |
|
| 158 |
|
|
| 159 |
/// \brief Remove item from the box list. |
|
| 160 |
void remove(int index) {
|
|
| 161 |
if (data[index].prev >= 0) {
|
|
| 162 |
data[data[index].prev].next = data[index].next; |
|
| 163 |
} else {
|
|
| 164 |
boxes[data[index].box].first = data[index].next; |
|
| 165 |
} |
|
| 166 |
if (data[index].next >= 0) {
|
|
| 167 |
data[data[index].next].prev = data[index].prev; |
|
| 168 |
} |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
/// \brief Insert item into the box list. |
|
| 172 |
void insert(int box, int index) {
|
|
| 173 |
if (boxes[box].first == -1) {
|
|
| 174 |
boxes[box].first = index; |
|
| 175 |
data[index].next = data[index].prev = -1; |
|
| 176 |
} else {
|
|
| 177 |
data[index].next = boxes[box].first; |
|
| 178 |
data[boxes[box].first].prev = index; |
|
| 179 |
data[index].prev = -1; |
|
| 180 |
boxes[box].first = index; |
|
| 181 |
} |
|
| 182 |
data[index].box = box; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Add a new box to the box list. |
|
| 186 |
void extend() {
|
|
| 187 |
int min = boxes.back().min + boxes.back().size; |
|
| 188 |
int bs = 2 * boxes.back().size; |
|
| 189 |
boxes.push_back(RadixBox(min, bs)); |
|
| 190 |
} |
|
| 191 |
|
|
| 192 |
/// \brief Move an item up into the proper box. |
|
| 193 |
void bubble_up(int index) {
|
|
| 194 |
if (!lower(data[index].box, data[index].prio)) return; |
|
| 195 |
remove(index); |
|
| 196 |
int box = findUp(data[index].box, data[index].prio); |
|
| 197 |
insert(box, index); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Find up the proper box for the item with the given prio. |
|
| 201 |
int findUp(int start, int pr) {
|
|
| 202 |
while (lower(start, pr)) {
|
|
| 203 |
if (++start == int(boxes.size())) {
|
|
| 204 |
extend(); |
|
| 205 |
} |
|
| 206 |
} |
|
| 207 |
return start; |
|
| 208 |
} |
|
| 209 |
|
|
| 210 |
/// \brief Move an item down into the proper box. |
|
| 211 |
void bubble_down(int index) {
|
|
| 212 |
if (!upper(data[index].box, data[index].prio)) return; |
|
| 213 |
remove(index); |
|
| 214 |
int box = findDown(data[index].box, data[index].prio); |
|
| 215 |
insert(box, index); |
|
| 216 |
} |
|
| 217 |
|
|
| 218 |
/// \brief Find up the proper box for the item with the given prio. |
|
| 219 |
int findDown(int start, int pr) {
|
|
| 220 |
while (upper(start, pr)) {
|
|
| 221 |
if (--start < 0) throw UnderFlowPriorityError(); |
|
| 222 |
} |
|
| 223 |
return start; |
|
| 224 |
} |
|
| 225 |
|
|
| 226 |
/// \brief Find the first not empty box. |
|
| 227 |
int findFirst() {
|
|
| 228 |
int first = 0; |
|
| 229 |
while (boxes[first].first == -1) ++first; |
|
| 230 |
return first; |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
/// \brief Gives back the minimal prio of the box. |
|
| 234 |
int minValue(int box) {
|
|
| 235 |
int min = data[boxes[box].first].prio; |
|
| 236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
|
| 237 |
if (data[k].prio < min) min = data[k].prio; |
|
| 238 |
} |
|
| 239 |
return min; |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
/// \brief Rearrange the items of the heap and makes the |
|
| 243 |
/// first box not empty. |
|
| 244 |
void moveDown() {
|
|
| 245 |
int box = findFirst(); |
|
| 246 |
if (box == 0) return; |
|
| 247 |
int min = minValue(box); |
|
| 248 |
for (int i = 0; i <= box; ++i) {
|
|
| 249 |
boxes[i].min = min; |
|
| 250 |
min += boxes[i].size; |
|
| 251 |
} |
|
| 252 |
int curr = boxes[box].first, next; |
|
| 253 |
while (curr != -1) {
|
|
| 254 |
next = data[curr].next; |
|
| 255 |
bubble_down(curr); |
|
| 256 |
curr = next; |
|
| 257 |
} |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
void relocate_last(int index) {
|
|
| 261 |
if (index != int(data.size()) - 1) {
|
|
| 262 |
data[index] = data.back(); |
|
| 263 |
if (data[index].prev != -1) {
|
|
| 264 |
data[data[index].prev].next = index; |
|
| 265 |
} else {
|
|
| 266 |
boxes[data[index].box].first = index; |
|
| 267 |
} |
|
| 268 |
if (data[index].next != -1) {
|
|
| 269 |
data[data[index].next].prev = index; |
|
| 270 |
} |
|
| 271 |
_iim[data[index].item] = index; |
|
| 272 |
} |
|
| 273 |
data.pop_back(); |
|
| 274 |
} |
|
| 275 |
|
|
| 276 |
public: |
|
| 277 |
|
|
| 278 |
/// \brief Insert an item into the heap with the given priority. |
|
| 279 |
/// |
|
| 280 |
/// Adds \c i to the heap with priority \c p. |
|
| 281 |
/// \param i The item to insert. |
|
| 282 |
/// \param p The priority of the item. |
|
| 283 |
void push(const Item &i, const Prio &p) {
|
|
| 284 |
int n = data.size(); |
|
| 285 |
_iim.set(i, n); |
|
| 286 |
data.push_back(RadixItem(i, p)); |
|
| 287 |
while (lower(boxes.size() - 1, p)) {
|
|
| 288 |
extend(); |
|
| 289 |
} |
|
| 290 |
int box = findDown(boxes.size() - 1, p); |
|
| 291 |
insert(box, n); |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
/// \brief Returns the item with minimum priority. |
|
| 295 |
/// |
|
| 296 |
/// This method returns the item with minimum priority. |
|
| 297 |
/// \pre The heap must be nonempty. |
|
| 298 |
Item top() const {
|
|
| 299 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
| 300 |
return data[boxes[0].first].item; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Returns the minimum priority. |
|
| 304 |
/// |
|
| 305 |
/// It returns the minimum priority. |
|
| 306 |
/// \pre The heap must be nonempty. |
|
| 307 |
Prio prio() const {
|
|
| 308 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
| 309 |
return data[boxes[0].first].prio; |
|
| 310 |
} |
|
| 311 |
|
|
| 312 |
/// \brief Deletes the item with minimum priority. |
|
| 313 |
/// |
|
| 314 |
/// This method deletes the item with minimum priority. |
|
| 315 |
/// \pre The heap must be non-empty. |
|
| 316 |
void pop() {
|
|
| 317 |
moveDown(); |
|
| 318 |
int index = boxes[0].first; |
|
| 319 |
_iim[data[index].item] = POST_HEAP; |
|
| 320 |
remove(index); |
|
| 321 |
relocate_last(index); |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Deletes \c i from the heap. |
|
| 325 |
/// |
|
| 326 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 327 |
/// already stored in the heap. |
|
| 328 |
/// \param i The item to erase. |
|
| 329 |
void erase(const Item &i) {
|
|
| 330 |
int index = _iim[i]; |
|
| 331 |
_iim[i] = POST_HEAP; |
|
| 332 |
remove(index); |
|
| 333 |
relocate_last(index); |
|
| 334 |
} |
|
| 335 |
|
|
| 336 |
/// \brief Returns the priority of \c i. |
|
| 337 |
/// |
|
| 338 |
/// This function returns the priority of item \c i. |
|
| 339 |
/// \pre \c i must be in the heap. |
|
| 340 |
/// \param i The item. |
|
| 341 |
Prio operator[](const Item &i) const {
|
|
| 342 |
int idx = _iim[i]; |
|
| 343 |
return data[idx].prio; |
|
| 344 |
} |
|
| 345 |
|
|
| 346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 347 |
/// if \c i was already there. |
|
| 348 |
/// |
|
| 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 351 |
/// It may throw an \e UnderFlowPriorityException. |
|
| 352 |
/// \param i The item. |
|
| 353 |
/// \param p The priority. |
|
| 354 |
void set(const Item &i, const Prio &p) {
|
|
| 355 |
int idx = _iim[i]; |
|
| 356 |
if( idx < 0 ) {
|
|
| 357 |
push(i, p); |
|
| 358 |
} |
|
| 359 |
else if( p >= data[idx].prio ) {
|
|
| 360 |
data[idx].prio = p; |
|
| 361 |
bubble_up(idx); |
|
| 362 |
} else {
|
|
| 363 |
data[idx].prio = p; |
|
| 364 |
bubble_down(idx); |
|
| 365 |
} |
|
| 366 |
} |
|
| 367 |
|
|
| 368 |
|
|
| 369 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 370 |
/// |
|
| 371 |
/// This method decreases the priority of item \c i to \c p. |
|
| 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
| 373 |
/// \c should be greater or equal to the last removed item's priority. |
|
| 374 |
/// \param i The item. |
|
| 375 |
/// \param p The priority. |
|
| 376 |
void decrease(const Item &i, const Prio &p) {
|
|
| 377 |
int idx = _iim[i]; |
|
| 378 |
data[idx].prio = p; |
|
| 379 |
bubble_down(idx); |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
/// \brief Increases the priority of \c i to \c p. |
|
| 383 |
/// |
|
| 384 |
/// This method sets the priority of item \c i to \c p. |
|
| 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
| 386 |
/// \param i The item. |
|
| 387 |
/// \param p The priority. |
|
| 388 |
void increase(const Item &i, const Prio &p) {
|
|
| 389 |
int idx = _iim[i]; |
|
| 390 |
data[idx].prio = p; |
|
| 391 |
bubble_up(idx); |
|
| 392 |
} |
|
| 393 |
|
|
| 394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 395 |
/// never been in the heap. |
|
| 396 |
/// |
|
| 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 399 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 400 |
/// get back to the heap again. |
|
| 401 |
/// \param i The item. |
|
| 402 |
State state(const Item &i) const {
|
|
| 403 |
int s = _iim[i]; |
|
| 404 |
if( s >= 0 ) s = 0; |
|
| 405 |
return State(s); |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
/// \brief Sets the state of the \c item in the heap. |
|
| 409 |
/// |
|
| 410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 411 |
/// manually clear the heap when it is important to achive the |
|
| 412 |
/// better time complexity. |
|
| 413 |
/// \param i The item. |
|
| 414 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 415 |
void state(const Item& i, State st) {
|
|
| 416 |
switch (st) {
|
|
| 417 |
case POST_HEAP: |
|
| 418 |
case PRE_HEAP: |
|
| 419 |
if (state(i) == IN_HEAP) {
|
|
| 420 |
erase(i); |
|
| 421 |
} |
|
| 422 |
_iim[i] = st; |
|
| 423 |
break; |
|
| 424 |
case IN_HEAP: |
|
| 425 |
break; |
|
| 426 |
} |
|
| 427 |
} |
|
| 428 |
|
|
| 429 |
}; // class RadixHeap |
|
| 430 |
|
|
| 431 |
} // namespace lemon |
|
| 432 |
|
|
| 433 |
#endif // LEMON_RADIX_HEAP_H |
| ... | ... |
@@ -61,2 +61,3 @@ |
| 61 | 61 |
lemon/bin_heap.h \ |
| 62 |
lemon/bucket_heap.h \ |
|
| 62 | 63 |
lemon/cbc.h \ |
| ... | ... |
@@ -78,2 +79,3 @@ |
| 78 | 79 |
lemon/euler.h \ |
| 80 |
lemon/fib_heap.h \ |
|
| 79 | 81 |
lemon/full_graph.h \ |
| ... | ... |
@@ -101,2 +103,3 @@ |
| 101 | 103 |
lemon/preflow.h \ |
| 104 |
lemon/radix_heap.h \ |
|
| 102 | 105 |
lemon/radix_sort.h \ |
| ... | ... |
@@ -39,3 +39,3 @@ |
| 39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
| 40 |
///priority is efficient. \c |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
| ... | ... |
@@ -46,3 +46,3 @@ |
| 46 | 46 |
///to handle the cross references. |
| 47 |
///\tparam |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 | 48 |
///The default is \c std::less<PR>. |
| ... | ... |
@@ -51,3 +51,3 @@ |
| 51 | 51 |
///\sa Dijkstra |
| 52 |
template <typename PR, typename IM, typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 53 |
class BinHeap {
|
| ... | ... |
@@ -64,3 +64,3 @@ |
| 64 | 64 |
///\e |
| 65 |
typedef |
|
| 65 |
typedef CMP Compare; |
|
| 66 | 66 |
| ... | ... |
@@ -24,2 +24,3 @@ |
| 24 | 24 |
#include <vector> |
| 25 |
#include <map> |
|
| 25 | 26 |
|
| ... | ... |
@@ -31,4 +32,2 @@ |
| 31 | 32 |
|
| 32 |
#include <map> |
|
| 33 |
|
|
| 34 | 33 |
namespace lemon {
|
| ... | ... |
@@ -2340,2 +2339,899 @@ |
| 2340 | 2339 |
|
| 2340 |
/// \brief Dynamic iterable \c bool map. |
|
| 2341 |
/// |
|
| 2342 |
/// This class provides a special graph map type which can store a |
|
| 2343 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2344 |
/// For both \c true and \c false values it is possible to iterate on |
|
| 2345 |
/// the keys. |
|
| 2346 |
/// |
|
| 2347 |
/// This type is a reference map, so it can be modified with the |
|
| 2348 |
/// subscription operator. |
|
| 2349 |
/// |
|
| 2350 |
/// \tparam GR The graph type. |
|
| 2351 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2352 |
/// \c GR::Edge). |
|
| 2353 |
/// |
|
| 2354 |
/// \see IterableIntMap, IterableValueMap |
|
| 2355 |
/// \see CrossRefMap |
|
| 2356 |
template <typename GR, typename K> |
|
| 2357 |
class IterableBoolMap |
|
| 2358 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
|
| 2359 |
private: |
|
| 2360 |
typedef GR Graph; |
|
| 2361 |
|
|
| 2362 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
| 2363 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
| 2364 |
|
|
| 2365 |
std::vector<K> _array; |
|
| 2366 |
int _sep; |
|
| 2367 |
|
|
| 2368 |
public: |
|
| 2369 |
|
|
| 2370 |
/// Indicates that the map is reference map. |
|
| 2371 |
typedef True ReferenceMapTag; |
|
| 2372 |
|
|
| 2373 |
/// The key type |
|
| 2374 |
typedef K Key; |
|
| 2375 |
/// The value type |
|
| 2376 |
typedef bool Value; |
|
| 2377 |
/// The const reference type. |
|
| 2378 |
typedef const Value& ConstReference; |
|
| 2379 |
|
|
| 2380 |
private: |
|
| 2381 |
|
|
| 2382 |
int position(const Key& key) const {
|
|
| 2383 |
return Parent::operator[](key); |
|
| 2384 |
} |
|
| 2385 |
|
|
| 2386 |
public: |
|
| 2387 |
|
|
| 2388 |
/// \brief Reference to the value of the map. |
|
| 2389 |
/// |
|
| 2390 |
/// This class is similar to the \c bool type. It can be converted to |
|
| 2391 |
/// \c bool and it provides the same operators. |
|
| 2392 |
class Reference {
|
|
| 2393 |
friend class IterableBoolMap; |
|
| 2394 |
private: |
|
| 2395 |
Reference(IterableBoolMap& map, const Key& key) |
|
| 2396 |
: _key(key), _map(map) {}
|
|
| 2397 |
public: |
|
| 2398 |
|
|
| 2399 |
Reference& operator=(const Reference& value) {
|
|
| 2400 |
_map.set(_key, static_cast<bool>(value)); |
|
| 2401 |
return *this; |
|
| 2402 |
} |
|
| 2403 |
|
|
| 2404 |
operator bool() const {
|
|
| 2405 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
| 2406 |
} |
|
| 2407 |
|
|
| 2408 |
Reference& operator=(bool value) {
|
|
| 2409 |
_map.set(_key, value); |
|
| 2410 |
return *this; |
|
| 2411 |
} |
|
| 2412 |
Reference& operator&=(bool value) {
|
|
| 2413 |
_map.set(_key, _map[_key] & value); |
|
| 2414 |
return *this; |
|
| 2415 |
} |
|
| 2416 |
Reference& operator|=(bool value) {
|
|
| 2417 |
_map.set(_key, _map[_key] | value); |
|
| 2418 |
return *this; |
|
| 2419 |
} |
|
| 2420 |
Reference& operator^=(bool value) {
|
|
| 2421 |
_map.set(_key, _map[_key] ^ value); |
|
| 2422 |
return *this; |
|
| 2423 |
} |
|
| 2424 |
private: |
|
| 2425 |
Key _key; |
|
| 2426 |
IterableBoolMap& _map; |
|
| 2427 |
}; |
|
| 2428 |
|
|
| 2429 |
/// \brief Constructor of the map with a default value. |
|
| 2430 |
/// |
|
| 2431 |
/// Constructor of the map with a default value. |
|
| 2432 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
| 2433 |
: Parent(graph) {
|
|
| 2434 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2435 |
Key it; |
|
| 2436 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2437 |
Parent::set(it, _array.size()); |
|
| 2438 |
_array.push_back(it); |
|
| 2439 |
} |
|
| 2440 |
_sep = (def ? _array.size() : 0); |
|
| 2441 |
} |
|
| 2442 |
|
|
| 2443 |
/// \brief Const subscript operator of the map. |
|
| 2444 |
/// |
|
| 2445 |
/// Const subscript operator of the map. |
|
| 2446 |
bool operator[](const Key& key) const {
|
|
| 2447 |
return position(key) < _sep; |
|
| 2448 |
} |
|
| 2449 |
|
|
| 2450 |
/// \brief Subscript operator of the map. |
|
| 2451 |
/// |
|
| 2452 |
/// Subscript operator of the map. |
|
| 2453 |
Reference operator[](const Key& key) {
|
|
| 2454 |
return Reference(*this, key); |
|
| 2455 |
} |
|
| 2456 |
|
|
| 2457 |
/// \brief Set operation of the map. |
|
| 2458 |
/// |
|
| 2459 |
/// Set operation of the map. |
|
| 2460 |
void set(const Key& key, bool value) {
|
|
| 2461 |
int pos = position(key); |
|
| 2462 |
if (value) {
|
|
| 2463 |
if (pos < _sep) return; |
|
| 2464 |
Key tmp = _array[_sep]; |
|
| 2465 |
_array[_sep] = key; |
|
| 2466 |
Parent::set(key, _sep); |
|
| 2467 |
_array[pos] = tmp; |
|
| 2468 |
Parent::set(tmp, pos); |
|
| 2469 |
++_sep; |
|
| 2470 |
} else {
|
|
| 2471 |
if (pos >= _sep) return; |
|
| 2472 |
--_sep; |
|
| 2473 |
Key tmp = _array[_sep]; |
|
| 2474 |
_array[_sep] = key; |
|
| 2475 |
Parent::set(key, _sep); |
|
| 2476 |
_array[pos] = tmp; |
|
| 2477 |
Parent::set(tmp, pos); |
|
| 2478 |
} |
|
| 2479 |
} |
|
| 2480 |
|
|
| 2481 |
/// \brief Set all items. |
|
| 2482 |
/// |
|
| 2483 |
/// Set all items in the map. |
|
| 2484 |
/// \note Constant time operation. |
|
| 2485 |
void setAll(bool value) {
|
|
| 2486 |
_sep = (value ? _array.size() : 0); |
|
| 2487 |
} |
|
| 2488 |
|
|
| 2489 |
/// \brief Returns the number of the keys mapped to \c true. |
|
| 2490 |
/// |
|
| 2491 |
/// Returns the number of the keys mapped to \c true. |
|
| 2492 |
int trueNum() const {
|
|
| 2493 |
return _sep; |
|
| 2494 |
} |
|
| 2495 |
|
|
| 2496 |
/// \brief Returns the number of the keys mapped to \c false. |
|
| 2497 |
/// |
|
| 2498 |
/// Returns the number of the keys mapped to \c false. |
|
| 2499 |
int falseNum() const {
|
|
| 2500 |
return _array.size() - _sep; |
|
| 2501 |
} |
|
| 2502 |
|
|
| 2503 |
/// \brief Iterator for the keys mapped to \c true. |
|
| 2504 |
/// |
|
| 2505 |
/// Iterator for the keys mapped to \c true. It works |
|
| 2506 |
/// like a graph item iterator, it can be converted to |
|
| 2507 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2508 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2509 |
/// \c INVALID. |
|
| 2510 |
class TrueIt : public Key {
|
|
| 2511 |
public: |
|
| 2512 |
typedef Key Parent; |
|
| 2513 |
|
|
| 2514 |
/// \brief Creates an iterator. |
|
| 2515 |
/// |
|
| 2516 |
/// Creates an iterator. It iterates on the |
|
| 2517 |
/// keys mapped to \c true. |
|
| 2518 |
/// \param map The IterableBoolMap. |
|
| 2519 |
explicit TrueIt(const IterableBoolMap& map) |
|
| 2520 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
| 2521 |
_map(&map) {}
|
|
| 2522 |
|
|
| 2523 |
/// \brief Invalid constructor \& conversion. |
|
| 2524 |
/// |
|
| 2525 |
/// This constructor initializes the iterator to be invalid. |
|
| 2526 |
/// \sa Invalid for more details. |
|
| 2527 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2528 |
|
|
| 2529 |
/// \brief Increment operator. |
|
| 2530 |
/// |
|
| 2531 |
/// Increment operator. |
|
| 2532 |
TrueIt& operator++() {
|
|
| 2533 |
int pos = _map->position(*this); |
|
| 2534 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
| 2535 |
return *this; |
|
| 2536 |
} |
|
| 2537 |
|
|
| 2538 |
private: |
|
| 2539 |
const IterableBoolMap* _map; |
|
| 2540 |
}; |
|
| 2541 |
|
|
| 2542 |
/// \brief Iterator for the keys mapped to \c false. |
|
| 2543 |
/// |
|
| 2544 |
/// Iterator for the keys mapped to \c false. It works |
|
| 2545 |
/// like a graph item iterator, it can be converted to |
|
| 2546 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2547 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2548 |
/// \c INVALID. |
|
| 2549 |
class FalseIt : public Key {
|
|
| 2550 |
public: |
|
| 2551 |
typedef Key Parent; |
|
| 2552 |
|
|
| 2553 |
/// \brief Creates an iterator. |
|
| 2554 |
/// |
|
| 2555 |
/// Creates an iterator. It iterates on the |
|
| 2556 |
/// keys mapped to \c false. |
|
| 2557 |
/// \param map The IterableBoolMap. |
|
| 2558 |
explicit FalseIt(const IterableBoolMap& map) |
|
| 2559 |
: Parent(map._sep < int(map._array.size()) ? |
|
| 2560 |
map._array.back() : INVALID), _map(&map) {}
|
|
| 2561 |
|
|
| 2562 |
/// \brief Invalid constructor \& conversion. |
|
| 2563 |
/// |
|
| 2564 |
/// This constructor initializes the iterator to be invalid. |
|
| 2565 |
/// \sa Invalid for more details. |
|
| 2566 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2567 |
|
|
| 2568 |
/// \brief Increment operator. |
|
| 2569 |
/// |
|
| 2570 |
/// Increment operator. |
|
| 2571 |
FalseIt& operator++() {
|
|
| 2572 |
int pos = _map->position(*this); |
|
| 2573 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
| 2574 |
return *this; |
|
| 2575 |
} |
|
| 2576 |
|
|
| 2577 |
private: |
|
| 2578 |
const IterableBoolMap* _map; |
|
| 2579 |
}; |
|
| 2580 |
|
|
| 2581 |
/// \brief Iterator for the keys mapped to a given value. |
|
| 2582 |
/// |
|
| 2583 |
/// Iterator for the keys mapped to a given value. It works |
|
| 2584 |
/// like a graph item iterator, it can be converted to |
|
| 2585 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2586 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2587 |
/// \c INVALID. |
|
| 2588 |
class ItemIt : public Key {
|
|
| 2589 |
public: |
|
| 2590 |
typedef Key Parent; |
|
| 2591 |
|
|
| 2592 |
/// \brief Creates an iterator with a value. |
|
| 2593 |
/// |
|
| 2594 |
/// Creates an iterator with a value. It iterates on the |
|
| 2595 |
/// keys mapped to the given value. |
|
| 2596 |
/// \param map The IterableBoolMap. |
|
| 2597 |
/// \param value The value. |
|
| 2598 |
ItemIt(const IterableBoolMap& map, bool value) |
|
| 2599 |
: Parent(value ? |
|
| 2600 |
(map._sep > 0 ? |
|
| 2601 |
map._array[map._sep - 1] : INVALID) : |
|
| 2602 |
(map._sep < int(map._array.size()) ? |
|
| 2603 |
map._array.back() : INVALID)), _map(&map) {}
|
|
| 2604 |
|
|
| 2605 |
/// \brief Invalid constructor \& conversion. |
|
| 2606 |
/// |
|
| 2607 |
/// This constructor initializes the iterator to be invalid. |
|
| 2608 |
/// \sa Invalid for more details. |
|
| 2609 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2610 |
|
|
| 2611 |
/// \brief Increment operator. |
|
| 2612 |
/// |
|
| 2613 |
/// Increment operator. |
|
| 2614 |
ItemIt& operator++() {
|
|
| 2615 |
int pos = _map->position(*this); |
|
| 2616 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
| 2617 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
| 2618 |
return *this; |
|
| 2619 |
} |
|
| 2620 |
|
|
| 2621 |
private: |
|
| 2622 |
const IterableBoolMap* _map; |
|
| 2623 |
}; |
|
| 2624 |
|
|
| 2625 |
protected: |
|
| 2626 |
|
|
| 2627 |
virtual void add(const Key& key) {
|
|
| 2628 |
Parent::add(key); |
|
| 2629 |
Parent::set(key, _array.size()); |
|
| 2630 |
_array.push_back(key); |
|
| 2631 |
} |
|
| 2632 |
|
|
| 2633 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 2634 |
Parent::add(keys); |
|
| 2635 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2636 |
Parent::set(keys[i], _array.size()); |
|
| 2637 |
_array.push_back(keys[i]); |
|
| 2638 |
} |
|
| 2639 |
} |
|
| 2640 |
|
|
| 2641 |
virtual void erase(const Key& key) {
|
|
| 2642 |
int pos = position(key); |
|
| 2643 |
if (pos < _sep) {
|
|
| 2644 |
--_sep; |
|
| 2645 |
Parent::set(_array[_sep], pos); |
|
| 2646 |
_array[pos] = _array[_sep]; |
|
| 2647 |
Parent::set(_array.back(), _sep); |
|
| 2648 |
_array[_sep] = _array.back(); |
|
| 2649 |
_array.pop_back(); |
|
| 2650 |
} else {
|
|
| 2651 |
Parent::set(_array.back(), pos); |
|
| 2652 |
_array[pos] = _array.back(); |
|
| 2653 |
_array.pop_back(); |
|
| 2654 |
} |
|
| 2655 |
Parent::erase(key); |
|
| 2656 |
} |
|
| 2657 |
|
|
| 2658 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2659 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2660 |
int pos = position(keys[i]); |
|
| 2661 |
if (pos < _sep) {
|
|
| 2662 |
--_sep; |
|
| 2663 |
Parent::set(_array[_sep], pos); |
|
| 2664 |
_array[pos] = _array[_sep]; |
|
| 2665 |
Parent::set(_array.back(), _sep); |
|
| 2666 |
_array[_sep] = _array.back(); |
|
| 2667 |
_array.pop_back(); |
|
| 2668 |
} else {
|
|
| 2669 |
Parent::set(_array.back(), pos); |
|
| 2670 |
_array[pos] = _array.back(); |
|
| 2671 |
_array.pop_back(); |
|
| 2672 |
} |
|
| 2673 |
} |
|
| 2674 |
Parent::erase(keys); |
|
| 2675 |
} |
|
| 2676 |
|
|
| 2677 |
virtual void build() {
|
|
| 2678 |
Parent::build(); |
|
| 2679 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2680 |
Key it; |
|
| 2681 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2682 |
Parent::set(it, _array.size()); |
|
| 2683 |
_array.push_back(it); |
|
| 2684 |
} |
|
| 2685 |
_sep = 0; |
|
| 2686 |
} |
|
| 2687 |
|
|
| 2688 |
virtual void clear() {
|
|
| 2689 |
_array.clear(); |
|
| 2690 |
_sep = 0; |
|
| 2691 |
Parent::clear(); |
|
| 2692 |
} |
|
| 2693 |
|
|
| 2694 |
}; |
|
| 2695 |
|
|
| 2696 |
|
|
| 2697 |
namespace _maps_bits {
|
|
| 2698 |
template <typename Item> |
|
| 2699 |
struct IterableIntMapNode {
|
|
| 2700 |
IterableIntMapNode() : value(-1) {}
|
|
| 2701 |
IterableIntMapNode(int _value) : value(_value) {}
|
|
| 2702 |
Item prev, next; |
|
| 2703 |
int value; |
|
| 2704 |
}; |
|
| 2705 |
} |
|
| 2706 |
|
|
| 2707 |
/// \brief Dynamic iterable integer map. |
|
| 2708 |
/// |
|
| 2709 |
/// This class provides a special graph map type which can store an |
|
| 2710 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2711 |
/// For each non-negative value it is possible to iterate on the keys |
|
| 2712 |
/// mapped to the value. |
|
| 2713 |
/// |
|
| 2714 |
/// This type is a reference map, so it can be modified with the |
|
| 2715 |
/// subscription operator. |
|
| 2716 |
/// |
|
| 2717 |
/// \note The size of the data structure depends on the largest |
|
| 2718 |
/// value in the map. |
|
| 2719 |
/// |
|
| 2720 |
/// \tparam GR The graph type. |
|
| 2721 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2722 |
/// \c GR::Edge). |
|
| 2723 |
/// |
|
| 2724 |
/// \see IterableBoolMap, IterableValueMap |
|
| 2725 |
/// \see CrossRefMap |
|
| 2726 |
template <typename GR, typename K> |
|
| 2727 |
class IterableIntMap |
|
| 2728 |
: protected ItemSetTraits<GR, K>:: |
|
| 2729 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
|
| 2730 |
public: |
|
| 2731 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 2732 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
| 2733 |
|
|
| 2734 |
/// The key type |
|
| 2735 |
typedef K Key; |
|
| 2736 |
/// The value type |
|
| 2737 |
typedef int Value; |
|
| 2738 |
/// The graph type |
|
| 2739 |
typedef GR Graph; |
|
| 2740 |
|
|
| 2741 |
/// \brief Constructor of the map. |
|
| 2742 |
/// |
|
| 2743 |
/// Constructor of the map. It sets all values to -1. |
|
| 2744 |
explicit IterableIntMap(const Graph& graph) |
|
| 2745 |
: Parent(graph) {}
|
|
| 2746 |
|
|
| 2747 |
/// \brief Constructor of the map with a given value. |
|
| 2748 |
/// |
|
| 2749 |
/// Constructor of the map with a given value. |
|
| 2750 |
explicit IterableIntMap(const Graph& graph, int value) |
|
| 2751 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
|
| 2752 |
if (value >= 0) {
|
|
| 2753 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 2754 |
lace(it); |
|
| 2755 |
} |
|
| 2756 |
} |
|
| 2757 |
} |
|
| 2758 |
|
|
| 2759 |
private: |
|
| 2760 |
|
|
| 2761 |
void unlace(const Key& key) {
|
|
| 2762 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2763 |
if (node.value < 0) return; |
|
| 2764 |
if (node.prev != INVALID) {
|
|
| 2765 |
Parent::operator[](node.prev).next = node.next; |
|
| 2766 |
} else {
|
|
| 2767 |
_first[node.value] = node.next; |
|
| 2768 |
} |
|
| 2769 |
if (node.next != INVALID) {
|
|
| 2770 |
Parent::operator[](node.next).prev = node.prev; |
|
| 2771 |
} |
|
| 2772 |
while (!_first.empty() && _first.back() == INVALID) {
|
|
| 2773 |
_first.pop_back(); |
|
| 2774 |
} |
|
| 2775 |
} |
|
| 2776 |
|
|
| 2777 |
void lace(const Key& key) {
|
|
| 2778 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2779 |
if (node.value < 0) return; |
|
| 2780 |
if (node.value >= int(_first.size())) {
|
|
| 2781 |
_first.resize(node.value + 1, INVALID); |
|
| 2782 |
} |
|
| 2783 |
node.prev = INVALID; |
|
| 2784 |
node.next = _first[node.value]; |
|
| 2785 |
if (node.next != INVALID) {
|
|
| 2786 |
Parent::operator[](node.next).prev = key; |
|
| 2787 |
} |
|
| 2788 |
_first[node.value] = key; |
|
| 2789 |
} |
|
| 2790 |
|
|
| 2791 |
public: |
|
| 2792 |
|
|
| 2793 |
/// Indicates that the map is reference map. |
|
| 2794 |
typedef True ReferenceMapTag; |
|
| 2795 |
|
|
| 2796 |
/// \brief Reference to the value of the map. |
|
| 2797 |
/// |
|
| 2798 |
/// This class is similar to the \c int type. It can |
|
| 2799 |
/// be converted to \c int and it has the same operators. |
|
| 2800 |
class Reference {
|
|
| 2801 |
friend class IterableIntMap; |
|
| 2802 |
private: |
|
| 2803 |
Reference(IterableIntMap& map, const Key& key) |
|
| 2804 |
: _key(key), _map(map) {}
|
|
| 2805 |
public: |
|
| 2806 |
|
|
| 2807 |
Reference& operator=(const Reference& value) {
|
|
| 2808 |
_map.set(_key, static_cast<const int&>(value)); |
|
| 2809 |
return *this; |
|
| 2810 |
} |
|
| 2811 |
|
|
| 2812 |
operator const int&() const {
|
|
| 2813 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
| 2814 |
} |
|
| 2815 |
|
|
| 2816 |
Reference& operator=(int value) {
|
|
| 2817 |
_map.set(_key, value); |
|
| 2818 |
return *this; |
|
| 2819 |
} |
|
| 2820 |
Reference& operator++() {
|
|
| 2821 |
_map.set(_key, _map[_key] + 1); |
|
| 2822 |
return *this; |
|
| 2823 |
} |
|
| 2824 |
int operator++(int) {
|
|
| 2825 |
int value = _map[_key]; |
|
| 2826 |
_map.set(_key, value + 1); |
|
| 2827 |
return value; |
|
| 2828 |
} |
|
| 2829 |
Reference& operator--() {
|
|
| 2830 |
_map.set(_key, _map[_key] - 1); |
|
| 2831 |
return *this; |
|
| 2832 |
} |
|
| 2833 |
int operator--(int) {
|
|
| 2834 |
int value = _map[_key]; |
|
| 2835 |
_map.set(_key, value - 1); |
|
| 2836 |
return value; |
|
| 2837 |
} |
|
| 2838 |
Reference& operator+=(int value) {
|
|
| 2839 |
_map.set(_key, _map[_key] + value); |
|
| 2840 |
return *this; |
|
| 2841 |
} |
|
| 2842 |
Reference& operator-=(int value) {
|
|
| 2843 |
_map.set(_key, _map[_key] - value); |
|
| 2844 |
return *this; |
|
| 2845 |
} |
|
| 2846 |
Reference& operator*=(int value) {
|
|
| 2847 |
_map.set(_key, _map[_key] * value); |
|
| 2848 |
return *this; |
|
| 2849 |
} |
|
| 2850 |
Reference& operator/=(int value) {
|
|
| 2851 |
_map.set(_key, _map[_key] / value); |
|
| 2852 |
return *this; |
|
| 2853 |
} |
|
| 2854 |
Reference& operator%=(int value) {
|
|
| 2855 |
_map.set(_key, _map[_key] % value); |
|
| 2856 |
return *this; |
|
| 2857 |
} |
|
| 2858 |
Reference& operator&=(int value) {
|
|
| 2859 |
_map.set(_key, _map[_key] & value); |
|
| 2860 |
return *this; |
|
| 2861 |
} |
|
| 2862 |
Reference& operator|=(int value) {
|
|
| 2863 |
_map.set(_key, _map[_key] | value); |
|
| 2864 |
return *this; |
|
| 2865 |
} |
|
| 2866 |
Reference& operator^=(int value) {
|
|
| 2867 |
_map.set(_key, _map[_key] ^ value); |
|
| 2868 |
return *this; |
|
| 2869 |
} |
|
| 2870 |
Reference& operator<<=(int value) {
|
|
| 2871 |
_map.set(_key, _map[_key] << value); |
|
| 2872 |
return *this; |
|
| 2873 |
} |
|
| 2874 |
Reference& operator>>=(int value) {
|
|
| 2875 |
_map.set(_key, _map[_key] >> value); |
|
| 2876 |
return *this; |
|
| 2877 |
} |
|
| 2878 |
|
|
| 2879 |
private: |
|
| 2880 |
Key _key; |
|
| 2881 |
IterableIntMap& _map; |
|
| 2882 |
}; |
|
| 2883 |
|
|
| 2884 |
/// The const reference type. |
|
| 2885 |
typedef const Value& ConstReference; |
|
| 2886 |
|
|
| 2887 |
/// \brief Gives back the maximal value plus one. |
|
| 2888 |
/// |
|
| 2889 |
/// Gives back the maximal value plus one. |
|
| 2890 |
int size() const {
|
|
| 2891 |
return _first.size(); |
|
| 2892 |
} |
|
| 2893 |
|
|
| 2894 |
/// \brief Set operation of the map. |
|
| 2895 |
/// |
|
| 2896 |
/// Set operation of the map. |
|
| 2897 |
void set(const Key& key, const Value& value) {
|
|
| 2898 |
unlace(key); |
|
| 2899 |
Parent::operator[](key).value = value; |
|
| 2900 |
lace(key); |
|
| 2901 |
} |
|
| 2902 |
|
|
| 2903 |
/// \brief Const subscript operator of the map. |
|
| 2904 |
/// |
|
| 2905 |
/// Const subscript operator of the map. |
|
| 2906 |
const Value& operator[](const Key& key) const {
|
|
| 2907 |
return Parent::operator[](key).value; |
|
| 2908 |
} |
|
| 2909 |
|
|
| 2910 |
/// \brief Subscript operator of the map. |
|
| 2911 |
/// |
|
| 2912 |
/// Subscript operator of the map. |
|
| 2913 |
Reference operator[](const Key& key) {
|
|
| 2914 |
return Reference(*this, key); |
|
| 2915 |
} |
|
| 2916 |
|
|
| 2917 |
/// \brief Iterator for the keys with the same value. |
|
| 2918 |
/// |
|
| 2919 |
/// Iterator for the keys with the same value. It works |
|
| 2920 |
/// like a graph item iterator, it can be converted to |
|
| 2921 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 2922 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 2923 |
/// \c INVALID. |
|
| 2924 |
class ItemIt : public Key {
|
|
| 2925 |
public: |
|
| 2926 |
typedef Key Parent; |
|
| 2927 |
|
|
| 2928 |
/// \brief Invalid constructor \& conversion. |
|
| 2929 |
/// |
|
| 2930 |
/// This constructor initializes the iterator to be invalid. |
|
| 2931 |
/// \sa Invalid for more details. |
|
| 2932 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2933 |
|
|
| 2934 |
/// \brief Creates an iterator with a value. |
|
| 2935 |
/// |
|
| 2936 |
/// Creates an iterator with a value. It iterates on the |
|
| 2937 |
/// keys mapped to the given value. |
|
| 2938 |
/// \param map The IterableIntMap. |
|
| 2939 |
/// \param value The value. |
|
| 2940 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
|
|
| 2941 |
if (value < 0 || value >= int(_map->_first.size())) {
|
|
| 2942 |
Parent::operator=(INVALID); |
|
| 2943 |
} else {
|
|
| 2944 |
Parent::operator=(_map->_first[value]); |
|
| 2945 |
} |
|
| 2946 |
} |
|
| 2947 |
|
|
| 2948 |
/// \brief Increment operator. |
|
| 2949 |
/// |
|
| 2950 |
/// Increment operator. |
|
| 2951 |
ItemIt& operator++() {
|
|
| 2952 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
| 2953 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 2954 |
return *this; |
|
| 2955 |
} |
|
| 2956 |
|
|
| 2957 |
private: |
|
| 2958 |
const IterableIntMap* _map; |
|
| 2959 |
}; |
|
| 2960 |
|
|
| 2961 |
protected: |
|
| 2962 |
|
|
| 2963 |
virtual void erase(const Key& key) {
|
|
| 2964 |
unlace(key); |
|
| 2965 |
Parent::erase(key); |
|
| 2966 |
} |
|
| 2967 |
|
|
| 2968 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2969 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2970 |
unlace(keys[i]); |
|
| 2971 |
} |
|
| 2972 |
Parent::erase(keys); |
|
| 2973 |
} |
|
| 2974 |
|
|
| 2975 |
virtual void clear() {
|
|
| 2976 |
_first.clear(); |
|
| 2977 |
Parent::clear(); |
|
| 2978 |
} |
|
| 2979 |
|
|
| 2980 |
private: |
|
| 2981 |
std::vector<Key> _first; |
|
| 2982 |
}; |
|
| 2983 |
|
|
| 2984 |
namespace _maps_bits {
|
|
| 2985 |
template <typename Item, typename Value> |
|
| 2986 |
struct IterableValueMapNode {
|
|
| 2987 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
|
| 2988 |
Item prev, next; |
|
| 2989 |
Value value; |
|
| 2990 |
}; |
|
| 2991 |
} |
|
| 2992 |
|
|
| 2993 |
/// \brief Dynamic iterable map for comparable values. |
|
| 2994 |
/// |
|
| 2995 |
/// This class provides a special graph map type which can store an |
|
| 2996 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2997 |
/// For each value it is possible to iterate on the keys mapped to |
|
| 2998 |
/// the value. |
|
| 2999 |
/// |
|
| 3000 |
/// The map stores for each value a linked list with |
|
| 3001 |
/// the items which mapped to the value, and the values are stored |
|
| 3002 |
/// in balanced binary tree. The values of the map can be accessed |
|
| 3003 |
/// with stl compatible forward iterator. |
|
| 3004 |
/// |
|
| 3005 |
/// This type is not reference map, so it cannot be modified with |
|
| 3006 |
/// the subscription operator. |
|
| 3007 |
/// |
|
| 3008 |
/// \tparam GR The graph type. |
|
| 3009 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 3010 |
/// \c GR::Edge). |
|
| 3011 |
/// \tparam V The value type of the map. It can be any comparable |
|
| 3012 |
/// value type. |
|
| 3013 |
/// |
|
| 3014 |
/// \see IterableBoolMap, IterableIntMap |
|
| 3015 |
/// \see CrossRefMap |
|
| 3016 |
template <typename GR, typename K, typename V> |
|
| 3017 |
class IterableValueMap |
|
| 3018 |
: protected ItemSetTraits<GR, K>:: |
|
| 3019 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
|
| 3020 |
public: |
|
| 3021 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 3022 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
| 3023 |
|
|
| 3024 |
/// The key type |
|
| 3025 |
typedef K Key; |
|
| 3026 |
/// The value type |
|
| 3027 |
typedef V Value; |
|
| 3028 |
/// The graph type |
|
| 3029 |
typedef GR Graph; |
|
| 3030 |
|
|
| 3031 |
public: |
|
| 3032 |
|
|
| 3033 |
/// \brief Constructor of the map with a given value. |
|
| 3034 |
/// |
|
| 3035 |
/// Constructor of the map with a given value. |
|
| 3036 |
explicit IterableValueMap(const Graph& graph, |
|
| 3037 |
const Value& value = Value()) |
|
| 3038 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
|
| 3039 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3040 |
lace(it); |
|
| 3041 |
} |
|
| 3042 |
} |
|
| 3043 |
|
|
| 3044 |
protected: |
|
| 3045 |
|
|
| 3046 |
void unlace(const Key& key) {
|
|
| 3047 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3048 |
if (node.prev != INVALID) {
|
|
| 3049 |
Parent::operator[](node.prev).next = node.next; |
|
| 3050 |
} else {
|
|
| 3051 |
if (node.next != INVALID) {
|
|
| 3052 |
_first[node.value] = node.next; |
|
| 3053 |
} else {
|
|
| 3054 |
_first.erase(node.value); |
|
| 3055 |
} |
|
| 3056 |
} |
|
| 3057 |
if (node.next != INVALID) {
|
|
| 3058 |
Parent::operator[](node.next).prev = node.prev; |
|
| 3059 |
} |
|
| 3060 |
} |
|
| 3061 |
|
|
| 3062 |
void lace(const Key& key) {
|
|
| 3063 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3064 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
| 3065 |
if (it == _first.end()) {
|
|
| 3066 |
node.prev = node.next = INVALID; |
|
| 3067 |
_first.insert(std::make_pair(node.value, key)); |
|
| 3068 |
} else {
|
|
| 3069 |
node.prev = INVALID; |
|
| 3070 |
node.next = it->second; |
|
| 3071 |
if (node.next != INVALID) {
|
|
| 3072 |
Parent::operator[](node.next).prev = key; |
|
| 3073 |
} |
|
| 3074 |
it->second = key; |
|
| 3075 |
} |
|
| 3076 |
} |
|
| 3077 |
|
|
| 3078 |
public: |
|
| 3079 |
|
|
| 3080 |
/// \brief Forward iterator for values. |
|
| 3081 |
/// |
|
| 3082 |
/// This iterator is an stl compatible forward |
|
| 3083 |
/// iterator on the values of the map. The values can |
|
| 3084 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
| 3085 |
class ValueIterator |
|
| 3086 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
|
| 3087 |
friend class IterableValueMap; |
|
| 3088 |
private: |
|
| 3089 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
| 3090 |
: it(_it) {}
|
|
| 3091 |
public: |
|
| 3092 |
|
|
| 3093 |
ValueIterator() {}
|
|
| 3094 |
|
|
| 3095 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 3096 |
ValueIterator operator++(int) {
|
|
| 3097 |
ValueIterator tmp(*this); |
|
| 3098 |
operator++(); |
|
| 3099 |
return tmp; |
|
| 3100 |
} |
|
| 3101 |
|
|
| 3102 |
const Value& operator*() const { return it->first; }
|
|
| 3103 |
const Value* operator->() const { return &(it->first); }
|
|
| 3104 |
|
|
| 3105 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 3106 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 3107 |
|
|
| 3108 |
private: |
|
| 3109 |
typename std::map<Value, Key>::const_iterator it; |
|
| 3110 |
}; |
|
| 3111 |
|
|
| 3112 |
/// \brief Returns an iterator to the first value. |
|
| 3113 |
/// |
|
| 3114 |
/// Returns an stl compatible iterator to the |
|
| 3115 |
/// first value of the map. The values of the |
|
| 3116 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3117 |
/// range. |
|
| 3118 |
ValueIterator beginValue() const {
|
|
| 3119 |
return ValueIterator(_first.begin()); |
|
| 3120 |
} |
|
| 3121 |
|
|
| 3122 |
/// \brief Returns an iterator after the last value. |
|
| 3123 |
/// |
|
| 3124 |
/// Returns an stl compatible iterator after the |
|
| 3125 |
/// last value of the map. The values of the |
|
| 3126 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3127 |
/// range. |
|
| 3128 |
ValueIterator endValue() const {
|
|
| 3129 |
return ValueIterator(_first.end()); |
|
| 3130 |
} |
|
| 3131 |
|
|
| 3132 |
/// \brief Set operation of the map. |
|
| 3133 |
/// |
|
| 3134 |
/// Set operation of the map. |
|
| 3135 |
void set(const Key& key, const Value& value) {
|
|
| 3136 |
unlace(key); |
|
| 3137 |
Parent::operator[](key).value = value; |
|
| 3138 |
lace(key); |
|
| 3139 |
} |
|
| 3140 |
|
|
| 3141 |
/// \brief Const subscript operator of the map. |
|
| 3142 |
/// |
|
| 3143 |
/// Const subscript operator of the map. |
|
| 3144 |
const Value& operator[](const Key& key) const {
|
|
| 3145 |
return Parent::operator[](key).value; |
|
| 3146 |
} |
|
| 3147 |
|
|
| 3148 |
/// \brief Iterator for the keys with the same value. |
|
| 3149 |
/// |
|
| 3150 |
/// Iterator for the keys with the same value. It works |
|
| 3151 |
/// like a graph item iterator, it can be converted to |
|
| 3152 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 3153 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 3154 |
/// \c INVALID. |
|
| 3155 |
class ItemIt : public Key {
|
|
| 3156 |
public: |
|
| 3157 |
typedef Key Parent; |
|
| 3158 |
|
|
| 3159 |
/// \brief Invalid constructor \& conversion. |
|
| 3160 |
/// |
|
| 3161 |
/// This constructor initializes the iterator to be invalid. |
|
| 3162 |
/// \sa Invalid for more details. |
|
| 3163 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 3164 |
|
|
| 3165 |
/// \brief Creates an iterator with a value. |
|
| 3166 |
/// |
|
| 3167 |
/// Creates an iterator with a value. It iterates on the |
|
| 3168 |
/// keys which have the given value. |
|
| 3169 |
/// \param map The IterableValueMap |
|
| 3170 |
/// \param value The value |
|
| 3171 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
|
| 3172 |
typename std::map<Value, Key>::const_iterator it = |
|
| 3173 |
map._first.find(value); |
|
| 3174 |
if (it == map._first.end()) {
|
|
| 3175 |
Parent::operator=(INVALID); |
|
| 3176 |
} else {
|
|
| 3177 |
Parent::operator=(it->second); |
|
| 3178 |
} |
|
| 3179 |
} |
|
| 3180 |
|
|
| 3181 |
/// \brief Increment operator. |
|
| 3182 |
/// |
|
| 3183 |
/// Increment Operator. |
|
| 3184 |
ItemIt& operator++() {
|
|
| 3185 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
| 3186 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3187 |
return *this; |
|
| 3188 |
} |
|
| 3189 |
|
|
| 3190 |
|
|
| 3191 |
private: |
|
| 3192 |
const IterableValueMap* _map; |
|
| 3193 |
}; |
|
| 3194 |
|
|
| 3195 |
protected: |
|
| 3196 |
|
|
| 3197 |
virtual void add(const Key& key) {
|
|
| 3198 |
Parent::add(key); |
|
| 3199 |
unlace(key); |
|
| 3200 |
} |
|
| 3201 |
|
|
| 3202 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 3203 |
Parent::add(keys); |
|
| 3204 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3205 |
lace(keys[i]); |
|
| 3206 |
} |
|
| 3207 |
} |
|
| 3208 |
|
|
| 3209 |
virtual void erase(const Key& key) {
|
|
| 3210 |
unlace(key); |
|
| 3211 |
Parent::erase(key); |
|
| 3212 |
} |
|
| 3213 |
|
|
| 3214 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3215 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3216 |
unlace(keys[i]); |
|
| 3217 |
} |
|
| 3218 |
Parent::erase(keys); |
|
| 3219 |
} |
|
| 3220 |
|
|
| 3221 |
virtual void build() {
|
|
| 3222 |
Parent::build(); |
|
| 3223 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3224 |
lace(it); |
|
| 3225 |
} |
|
| 3226 |
} |
|
| 3227 |
|
|
| 3228 |
virtual void clear() {
|
|
| 3229 |
_first.clear(); |
|
| 3230 |
Parent::clear(); |
|
| 3231 |
} |
|
| 3232 |
|
|
| 3233 |
private: |
|
| 3234 |
std::map<Value, Key> _first; |
|
| 3235 |
}; |
|
| 3236 |
|
|
| 2341 | 3237 |
/// \brief Map of the source nodes of arcs in a digraph. |
| ... | ... |
@@ -33,2 +33,5 @@ |
| 33 | 33 |
#include <lemon/bin_heap.h> |
| 34 |
#include <lemon/fib_heap.h> |
|
| 35 |
#include <lemon/radix_heap.h> |
|
| 36 |
#include <lemon/bucket_heap.h> |
|
| 34 | 37 |
|
| ... | ... |
@@ -185,2 +188,36 @@ |
| 185 | 188 |
|
| 189 |
{
|
|
| 190 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
| 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 192 |
heapSortTest<IntHeap>(); |
|
| 193 |
heapIncreaseTest<IntHeap>(); |
|
| 194 |
|
|
| 195 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
| 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
{
|
|
| 201 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
| 202 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 203 |
heapSortTest<IntHeap>(); |
|
| 204 |
heapIncreaseTest<IntHeap>(); |
|
| 205 |
|
|
| 206 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
| 207 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 208 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 209 |
} |
|
| 210 |
|
|
| 211 |
{
|
|
| 212 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
| 213 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 214 |
heapSortTest<IntHeap>(); |
|
| 215 |
heapIncreaseTest<IntHeap>(); |
|
| 216 |
|
|
| 217 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
| 218 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 219 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
|
|
| 186 | 223 |
return 0; |
| ... | ... |
@@ -25,2 +25,3 @@ |
| 25 | 25 |
#include <lemon/list_graph.h> |
| 26 |
#include <lemon/smart_graph.h> |
|
| 26 | 27 |
|
| ... | ... |
@@ -496,2 +497,189 @@ |
| 496 | 497 |
|
| 498 |
// Iterable bool map |
|
| 499 |
{
|
|
| 500 |
typedef SmartGraph Graph; |
|
| 501 |
typedef SmartGraph::Node Item; |
|
| 502 |
|
|
| 503 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
| 504 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
| 505 |
|
|
| 506 |
const int num = 10; |
|
| 507 |
Graph g; |
|
| 508 |
std::vector<Item> items; |
|
| 509 |
for (int i = 0; i < num; ++i) {
|
|
| 510 |
items.push_back(g.addNode()); |
|
| 511 |
} |
|
| 512 |
|
|
| 513 |
Ibm map1(g, true); |
|
| 514 |
int n = 0; |
|
| 515 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 516 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
| 517 |
++n; |
|
| 518 |
} |
|
| 519 |
check(n == num, "Wrong number"); |
|
| 520 |
|
|
| 521 |
n = 0; |
|
| 522 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 523 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 524 |
++n; |
|
| 525 |
} |
|
| 526 |
check(n == num, "Wrong number"); |
|
| 527 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
| 528 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
| 529 |
|
|
| 530 |
map1[items[5]] = true; |
|
| 531 |
|
|
| 532 |
n = 0; |
|
| 533 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 534 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 535 |
++n; |
|
| 536 |
} |
|
| 537 |
check(n == num, "Wrong number"); |
|
| 538 |
|
|
| 539 |
map1[items[num / 2]] = false; |
|
| 540 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
| 541 |
|
|
| 542 |
n = 0; |
|
| 543 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 544 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 545 |
++n; |
|
| 546 |
} |
|
| 547 |
check(n == num - 1, "Wrong number"); |
|
| 548 |
|
|
| 549 |
n = 0; |
|
| 550 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 551 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 552 |
++n; |
|
| 553 |
} |
|
| 554 |
check(n == 1, "Wrong number"); |
|
| 555 |
|
|
| 556 |
map1[items[0]] = false; |
|
| 557 |
check(map1[items[0]] == false, "Wrong map value"); |
|
| 558 |
|
|
| 559 |
map1[items[num - 1]] = false; |
|
| 560 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
| 561 |
|
|
| 562 |
n = 0; |
|
| 563 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 564 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 565 |
++n; |
|
| 566 |
} |
|
| 567 |
check(n == num - 3, "Wrong number"); |
|
| 568 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
| 569 |
|
|
| 570 |
n = 0; |
|
| 571 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 572 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 573 |
++n; |
|
| 574 |
} |
|
| 575 |
check(n == 3, "Wrong number"); |
|
| 576 |
check(map1.falseNum() == 3, "Wrong number"); |
|
| 577 |
} |
|
| 578 |
|
|
| 579 |
// Iterable int map |
|
| 580 |
{
|
|
| 581 |
typedef SmartGraph Graph; |
|
| 582 |
typedef SmartGraph::Node Item; |
|
| 583 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
| 584 |
|
|
| 585 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
| 586 |
|
|
| 587 |
const int num = 10; |
|
| 588 |
Graph g; |
|
| 589 |
std::vector<Item> items; |
|
| 590 |
for (int i = 0; i < num; ++i) {
|
|
| 591 |
items.push_back(g.addNode()); |
|
| 592 |
} |
|
| 593 |
|
|
| 594 |
Iim map1(g); |
|
| 595 |
check(map1.size() == 0, "Wrong size"); |
|
| 596 |
|
|
| 597 |
for (int i = 0; i < num; ++i) {
|
|
| 598 |
map1[items[i]] = i; |
|
| 599 |
} |
|
| 600 |
check(map1.size() == num, "Wrong size"); |
|
| 601 |
|
|
| 602 |
for (int i = 0; i < num; ++i) {
|
|
| 603 |
Iim::ItemIt it(map1, i); |
|
| 604 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 605 |
++it; |
|
| 606 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 607 |
} |
|
| 608 |
|
|
| 609 |
for (int i = 0; i < num; ++i) {
|
|
| 610 |
map1[items[i]] = i % 2; |
|
| 611 |
} |
|
| 612 |
check(map1.size() == 2, "Wrong size"); |
|
| 613 |
|
|
| 614 |
int n = 0; |
|
| 615 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
|
|
| 616 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
| 617 |
++n; |
|
| 618 |
} |
|
| 619 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 620 |
|
|
| 621 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
|
|
| 622 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
| 623 |
++n; |
|
| 624 |
} |
|
| 625 |
check(n == num, "Wrong number"); |
|
| 626 |
|
|
| 627 |
} |
|
| 628 |
|
|
| 629 |
// Iterable value map |
|
| 630 |
{
|
|
| 631 |
typedef SmartGraph Graph; |
|
| 632 |
typedef SmartGraph::Node Item; |
|
| 633 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
| 634 |
|
|
| 635 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
| 636 |
|
|
| 637 |
const int num = 10; |
|
| 638 |
Graph g; |
|
| 639 |
std::vector<Item> items; |
|
| 640 |
for (int i = 0; i < num; ++i) {
|
|
| 641 |
items.push_back(g.addNode()); |
|
| 642 |
} |
|
| 643 |
|
|
| 644 |
Ivm map1(g, 0.0); |
|
| 645 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
| 646 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
| 647 |
|
|
| 648 |
for (int i = 0; i < num; ++i) {
|
|
| 649 |
map1.set(items[i], static_cast<double>(i)); |
|
| 650 |
} |
|
| 651 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
| 652 |
|
|
| 653 |
for (int i = 0; i < num; ++i) {
|
|
| 654 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
| 655 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 656 |
++it; |
|
| 657 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 658 |
} |
|
| 659 |
|
|
| 660 |
for (Ivm::ValueIterator vit = map1.beginValue(); |
|
| 661 |
vit != map1.endValue(); ++vit) {
|
|
| 662 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
| 663 |
"Wrong ValueIterator"); |
|
| 664 |
} |
|
| 665 |
|
|
| 666 |
for (int i = 0; i < num; ++i) {
|
|
| 667 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
| 668 |
} |
|
| 669 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
| 670 |
|
|
| 671 |
int n = 0; |
|
| 672 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
|
|
| 673 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
| 674 |
++n; |
|
| 675 |
} |
|
| 676 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 677 |
|
|
| 678 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
|
|
| 679 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
| 680 |
++n; |
|
| 681 |
} |
|
| 682 |
check(n == num, "Wrong number"); |
|
| 683 |
|
|
| 684 |
} |
|
| 497 | 685 |
return 0; |
0 comments (0 inline)