0
5
3
468
903
7
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
20 |
#define LEMON_BUCKET_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Bucket Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
namespace _bucket_heap_bits { |
|
33 |
|
|
34 |
template <bool MIN> |
|
35 |
struct DirectionTraits { |
|
36 |
static bool less(int left, int right) { |
|
37 |
return left < right; |
|
38 |
} |
|
39 |
static void increase(int& value) { |
|
40 |
++value; |
|
41 |
} |
|
42 |
}; |
|
43 |
|
|
44 |
template <> |
|
45 |
struct DirectionTraits<false> { |
|
46 |
static bool less(int left, int right) { |
|
47 |
return left > right; |
|
48 |
} |
|
49 |
static void increase(int& value) { |
|
50 |
--value; |
|
51 |
} |
|
52 |
}; |
|
53 |
|
|
54 |
} |
|
55 |
|
|
56 |
/// \ingroup auxdat |
|
57 |
/// |
|
58 |
/// \brief A Bucket Heap implementation. |
|
59 |
/// |
|
60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
61 |
/// is a data structure for storing items with specified values called \e |
|
62 |
/// priorities in such a way that finding the item with minimum priority is |
|
63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
64 |
/// only integer priorities and it stores for each priority in the |
|
65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
66 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
|
67 |
/// |
|
68 |
/// \param IM A read and write Item int map, used internally |
|
69 |
/// to handle the cross references. |
|
70 |
/// \param MIN If the given parameter is false then instead of the |
|
71 |
/// minimum value the maximum can be retrivied with the top() and |
|
72 |
/// prio() member functions. |
|
73 |
template <typename IM, bool MIN = true> |
|
74 |
class BucketHeap { |
|
75 |
|
|
76 |
public: |
|
77 |
/// \e |
|
78 |
typedef typename IM::Key Item; |
|
79 |
/// \e |
|
80 |
typedef int Prio; |
|
81 |
/// \e |
|
82 |
typedef std::pair<Item, Prio> Pair; |
|
83 |
/// \e |
|
84 |
typedef IM ItemIntMap; |
|
85 |
|
|
86 |
private: |
|
87 |
|
|
88 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
89 |
|
|
90 |
public: |
|
91 |
|
|
92 |
/// \brief Type to represent the items states. |
|
93 |
/// |
|
94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
96 |
/// heap's point of view, but may be useful to the user. |
|
97 |
/// |
|
98 |
/// The item-int map must be initialized in such way that it assigns |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
100 |
enum State { |
|
101 |
IN_HEAP = 0, ///< = 0. |
|
102 |
PRE_HEAP = -1, ///< = -1. |
|
103 |
POST_HEAP = -2 ///< = -2. |
|
104 |
}; |
|
105 |
|
|
106 |
public: |
|
107 |
/// \brief The constructor. |
|
108 |
/// |
|
109 |
/// The constructor. |
|
110 |
/// \param map should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
|
114 |
|
|
115 |
/// The number of items stored in the heap. |
|
116 |
/// |
|
117 |
/// \brief Returns the number of items stored in the heap. |
|
118 |
int size() const { return _data.size(); } |
|
119 |
|
|
120 |
/// \brief Checks if the heap stores no items. |
|
121 |
/// |
|
122 |
/// Returns \c true if and only if the heap stores no items. |
|
123 |
bool empty() const { return _data.empty(); } |
|
124 |
|
|
125 |
/// \brief Make empty this heap. |
|
126 |
/// |
|
127 |
/// Make empty this heap. It does not change the cross reference |
|
128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
129 |
/// should first clear the heap and after that you should set the |
|
130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
131 |
void clear() { |
|
132 |
_data.clear(); _first.clear(); _minimum = 0; |
|
133 |
} |
|
134 |
|
|
135 |
private: |
|
136 |
|
|
137 |
void relocate_last(int idx) { |
|
138 |
if (idx + 1 < int(_data.size())) { |
|
139 |
_data[idx] = _data.back(); |
|
140 |
if (_data[idx].prev != -1) { |
|
141 |
_data[_data[idx].prev].next = idx; |
|
142 |
} else { |
|
143 |
_first[_data[idx].value] = idx; |
|
144 |
} |
|
145 |
if (_data[idx].next != -1) { |
|
146 |
_data[_data[idx].next].prev = idx; |
|
147 |
} |
|
148 |
_iim[_data[idx].item] = idx; |
|
149 |
} |
|
150 |
_data.pop_back(); |
|
151 |
} |
|
152 |
|
|
153 |
void unlace(int idx) { |
|
154 |
if (_data[idx].prev != -1) { |
|
155 |
_data[_data[idx].prev].next = _data[idx].next; |
|
156 |
} else { |
|
157 |
_first[_data[idx].value] = _data[idx].next; |
|
158 |
} |
|
159 |
if (_data[idx].next != -1) { |
|
160 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
161 |
} |
|
162 |
} |
|
163 |
|
|
164 |
void lace(int idx) { |
|
165 |
if (int(_first.size()) <= _data[idx].value) { |
|
166 |
_first.resize(_data[idx].value + 1, -1); |
|
167 |
} |
|
168 |
_data[idx].next = _first[_data[idx].value]; |
|
169 |
if (_data[idx].next != -1) { |
|
170 |
_data[_data[idx].next].prev = idx; |
|
171 |
} |
|
172 |
_first[_data[idx].value] = idx; |
|
173 |
_data[idx].prev = -1; |
|
174 |
} |
|
175 |
|
|
176 |
public: |
|
177 |
/// \brief Insert a pair of item and priority into the heap. |
|
178 |
/// |
|
179 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
180 |
/// \param p The pair to insert. |
|
181 |
void push(const Pair& p) { |
|
182 |
push(p.first, p.second); |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Insert an item into the heap with the given priority. |
|
186 |
/// |
|
187 |
/// Adds \c i to the heap with priority \c p. |
|
188 |
/// \param i The item to insert. |
|
189 |
/// \param p The priority of the item. |
|
190 |
void push(const Item &i, const Prio &p) { |
|
191 |
int idx = _data.size(); |
|
192 |
_iim[i] = idx; |
|
193 |
_data.push_back(BucketItem(i, p)); |
|
194 |
lace(idx); |
|
195 |
if (Direction::less(p, _minimum)) { |
|
196 |
_minimum = p; |
|
197 |
} |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Returns the item with minimum priority. |
|
201 |
/// |
|
202 |
/// This method returns the item with minimum priority. |
|
203 |
/// \pre The heap must be nonempty. |
|
204 |
Item top() const { |
|
205 |
while (_first[_minimum] == -1) { |
|
206 |
Direction::increase(_minimum); |
|
207 |
} |
|
208 |
return _data[_first[_minimum]].item; |
|
209 |
} |
|
210 |
|
|
211 |
/// \brief Returns the minimum priority. |
|
212 |
/// |
|
213 |
/// It returns the minimum priority. |
|
214 |
/// \pre The heap must be nonempty. |
|
215 |
Prio prio() const { |
|
216 |
while (_first[_minimum] == -1) { |
|
217 |
Direction::increase(_minimum); |
|
218 |
} |
|
219 |
return _minimum; |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Deletes the item with minimum priority. |
|
223 |
/// |
|
224 |
/// This method deletes the item with minimum priority from the heap. |
|
225 |
/// \pre The heap must be non-empty. |
|
226 |
void pop() { |
|
227 |
while (_first[_minimum] == -1) { |
|
228 |
Direction::increase(_minimum); |
|
229 |
} |
|
230 |
int idx = _first[_minimum]; |
|
231 |
_iim[_data[idx].item] = -2; |
|
232 |
unlace(idx); |
|
233 |
relocate_last(idx); |
|
234 |
} |
|
235 |
|
|
236 |
/// \brief Deletes \c i from the heap. |
|
237 |
/// |
|
238 |
/// This method deletes item \c i from the heap, if \c i was |
|
239 |
/// already stored in the heap. |
|
240 |
/// \param i The item to erase. |
|
241 |
void erase(const Item &i) { |
|
242 |
int idx = _iim[i]; |
|
243 |
_iim[_data[idx].item] = -2; |
|
244 |
unlace(idx); |
|
245 |
relocate_last(idx); |
|
246 |
} |
|
247 |
|
|
248 |
|
|
249 |
/// \brief Returns the priority of \c i. |
|
250 |
/// |
|
251 |
/// This function returns the priority of item \c i. |
|
252 |
/// \pre \c i must be in the heap. |
|
253 |
/// \param i The item. |
|
254 |
Prio operator[](const Item &i) const { |
|
255 |
int idx = _iim[i]; |
|
256 |
return _data[idx].value; |
|
257 |
} |
|
258 |
|
|
259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
260 |
/// if \c i was already there. |
|
261 |
/// |
|
262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
264 |
/// \param i The item. |
|
265 |
/// \param p The priority. |
|
266 |
void set(const Item &i, const Prio &p) { |
|
267 |
int idx = _iim[i]; |
|
268 |
if (idx < 0) { |
|
269 |
push(i, p); |
|
270 |
} else if (Direction::less(p, _data[idx].value)) { |
|
271 |
decrease(i, p); |
|
272 |
} else { |
|
273 |
increase(i, p); |
|
274 |
} |
|
275 |
} |
|
276 |
|
|
277 |
/// \brief Decreases the priority of \c i to \c p. |
|
278 |
/// |
|
279 |
/// This method decreases the priority of item \c i to \c p. |
|
280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
281 |
/// p relative to \c Compare. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
void decrease(const Item &i, const Prio &p) { |
|
285 |
int idx = _iim[i]; |
|
286 |
unlace(idx); |
|
287 |
_data[idx].value = p; |
|
288 |
if (Direction::less(p, _minimum)) { |
|
289 |
_minimum = p; |
|
290 |
} |
|
291 |
lace(idx); |
|
292 |
} |
|
293 |
|
|
294 |
/// \brief Increases the priority of \c i to \c p. |
|
295 |
/// |
|
296 |
/// This method sets the priority of item \c i to \c p. |
|
297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
298 |
/// p relative to \c Compare. |
|
299 |
/// \param i The item. |
|
300 |
/// \param p The priority. |
|
301 |
void increase(const Item &i, const Prio &p) { |
|
302 |
int idx = _iim[i]; |
|
303 |
unlace(idx); |
|
304 |
_data[idx].value = p; |
|
305 |
lace(idx); |
|
306 |
} |
|
307 |
|
|
308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
309 |
/// never been in the heap. |
|
310 |
/// |
|
311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
313 |
/// otherwise. In the latter case it is possible that \c item will |
|
314 |
/// get back to the heap again. |
|
315 |
/// \param i The item. |
|
316 |
State state(const Item &i) const { |
|
317 |
int idx = _iim[i]; |
|
318 |
if (idx >= 0) idx = 0; |
|
319 |
return State(idx); |
|
320 |
} |
|
321 |
|
|
322 |
/// \brief Sets the state of the \c item in the heap. |
|
323 |
/// |
|
324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
325 |
/// manually clear the heap when it is important to achive the |
|
326 |
/// better time complexity. |
|
327 |
/// \param i The item. |
|
328 |
/// \param st The state. It should not be \c IN_HEAP. |
|
329 |
void state(const Item& i, State st) { |
|
330 |
switch (st) { |
|
331 |
case POST_HEAP: |
|
332 |
case PRE_HEAP: |
|
333 |
if (state(i) == IN_HEAP) { |
|
334 |
erase(i); |
|
335 |
} |
|
336 |
_iim[i] = st; |
|
337 |
break; |
|
338 |
case IN_HEAP: |
|
339 |
break; |
|
340 |
} |
|
341 |
} |
|
342 |
|
|
343 |
private: |
|
344 |
|
|
345 |
struct BucketItem { |
|
346 |
BucketItem(const Item& _item, int _value) |
|
347 |
: item(_item), value(_value) {} |
|
348 |
|
|
349 |
Item item; |
|
350 |
int value; |
|
351 |
|
|
352 |
int prev, next; |
|
353 |
}; |
|
354 |
|
|
355 |
ItemIntMap& _iim; |
|
356 |
std::vector<int> _first; |
|
357 |
std::vector<BucketItem> _data; |
|
358 |
mutable int _minimum; |
|
359 |
|
|
360 |
}; // class BucketHeap |
|
361 |
|
|
362 |
/// \ingroup auxdat |
|
363 |
/// |
|
364 |
/// \brief A Simplified Bucket Heap implementation. |
|
365 |
/// |
|
366 |
/// This class implements a simplified \e bucket \e heap data |
|
367 |
/// structure. It does not provide some functionality but it faster |
|
368 |
/// and simplier data structure than the BucketHeap. The main |
|
369 |
/// difference is that the BucketHeap stores for every key a double |
|
370 |
/// linked list while this class stores just simple lists. In the |
|
371 |
/// other way it does not support erasing each elements just the |
|
372 |
/// minimal and it does not supports key increasing, decreasing. |
|
373 |
/// |
|
374 |
/// \param IM A read and write Item int map, used internally |
|
375 |
/// to handle the cross references. |
|
376 |
/// \param MIN If the given parameter is false then instead of the |
|
377 |
/// minimum value the maximum can be retrivied with the top() and |
|
378 |
/// prio() member functions. |
|
379 |
/// |
|
380 |
/// \sa BucketHeap |
|
381 |
template <typename IM, bool MIN = true > |
|
382 |
class SimpleBucketHeap { |
|
383 |
|
|
384 |
public: |
|
385 |
typedef typename IM::Key Item; |
|
386 |
typedef int Prio; |
|
387 |
typedef std::pair<Item, Prio> Pair; |
|
388 |
typedef IM ItemIntMap; |
|
389 |
|
|
390 |
private: |
|
391 |
|
|
392 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
393 |
|
|
394 |
public: |
|
395 |
|
|
396 |
/// \brief Type to represent the items states. |
|
397 |
/// |
|
398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
400 |
/// heap's point of view, but may be useful to the user. |
|
401 |
/// |
|
402 |
/// The item-int map must be initialized in such way that it assigns |
|
403 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
404 |
enum State { |
|
405 |
IN_HEAP = 0, ///< = 0. |
|
406 |
PRE_HEAP = -1, ///< = -1. |
|
407 |
POST_HEAP = -2 ///< = -2. |
|
408 |
}; |
|
409 |
|
|
410 |
public: |
|
411 |
|
|
412 |
/// \brief The constructor. |
|
413 |
/// |
|
414 |
/// The constructor. |
|
415 |
/// \param map should be given to the constructor, since it is used |
|
416 |
/// internally to handle the cross references. The value of the map |
|
417 |
/// should be PRE_HEAP (-1) for each element. |
|
418 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
419 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
|
420 |
|
|
421 |
/// \brief Returns the number of items stored in the heap. |
|
422 |
/// |
|
423 |
/// The number of items stored in the heap. |
|
424 |
int size() const { return _num; } |
|
425 |
|
|
426 |
/// \brief Checks if the heap stores no items. |
|
427 |
/// |
|
428 |
/// Returns \c true if and only if the heap stores no items. |
|
429 |
bool empty() const { return _num == 0; } |
|
430 |
|
|
431 |
/// \brief Make empty this heap. |
|
432 |
/// |
|
433 |
/// Make empty this heap. It does not change the cross reference |
|
434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
435 |
/// should first clear the heap and after that you should set the |
|
436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
437 |
void clear() { |
|
438 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
439 |
} |
|
440 |
|
|
441 |
/// \brief Insert a pair of item and priority into the heap. |
|
442 |
/// |
|
443 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
444 |
/// \param p The pair to insert. |
|
445 |
void push(const Pair& p) { |
|
446 |
push(p.first, p.second); |
|
447 |
} |
|
448 |
|
|
449 |
/// \brief Insert an item into the heap with the given priority. |
|
450 |
/// |
|
451 |
/// Adds \c i to the heap with priority \c p. |
|
452 |
/// \param i The item to insert. |
|
453 |
/// \param p The priority of the item. |
|
454 |
void push(const Item &i, const Prio &p) { |
|
455 |
int idx; |
|
456 |
if (_free == -1) { |
|
457 |
idx = _data.size(); |
|
458 |
_data.push_back(BucketItem(i)); |
|
459 |
} else { |
|
460 |
idx = _free; |
|
461 |
_free = _data[idx].next; |
|
462 |
_data[idx].item = i; |
|
463 |
} |
|
464 |
_iim[i] = idx; |
|
465 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
466 |
_data[idx].next = _first[p]; |
|
467 |
_first[p] = idx; |
|
468 |
if (Direction::less(p, _minimum)) { |
|
469 |
_minimum = p; |
|
470 |
} |
|
471 |
++_num; |
|
472 |
} |
|
473 |
|
|
474 |
/// \brief Returns the item with minimum priority. |
|
475 |
/// |
|
476 |
/// This method returns the item with minimum priority. |
|
477 |
/// \pre The heap must be nonempty. |
|
478 |
Item top() const { |
|
479 |
while (_first[_minimum] == -1) { |
|
480 |
Direction::increase(_minimum); |
|
481 |
} |
|
482 |
return _data[_first[_minimum]].item; |
|
483 |
} |
|
484 |
|
|
485 |
/// \brief Returns the minimum priority. |
|
486 |
/// |
|
487 |
/// It returns the minimum priority. |
|
488 |
/// \pre The heap must be nonempty. |
|
489 |
Prio prio() const { |
|
490 |
while (_first[_minimum] == -1) { |
|
491 |
Direction::increase(_minimum); |
|
492 |
} |
|
493 |
return _minimum; |
|
494 |
} |
|
495 |
|
|
496 |
/// \brief Deletes the item with minimum priority. |
|
497 |
/// |
|
498 |
/// This method deletes the item with minimum priority from the heap. |
|
499 |
/// \pre The heap must be non-empty. |
|
500 |
void pop() { |
|
501 |
while (_first[_minimum] == -1) { |
|
502 |
Direction::increase(_minimum); |
|
503 |
} |
|
504 |
int idx = _first[_minimum]; |
|
505 |
_iim[_data[idx].item] = -2; |
|
506 |
_first[_minimum] = _data[idx].next; |
|
507 |
_data[idx].next = _free; |
|
508 |
_free = idx; |
|
509 |
--_num; |
|
510 |
} |
|
511 |
|
|
512 |
/// \brief Returns the priority of \c i. |
|
513 |
/// |
|
514 |
/// This function returns the priority of item \c i. |
|
515 |
/// \warning This operator is not a constant time function |
|
516 |
/// because it scans the whole data structure to find the proper |
|
517 |
/// value. |
|
518 |
/// \pre \c i must be in the heap. |
|
519 |
/// \param i The item. |
|
520 |
Prio operator[](const Item &i) const { |
|
521 |
for (int k = 0; k < _first.size(); ++k) { |
|
522 |
int idx = _first[k]; |
|
523 |
while (idx != -1) { |
|
524 |
if (_data[idx].item == i) { |
|
525 |
return k; |
|
526 |
} |
|
527 |
idx = _data[idx].next; |
|
528 |
} |
|
529 |
} |
|
530 |
return -1; |
|
531 |
} |
|
532 |
|
|
533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
534 |
/// never been in the heap. |
|
535 |
/// |
|
536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
538 |
/// otherwise. In the latter case it is possible that \c item will |
|
539 |
/// get back to the heap again. |
|
540 |
/// \param i The item. |
|
541 |
State state(const Item &i) const { |
|
542 |
int idx = _iim[i]; |
|
543 |
if (idx >= 0) idx = 0; |
|
544 |
return State(idx); |
|
545 |
} |
|
546 |
|
|
547 |
private: |
|
548 |
|
|
549 |
struct BucketItem { |
|
550 |
BucketItem(const Item& _item) |
|
551 |
: item(_item) {} |
|
552 |
|
|
553 |
Item item; |
|
554 |
int next; |
|
555 |
}; |
|
556 |
|
|
557 |
ItemIntMap& _iim; |
|
558 |
std::vector<int> _first; |
|
559 |
std::vector<BucketItem> _data; |
|
560 |
int _free, _num; |
|
561 |
mutable int _minimum; |
|
562 |
|
|
563 |
}; // class SimpleBucketHeap |
|
564 |
|
|
565 |
} |
|
566 |
|
|
567 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FIB_HEAP_H |
|
20 |
#define LEMON_FIB_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup auxdat |
|
24 |
///\brief Fibonacci Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <functional> |
|
28 |
#include <lemon/math.h> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup auxdat |
|
33 |
/// |
|
34 |
///\brief Fibonacci Heap. |
|
35 |
/// |
|
36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
37 |
///is a data structure for storing items with specified values called \e |
|
38 |
///priorities in such a way that finding the item with minimum priority is |
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
40 |
///one can change the priority of an item, add or erase an item, etc. |
|
41 |
/// |
|
42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
43 |
///heap. In case of many calls to these operations, it is better to use a |
|
44 |
///\ref BinHeap "binary heap". |
|
45 |
/// |
|
46 |
///\param PRIO Type of the priority of the items. |
|
47 |
///\param IM A read and writable Item int map, used internally |
|
48 |
///to handle the cross references. |
|
49 |
///\param CMP A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<PRIO>. |
|
51 |
/// |
|
52 |
///\sa BinHeap |
|
53 |
///\sa Dijkstra |
|
54 |
#ifdef DOXYGEN |
|
55 |
template <typename PRIO, typename IM, typename CMP> |
|
56 |
#else |
|
57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> > |
|
58 |
#endif |
|
59 |
class FibHeap { |
|
60 |
public: |
|
61 |
///\e |
|
62 |
typedef IM ItemIntMap; |
|
63 |
///\e |
|
64 |
typedef PRIO Prio; |
|
65 |
///\e |
|
66 |
typedef typename ItemIntMap::Key Item; |
|
67 |
///\e |
|
68 |
typedef std::pair<Item,Prio> Pair; |
|
69 |
///\e |
|
70 |
typedef CMP Compare; |
|
71 |
|
|
72 |
private: |
|
73 |
class Store; |
|
74 |
|
|
75 |
std::vector<Store> _data; |
|
76 |
int _minimum; |
|
77 |
ItemIntMap &_iim; |
|
78 |
Compare _comp; |
|
79 |
int _num; |
|
80 |
|
|
81 |
public: |
|
82 |
|
|
83 |
/// \brief Type to represent the items states. |
|
84 |
/// |
|
85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
87 |
/// heap's point of view, but may be useful to the user. |
|
88 |
/// |
|
89 |
/// The item-int map must be initialized in such way that it assigns |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
91 |
enum State { |
|
92 |
IN_HEAP = 0, ///< = 0. |
|
93 |
PRE_HEAP = -1, ///< = -1. |
|
94 |
POST_HEAP = -2 ///< = -2. |
|
95 |
}; |
|
96 |
|
|
97 |
/// \brief The constructor |
|
98 |
/// |
|
99 |
/// \c map should be given to the constructor, since it is |
|
100 |
/// used internally to handle the cross references. |
|
101 |
explicit FibHeap(ItemIntMap &map) |
|
102 |
: _minimum(0), _iim(map), _num() {} |
|
103 |
|
|
104 |
/// \brief The constructor |
|
105 |
/// |
|
106 |
/// \c map should be given to the constructor, since it is used |
|
107 |
/// internally to handle the cross references. \c comp is an |
|
108 |
/// object for ordering of the priorities. |
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
|
111 |
|
|
112 |
/// \brief The number of items stored in the heap. |
|
113 |
/// |
|
114 |
/// Returns the number of items stored in the heap. |
|
115 |
int size() const { return _num; } |
|
116 |
|
|
117 |
/// \brief Checks if the heap stores no items. |
|
118 |
/// |
|
119 |
/// Returns \c true if and only if the heap stores no items. |
|
120 |
bool empty() const { return _num==0; } |
|
121 |
|
|
122 |
/// \brief Make empty this heap. |
|
123 |
/// |
|
124 |
/// Make empty this heap. It does not change the cross reference |
|
125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
126 |
/// should first clear the heap and after that you should set the |
|
127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
128 |
void clear() { |
|
129 |
_data.clear(); _minimum = 0; _num = 0; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
133 |
/// if \c item was already there. |
|
134 |
/// |
|
135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
137 |
/// \ref increase(\c item, \c value) otherwise. |
|
138 |
void set (const Item& item, const Prio& value) { |
|
139 |
int i=_iim[item]; |
|
140 |
if ( i >= 0 && _data[i].in ) { |
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
143 |
} else push(item, value); |
|
144 |
} |
|
145 |
|
|
146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
147 |
/// |
|
148 |
/// Adds \c item to the heap with priority \c value. |
|
149 |
/// \pre \c item must not be stored in the heap. |
|
150 |
void push (const Item& item, const Prio& value) { |
|
151 |
int i=_iim[item]; |
|
152 |
if ( i < 0 ) { |
|
153 |
int s=_data.size(); |
|
154 |
_iim.set( item, s ); |
|
155 |
Store st; |
|
156 |
st.name=item; |
|
157 |
_data.push_back(st); |
|
158 |
i=s; |
|
159 |
} else { |
|
160 |
_data[i].parent=_data[i].child=-1; |
|
161 |
_data[i].degree=0; |
|
162 |
_data[i].in=true; |
|
163 |
_data[i].marked=false; |
|
164 |
} |
|
165 |
|
|
166 |
if ( _num ) { |
|
167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
169 |
_data[_minimum].right_neighbor=i; |
|
170 |
_data[i].left_neighbor=_minimum; |
|
171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i; |
|
172 |
} else { |
|
173 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
174 |
_minimum=i; |
|
175 |
} |
|
176 |
_data[i].prio=value; |
|
177 |
++_num; |
|
178 |
} |
|
179 |
|
|
180 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
181 |
/// |
|
182 |
/// This method returns the item with minimum priority relative to \c |
|
183 |
/// Compare. |
|
184 |
/// \pre The heap must be nonempty. |
|
185 |
Item top() const { return _data[_minimum].name; } |
|
186 |
|
|
187 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
188 |
/// |
|
189 |
/// It returns the minimum priority relative to \c Compare. |
|
190 |
/// \pre The heap must be nonempty. |
|
191 |
const Prio& prio() const { return _data[_minimum].prio; } |
|
192 |
|
|
193 |
/// \brief Returns the priority of \c item. |
|
194 |
/// |
|
195 |
/// It returns the priority of \c item. |
|
196 |
/// \pre \c item must be in the heap. |
|
197 |
const Prio& operator[](const Item& item) const { |
|
198 |
return _data[_iim[item]].prio; |
|
199 |
} |
|
200 |
|
|
201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
202 |
/// |
|
203 |
/// This method deletes the item with minimum priority relative to \c |
|
204 |
/// Compare from the heap. |
|
205 |
/// \pre The heap must be non-empty. |
|
206 |
void pop() { |
|
207 |
/*The first case is that there are only one root.*/ |
|
208 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
|
209 |
_data[_minimum].in=false; |
|
210 |
if ( _data[_minimum].degree!=0 ) { |
|
211 |
makeroot(_data[_minimum].child); |
|
212 |
_minimum=_data[_minimum].child; |
|
213 |
balance(); |
|
214 |
} |
|
215 |
} else { |
|
216 |
int right=_data[_minimum].right_neighbor; |
|
217 |
unlace(_minimum); |
|
218 |
_data[_minimum].in=false; |
|
219 |
if ( _data[_minimum].degree > 0 ) { |
|
220 |
int left=_data[_minimum].left_neighbor; |
|
221 |
int child=_data[_minimum].child; |
|
222 |
int last_child=_data[child].left_neighbor; |
|
223 |
|
|
224 |
makeroot(child); |
|
225 |
|
|
226 |
_data[left].right_neighbor=child; |
|
227 |
_data[child].left_neighbor=left; |
|
228 |
_data[right].left_neighbor=last_child; |
|
229 |
_data[last_child].right_neighbor=right; |
|
230 |
} |
|
231 |
_minimum=right; |
|
232 |
balance(); |
|
233 |
} // the case where there are more roots |
|
234 |
--_num; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Deletes \c item from the heap. |
|
238 |
/// |
|
239 |
/// This method deletes \c item from the heap, if \c item was already |
|
240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
241 |
void erase (const Item& item) { |
|
242 |
int i=_iim[item]; |
|
243 |
|
|
244 |
if ( i >= 0 && _data[i].in ) { |
|
245 |
if ( _data[i].parent!=-1 ) { |
|
246 |
int p=_data[i].parent; |
|
247 |
cut(i,p); |
|
248 |
cascade(p); |
|
249 |
} |
|
250 |
_minimum=i; //As if its prio would be -infinity |
|
251 |
pop(); |
|
252 |
} |
|
253 |
} |
|
254 |
|
|
255 |
/// \brief Decreases the priority of \c item to \c value. |
|
256 |
/// |
|
257 |
/// This method decreases the priority of \c item to \c value. |
|
258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
259 |
/// value relative to \c Compare. |
|
260 |
void decrease (Item item, const Prio& value) { |
|
261 |
int i=_iim[item]; |
|
262 |
_data[i].prio=value; |
|
263 |
int p=_data[i].parent; |
|
264 |
|
|
265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) { |
|
266 |
cut(i,p); |
|
267 |
cascade(p); |
|
268 |
} |
|
269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i; |
|
270 |
} |
|
271 |
|
|
272 |
/// \brief Increases the priority of \c item to \c value. |
|
273 |
/// |
|
274 |
/// This method sets the priority of \c item to \c value. Though |
|
275 |
/// there is no precondition on the priority of \c item, this |
|
276 |
/// method should be used only if it is indeed necessary to increase |
|
277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
278 |
/// method is inefficient. |
|
279 |
void increase (Item item, const Prio& value) { |
|
280 |
erase(item); |
|
281 |
push(item, value); |
|
282 |
} |
|
283 |
|
|
284 |
|
|
285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
286 |
/// been in the heap. |
|
287 |
/// |
|
288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
290 |
/// otherwise. In the latter case it is possible that \c item will |
|
291 |
/// get back to the heap again. |
|
292 |
State state(const Item &item) const { |
|
293 |
int i=_iim[item]; |
|
294 |
if( i>=0 ) { |
|
295 |
if ( _data[i].in ) i=0; |
|
296 |
else i=-2; |
|
297 |
} |
|
298 |
return State(i); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Sets the state of the \c item in the heap. |
|
302 |
/// |
|
303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
304 |
/// manually clear the heap when it is important to achive the |
|
305 |
/// better time _complexity. |
|
306 |
/// \param i The item. |
|
307 |
/// \param st The state. It should not be \c IN_HEAP. |
|
308 |
void state(const Item& i, State st) { |
|
309 |
switch (st) { |
|
310 |
case POST_HEAP: |
|
311 |
case PRE_HEAP: |
|
312 |
if (state(i) == IN_HEAP) { |
|
313 |
erase(i); |
|
314 |
} |
|
315 |
_iim[i] = st; |
|
316 |
break; |
|
317 |
case IN_HEAP: |
|
318 |
break; |
|
319 |
} |
|
320 |
} |
|
321 |
|
|
322 |
private: |
|
323 |
|
|
324 |
void balance() { |
|
325 |
|
|
326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
327 |
|
|
328 |
std::vector<int> A(maxdeg,-1); |
|
329 |
|
|
330 |
/* |
|
331 |
*Recall that now minimum does not point to the minimum prio element. |
|
332 |
*We set minimum to this during balance(). |
|
333 |
*/ |
|
334 |
int anchor=_data[_minimum].left_neighbor; |
|
335 |
int next=_minimum; |
|
336 |
bool end=false; |
|
337 |
|
|
338 |
do { |
|
339 |
int active=next; |
|
340 |
if ( anchor==active ) end=true; |
|
341 |
int d=_data[active].degree; |
|
342 |
next=_data[active].right_neighbor; |
|
343 |
|
|
344 |
while (A[d]!=-1) { |
|
345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
|
346 |
fuse(active,A[d]); |
|
347 |
} else { |
|
348 |
fuse(A[d],active); |
|
349 |
active=A[d]; |
|
350 |
} |
|
351 |
A[d]=-1; |
|
352 |
++d; |
|
353 |
} |
|
354 |
A[d]=active; |
|
355 |
} while ( !end ); |
|
356 |
|
|
357 |
|
|
358 |
while ( _data[_minimum].parent >=0 ) |
|
359 |
_minimum=_data[_minimum].parent; |
|
360 |
int s=_minimum; |
|
361 |
int m=_minimum; |
|
362 |
do { |
|
363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
364 |
s=_data[s].right_neighbor; |
|
365 |
} while ( s != m ); |
|
366 |
} |
|
367 |
|
|
368 |
void makeroot(int c) { |
|
369 |
int s=c; |
|
370 |
do { |
|
371 |
_data[s].parent=-1; |
|
372 |
s=_data[s].right_neighbor; |
|
373 |
} while ( s != c ); |
|
374 |
} |
|
375 |
|
|
376 |
void cut(int a, int b) { |
|
377 |
/* |
|
378 |
*Replacing a from the children of b. |
|
379 |
*/ |
|
380 |
--_data[b].degree; |
|
381 |
|
|
382 |
if ( _data[b].degree !=0 ) { |
|
383 |
int child=_data[b].child; |
|
384 |
if ( child==a ) |
|
385 |
_data[b].child=_data[child].right_neighbor; |
|
386 |
unlace(a); |
|
387 |
} |
|
388 |
|
|
389 |
|
|
390 |
/*Lacing a to the roots.*/ |
|
391 |
int right=_data[_minimum].right_neighbor; |
|
392 |
_data[_minimum].right_neighbor=a; |
|
393 |
_data[a].left_neighbor=_minimum; |
|
394 |
_data[a].right_neighbor=right; |
|
395 |
_data[right].left_neighbor=a; |
|
396 |
|
|
397 |
_data[a].parent=-1; |
|
398 |
_data[a].marked=false; |
|
399 |
} |
|
400 |
|
|
401 |
void cascade(int a) { |
|
402 |
if ( _data[a].parent!=-1 ) { |
|
403 |
int p=_data[a].parent; |
|
404 |
|
|
405 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
406 |
else { |
|
407 |
cut(a,p); |
|
408 |
cascade(p); |
|
409 |
} |
|
410 |
} |
|
411 |
} |
|
412 |
|
|
413 |
void fuse(int a, int b) { |
|
414 |
unlace(b); |
|
415 |
|
|
416 |
/*Lacing b under a.*/ |
|
417 |
_data[b].parent=a; |
|
418 |
|
|
419 |
if (_data[a].degree==0) { |
|
420 |
_data[b].left_neighbor=b; |
|
421 |
_data[b].right_neighbor=b; |
|
422 |
_data[a].child=b; |
|
423 |
} else { |
|
424 |
int child=_data[a].child; |
|
425 |
int last_child=_data[child].left_neighbor; |
|
426 |
_data[child].left_neighbor=b; |
|
427 |
_data[b].right_neighbor=child; |
|
428 |
_data[last_child].right_neighbor=b; |
|
429 |
_data[b].left_neighbor=last_child; |
|
430 |
} |
|
431 |
|
|
432 |
++_data[a].degree; |
|
433 |
|
|
434 |
_data[b].marked=false; |
|
435 |
} |
|
436 |
|
|
437 |
/* |
|
438 |
*It is invoked only if a has siblings. |
|
439 |
*/ |
|
440 |
void unlace(int a) { |
|
441 |
int leftn=_data[a].left_neighbor; |
|
442 |
int rightn=_data[a].right_neighbor; |
|
443 |
_data[leftn].right_neighbor=rightn; |
|
444 |
_data[rightn].left_neighbor=leftn; |
|
445 |
} |
|
446 |
|
|
447 |
|
|
448 |
class Store { |
|
449 |
friend class FibHeap; |
|
450 |
|
|
451 |
Item name; |
|
452 |
int parent; |
|
453 |
int left_neighbor; |
|
454 |
int right_neighbor; |
|
455 |
int child; |
|
456 |
int degree; |
|
457 |
bool marked; |
|
458 |
bool in; |
|
459 |
Prio prio; |
|
460 |
|
|
461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
462 |
}; |
|
463 |
}; |
|
464 |
|
|
465 |
} //namespace lemon |
|
466 |
|
|
467 |
#endif //LEMON_FIB_HEAP_H |
|
468 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_RADIX_HEAP_H |
|
20 |
#define LEMON_RADIX_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Radix Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <lemon/error.h> |
|
28 |
|
|
29 |
namespace lemon { |
|
30 |
|
|
31 |
|
|
32 |
/// \ingroup auxdata |
|
33 |
/// |
|
34 |
/// \brief A Radix Heap implementation. |
|
35 |
/// |
|
36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
37 |
/// is a data structure for storing items with specified values called \e |
|
38 |
/// priorities in such a way that finding the item with minimum priority is |
|
39 |
/// efficient. This heap type can store only items with \e int priority. |
|
40 |
/// In a heap one can change the priority of an item, add or erase an |
|
41 |
/// item, but the priority cannot be decreased under the last removed |
|
42 |
/// item's priority. |
|
43 |
/// |
|
44 |
/// \param IM A read and writable Item int map, used internally |
|
45 |
/// to handle the cross references. |
|
46 |
/// |
|
47 |
/// \see BinHeap |
|
48 |
/// \see Dijkstra |
|
49 |
template <typename IM> |
|
50 |
class RadixHeap { |
|
51 |
|
|
52 |
public: |
|
53 |
typedef typename IM::Key Item; |
|
54 |
typedef int Prio; |
|
55 |
typedef IM ItemIntMap; |
|
56 |
|
|
57 |
/// \brief Exception thrown by RadixHeap. |
|
58 |
/// |
|
59 |
/// This Exception is thrown when a smaller priority |
|
60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
61 |
/// \see RadixHeap |
|
62 |
|
|
63 |
class UnderFlowPriorityError : public Exception { |
|
64 |
public: |
|
65 |
virtual const char* what() const throw() { |
|
66 |
return "lemon::RadixHeap::UnderFlowPriorityError"; |
|
67 |
} |
|
68 |
}; |
|
69 |
|
|
70 |
/// \brief Type to represent the items states. |
|
71 |
/// |
|
72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
75 |
/// |
|
76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
78 |
enum State { |
|
79 |
IN_HEAP = 0, |
|
80 |
PRE_HEAP = -1, |
|
81 |
POST_HEAP = -2 |
|
82 |
}; |
|
83 |
|
|
84 |
private: |
|
85 |
|
|
86 |
struct RadixItem { |
|
87 |
int prev, next, box; |
|
88 |
Item item; |
|
89 |
int prio; |
|
90 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
|
91 |
}; |
|
92 |
|
|
93 |
struct RadixBox { |
|
94 |
int first; |
|
95 |
int min, size; |
|
96 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
|
97 |
}; |
|
98 |
|
|
99 |
std::vector<RadixItem> data; |
|
100 |
std::vector<RadixBox> boxes; |
|
101 |
|
|
102 |
ItemIntMap &_iim; |
|
103 |
|
|
104 |
|
|
105 |
public: |
|
106 |
/// \brief The constructor. |
|
107 |
/// |
|
108 |
/// The constructor. |
|
109 |
/// |
|
110 |
/// \param map It should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
/// |
|
114 |
/// \param minimal The initial minimal value of the heap. |
|
115 |
/// \param capacity It determines the initial capacity of the heap. |
|
116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
117 |
: _iim(map) { |
|
118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) { |
|
121 |
extend(); |
|
122 |
} |
|
123 |
} |
|
124 |
|
|
125 |
/// The number of items stored in the heap. |
|
126 |
/// |
|
127 |
/// \brief Returns the number of items stored in the heap. |
|
128 |
int size() const { return data.size(); } |
|
129 |
/// \brief Checks if the heap stores no items. |
|
130 |
/// |
|
131 |
/// Returns \c true if and only if the heap stores no items. |
|
132 |
bool empty() const { return data.empty(); } |
|
133 |
|
|
134 |
/// \brief Make empty this heap. |
|
135 |
/// |
|
136 |
/// Make empty this heap. It does not change the cross reference |
|
137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
138 |
/// should first clear the heap and after that you should set the |
|
139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
140 |
void clear(int minimal = 0, int capacity = 0) { |
|
141 |
data.clear(); boxes.clear(); |
|
142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
144 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) { |
|
145 |
extend(); |
|
146 |
} |
|
147 |
} |
|
148 |
|
|
149 |
private: |
|
150 |
|
|
151 |
bool upper(int box, Prio pr) { |
|
152 |
return pr < boxes[box].min; |
|
153 |
} |
|
154 |
|
|
155 |
bool lower(int box, Prio pr) { |
|
156 |
return pr >= boxes[box].min + boxes[box].size; |
|
157 |
} |
|
158 |
|
|
159 |
/// \brief Remove item from the box list. |
|
160 |
void remove(int index) { |
|
161 |
if (data[index].prev >= 0) { |
|
162 |
data[data[index].prev].next = data[index].next; |
|
163 |
} else { |
|
164 |
boxes[data[index].box].first = data[index].next; |
|
165 |
} |
|
166 |
if (data[index].next >= 0) { |
|
167 |
data[data[index].next].prev = data[index].prev; |
|
168 |
} |
|
169 |
} |
|
170 |
|
|
171 |
/// \brief Insert item into the box list. |
|
172 |
void insert(int box, int index) { |
|
173 |
if (boxes[box].first == -1) { |
|
174 |
boxes[box].first = index; |
|
175 |
data[index].next = data[index].prev = -1; |
|
176 |
} else { |
|
177 |
data[index].next = boxes[box].first; |
|
178 |
data[boxes[box].first].prev = index; |
|
179 |
data[index].prev = -1; |
|
180 |
boxes[box].first = index; |
|
181 |
} |
|
182 |
data[index].box = box; |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Add a new box to the box list. |
|
186 |
void extend() { |
|
187 |
int min = boxes.back().min + boxes.back().size; |
|
188 |
int bs = 2 * boxes.back().size; |
|
189 |
boxes.push_back(RadixBox(min, bs)); |
|
190 |
} |
|
191 |
|
|
192 |
/// \brief Move an item up into the proper box. |
|
193 |
void bubble_up(int index) { |
|
194 |
if (!lower(data[index].box, data[index].prio)) return; |
|
195 |
remove(index); |
|
196 |
int box = findUp(data[index].box, data[index].prio); |
|
197 |
insert(box, index); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Find up the proper box for the item with the given prio. |
|
201 |
int findUp(int start, int pr) { |
|
202 |
while (lower(start, pr)) { |
|
203 |
if (++start == int(boxes.size())) { |
|
204 |
extend(); |
|
205 |
} |
|
206 |
} |
|
207 |
return start; |
|
208 |
} |
|
209 |
|
|
210 |
/// \brief Move an item down into the proper box. |
|
211 |
void bubble_down(int index) { |
|
212 |
if (!upper(data[index].box, data[index].prio)) return; |
|
213 |
remove(index); |
|
214 |
int box = findDown(data[index].box, data[index].prio); |
|
215 |
insert(box, index); |
|
216 |
} |
|
217 |
|
|
218 |
/// \brief Find up the proper box for the item with the given prio. |
|
219 |
int findDown(int start, int pr) { |
|
220 |
while (upper(start, pr)) { |
|
221 |
if (--start < 0) throw UnderFlowPriorityError(); |
|
222 |
} |
|
223 |
return start; |
|
224 |
} |
|
225 |
|
|
226 |
/// \brief Find the first not empty box. |
|
227 |
int findFirst() { |
|
228 |
int first = 0; |
|
229 |
while (boxes[first].first == -1) ++first; |
|
230 |
return first; |
|
231 |
} |
|
232 |
|
|
233 |
/// \brief Gives back the minimal prio of the box. |
|
234 |
int minValue(int box) { |
|
235 |
int min = data[boxes[box].first].prio; |
|
236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
237 |
if (data[k].prio < min) min = data[k].prio; |
|
238 |
} |
|
239 |
return min; |
|
240 |
} |
|
241 |
|
|
242 |
/// \brief Rearrange the items of the heap and makes the |
|
243 |
/// first box not empty. |
|
244 |
void moveDown() { |
|
245 |
int box = findFirst(); |
|
246 |
if (box == 0) return; |
|
247 |
int min = minValue(box); |
|
248 |
for (int i = 0; i <= box; ++i) { |
|
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
251 |
} |
|
252 |
int curr = boxes[box].first, next; |
|
253 |
while (curr != -1) { |
|
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
256 |
curr = next; |
|
257 |
} |
|
258 |
} |
|
259 |
|
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
data[data[index].prev].next = index; |
|
265 |
} else { |
|
266 |
boxes[data[index].box].first = index; |
|
267 |
} |
|
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
270 |
} |
|
271 |
_iim[data[index].item] = index; |
|
272 |
} |
|
273 |
data.pop_back(); |
|
274 |
} |
|
275 |
|
|
276 |
public: |
|
277 |
|
|
278 |
/// \brief Insert an item into the heap with the given priority. |
|
279 |
/// |
|
280 |
/// Adds \c i to the heap with priority \c p. |
|
281 |
/// \param i The item to insert. |
|
282 |
/// \param p The priority of the item. |
|
283 |
void push(const Item &i, const Prio &p) { |
|
284 |
int n = data.size(); |
|
285 |
_iim.set(i, n); |
|
286 |
data.push_back(RadixItem(i, p)); |
|
287 |
while (lower(boxes.size() - 1, p)) { |
|
288 |
extend(); |
|
289 |
} |
|
290 |
int box = findDown(boxes.size() - 1, p); |
|
291 |
insert(box, n); |
|
292 |
} |
|
293 |
|
|
294 |
/// \brief Returns the item with minimum priority. |
|
295 |
/// |
|
296 |
/// This method returns the item with minimum priority. |
|
297 |
/// \pre The heap must be nonempty. |
|
298 |
Item top() const { |
|
299 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
300 |
return data[boxes[0].first].item; |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Returns the minimum priority. |
|
304 |
/// |
|
305 |
/// It returns the minimum priority. |
|
306 |
/// \pre The heap must be nonempty. |
|
307 |
Prio prio() const { |
|
308 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
309 |
return data[boxes[0].first].prio; |
|
310 |
} |
|
311 |
|
|
312 |
/// \brief Deletes the item with minimum priority. |
|
313 |
/// |
|
314 |
/// This method deletes the item with minimum priority. |
|
315 |
/// \pre The heap must be non-empty. |
|
316 |
void pop() { |
|
317 |
moveDown(); |
|
318 |
int index = boxes[0].first; |
|
319 |
_iim[data[index].item] = POST_HEAP; |
|
320 |
remove(index); |
|
321 |
relocate_last(index); |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Deletes \c i from the heap. |
|
325 |
/// |
|
326 |
/// This method deletes item \c i from the heap, if \c i was |
|
327 |
/// already stored in the heap. |
|
328 |
/// \param i The item to erase. |
|
329 |
void erase(const Item &i) { |
|
330 |
int index = _iim[i]; |
|
331 |
_iim[i] = POST_HEAP; |
|
332 |
remove(index); |
|
333 |
relocate_last(index); |
|
334 |
} |
|
335 |
|
|
336 |
/// \brief Returns the priority of \c i. |
|
337 |
/// |
|
338 |
/// This function returns the priority of item \c i. |
|
339 |
/// \pre \c i must be in the heap. |
|
340 |
/// \param i The item. |
|
341 |
Prio operator[](const Item &i) const { |
|
342 |
int idx = _iim[i]; |
|
343 |
return data[idx].prio; |
|
344 |
} |
|
345 |
|
|
346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
347 |
/// if \c i was already there. |
|
348 |
/// |
|
349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
351 |
/// It may throw an \e UnderFlowPriorityException. |
|
352 |
/// \param i The item. |
|
353 |
/// \param p The priority. |
|
354 |
void set(const Item &i, const Prio &p) { |
|
355 |
int idx = _iim[i]; |
|
356 |
if( idx < 0 ) { |
|
357 |
push(i, p); |
|
358 |
} |
|
359 |
else if( p >= data[idx].prio ) { |
|
360 |
data[idx].prio = p; |
|
361 |
bubble_up(idx); |
|
362 |
} else { |
|
363 |
data[idx].prio = p; |
|
364 |
bubble_down(idx); |
|
365 |
} |
|
366 |
} |
|
367 |
|
|
368 |
|
|
369 |
/// \brief Decreases the priority of \c i to \c p. |
|
370 |
/// |
|
371 |
/// This method decreases the priority of item \c i to \c p. |
|
372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
373 |
/// \c should be greater or equal to the last removed item's priority. |
|
374 |
/// \param i The item. |
|
375 |
/// \param p The priority. |
|
376 |
void decrease(const Item &i, const Prio &p) { |
|
377 |
int idx = _iim[i]; |
|
378 |
data[idx].prio = p; |
|
379 |
bubble_down(idx); |
|
380 |
} |
|
381 |
|
|
382 |
/// \brief Increases the priority of \c i to \c p. |
|
383 |
/// |
|
384 |
/// This method sets the priority of item \c i to \c p. |
|
385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
386 |
/// \param i The item. |
|
387 |
/// \param p The priority. |
|
388 |
void increase(const Item &i, const Prio &p) { |
|
389 |
int idx = _iim[i]; |
|
390 |
data[idx].prio = p; |
|
391 |
bubble_up(idx); |
|
392 |
} |
|
393 |
|
|
394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
395 |
/// never been in the heap. |
|
396 |
/// |
|
397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
399 |
/// otherwise. In the latter case it is possible that \c item will |
|
400 |
/// get back to the heap again. |
|
401 |
/// \param i The item. |
|
402 |
State state(const Item &i) const { |
|
403 |
int s = _iim[i]; |
|
404 |
if( s >= 0 ) s = 0; |
|
405 |
return State(s); |
|
406 |
} |
|
407 |
|
|
408 |
/// \brief Sets the state of the \c item in the heap. |
|
409 |
/// |
|
410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
411 |
/// manually clear the heap when it is important to achive the |
|
412 |
/// better time complexity. |
|
413 |
/// \param i The item. |
|
414 |
/// \param st The state. It should not be \c IN_HEAP. |
|
415 |
void state(const Item& i, State st) { |
|
416 |
switch (st) { |
|
417 |
case POST_HEAP: |
|
418 |
case PRE_HEAP: |
|
419 |
if (state(i) == IN_HEAP) { |
|
420 |
erase(i); |
|
421 |
} |
|
422 |
_iim[i] = st; |
|
423 |
break; |
|
424 |
case IN_HEAP: |
|
425 |
break; |
|
426 |
} |
|
427 |
} |
|
428 |
|
|
429 |
}; // class RadixHeap |
|
430 |
|
|
431 |
} // namespace lemon |
|
432 |
|
|
433 |
#endif // LEMON_RADIX_HEAP_H |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bfs.h \ |
61 | 61 |
lemon/bin_heap.h \ |
62 |
lemon/bucket_heap.h \ |
|
62 | 63 |
lemon/cbc.h \ |
63 | 64 |
lemon/circulation.h \ |
64 | 65 |
lemon/clp.h \ |
65 | 66 |
lemon/color.h \ |
66 | 67 |
lemon/concept_check.h \ |
67 | 68 |
lemon/connectivity.h \ |
68 | 69 |
lemon/counter.h \ |
69 | 70 |
lemon/core.h \ |
70 | 71 |
lemon/cplex.h \ |
71 | 72 |
lemon/dfs.h \ |
72 | 73 |
lemon/dijkstra.h \ |
73 | 74 |
lemon/dim2.h \ |
74 | 75 |
lemon/dimacs.h \ |
75 | 76 |
lemon/edge_set.h \ |
76 | 77 |
lemon/elevator.h \ |
77 | 78 |
lemon/error.h \ |
78 | 79 |
lemon/euler.h \ |
80 |
lemon/fib_heap.h \ |
|
79 | 81 |
lemon/full_graph.h \ |
80 | 82 |
lemon/glpk.h \ |
81 | 83 |
lemon/gomory_hu.h \ |
82 | 84 |
lemon/graph_to_eps.h \ |
83 | 85 |
lemon/grid_graph.h \ |
84 | 86 |
lemon/hypercube_graph.h \ |
85 | 87 |
lemon/kruskal.h \ |
86 | 88 |
lemon/hao_orlin.h \ |
87 | 89 |
lemon/lgf_reader.h \ |
88 | 90 |
lemon/lgf_writer.h \ |
89 | 91 |
lemon/list_graph.h \ |
90 | 92 |
lemon/lp.h \ |
91 | 93 |
lemon/lp_base.h \ |
92 | 94 |
lemon/lp_skeleton.h \ |
93 | 95 |
lemon/list_graph.h \ |
94 | 96 |
lemon/maps.h \ |
95 | 97 |
lemon/matching.h \ |
96 | 98 |
lemon/math.h \ |
97 | 99 |
lemon/min_cost_arborescence.h \ |
98 | 100 |
lemon/nauty_reader.h \ |
99 | 101 |
lemon/network_simplex.h \ |
100 | 102 |
lemon/path.h \ |
101 | 103 |
lemon/preflow.h \ |
104 |
lemon/radix_heap.h \ |
|
102 | 105 |
lemon/radix_sort.h \ |
103 | 106 |
lemon/random.h \ |
104 | 107 |
lemon/smart_graph.h \ |
105 | 108 |
lemon/soplex.h \ |
106 | 109 |
lemon/suurballe.h \ |
107 | 110 |
lemon/time_measure.h \ |
108 | 111 |
lemon/tolerance.h \ |
109 | 112 |
lemon/unionfind.h \ |
110 | 113 |
lemon/bits/windows.h |
111 | 114 |
|
112 | 115 |
bits_HEADERS += \ |
113 | 116 |
lemon/bits/alteration_notifier.h \ |
114 | 117 |
lemon/bits/array_map.h \ |
115 | 118 |
lemon/bits/bezier.h \ |
116 | 119 |
lemon/bits/default_map.h \ |
117 | 120 |
lemon/bits/edge_set_extender.h \ |
118 | 121 |
lemon/bits/enable_if.h \ |
119 | 122 |
lemon/bits/graph_adaptor_extender.h \ |
120 | 123 |
lemon/bits/graph_extender.h \ |
121 | 124 |
lemon/bits/map_extender.h \ |
122 | 125 |
lemon/bits/path_dump.h \ |
123 | 126 |
lemon/bits/solver_bits.h \ |
124 | 127 |
lemon/bits/traits.h \ |
125 | 128 |
lemon/bits/variant.h \ |
126 | 129 |
lemon/bits/vector_map.h |
127 | 130 |
|
128 | 131 |
concept_HEADERS += \ |
129 | 132 |
lemon/concepts/digraph.h \ |
130 | 133 |
lemon/concepts/graph.h \ |
131 | 134 |
lemon/concepts/graph_components.h \ |
132 | 135 |
lemon/concepts/heap.h \ |
133 | 136 |
lemon/concepts/maps.h \ |
134 | 137 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
38 | 38 |
///A \e heap is a data structure for storing items with specified values |
39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
40 |
///priority is efficient. \c |
|
40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
42 | 42 |
///item, etc. |
43 | 43 |
/// |
44 | 44 |
///\tparam PR Type of the priority of the items. |
45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
46 | 46 |
///to handle the cross references. |
47 |
///\tparam |
|
47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
48 | 48 |
///The default is \c std::less<PR>. |
49 | 49 |
/// |
50 | 50 |
///\sa FibHeap |
51 | 51 |
///\sa Dijkstra |
52 |
template <typename PR, typename IM, typename |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 53 |
class BinHeap { |
54 | 54 |
|
55 | 55 |
public: |
56 | 56 |
///\e |
57 | 57 |
typedef IM ItemIntMap; |
58 | 58 |
///\e |
59 | 59 |
typedef PR Prio; |
60 | 60 |
///\e |
61 | 61 |
typedef typename ItemIntMap::Key Item; |
62 | 62 |
///\e |
63 | 63 |
typedef std::pair<Item,Prio> Pair; |
64 | 64 |
///\e |
65 |
typedef |
|
65 |
typedef CMP Compare; |
|
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the items states. |
68 | 68 |
/// |
69 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
70 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 | 76 |
IN_HEAP = 0, ///< = 0. |
77 | 77 |
PRE_HEAP = -1, ///< = -1. |
78 | 78 |
POST_HEAP = -2 ///< = -2. |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
std::vector<Pair> _data; |
83 | 83 |
Compare _comp; |
84 | 84 |
ItemIntMap &_iim; |
85 | 85 |
|
86 | 86 |
public: |
87 | 87 |
/// \brief The constructor. |
88 | 88 |
/// |
89 | 89 |
/// The constructor. |
90 | 90 |
/// \param map should be given to the constructor, since it is used |
91 | 91 |
/// internally to handle the cross references. The value of the map |
92 | 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
93 | 93 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 94 |
|
95 | 95 |
/// \brief The constructor. |
96 | 96 |
/// |
97 | 97 |
/// The constructor. |
98 | 98 |
/// \param map should be given to the constructor, since it is used |
99 | 99 |
/// internally to handle the cross references. The value of the map |
100 | 100 |
/// should be PRE_HEAP (-1) for each element. |
101 | 101 |
/// |
102 | 102 |
/// \param comp The comparator function object. |
103 | 103 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 104 |
: _iim(map), _comp(comp) {} |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
/// The number of items stored in the heap. |
108 | 108 |
/// |
109 | 109 |
/// \brief Returns the number of items stored in the heap. |
110 | 110 |
int size() const { return _data.size(); } |
111 | 111 |
|
112 | 112 |
/// \brief Checks if the heap stores no items. |
113 | 113 |
/// |
114 | 114 |
/// Returns \c true if and only if the heap stores no items. |
115 | 115 |
bool empty() const { return _data.empty(); } |
116 | 116 |
|
117 | 117 |
/// \brief Make empty this heap. |
118 | 118 |
/// |
119 | 119 |
/// Make empty this heap. It does not change the cross reference map. |
120 | 120 |
/// If you want to reuse what is not surely empty you should first clear |
121 | 121 |
/// the heap and after that you should set the cross reference map for |
122 | 122 |
/// each item to \c PRE_HEAP. |
123 | 123 |
void clear() { |
124 | 124 |
_data.clear(); |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
private: |
128 | 128 |
static int parent(int i) { return (i-1)/2; } |
129 | 129 |
|
130 | 130 |
static int second_child(int i) { return 2*i+2; } |
131 | 131 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 132 |
return _comp(p1.second, p2.second); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
int bubble_up(int hole, Pair p) { |
136 | 136 |
int par = parent(hole); |
137 | 137 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 138 |
move(_data[par],hole); |
139 | 139 |
hole = par; |
140 | 140 |
par = parent(hole); |
141 | 141 |
} |
142 | 142 |
move(p, hole); |
143 | 143 |
return hole; |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
int bubble_down(int hole, Pair p, int length) { |
147 | 147 |
int child = second_child(hole); |
148 | 148 |
while(child < length) { |
149 | 149 |
if( less(_data[child-1], _data[child]) ) { |
150 | 150 |
--child; |
151 | 151 |
} |
152 | 152 |
if( !less(_data[child], p) ) |
153 | 153 |
goto ok; |
154 | 154 |
move(_data[child], hole); |
155 | 155 |
hole = child; |
156 | 156 |
child = second_child(hole); |
157 | 157 |
} |
158 | 158 |
child--; |
159 | 159 |
if( child<length && less(_data[child], p) ) { |
160 | 160 |
move(_data[child], hole); |
161 | 161 |
hole=child; |
162 | 162 |
} |
163 | 163 |
ok: |
164 | 164 |
move(p, hole); |
165 | 165 |
return hole; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
void move(const Pair &p, int i) { |
169 | 169 |
_data[i] = p; |
170 | 170 |
_iim.set(p.first, i); |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
public: |
174 | 174 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 175 |
/// |
176 | 176 |
/// Adds \c p.first to the heap with priority \c p.second. |
177 | 177 |
/// \param p The pair to insert. |
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 | 181 |
bubble_up(n, p); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
/// \brief Insert an item into the heap with the given heap. |
185 | 185 |
/// |
186 | 186 |
/// Adds \c i to the heap with priority \c p. |
187 | 187 |
/// \param i The item to insert. |
188 | 188 |
/// \param p The priority of the item. |
189 | 189 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 190 |
|
191 | 191 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
192 | 192 |
/// |
193 | 193 |
/// This method returns the item with minimum priority relative to \c |
194 | 194 |
/// Compare. |
195 | 195 |
/// \pre The heap must be nonempty. |
196 | 196 |
Item top() const { |
197 | 197 |
return _data[0].first; |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
/// \brief Returns the minimum priority relative to \c Compare. |
201 | 201 |
/// |
202 | 202 |
/// It returns the minimum priority relative to \c Compare. |
203 | 203 |
/// \pre The heap must be nonempty. |
204 | 204 |
Prio prio() const { |
205 | 205 |
return _data[0].second; |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
209 | 209 |
/// |
210 | 210 |
/// This method deletes the item with minimum priority relative to \c |
211 | 211 |
/// Compare from the heap. |
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 | 217 |
bubble_down(0, _data[n], n); |
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
/// \brief Deletes \c i from the heap. |
223 | 223 |
/// |
224 | 224 |
/// This method deletes item \c i from the heap. |
225 | 225 |
/// \param i The item to erase. |
226 | 226 |
/// \pre The item should be in the heap. |
227 | 227 |
void erase(const Item &i) { |
228 | 228 |
int h = _iim[i]; |
229 | 229 |
int n = _data.size()-1; |
230 | 230 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 231 |
if( h < n ) { |
232 | 232 |
if ( bubble_up(h, _data[n]) == h) { |
233 | 233 |
bubble_down(h, _data[n], n); |
234 | 234 |
} |
235 | 235 |
} |
236 | 236 |
_data.pop_back(); |
237 | 237 |
} |
238 | 238 |
|
239 | 239 |
|
240 | 240 |
/// \brief Returns the priority of \c i. |
241 | 241 |
/// |
242 | 242 |
/// This function returns the priority of item \c i. |
243 | 243 |
/// \param i The item. |
244 | 244 |
/// \pre \c i must be in the heap. |
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
/// \brief \c i gets to the heap with priority \c p independently |
251 | 251 |
/// if \c i was already there. |
252 | 252 |
/// |
253 | 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
254 | 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
255 | 255 |
/// \param i The item. |
256 | 256 |
/// \param p The priority. |
257 | 257 |
void set(const Item &i, const Prio &p) { |
258 | 258 |
int idx = _iim[i]; |
259 | 259 |
if( idx < 0 ) { |
260 | 260 |
push(i,p); |
261 | 261 |
} |
262 | 262 |
else if( _comp(p, _data[idx].second) ) { |
263 | 263 |
bubble_up(idx, Pair(i,p)); |
264 | 264 |
} |
265 | 265 |
else { |
266 | 266 |
bubble_down(idx, Pair(i,p), _data.size()); |
267 | 267 |
} |
268 | 268 |
} |
269 | 269 |
|
270 | 270 |
/// \brief Decreases the priority of \c i to \c p. |
271 | 271 |
/// |
272 | 272 |
/// This method decreases the priority of item \c i to \c p. |
273 | 273 |
/// \param i The item. |
274 | 274 |
/// \param p The priority. |
275 | 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
276 | 276 |
/// p relative to \c Compare. |
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 | 279 |
bubble_up(idx, Pair(i,p)); |
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
/// \brief Increases the priority of \c i to \c p. |
283 | 283 |
/// |
284 | 284 |
/// This method sets the priority of item \c i to \c p. |
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 | 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
288 | 288 |
/// p relative to \c Compare. |
289 | 289 |
void increase(const Item &i, const Prio &p) { |
290 | 290 |
int idx = _iim[i]; |
291 | 291 |
bubble_down(idx, Pair(i,p), _data.size()); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
/// \brief Returns if \c item is in, has already been in, or has |
295 | 295 |
/// never been in the heap. |
296 | 296 |
/// |
297 | 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
298 | 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
299 | 299 |
/// otherwise. In the latter case it is possible that \c item will |
300 | 300 |
/// get back to the heap again. |
301 | 301 |
/// \param i The item. |
302 | 302 |
State state(const Item &i) const { |
303 | 303 |
int s = _iim[i]; |
304 | 304 |
if( s>=0 ) |
305 | 305 |
s=0; |
306 | 306 |
return State(s); |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
/// \brief Sets the state of the \c item in the heap. |
310 | 310 |
/// |
311 | 311 |
/// Sets the state of the \c item in the heap. It can be used to |
312 | 312 |
/// manually clear the heap when it is important to achive the |
313 | 313 |
/// better time complexity. |
314 | 314 |
/// \param i The item. |
315 | 315 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 316 |
void state(const Item& i, State st) { |
317 | 317 |
switch (st) { |
318 | 318 |
case POST_HEAP: |
319 | 319 |
case PRE_HEAP: |
320 | 320 |
if (state(i) == IN_HEAP) { |
321 | 321 |
erase(i); |
322 | 322 |
} |
323 | 323 |
_iim[i] = st; |
324 | 324 |
break; |
325 | 325 |
case IN_HEAP: |
326 | 326 |
break; |
327 | 327 |
} |
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
/// \brief Replaces an item in the heap. |
331 | 331 |
/// |
332 | 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
333 | 333 |
/// be in the heap, while the \c j should be out of the heap. The |
334 | 334 |
/// \c i item will out of the heap and \c j will be in the heap |
335 | 335 |
/// with the same prioriority as prevoiusly the \c i item. |
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 |
#include <map> |
|
25 | 26 |
|
26 | 27 |
#include <lemon/core.h> |
27 | 28 |
|
28 | 29 |
///\file |
29 | 30 |
///\ingroup maps |
30 | 31 |
///\brief Miscellaneous property maps |
31 | 32 |
|
32 |
#include <map> |
|
33 |
|
|
34 | 33 |
namespace lemon { |
35 | 34 |
|
36 | 35 |
/// \addtogroup maps |
37 | 36 |
/// @{ |
38 | 37 |
|
39 | 38 |
/// Base class of maps. |
40 | 39 |
|
41 | 40 |
/// Base class of maps. It provides the necessary type definitions |
42 | 41 |
/// required by the map %concepts. |
43 | 42 |
template<typename K, typename V> |
44 | 43 |
class MapBase { |
45 | 44 |
public: |
46 | 45 |
/// \brief The key type of the map. |
47 | 46 |
typedef K Key; |
48 | 47 |
/// \brief The value type of the map. |
49 | 48 |
/// (The type of objects associated with the keys). |
50 | 49 |
typedef V Value; |
51 | 50 |
}; |
52 | 51 |
|
53 | 52 |
|
54 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 54 |
|
56 | 55 |
/// This map can be used if you have to provide a map only for |
57 | 56 |
/// its type definitions, or if you have to provide a writable map, |
58 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 58 |
/// <tt>/dev/null</tt>). |
60 | 59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 60 |
/// |
62 | 61 |
/// \sa ConstMap |
63 | 62 |
template<typename K, typename V> |
64 | 63 |
class NullMap : public MapBase<K, V> { |
65 | 64 |
public: |
66 | 65 |
///\e |
67 | 66 |
typedef K Key; |
68 | 67 |
///\e |
69 | 68 |
typedef V Value; |
70 | 69 |
|
71 | 70 |
/// Gives back a default constructed element. |
72 | 71 |
Value operator[](const Key&) const { return Value(); } |
73 | 72 |
/// Absorbs the value. |
74 | 73 |
void set(const Key&, const Value&) {} |
75 | 74 |
}; |
76 | 75 |
|
77 | 76 |
/// Returns a \c NullMap class |
78 | 77 |
|
79 | 78 |
/// This function just returns a \c NullMap class. |
80 | 79 |
/// \relates NullMap |
81 | 80 |
template <typename K, typename V> |
82 | 81 |
NullMap<K, V> nullMap() { |
83 | 82 |
return NullMap<K, V>(); |
84 | 83 |
} |
85 | 84 |
|
86 | 85 |
|
87 | 86 |
/// Constant map. |
88 | 87 |
|
89 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
90 | 89 |
/// value to each key. |
91 | 90 |
/// |
92 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
93 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
94 | 93 |
/// concept, but it absorbs the data written to it. |
95 | 94 |
/// |
96 | 95 |
/// The simplest way of using this map is through the constMap() |
97 | 96 |
/// function. |
98 | 97 |
/// |
99 | 98 |
/// \sa NullMap |
100 | 99 |
/// \sa IdentityMap |
101 | 100 |
template<typename K, typename V> |
102 | 101 |
class ConstMap : public MapBase<K, V> { |
103 | 102 |
private: |
104 | 103 |
V _value; |
105 | 104 |
public: |
106 | 105 |
///\e |
107 | 106 |
typedef K Key; |
108 | 107 |
///\e |
109 | 108 |
typedef V Value; |
110 | 109 |
|
111 | 110 |
/// Default constructor |
112 | 111 |
|
113 | 112 |
/// Default constructor. |
114 | 113 |
/// The value of the map will be default constructed. |
115 | 114 |
ConstMap() {} |
116 | 115 |
|
117 | 116 |
/// Constructor with specified initial value |
118 | 117 |
|
119 | 118 |
/// Constructor with specified initial value. |
120 | 119 |
/// \param v The initial value of the map. |
121 | 120 |
ConstMap(const Value &v) : _value(v) {} |
122 | 121 |
|
123 | 122 |
/// Gives back the specified value. |
124 | 123 |
Value operator[](const Key&) const { return _value; } |
125 | 124 |
|
126 | 125 |
/// Absorbs the value. |
127 | 126 |
void set(const Key&, const Value&) {} |
128 | 127 |
|
129 | 128 |
/// Sets the value that is assigned to each key. |
130 | 129 |
void setAll(const Value &v) { |
131 | 130 |
_value = v; |
132 | 131 |
} |
133 | 132 |
|
134 | 133 |
template<typename V1> |
135 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
136 | 135 |
}; |
137 | 136 |
|
138 | 137 |
/// Returns a \c ConstMap class |
139 | 138 |
|
140 | 139 |
/// This function just returns a \c ConstMap class. |
141 | 140 |
/// \relates ConstMap |
142 | 141 |
template<typename K, typename V> |
143 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
144 | 143 |
return ConstMap<K, V>(v); |
145 | 144 |
} |
146 | 145 |
|
147 | 146 |
template<typename K, typename V> |
148 | 147 |
inline ConstMap<K, V> constMap() { |
149 | 148 |
return ConstMap<K, V>(); |
150 | 149 |
} |
151 | 150 |
|
152 | 151 |
|
153 | 152 |
template<typename T, T v> |
154 | 153 |
struct Const {}; |
155 | 154 |
|
156 | 155 |
/// Constant map with inlined constant value. |
157 | 156 |
|
158 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
159 | 158 |
/// value to each key. |
160 | 159 |
/// |
161 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
162 | 161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
163 | 162 |
/// concept, but it absorbs the data written to it. |
164 | 163 |
/// |
165 | 164 |
/// The simplest way of using this map is through the constMap() |
166 | 165 |
/// function. |
167 | 166 |
/// |
168 | 167 |
/// \sa NullMap |
169 | 168 |
/// \sa IdentityMap |
170 | 169 |
template<typename K, typename V, V v> |
171 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
172 | 171 |
public: |
173 | 172 |
///\e |
174 | 173 |
typedef K Key; |
175 | 174 |
///\e |
176 | 175 |
typedef V Value; |
177 | 176 |
|
178 | 177 |
/// Constructor. |
179 | 178 |
ConstMap() {} |
180 | 179 |
|
181 | 180 |
/// Gives back the specified value. |
182 | 181 |
Value operator[](const Key&) const { return v; } |
183 | 182 |
|
184 | 183 |
/// Absorbs the value. |
185 | 184 |
void set(const Key&, const Value&) {} |
186 | 185 |
}; |
187 | 186 |
|
188 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
189 | 188 |
|
190 | 189 |
/// This function just returns a \c ConstMap class with inlined |
191 | 190 |
/// constant value. |
192 | 191 |
/// \relates ConstMap |
193 | 192 |
template<typename K, typename V, V v> |
194 | 193 |
inline ConstMap<K, Const<V, v> > constMap() { |
195 | 194 |
return ConstMap<K, Const<V, v> >(); |
196 | 195 |
} |
197 | 196 |
|
198 | 197 |
|
199 | 198 |
/// Identity map. |
200 | 199 |
|
201 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
202 | 201 |
/// key as value without any modification. |
203 | 202 |
/// |
204 | 203 |
/// \sa ConstMap |
205 | 204 |
template <typename T> |
206 | 205 |
class IdentityMap : public MapBase<T, T> { |
207 | 206 |
public: |
208 | 207 |
///\e |
209 | 208 |
typedef T Key; |
210 | 209 |
///\e |
211 | 210 |
typedef T Value; |
212 | 211 |
|
213 | 212 |
/// Gives back the given value without any modification. |
214 | 213 |
Value operator[](const Key &k) const { |
215 | 214 |
return k; |
216 | 215 |
} |
217 | 216 |
}; |
218 | 217 |
|
219 | 218 |
/// Returns an \c IdentityMap class |
220 | 219 |
|
221 | 220 |
/// This function just returns an \c IdentityMap class. |
222 | 221 |
/// \relates IdentityMap |
223 | 222 |
template<typename T> |
224 | 223 |
inline IdentityMap<T> identityMap() { |
225 | 224 |
return IdentityMap<T>(); |
226 | 225 |
} |
227 | 226 |
|
228 | 227 |
|
229 | 228 |
/// \brief Map for storing values for integer keys from the range |
230 | 229 |
/// <tt>[0..size-1]</tt>. |
231 | 230 |
/// |
232 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
233 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
234 | 233 |
/// It can be used with some data structures, for example |
235 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
236 | 235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
237 | 236 |
/// "ReferenceMap" concept. |
238 | 237 |
/// |
239 | 238 |
/// The simplest way of using this map is through the rangeMap() |
240 | 239 |
/// function. |
241 | 240 |
template <typename V> |
242 | 241 |
class RangeMap : public MapBase<int, V> { |
243 | 242 |
template <typename V1> |
244 | 243 |
friend class RangeMap; |
245 | 244 |
private: |
246 | 245 |
|
247 | 246 |
typedef std::vector<V> Vector; |
248 | 247 |
Vector _vector; |
249 | 248 |
|
250 | 249 |
public: |
251 | 250 |
|
252 | 251 |
/// Key type |
253 | 252 |
typedef int Key; |
254 | 253 |
/// Value type |
255 | 254 |
typedef V Value; |
256 | 255 |
/// Reference type |
257 | 256 |
typedef typename Vector::reference Reference; |
258 | 257 |
/// Const reference type |
259 | 258 |
typedef typename Vector::const_reference ConstReference; |
260 | 259 |
|
261 | 260 |
typedef True ReferenceMapTag; |
262 | 261 |
|
263 | 262 |
public: |
264 | 263 |
|
265 | 264 |
/// Constructor with specified default value. |
266 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
267 | 266 |
: _vector(size, value) {} |
268 | 267 |
|
269 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
270 | 269 |
template <typename V1> |
271 | 270 |
RangeMap(const std::vector<V1>& vector) |
272 | 271 |
: _vector(vector.begin(), vector.end()) {} |
273 | 272 |
|
274 | 273 |
/// Constructs the map from another \c RangeMap. |
275 | 274 |
template <typename V1> |
276 | 275 |
RangeMap(const RangeMap<V1> &c) |
277 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {} |
278 | 277 |
|
279 | 278 |
/// Returns the size of the map. |
280 | 279 |
int size() { |
281 | 280 |
return _vector.size(); |
282 | 281 |
} |
283 | 282 |
|
284 | 283 |
/// Resizes the map. |
285 | 284 |
|
286 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
287 | 286 |
/// keyset of the map. |
288 | 287 |
/// \param size The new size of the map. The new keyset will be the |
289 | 288 |
/// range <tt>[0..size-1]</tt>. |
290 | 289 |
/// \param value The default value to assign to the new keys. |
291 | 290 |
void resize(int size, const Value &value = Value()) { |
292 | 291 |
_vector.resize(size, value); |
293 | 292 |
} |
294 | 293 |
|
295 | 294 |
private: |
296 | 295 |
|
297 | 296 |
RangeMap& operator=(const RangeMap&); |
298 | 297 |
|
299 | 298 |
public: |
300 | 299 |
|
301 | 300 |
///\e |
302 | 301 |
Reference operator[](const Key &k) { |
303 | 302 |
return _vector[k]; |
304 | 303 |
} |
305 | 304 |
|
306 | 305 |
///\e |
307 | 306 |
ConstReference operator[](const Key &k) const { |
308 | 307 |
return _vector[k]; |
309 | 308 |
} |
310 | 309 |
|
311 | 310 |
///\e |
312 | 311 |
void set(const Key &k, const Value &v) { |
313 | 312 |
_vector[k] = v; |
314 | 313 |
} |
315 | 314 |
}; |
316 | 315 |
|
317 | 316 |
/// Returns a \c RangeMap class |
318 | 317 |
|
319 | 318 |
/// This function just returns a \c RangeMap class. |
320 | 319 |
/// \relates RangeMap |
321 | 320 |
template<typename V> |
322 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
323 | 322 |
return RangeMap<V>(size, value); |
324 | 323 |
} |
325 | 324 |
|
326 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
327 | 326 |
/// \c std::vector |
328 | 327 |
|
329 | 328 |
/// This function just returns a \c RangeMap class created from an |
330 | 329 |
/// appropriate \c std::vector. |
331 | 330 |
/// \relates RangeMap |
332 | 331 |
template<typename V> |
333 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
334 | 333 |
return RangeMap<V>(vector); |
335 | 334 |
} |
336 | 335 |
|
337 | 336 |
|
338 | 337 |
/// Map type based on \c std::map |
339 | 338 |
|
340 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
341 | 340 |
/// that you can specify a default value for the keys that are not |
342 | 341 |
/// stored actually. This value can be different from the default |
343 | 342 |
/// contructed value (i.e. \c %Value()). |
344 | 343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
345 | 344 |
/// concept. |
346 | 345 |
/// |
347 | 346 |
/// This map is useful if a default value should be assigned to most of |
348 | 347 |
/// the keys and different values should be assigned only to a few |
349 | 348 |
/// keys (i.e. the map is "sparse"). |
350 | 349 |
/// The name of this type also refers to this important usage. |
351 | 350 |
/// |
352 | 351 |
/// Apart form that this map can be used in many other cases since it |
353 | 352 |
/// is based on \c std::map, which is a general associative container. |
354 | 353 |
/// However keep in mind that it is usually not as efficient as other |
355 | 354 |
/// maps. |
356 | 355 |
/// |
357 | 356 |
/// The simplest way of using this map is through the sparseMap() |
358 | 357 |
/// function. |
359 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
360 | 359 |
class SparseMap : public MapBase<K, V> { |
361 | 360 |
template <typename K1, typename V1, typename C1> |
362 | 361 |
friend class SparseMap; |
363 | 362 |
public: |
364 | 363 |
|
365 | 364 |
/// Key type |
366 | 365 |
typedef K Key; |
367 | 366 |
/// Value type |
368 | 367 |
typedef V Value; |
369 | 368 |
/// Reference type |
370 | 369 |
typedef Value& Reference; |
371 | 370 |
/// Const reference type |
372 | 371 |
typedef const Value& ConstReference; |
373 | 372 |
|
374 | 373 |
typedef True ReferenceMapTag; |
375 | 374 |
|
376 | 375 |
private: |
377 | 376 |
|
378 | 377 |
typedef std::map<K, V, Comp> Map; |
379 | 378 |
Map _map; |
380 | 379 |
Value _value; |
381 | 380 |
|
382 | 381 |
public: |
383 | 382 |
|
384 | 383 |
/// \brief Constructor with specified default value. |
385 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {} |
386 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
387 | 386 |
/// explicitly specifies a default value. |
388 | 387 |
template <typename V1, typename Comp1> |
389 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
390 | 389 |
const Value &value = Value()) |
391 | 390 |
: _map(map.begin(), map.end()), _value(value) {} |
392 | 391 |
|
393 | 392 |
/// \brief Constructs the map from another \c SparseMap. |
394 | 393 |
template<typename V1, typename Comp1> |
395 | 394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
396 | 395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
397 | 396 |
|
398 | 397 |
private: |
399 | 398 |
|
400 | 399 |
SparseMap& operator=(const SparseMap&); |
401 | 400 |
|
402 | 401 |
public: |
403 | 402 |
|
404 | 403 |
///\e |
405 | 404 |
Reference operator[](const Key &k) { |
406 | 405 |
typename Map::iterator it = _map.lower_bound(k); |
407 | 406 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
408 | 407 |
return it->second; |
409 | 408 |
else |
410 | 409 |
return _map.insert(it, std::make_pair(k, _value))->second; |
411 | 410 |
} |
412 | 411 |
|
413 | 412 |
///\e |
414 | 413 |
ConstReference operator[](const Key &k) const { |
415 | 414 |
typename Map::const_iterator it = _map.find(k); |
416 | 415 |
if (it != _map.end()) |
417 | 416 |
return it->second; |
418 | 417 |
else |
419 | 418 |
return _value; |
420 | 419 |
} |
421 | 420 |
|
422 | 421 |
///\e |
423 | 422 |
void set(const Key &k, const Value &v) { |
424 | 423 |
typename Map::iterator it = _map.lower_bound(k); |
425 | 424 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
426 | 425 |
it->second = v; |
427 | 426 |
else |
428 | 427 |
_map.insert(it, std::make_pair(k, v)); |
429 | 428 |
} |
430 | 429 |
|
431 | 430 |
///\e |
432 | 431 |
void setAll(const Value &v) { |
433 | 432 |
_value = v; |
434 | 433 |
_map.clear(); |
435 | 434 |
} |
436 | 435 |
}; |
437 | 436 |
|
438 | 437 |
/// Returns a \c SparseMap class |
439 | 438 |
|
440 | 439 |
/// This function just returns a \c SparseMap class with specified |
441 | 440 |
/// default value. |
442 | 441 |
/// \relates SparseMap |
443 | 442 |
template<typename K, typename V, typename Compare> |
444 | 443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
445 | 444 |
return SparseMap<K, V, Compare>(value); |
446 | 445 |
} |
447 | 446 |
|
448 | 447 |
template<typename K, typename V> |
449 | 448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
450 | 449 |
return SparseMap<K, V, std::less<K> >(value); |
451 | 450 |
} |
452 | 451 |
|
453 | 452 |
/// \brief Returns a \c SparseMap class created from an appropriate |
454 | 453 |
/// \c std::map |
455 | 454 |
|
456 | 455 |
/// This function just returns a \c SparseMap class created from an |
457 | 456 |
/// appropriate \c std::map. |
458 | 457 |
/// \relates SparseMap |
459 | 458 |
template<typename K, typename V, typename Compare> |
460 | 459 |
inline SparseMap<K, V, Compare> |
461 | 460 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
462 | 461 |
{ |
463 | 462 |
return SparseMap<K, V, Compare>(map, value); |
464 | 463 |
} |
465 | 464 |
|
466 | 465 |
/// @} |
467 | 466 |
|
468 | 467 |
/// \addtogroup map_adaptors |
469 | 468 |
/// @{ |
470 | 469 |
|
471 | 470 |
/// Composition of two maps |
472 | 471 |
|
473 | 472 |
/// This \ref concepts::ReadMap "read-only map" returns the |
474 | 473 |
/// composition of two given maps. That is to say, if \c m1 is of |
475 | 474 |
/// type \c M1 and \c m2 is of \c M2, then for |
476 | 475 |
/// \code |
477 | 476 |
/// ComposeMap<M1, M2> cm(m1,m2); |
478 | 477 |
/// \endcode |
479 | 478 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
480 | 479 |
/// |
481 | 480 |
/// The \c Key type of the map is inherited from \c M2 and the |
482 | 481 |
/// \c Value type is from \c M1. |
483 | 482 |
/// \c M2::Value must be convertible to \c M1::Key. |
484 | 483 |
/// |
485 | 484 |
/// The simplest way of using this map is through the composeMap() |
486 | 485 |
/// function. |
487 | 486 |
/// |
488 | 487 |
/// \sa CombineMap |
489 | 488 |
template <typename M1, typename M2> |
490 | 489 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
491 | 490 |
const M1 &_m1; |
492 | 491 |
const M2 &_m2; |
493 | 492 |
public: |
494 | 493 |
///\e |
495 | 494 |
typedef typename M2::Key Key; |
496 | 495 |
///\e |
497 | 496 |
typedef typename M1::Value Value; |
498 | 497 |
|
499 | 498 |
/// Constructor |
500 | 499 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
501 | 500 |
|
502 | 501 |
///\e |
503 | 502 |
typename MapTraits<M1>::ConstReturnValue |
504 | 503 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
505 | 504 |
}; |
506 | 505 |
|
507 | 506 |
/// Returns a \c ComposeMap class |
508 | 507 |
|
509 | 508 |
/// This function just returns a \c ComposeMap class. |
510 | 509 |
/// |
511 | 510 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
512 | 511 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
513 | 512 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
514 | 513 |
/// |
515 | 514 |
/// \relates ComposeMap |
516 | 515 |
template <typename M1, typename M2> |
517 | 516 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
518 | 517 |
return ComposeMap<M1, M2>(m1, m2); |
519 | 518 |
} |
520 | 519 |
|
521 | 520 |
|
522 | 521 |
/// Combination of two maps using an STL (binary) functor. |
523 | 522 |
|
524 | 523 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
525 | 524 |
/// binary functor and returns the combination of the two given maps |
526 | 525 |
/// using the functor. |
527 | 526 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
528 | 527 |
/// and \c f is of \c F, then for |
529 | 528 |
/// \code |
530 | 529 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
531 | 530 |
/// \endcode |
532 | 531 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
533 | 532 |
/// |
534 | 533 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
535 | 534 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
536 | 535 |
/// \c M2::Value and \c M1::Value must be convertible to the |
537 | 536 |
/// corresponding input parameter of \c F and the return type of \c F |
538 | 537 |
/// must be convertible to \c V. |
539 | 538 |
/// |
540 | 539 |
/// The simplest way of using this map is through the combineMap() |
541 | 540 |
/// function. |
542 | 541 |
/// |
543 | 542 |
/// \sa ComposeMap |
544 | 543 |
template<typename M1, typename M2, typename F, |
545 | 544 |
typename V = typename F::result_type> |
546 | 545 |
class CombineMap : public MapBase<typename M1::Key, V> { |
547 | 546 |
const M1 &_m1; |
548 | 547 |
const M2 &_m2; |
549 | 548 |
F _f; |
550 | 549 |
public: |
551 | 550 |
///\e |
552 | 551 |
typedef typename M1::Key Key; |
553 | 552 |
///\e |
554 | 553 |
typedef V Value; |
555 | 554 |
|
556 | 555 |
/// Constructor |
557 | 556 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
558 | 557 |
: _m1(m1), _m2(m2), _f(f) {} |
559 | 558 |
///\e |
560 | 559 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
561 | 560 |
}; |
562 | 561 |
|
563 | 562 |
/// Returns a \c CombineMap class |
564 | 563 |
|
565 | 564 |
/// This function just returns a \c CombineMap class. |
566 | 565 |
/// |
567 | 566 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
568 | 567 |
/// values, then |
569 | 568 |
/// \code |
570 | 569 |
/// combineMap(m1,m2,std::plus<double>()) |
571 | 570 |
/// \endcode |
572 | 571 |
/// is equivalent to |
573 | 572 |
/// \code |
574 | 573 |
/// addMap(m1,m2) |
575 | 574 |
/// \endcode |
576 | 575 |
/// |
577 | 576 |
/// This function is specialized for adaptable binary function |
578 | 577 |
/// classes and C++ functions. |
579 | 578 |
/// |
580 | 579 |
/// \relates CombineMap |
581 | 580 |
template<typename M1, typename M2, typename F, typename V> |
582 | 581 |
inline CombineMap<M1, M2, F, V> |
583 | 582 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
584 | 583 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
585 | 584 |
} |
586 | 585 |
|
587 | 586 |
template<typename M1, typename M2, typename F> |
588 | 587 |
inline CombineMap<M1, M2, F, typename F::result_type> |
589 | 588 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
590 | 589 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
591 | 590 |
} |
592 | 591 |
|
593 | 592 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
594 | 593 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
595 | 594 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
596 | 595 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
597 | 596 |
} |
598 | 597 |
|
599 | 598 |
|
600 | 599 |
/// Converts an STL style (unary) functor to a map |
601 | 600 |
|
602 | 601 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
603 | 602 |
/// of a given functor. Actually, it just wraps the functor and |
604 | 603 |
/// provides the \c Key and \c Value typedefs. |
605 | 604 |
/// |
606 | 605 |
/// Template parameters \c K and \c V will become its \c Key and |
607 | 606 |
/// \c Value. In most cases they have to be given explicitly because |
608 | 607 |
/// a functor typically does not provide \c argument_type and |
609 | 608 |
/// \c result_type typedefs. |
610 | 609 |
/// Parameter \c F is the type of the used functor. |
611 | 610 |
/// |
612 | 611 |
/// The simplest way of using this map is through the functorToMap() |
613 | 612 |
/// function. |
614 | 613 |
/// |
615 | 614 |
/// \sa MapToFunctor |
616 | 615 |
template<typename F, |
617 | 616 |
typename K = typename F::argument_type, |
618 | 617 |
typename V = typename F::result_type> |
619 | 618 |
class FunctorToMap : public MapBase<K, V> { |
620 | 619 |
F _f; |
621 | 620 |
public: |
622 | 621 |
///\e |
623 | 622 |
typedef K Key; |
624 | 623 |
///\e |
625 | 624 |
typedef V Value; |
626 | 625 |
|
627 | 626 |
/// Constructor |
628 | 627 |
FunctorToMap(const F &f = F()) : _f(f) {} |
629 | 628 |
///\e |
630 | 629 |
Value operator[](const Key &k) const { return _f(k); } |
631 | 630 |
}; |
632 | 631 |
|
633 | 632 |
/// Returns a \c FunctorToMap class |
634 | 633 |
|
635 | 634 |
/// This function just returns a \c FunctorToMap class. |
636 | 635 |
/// |
637 | 636 |
/// This function is specialized for adaptable binary function |
638 | 637 |
/// classes and C++ functions. |
639 | 638 |
/// |
640 | 639 |
/// \relates FunctorToMap |
641 | 640 |
template<typename K, typename V, typename F> |
642 | 641 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
643 | 642 |
return FunctorToMap<F, K, V>(f); |
644 | 643 |
} |
645 | 644 |
|
646 | 645 |
template <typename F> |
647 | 646 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
648 | 647 |
functorToMap(const F &f) |
649 | 648 |
{ |
650 | 649 |
return FunctorToMap<F, typename F::argument_type, |
651 | 650 |
typename F::result_type>(f); |
652 | 651 |
} |
653 | 652 |
|
654 | 653 |
template <typename K, typename V> |
655 | 654 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
656 | 655 |
return FunctorToMap<V (*)(K), K, V>(f); |
657 | 656 |
} |
658 | 657 |
|
659 | 658 |
|
660 | 659 |
/// Converts a map to an STL style (unary) functor |
661 | 660 |
|
662 | 661 |
/// This class converts a map to an STL style (unary) functor. |
663 | 662 |
/// That is it provides an <tt>operator()</tt> to read its values. |
664 | 663 |
/// |
665 | 664 |
/// For the sake of convenience it also works as a usual |
666 | 665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
667 | 666 |
/// and the \c Key and \c Value typedefs also exist. |
668 | 667 |
/// |
669 | 668 |
/// The simplest way of using this map is through the mapToFunctor() |
670 | 669 |
/// function. |
671 | 670 |
/// |
672 | 671 |
///\sa FunctorToMap |
673 | 672 |
template <typename M> |
674 | 673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
675 | 674 |
const M &_m; |
676 | 675 |
public: |
677 | 676 |
///\e |
678 | 677 |
typedef typename M::Key Key; |
679 | 678 |
///\e |
680 | 679 |
typedef typename M::Value Value; |
681 | 680 |
|
682 | 681 |
typedef typename M::Key argument_type; |
683 | 682 |
typedef typename M::Value result_type; |
684 | 683 |
|
685 | 684 |
/// Constructor |
686 | 685 |
MapToFunctor(const M &m) : _m(m) {} |
687 | 686 |
///\e |
688 | 687 |
Value operator()(const Key &k) const { return _m[k]; } |
689 | 688 |
///\e |
690 | 689 |
Value operator[](const Key &k) const { return _m[k]; } |
691 | 690 |
}; |
692 | 691 |
|
693 | 692 |
/// Returns a \c MapToFunctor class |
694 | 693 |
|
695 | 694 |
/// This function just returns a \c MapToFunctor class. |
696 | 695 |
/// \relates MapToFunctor |
697 | 696 |
template<typename M> |
698 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
699 | 698 |
return MapToFunctor<M>(m); |
700 | 699 |
} |
701 | 700 |
|
702 | 701 |
|
703 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
704 | 703 |
/// another type using the default conversion. |
705 | 704 |
|
706 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
707 | 706 |
/// "readable map" to another type using the default conversion. |
708 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
709 | 708 |
/// type is \c V. |
710 | 709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
711 | 710 |
/// |
712 | 711 |
/// The simplest way of using this map is through the convertMap() |
713 | 712 |
/// function. |
714 | 713 |
template <typename M, typename V> |
715 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> { |
716 | 715 |
const M &_m; |
717 | 716 |
public: |
718 | 717 |
///\e |
719 | 718 |
typedef typename M::Key Key; |
720 | 719 |
///\e |
721 | 720 |
typedef V Value; |
722 | 721 |
|
723 | 722 |
/// Constructor |
724 | 723 |
|
725 | 724 |
/// Constructor. |
726 | 725 |
/// \param m The underlying map. |
727 | 726 |
ConvertMap(const M &m) : _m(m) {} |
728 | 727 |
|
729 | 728 |
///\e |
730 | 729 |
Value operator[](const Key &k) const { return _m[k]; } |
731 | 730 |
}; |
732 | 731 |
|
733 | 732 |
/// Returns a \c ConvertMap class |
734 | 733 |
|
735 | 734 |
/// This function just returns a \c ConvertMap class. |
736 | 735 |
/// \relates ConvertMap |
737 | 736 |
template<typename V, typename M> |
738 | 737 |
inline ConvertMap<M, V> convertMap(const M &map) { |
739 | 738 |
return ConvertMap<M, V>(map); |
740 | 739 |
} |
741 | 740 |
|
742 | 741 |
|
743 | 742 |
/// Applies all map setting operations to two maps |
744 | 743 |
|
745 | 744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
746 | 745 |
/// and each write request will be passed to both of them. |
747 | 746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
748 | 747 |
/// operations will return the corresponding values of \c M1. |
749 | 748 |
/// |
750 | 749 |
/// The \c Key and \c Value types are inherited from \c M1. |
751 | 750 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
752 | 751 |
/// of \c M1. |
753 | 752 |
/// |
754 | 753 |
/// The simplest way of using this map is through the forkMap() |
755 | 754 |
/// function. |
756 | 755 |
template<typename M1, typename M2> |
757 | 756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
758 | 757 |
M1 &_m1; |
759 | 758 |
M2 &_m2; |
760 | 759 |
public: |
761 | 760 |
///\e |
762 | 761 |
typedef typename M1::Key Key; |
763 | 762 |
///\e |
764 | 763 |
typedef typename M1::Value Value; |
765 | 764 |
|
766 | 765 |
/// Constructor |
767 | 766 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
768 | 767 |
/// Returns the value associated with the given key in the first map. |
769 | 768 |
Value operator[](const Key &k) const { return _m1[k]; } |
770 | 769 |
/// Sets the value associated with the given key in both maps. |
771 | 770 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
772 | 771 |
}; |
773 | 772 |
|
774 | 773 |
/// Returns a \c ForkMap class |
775 | 774 |
|
776 | 775 |
/// This function just returns a \c ForkMap class. |
777 | 776 |
/// \relates ForkMap |
778 | 777 |
template <typename M1, typename M2> |
779 | 778 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
780 | 779 |
return ForkMap<M1,M2>(m1,m2); |
781 | 780 |
} |
782 | 781 |
|
783 | 782 |
|
784 | 783 |
/// Sum of two maps |
785 | 784 |
|
786 | 785 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
787 | 786 |
/// of the values of the two given maps. |
788 | 787 |
/// Its \c Key and \c Value types are inherited from \c M1. |
789 | 788 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
790 | 789 |
/// \c M1. |
791 | 790 |
/// |
792 | 791 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
793 | 792 |
/// \code |
794 | 793 |
/// AddMap<M1,M2> am(m1,m2); |
795 | 794 |
/// \endcode |
796 | 795 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
797 | 796 |
/// |
798 | 797 |
/// The simplest way of using this map is through the addMap() |
799 | 798 |
/// function. |
800 | 799 |
/// |
801 | 800 |
/// \sa SubMap, MulMap, DivMap |
802 | 801 |
/// \sa ShiftMap, ShiftWriteMap |
803 | 802 |
template<typename M1, typename M2> |
804 | 803 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
805 | 804 |
const M1 &_m1; |
806 | 805 |
const M2 &_m2; |
807 | 806 |
public: |
808 | 807 |
///\e |
809 | 808 |
typedef typename M1::Key Key; |
810 | 809 |
///\e |
811 | 810 |
typedef typename M1::Value Value; |
812 | 811 |
|
813 | 812 |
/// Constructor |
814 | 813 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
815 | 814 |
///\e |
816 | 815 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
817 | 816 |
}; |
818 | 817 |
|
819 | 818 |
/// Returns an \c AddMap class |
820 | 819 |
|
821 | 820 |
/// This function just returns an \c AddMap class. |
822 | 821 |
/// |
823 | 822 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
824 | 823 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
825 | 824 |
/// <tt>m1[x]+m2[x]</tt>. |
826 | 825 |
/// |
827 | 826 |
/// \relates AddMap |
828 | 827 |
template<typename M1, typename M2> |
829 | 828 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
830 | 829 |
return AddMap<M1, M2>(m1,m2); |
831 | 830 |
} |
832 | 831 |
|
833 | 832 |
|
834 | 833 |
/// Difference of two maps |
835 | 834 |
|
836 | 835 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
837 | 836 |
/// of the values of the two given maps. |
838 | 837 |
/// Its \c Key and \c Value types are inherited from \c M1. |
839 | 838 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
840 | 839 |
/// \c M1. |
841 | 840 |
/// |
842 | 841 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
843 | 842 |
/// \code |
844 | 843 |
/// SubMap<M1,M2> sm(m1,m2); |
845 | 844 |
/// \endcode |
846 | 845 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
847 | 846 |
/// |
848 | 847 |
/// The simplest way of using this map is through the subMap() |
849 | 848 |
/// function. |
850 | 849 |
/// |
851 | 850 |
/// \sa AddMap, MulMap, DivMap |
852 | 851 |
template<typename M1, typename M2> |
853 | 852 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
854 | 853 |
const M1 &_m1; |
855 | 854 |
const M2 &_m2; |
856 | 855 |
public: |
857 | 856 |
///\e |
858 | 857 |
typedef typename M1::Key Key; |
859 | 858 |
///\e |
860 | 859 |
typedef typename M1::Value Value; |
861 | 860 |
|
862 | 861 |
/// Constructor |
863 | 862 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
864 | 863 |
///\e |
865 | 864 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
866 | 865 |
}; |
867 | 866 |
|
868 | 867 |
/// Returns a \c SubMap class |
869 | 868 |
|
870 | 869 |
/// This function just returns a \c SubMap class. |
871 | 870 |
/// |
872 | 871 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
873 | 872 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
874 | 873 |
/// <tt>m1[x]-m2[x]</tt>. |
875 | 874 |
/// |
876 | 875 |
/// \relates SubMap |
877 | 876 |
template<typename M1, typename M2> |
878 | 877 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
879 | 878 |
return SubMap<M1, M2>(m1,m2); |
880 | 879 |
} |
881 | 880 |
|
882 | 881 |
|
883 | 882 |
/// Product of two maps |
884 | 883 |
|
885 | 884 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
886 | 885 |
/// of the values of the two given maps. |
887 | 886 |
/// Its \c Key and \c Value types are inherited from \c M1. |
888 | 887 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
889 | 888 |
/// \c M1. |
890 | 889 |
/// |
891 | 890 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
892 | 891 |
/// \code |
893 | 892 |
/// MulMap<M1,M2> mm(m1,m2); |
894 | 893 |
/// \endcode |
895 | 894 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
896 | 895 |
/// |
897 | 896 |
/// The simplest way of using this map is through the mulMap() |
898 | 897 |
/// function. |
899 | 898 |
/// |
900 | 899 |
/// \sa AddMap, SubMap, DivMap |
901 | 900 |
/// \sa ScaleMap, ScaleWriteMap |
902 | 901 |
template<typename M1, typename M2> |
903 | 902 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
904 | 903 |
const M1 &_m1; |
905 | 904 |
const M2 &_m2; |
906 | 905 |
public: |
907 | 906 |
///\e |
908 | 907 |
typedef typename M1::Key Key; |
909 | 908 |
///\e |
910 | 909 |
typedef typename M1::Value Value; |
911 | 910 |
|
912 | 911 |
/// Constructor |
913 | 912 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
914 | 913 |
///\e |
915 | 914 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
916 | 915 |
}; |
917 | 916 |
|
918 | 917 |
/// Returns a \c MulMap class |
919 | 918 |
|
920 | 919 |
/// This function just returns a \c MulMap class. |
921 | 920 |
/// |
922 | 921 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
923 | 922 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
924 | 923 |
/// <tt>m1[x]*m2[x]</tt>. |
925 | 924 |
/// |
926 | 925 |
/// \relates MulMap |
927 | 926 |
template<typename M1, typename M2> |
928 | 927 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
929 | 928 |
return MulMap<M1, M2>(m1,m2); |
930 | 929 |
} |
931 | 930 |
|
932 | 931 |
|
933 | 932 |
/// Quotient of two maps |
934 | 933 |
|
935 | 934 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
936 | 935 |
/// of the values of the two given maps. |
937 | 936 |
/// Its \c Key and \c Value types are inherited from \c M1. |
938 | 937 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
939 | 938 |
/// \c M1. |
940 | 939 |
/// |
941 | 940 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
942 | 941 |
/// \code |
943 | 942 |
/// DivMap<M1,M2> dm(m1,m2); |
944 | 943 |
/// \endcode |
945 | 944 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
946 | 945 |
/// |
947 | 946 |
/// The simplest way of using this map is through the divMap() |
948 | 947 |
/// function. |
949 | 948 |
/// |
950 | 949 |
/// \sa AddMap, SubMap, MulMap |
951 | 950 |
template<typename M1, typename M2> |
952 | 951 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
953 | 952 |
const M1 &_m1; |
954 | 953 |
const M2 &_m2; |
955 | 954 |
public: |
956 | 955 |
///\e |
957 | 956 |
typedef typename M1::Key Key; |
958 | 957 |
///\e |
959 | 958 |
typedef typename M1::Value Value; |
960 | 959 |
|
961 | 960 |
/// Constructor |
962 | 961 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
963 | 962 |
///\e |
964 | 963 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
965 | 964 |
}; |
966 | 965 |
|
967 | 966 |
/// Returns a \c DivMap class |
968 | 967 |
|
969 | 968 |
/// This function just returns a \c DivMap class. |
970 | 969 |
/// |
971 | 970 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
972 | 971 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
973 | 972 |
/// <tt>m1[x]/m2[x]</tt>. |
974 | 973 |
/// |
975 | 974 |
/// \relates DivMap |
976 | 975 |
template<typename M1, typename M2> |
977 | 976 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
978 | 977 |
return DivMap<M1, M2>(m1,m2); |
979 | 978 |
} |
980 | 979 |
|
981 | 980 |
|
982 | 981 |
/// Shifts a map with a constant. |
983 | 982 |
|
984 | 983 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
985 | 984 |
/// the given map and a constant value (i.e. it shifts the map with |
986 | 985 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
987 | 986 |
/// |
988 | 987 |
/// Actually, |
989 | 988 |
/// \code |
990 | 989 |
/// ShiftMap<M> sh(m,v); |
991 | 990 |
/// \endcode |
992 | 991 |
/// is equivalent to |
993 | 992 |
/// \code |
994 | 993 |
/// ConstMap<M::Key, M::Value> cm(v); |
995 | 994 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
996 | 995 |
/// \endcode |
997 | 996 |
/// |
998 | 997 |
/// The simplest way of using this map is through the shiftMap() |
999 | 998 |
/// function. |
1000 | 999 |
/// |
1001 | 1000 |
/// \sa ShiftWriteMap |
1002 | 1001 |
template<typename M, typename C = typename M::Value> |
1003 | 1002 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
1004 | 1003 |
const M &_m; |
1005 | 1004 |
C _v; |
1006 | 1005 |
public: |
1007 | 1006 |
///\e |
1008 | 1007 |
typedef typename M::Key Key; |
1009 | 1008 |
///\e |
1010 | 1009 |
typedef typename M::Value Value; |
1011 | 1010 |
|
1012 | 1011 |
/// Constructor |
1013 | 1012 |
|
1014 | 1013 |
/// Constructor. |
1015 | 1014 |
/// \param m The undelying map. |
1016 | 1015 |
/// \param v The constant value. |
1017 | 1016 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
1018 | 1017 |
///\e |
1019 | 1018 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1020 | 1019 |
}; |
1021 | 1020 |
|
1022 | 1021 |
/// Shifts a map with a constant (read-write version). |
1023 | 1022 |
|
1024 | 1023 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
1025 | 1024 |
/// of the given map and a constant value (i.e. it shifts the map with |
1026 | 1025 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
1027 | 1026 |
/// It makes also possible to write the map. |
1028 | 1027 |
/// |
1029 | 1028 |
/// The simplest way of using this map is through the shiftWriteMap() |
1030 | 1029 |
/// function. |
1031 | 1030 |
/// |
1032 | 1031 |
/// \sa ShiftMap |
1033 | 1032 |
template<typename M, typename C = typename M::Value> |
1034 | 1033 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1035 | 1034 |
M &_m; |
1036 | 1035 |
C _v; |
1037 | 1036 |
public: |
1038 | 1037 |
///\e |
1039 | 1038 |
typedef typename M::Key Key; |
1040 | 1039 |
///\e |
1041 | 1040 |
typedef typename M::Value Value; |
1042 | 1041 |
|
1043 | 1042 |
/// Constructor |
1044 | 1043 |
|
1045 | 1044 |
/// Constructor. |
1046 | 1045 |
/// \param m The undelying map. |
1047 | 1046 |
/// \param v The constant value. |
1048 | 1047 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1049 | 1048 |
///\e |
1050 | 1049 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1051 | 1050 |
///\e |
1052 | 1051 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
1053 | 1052 |
}; |
1054 | 1053 |
|
1055 | 1054 |
/// Returns a \c ShiftMap class |
1056 | 1055 |
|
1057 | 1056 |
/// This function just returns a \c ShiftMap class. |
1058 | 1057 |
/// |
1059 | 1058 |
/// For example, if \c m is a map with \c double values and \c v is |
1060 | 1059 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
1061 | 1060 |
/// <tt>m[x]+v</tt>. |
1062 | 1061 |
/// |
1063 | 1062 |
/// \relates ShiftMap |
1064 | 1063 |
template<typename M, typename C> |
1065 | 1064 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
1066 | 1065 |
return ShiftMap<M, C>(m,v); |
1067 | 1066 |
} |
1068 | 1067 |
|
1069 | 1068 |
/// Returns a \c ShiftWriteMap class |
1070 | 1069 |
|
1071 | 1070 |
/// This function just returns a \c ShiftWriteMap class. |
1072 | 1071 |
/// |
1073 | 1072 |
/// For example, if \c m is a map with \c double values and \c v is |
1074 | 1073 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
1075 | 1074 |
/// <tt>m[x]+v</tt>. |
1076 | 1075 |
/// Moreover it makes also possible to write the map. |
1077 | 1076 |
/// |
1078 | 1077 |
/// \relates ShiftWriteMap |
1079 | 1078 |
template<typename M, typename C> |
1080 | 1079 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1081 | 1080 |
return ShiftWriteMap<M, C>(m,v); |
1082 | 1081 |
} |
1083 | 1082 |
|
1084 | 1083 |
|
1085 | 1084 |
/// Scales a map with a constant. |
1086 | 1085 |
|
1087 | 1086 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
1088 | 1087 |
/// the given map multiplied from the left side with a constant value. |
1089 | 1088 |
/// Its \c Key and \c Value are inherited from \c M. |
1090 | 1089 |
/// |
1091 | 1090 |
/// Actually, |
1092 | 1091 |
/// \code |
1093 | 1092 |
/// ScaleMap<M> sc(m,v); |
1094 | 1093 |
/// \endcode |
1095 | 1094 |
/// is equivalent to |
1096 | 1095 |
/// \code |
1097 | 1096 |
/// ConstMap<M::Key, M::Value> cm(v); |
1098 | 1097 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1099 | 1098 |
/// \endcode |
1100 | 1099 |
/// |
1101 | 1100 |
/// The simplest way of using this map is through the scaleMap() |
1102 | 1101 |
/// function. |
1103 | 1102 |
/// |
1104 | 1103 |
/// \sa ScaleWriteMap |
1105 | 1104 |
template<typename M, typename C = typename M::Value> |
1106 | 1105 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
1107 | 1106 |
const M &_m; |
1108 | 1107 |
C _v; |
1109 | 1108 |
public: |
1110 | 1109 |
///\e |
1111 | 1110 |
typedef typename M::Key Key; |
1112 | 1111 |
///\e |
1113 | 1112 |
typedef typename M::Value Value; |
1114 | 1113 |
|
1115 | 1114 |
/// Constructor |
1116 | 1115 |
|
1117 | 1116 |
/// Constructor. |
1118 | 1117 |
/// \param m The undelying map. |
1119 | 1118 |
/// \param v The constant value. |
1120 | 1119 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
1121 | 1120 |
///\e |
1122 | 1121 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1123 | 1122 |
}; |
1124 | 1123 |
|
1125 | 1124 |
/// Scales a map with a constant (read-write version). |
1126 | 1125 |
|
1127 | 1126 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
1128 | 1127 |
/// the given map multiplied from the left side with a constant value. |
1129 | 1128 |
/// Its \c Key and \c Value are inherited from \c M. |
1130 | 1129 |
/// It can also be used as write map if the \c / operator is defined |
1131 | 1130 |
/// between \c Value and \c C and the given multiplier is not zero. |
1132 | 1131 |
/// |
1133 | 1132 |
/// The simplest way of using this map is through the scaleWriteMap() |
1134 | 1133 |
/// function. |
1135 | 1134 |
/// |
1136 | 1135 |
/// \sa ScaleMap |
1137 | 1136 |
template<typename M, typename C = typename M::Value> |
1138 | 1137 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1139 | 1138 |
M &_m; |
1140 | 1139 |
C _v; |
1141 | 1140 |
public: |
1142 | 1141 |
///\e |
1143 | 1142 |
typedef typename M::Key Key; |
1144 | 1143 |
///\e |
1145 | 1144 |
typedef typename M::Value Value; |
1146 | 1145 |
|
1147 | 1146 |
/// Constructor |
1148 | 1147 |
|
1149 | 1148 |
/// Constructor. |
1150 | 1149 |
/// \param m The undelying map. |
1151 | 1150 |
/// \param v The constant value. |
1152 | 1151 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1153 | 1152 |
///\e |
1154 | 1153 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1155 | 1154 |
///\e |
1156 | 1155 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
1157 | 1156 |
}; |
1158 | 1157 |
|
1159 | 1158 |
/// Returns a \c ScaleMap class |
1160 | 1159 |
|
1161 | 1160 |
/// This function just returns a \c ScaleMap class. |
1162 | 1161 |
/// |
1163 | 1162 |
/// For example, if \c m is a map with \c double values and \c v is |
1164 | 1163 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
1165 | 1164 |
/// <tt>v*m[x]</tt>. |
1166 | 1165 |
/// |
1167 | 1166 |
/// \relates ScaleMap |
1168 | 1167 |
template<typename M, typename C> |
1169 | 1168 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
1170 | 1169 |
return ScaleMap<M, C>(m,v); |
1171 | 1170 |
} |
1172 | 1171 |
|
1173 | 1172 |
/// Returns a \c ScaleWriteMap class |
1174 | 1173 |
|
1175 | 1174 |
/// This function just returns a \c ScaleWriteMap class. |
1176 | 1175 |
/// |
1177 | 1176 |
/// For example, if \c m is a map with \c double values and \c v is |
1178 | 1177 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
1179 | 1178 |
/// <tt>v*m[x]</tt>. |
1180 | 1179 |
/// Moreover it makes also possible to write the map. |
1181 | 1180 |
/// |
1182 | 1181 |
/// \relates ScaleWriteMap |
1183 | 1182 |
template<typename M, typename C> |
1184 | 1183 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1185 | 1184 |
return ScaleWriteMap<M, C>(m,v); |
1186 | 1185 |
} |
1187 | 1186 |
|
1188 | 1187 |
|
1189 | 1188 |
/// Negative of a map |
1190 | 1189 |
|
1191 | 1190 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
1192 | 1191 |
/// of the values of the given map (using the unary \c - operator). |
1193 | 1192 |
/// Its \c Key and \c Value are inherited from \c M. |
1194 | 1193 |
/// |
1195 | 1194 |
/// If M::Value is \c int, \c double etc., then |
1196 | 1195 |
/// \code |
1197 | 1196 |
/// NegMap<M> neg(m); |
1198 | 1197 |
/// \endcode |
1199 | 1198 |
/// is equivalent to |
1200 | 1199 |
/// \code |
1201 | 1200 |
/// ScaleMap<M> neg(m,-1); |
1202 | 1201 |
/// \endcode |
1203 | 1202 |
/// |
1204 | 1203 |
/// The simplest way of using this map is through the negMap() |
1205 | 1204 |
/// function. |
1206 | 1205 |
/// |
1207 | 1206 |
/// \sa NegWriteMap |
1208 | 1207 |
template<typename M> |
1209 | 1208 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
1210 | 1209 |
const M& _m; |
1211 | 1210 |
public: |
1212 | 1211 |
///\e |
1213 | 1212 |
typedef typename M::Key Key; |
1214 | 1213 |
///\e |
1215 | 1214 |
typedef typename M::Value Value; |
1216 | 1215 |
|
1217 | 1216 |
/// Constructor |
1218 | 1217 |
NegMap(const M &m) : _m(m) {} |
1219 | 1218 |
///\e |
1220 | 1219 |
Value operator[](const Key &k) const { return -_m[k]; } |
1221 | 1220 |
}; |
1222 | 1221 |
|
1223 | 1222 |
/// Negative of a map (read-write version) |
1224 | 1223 |
|
1225 | 1224 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1226 | 1225 |
/// negative of the values of the given map (using the unary \c - |
1227 | 1226 |
/// operator). |
1228 | 1227 |
/// Its \c Key and \c Value are inherited from \c M. |
1229 | 1228 |
/// It makes also possible to write the map. |
1230 | 1229 |
/// |
1231 | 1230 |
/// If M::Value is \c int, \c double etc., then |
1232 | 1231 |
/// \code |
1233 | 1232 |
/// NegWriteMap<M> neg(m); |
1234 | 1233 |
/// \endcode |
1235 | 1234 |
/// is equivalent to |
1236 | 1235 |
/// \code |
1237 | 1236 |
/// ScaleWriteMap<M> neg(m,-1); |
1238 | 1237 |
/// \endcode |
1239 | 1238 |
/// |
1240 | 1239 |
/// The simplest way of using this map is through the negWriteMap() |
1241 | 1240 |
/// function. |
1242 | 1241 |
/// |
1243 | 1242 |
/// \sa NegMap |
1244 | 1243 |
template<typename M> |
1245 | 1244 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1246 | 1245 |
M &_m; |
1247 | 1246 |
public: |
1248 | 1247 |
///\e |
1249 | 1248 |
typedef typename M::Key Key; |
1250 | 1249 |
///\e |
1251 | 1250 |
typedef typename M::Value Value; |
1252 | 1251 |
|
1253 | 1252 |
/// Constructor |
1254 | 1253 |
NegWriteMap(M &m) : _m(m) {} |
1255 | 1254 |
///\e |
1256 | 1255 |
Value operator[](const Key &k) const { return -_m[k]; } |
1257 | 1256 |
///\e |
1258 | 1257 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
1259 | 1258 |
}; |
1260 | 1259 |
|
1261 | 1260 |
/// Returns a \c NegMap class |
1262 | 1261 |
|
1263 | 1262 |
/// This function just returns a \c NegMap class. |
1264 | 1263 |
/// |
1265 | 1264 |
/// For example, if \c m is a map with \c double values, then |
1266 | 1265 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1267 | 1266 |
/// |
1268 | 1267 |
/// \relates NegMap |
1269 | 1268 |
template <typename M> |
1270 | 1269 |
inline NegMap<M> negMap(const M &m) { |
1271 | 1270 |
return NegMap<M>(m); |
1272 | 1271 |
} |
1273 | 1272 |
|
1274 | 1273 |
/// Returns a \c NegWriteMap class |
1275 | 1274 |
|
1276 | 1275 |
/// This function just returns a \c NegWriteMap class. |
1277 | 1276 |
/// |
1278 | 1277 |
/// For example, if \c m is a map with \c double values, then |
1279 | 1278 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1280 | 1279 |
/// Moreover it makes also possible to write the map. |
1281 | 1280 |
/// |
1282 | 1281 |
/// \relates NegWriteMap |
1283 | 1282 |
template <typename M> |
1284 | 1283 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1285 | 1284 |
return NegWriteMap<M>(m); |
1286 | 1285 |
} |
1287 | 1286 |
|
1288 | 1287 |
|
1289 | 1288 |
/// Absolute value of a map |
1290 | 1289 |
|
1291 | 1290 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
1292 | 1291 |
/// value of the values of the given map. |
1293 | 1292 |
/// Its \c Key and \c Value are inherited from \c M. |
1294 | 1293 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1295 | 1294 |
/// operator must be defined for it, of course. |
1296 | 1295 |
/// |
1297 | 1296 |
/// The simplest way of using this map is through the absMap() |
1298 | 1297 |
/// function. |
1299 | 1298 |
template<typename M> |
1300 | 1299 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1301 | 1300 |
const M &_m; |
1302 | 1301 |
public: |
1303 | 1302 |
///\e |
1304 | 1303 |
typedef typename M::Key Key; |
1305 | 1304 |
///\e |
1306 | 1305 |
typedef typename M::Value Value; |
1307 | 1306 |
|
1308 | 1307 |
/// Constructor |
1309 | 1308 |
AbsMap(const M &m) : _m(m) {} |
1310 | 1309 |
///\e |
1311 | 1310 |
Value operator[](const Key &k) const { |
1312 | 1311 |
Value tmp = _m[k]; |
1313 | 1312 |
return tmp >= 0 ? tmp : -tmp; |
1314 | 1313 |
} |
1315 | 1314 |
|
1316 | 1315 |
}; |
1317 | 1316 |
|
1318 | 1317 |
/// Returns an \c AbsMap class |
1319 | 1318 |
|
1320 | 1319 |
/// This function just returns an \c AbsMap class. |
1321 | 1320 |
/// |
1322 | 1321 |
/// For example, if \c m is a map with \c double values, then |
1323 | 1322 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1324 | 1323 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1325 | 1324 |
/// negative. |
1326 | 1325 |
/// |
1327 | 1326 |
/// \relates AbsMap |
1328 | 1327 |
template<typename M> |
1329 | 1328 |
inline AbsMap<M> absMap(const M &m) { |
1330 | 1329 |
return AbsMap<M>(m); |
1331 | 1330 |
} |
1332 | 1331 |
|
1333 | 1332 |
/// @} |
1334 | 1333 |
|
1335 | 1334 |
// Logical maps and map adaptors: |
1336 | 1335 |
|
1337 | 1336 |
/// \addtogroup maps |
1338 | 1337 |
/// @{ |
1339 | 1338 |
|
1340 | 1339 |
/// Constant \c true map. |
1341 | 1340 |
|
1342 | 1341 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1343 | 1342 |
/// each key. |
1344 | 1343 |
/// |
1345 | 1344 |
/// Note that |
1346 | 1345 |
/// \code |
1347 | 1346 |
/// TrueMap<K> tm; |
1348 | 1347 |
/// \endcode |
1349 | 1348 |
/// is equivalent to |
1350 | 1349 |
/// \code |
1351 | 1350 |
/// ConstMap<K,bool> tm(true); |
1352 | 1351 |
/// \endcode |
1353 | 1352 |
/// |
1354 | 1353 |
/// \sa FalseMap |
1355 | 1354 |
/// \sa ConstMap |
1356 | 1355 |
template <typename K> |
1357 | 1356 |
class TrueMap : public MapBase<K, bool> { |
1358 | 1357 |
public: |
1359 | 1358 |
///\e |
1360 | 1359 |
typedef K Key; |
1361 | 1360 |
///\e |
1362 | 1361 |
typedef bool Value; |
1363 | 1362 |
|
1364 | 1363 |
/// Gives back \c true. |
1365 | 1364 |
Value operator[](const Key&) const { return true; } |
1366 | 1365 |
}; |
1367 | 1366 |
|
1368 | 1367 |
/// Returns a \c TrueMap class |
1369 | 1368 |
|
1370 | 1369 |
/// This function just returns a \c TrueMap class. |
1371 | 1370 |
/// \relates TrueMap |
1372 | 1371 |
template<typename K> |
1373 | 1372 |
inline TrueMap<K> trueMap() { |
1374 | 1373 |
return TrueMap<K>(); |
1375 | 1374 |
} |
1376 | 1375 |
|
1377 | 1376 |
|
1378 | 1377 |
/// Constant \c false map. |
1379 | 1378 |
|
1380 | 1379 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
1381 | 1380 |
/// each key. |
1382 | 1381 |
/// |
1383 | 1382 |
/// Note that |
1384 | 1383 |
/// \code |
1385 | 1384 |
/// FalseMap<K> fm; |
1386 | 1385 |
/// \endcode |
1387 | 1386 |
/// is equivalent to |
1388 | 1387 |
/// \code |
1389 | 1388 |
/// ConstMap<K,bool> fm(false); |
1390 | 1389 |
/// \endcode |
1391 | 1390 |
/// |
1392 | 1391 |
/// \sa TrueMap |
1393 | 1392 |
/// \sa ConstMap |
1394 | 1393 |
template <typename K> |
1395 | 1394 |
class FalseMap : public MapBase<K, bool> { |
1396 | 1395 |
public: |
1397 | 1396 |
///\e |
1398 | 1397 |
typedef K Key; |
1399 | 1398 |
///\e |
1400 | 1399 |
typedef bool Value; |
1401 | 1400 |
|
1402 | 1401 |
/// Gives back \c false. |
1403 | 1402 |
Value operator[](const Key&) const { return false; } |
1404 | 1403 |
}; |
1405 | 1404 |
|
1406 | 1405 |
/// Returns a \c FalseMap class |
1407 | 1406 |
|
1408 | 1407 |
/// This function just returns a \c FalseMap class. |
1409 | 1408 |
/// \relates FalseMap |
1410 | 1409 |
template<typename K> |
1411 | 1410 |
inline FalseMap<K> falseMap() { |
1412 | 1411 |
return FalseMap<K>(); |
1413 | 1412 |
} |
1414 | 1413 |
|
1415 | 1414 |
/// @} |
1416 | 1415 |
|
1417 | 1416 |
/// \addtogroup map_adaptors |
1418 | 1417 |
/// @{ |
1419 | 1418 |
|
1420 | 1419 |
/// Logical 'and' of two maps |
1421 | 1420 |
|
1422 | 1421 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1423 | 1422 |
/// 'and' of the values of the two given maps. |
1424 | 1423 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1425 | 1424 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1426 | 1425 |
/// |
1427 | 1426 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1428 | 1427 |
/// \code |
1429 | 1428 |
/// AndMap<M1,M2> am(m1,m2); |
1430 | 1429 |
/// \endcode |
1431 | 1430 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1432 | 1431 |
/// |
1433 | 1432 |
/// The simplest way of using this map is through the andMap() |
1434 | 1433 |
/// function. |
1435 | 1434 |
/// |
1436 | 1435 |
/// \sa OrMap |
1437 | 1436 |
/// \sa NotMap, NotWriteMap |
1438 | 1437 |
template<typename M1, typename M2> |
1439 | 1438 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1440 | 1439 |
const M1 &_m1; |
1441 | 1440 |
const M2 &_m2; |
1442 | 1441 |
public: |
1443 | 1442 |
///\e |
1444 | 1443 |
typedef typename M1::Key Key; |
1445 | 1444 |
///\e |
1446 | 1445 |
typedef bool Value; |
1447 | 1446 |
|
1448 | 1447 |
/// Constructor |
1449 | 1448 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1450 | 1449 |
///\e |
1451 | 1450 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1452 | 1451 |
}; |
1453 | 1452 |
|
1454 | 1453 |
/// Returns an \c AndMap class |
1455 | 1454 |
|
1456 | 1455 |
/// This function just returns an \c AndMap class. |
1457 | 1456 |
/// |
1458 | 1457 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1459 | 1458 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1460 | 1459 |
/// <tt>m1[x]&&m2[x]</tt>. |
1461 | 1460 |
/// |
1462 | 1461 |
/// \relates AndMap |
1463 | 1462 |
template<typename M1, typename M2> |
1464 | 1463 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1465 | 1464 |
return AndMap<M1, M2>(m1,m2); |
1466 | 1465 |
} |
1467 | 1466 |
|
1468 | 1467 |
|
1469 | 1468 |
/// Logical 'or' of two maps |
1470 | 1469 |
|
1471 | 1470 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1472 | 1471 |
/// 'or' of the values of the two given maps. |
1473 | 1472 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1474 | 1473 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1475 | 1474 |
/// |
1476 | 1475 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1477 | 1476 |
/// \code |
1478 | 1477 |
/// OrMap<M1,M2> om(m1,m2); |
1479 | 1478 |
/// \endcode |
1480 | 1479 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1481 | 1480 |
/// |
1482 | 1481 |
/// The simplest way of using this map is through the orMap() |
1483 | 1482 |
/// function. |
1484 | 1483 |
/// |
1485 | 1484 |
/// \sa AndMap |
1486 | 1485 |
/// \sa NotMap, NotWriteMap |
1487 | 1486 |
template<typename M1, typename M2> |
1488 | 1487 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1489 | 1488 |
const M1 &_m1; |
1490 | 1489 |
const M2 &_m2; |
1491 | 1490 |
public: |
1492 | 1491 |
///\e |
1493 | 1492 |
typedef typename M1::Key Key; |
1494 | 1493 |
///\e |
1495 | 1494 |
typedef bool Value; |
1496 | 1495 |
|
1497 | 1496 |
/// Constructor |
1498 | 1497 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1499 | 1498 |
///\e |
1500 | 1499 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1501 | 1500 |
}; |
1502 | 1501 |
|
1503 | 1502 |
/// Returns an \c OrMap class |
1504 | 1503 |
|
1505 | 1504 |
/// This function just returns an \c OrMap class. |
1506 | 1505 |
/// |
1507 | 1506 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1508 | 1507 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1509 | 1508 |
/// <tt>m1[x]||m2[x]</tt>. |
1510 | 1509 |
/// |
1511 | 1510 |
/// \relates OrMap |
1512 | 1511 |
template<typename M1, typename M2> |
1513 | 1512 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1514 | 1513 |
return OrMap<M1, M2>(m1,m2); |
1515 | 1514 |
} |
1516 | 1515 |
|
1517 | 1516 |
|
1518 | 1517 |
/// Logical 'not' of a map |
1519 | 1518 |
|
1520 | 1519 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1521 | 1520 |
/// negation of the values of the given map. |
1522 | 1521 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1523 | 1522 |
/// |
1524 | 1523 |
/// The simplest way of using this map is through the notMap() |
1525 | 1524 |
/// function. |
1526 | 1525 |
/// |
1527 | 1526 |
/// \sa NotWriteMap |
1528 | 1527 |
template <typename M> |
1529 | 1528 |
class NotMap : public MapBase<typename M::Key, bool> { |
1530 | 1529 |
const M &_m; |
1531 | 1530 |
public: |
1532 | 1531 |
///\e |
1533 | 1532 |
typedef typename M::Key Key; |
1534 | 1533 |
///\e |
1535 | 1534 |
typedef bool Value; |
1536 | 1535 |
|
1537 | 1536 |
/// Constructor |
1538 | 1537 |
NotMap(const M &m) : _m(m) {} |
1539 | 1538 |
///\e |
1540 | 1539 |
Value operator[](const Key &k) const { return !_m[k]; } |
1541 | 1540 |
}; |
1542 | 1541 |
|
1543 | 1542 |
/// Logical 'not' of a map (read-write version) |
1544 | 1543 |
|
1545 | 1544 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1546 | 1545 |
/// logical negation of the values of the given map. |
1547 | 1546 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1548 | 1547 |
/// It makes also possible to write the map. When a value is set, |
1549 | 1548 |
/// the opposite value is set to the original map. |
1550 | 1549 |
/// |
1551 | 1550 |
/// The simplest way of using this map is through the notWriteMap() |
1552 | 1551 |
/// function. |
1553 | 1552 |
/// |
1554 | 1553 |
/// \sa NotMap |
1555 | 1554 |
template <typename M> |
1556 | 1555 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1557 | 1556 |
M &_m; |
1558 | 1557 |
public: |
1559 | 1558 |
///\e |
1560 | 1559 |
typedef typename M::Key Key; |
1561 | 1560 |
///\e |
1562 | 1561 |
typedef bool Value; |
1563 | 1562 |
|
1564 | 1563 |
/// Constructor |
1565 | 1564 |
NotWriteMap(M &m) : _m(m) {} |
1566 | 1565 |
///\e |
1567 | 1566 |
Value operator[](const Key &k) const { return !_m[k]; } |
1568 | 1567 |
///\e |
1569 | 1568 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1570 | 1569 |
}; |
1571 | 1570 |
|
1572 | 1571 |
/// Returns a \c NotMap class |
1573 | 1572 |
|
1574 | 1573 |
/// This function just returns a \c NotMap class. |
1575 | 1574 |
/// |
1576 | 1575 |
/// For example, if \c m is a map with \c bool values, then |
1577 | 1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1578 | 1577 |
/// |
1579 | 1578 |
/// \relates NotMap |
1580 | 1579 |
template <typename M> |
1581 | 1580 |
inline NotMap<M> notMap(const M &m) { |
1582 | 1581 |
return NotMap<M>(m); |
1583 | 1582 |
} |
1584 | 1583 |
|
1585 | 1584 |
/// Returns a \c NotWriteMap class |
1586 | 1585 |
|
1587 | 1586 |
/// This function just returns a \c NotWriteMap class. |
1588 | 1587 |
/// |
1589 | 1588 |
/// For example, if \c m is a map with \c bool values, then |
1590 | 1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1591 | 1590 |
/// Moreover it makes also possible to write the map. |
1592 | 1591 |
/// |
1593 | 1592 |
/// \relates NotWriteMap |
1594 | 1593 |
template <typename M> |
1595 | 1594 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1596 | 1595 |
return NotWriteMap<M>(m); |
1597 | 1596 |
} |
1598 | 1597 |
|
1599 | 1598 |
|
1600 | 1599 |
/// Combination of two maps using the \c == operator |
1601 | 1600 |
|
1602 | 1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1603 | 1602 |
/// the keys for which the corresponding values of the two maps are |
1604 | 1603 |
/// equal. |
1605 | 1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1606 | 1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1607 | 1606 |
/// |
1608 | 1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1609 | 1608 |
/// \code |
1610 | 1609 |
/// EqualMap<M1,M2> em(m1,m2); |
1611 | 1610 |
/// \endcode |
1612 | 1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1613 | 1612 |
/// |
1614 | 1613 |
/// The simplest way of using this map is through the equalMap() |
1615 | 1614 |
/// function. |
1616 | 1615 |
/// |
1617 | 1616 |
/// \sa LessMap |
1618 | 1617 |
template<typename M1, typename M2> |
1619 | 1618 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1620 | 1619 |
const M1 &_m1; |
1621 | 1620 |
const M2 &_m2; |
1622 | 1621 |
public: |
1623 | 1622 |
///\e |
1624 | 1623 |
typedef typename M1::Key Key; |
1625 | 1624 |
///\e |
1626 | 1625 |
typedef bool Value; |
1627 | 1626 |
|
1628 | 1627 |
/// Constructor |
1629 | 1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1630 | 1629 |
///\e |
1631 | 1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1632 | 1631 |
}; |
1633 | 1632 |
|
1634 | 1633 |
/// Returns an \c EqualMap class |
1635 | 1634 |
|
1636 | 1635 |
/// This function just returns an \c EqualMap class. |
1637 | 1636 |
/// |
1638 | 1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1639 | 1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1640 | 1639 |
/// <tt>m1[x]==m2[x]</tt>. |
1641 | 1640 |
/// |
1642 | 1641 |
/// \relates EqualMap |
1643 | 1642 |
template<typename M1, typename M2> |
1644 | 1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1645 | 1644 |
return EqualMap<M1, M2>(m1,m2); |
1646 | 1645 |
} |
1647 | 1646 |
|
1648 | 1647 |
|
1649 | 1648 |
/// Combination of two maps using the \c < operator |
1650 | 1649 |
|
1651 | 1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1652 | 1651 |
/// the keys for which the corresponding value of the first map is |
1653 | 1652 |
/// less then the value of the second map. |
1654 | 1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1655 | 1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1656 | 1655 |
/// |
1657 | 1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1658 | 1657 |
/// \code |
1659 | 1658 |
/// LessMap<M1,M2> lm(m1,m2); |
1660 | 1659 |
/// \endcode |
1661 | 1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1662 | 1661 |
/// |
1663 | 1662 |
/// The simplest way of using this map is through the lessMap() |
1664 | 1663 |
/// function. |
1665 | 1664 |
/// |
1666 | 1665 |
/// \sa EqualMap |
1667 | 1666 |
template<typename M1, typename M2> |
1668 | 1667 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1669 | 1668 |
const M1 &_m1; |
1670 | 1669 |
const M2 &_m2; |
1671 | 1670 |
public: |
1672 | 1671 |
///\e |
1673 | 1672 |
typedef typename M1::Key Key; |
1674 | 1673 |
///\e |
1675 | 1674 |
typedef bool Value; |
1676 | 1675 |
|
1677 | 1676 |
/// Constructor |
1678 | 1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1679 | 1678 |
///\e |
1680 | 1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1681 | 1680 |
}; |
1682 | 1681 |
|
1683 | 1682 |
/// Returns an \c LessMap class |
1684 | 1683 |
|
1685 | 1684 |
/// This function just returns an \c LessMap class. |
1686 | 1685 |
/// |
1687 | 1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1688 | 1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1689 | 1688 |
/// <tt>m1[x]<m2[x]</tt>. |
1690 | 1689 |
/// |
1691 | 1690 |
/// \relates LessMap |
1692 | 1691 |
template<typename M1, typename M2> |
1693 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1694 | 1693 |
return LessMap<M1, M2>(m1,m2); |
1695 | 1694 |
} |
1696 | 1695 |
|
1697 | 1696 |
namespace _maps_bits { |
1698 | 1697 |
|
1699 | 1698 |
template <typename _Iterator, typename Enable = void> |
1700 | 1699 |
struct IteratorTraits { |
1701 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1702 | 1701 |
}; |
1703 | 1702 |
|
1704 | 1703 |
template <typename _Iterator> |
1705 | 1704 |
struct IteratorTraits<_Iterator, |
1706 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
1707 | 1706 |
{ |
1708 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
1709 | 1708 |
}; |
1710 | 1709 |
|
1711 | 1710 |
} |
1712 | 1711 |
|
1713 | 1712 |
/// @} |
1714 | 1713 |
|
1715 | 1714 |
/// \addtogroup maps |
1716 | 1715 |
/// @{ |
1717 | 1716 |
|
1718 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
1719 | 1718 |
/// |
1720 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1721 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
1722 | 1721 |
/// keys set to \c true to the given iterator. |
1723 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
1724 | 1723 |
/// that were marked \c true by an algorithm. |
1725 | 1724 |
/// |
1726 | 1725 |
/// There are several algorithms that provide solutions through bool |
1727 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
1728 | 1727 |
/// In these cases it is a natural request to store each \c true |
1729 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1730 | 1729 |
/// easily done with LoggerBoolMap. |
1731 | 1730 |
/// |
1732 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1733 | 1732 |
/// function. |
1734 | 1733 |
/// |
1735 | 1734 |
/// \tparam IT The type of the iterator. |
1736 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1737 | 1736 |
/// according to the iterator type should work in most cases. |
1738 | 1737 |
/// |
1739 | 1738 |
/// \note The container of the iterator must contain enough space |
1740 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1741 | 1740 |
#ifdef DOXYGEN |
1742 | 1741 |
template <typename IT, typename KEY> |
1743 | 1742 |
#else |
1744 | 1743 |
template <typename IT, |
1745 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1746 | 1745 |
#endif |
1747 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1748 | 1747 |
public: |
1749 | 1748 |
|
1750 | 1749 |
///\e |
1751 | 1750 |
typedef KEY Key; |
1752 | 1751 |
///\e |
1753 | 1752 |
typedef bool Value; |
1754 | 1753 |
///\e |
1755 | 1754 |
typedef IT Iterator; |
1756 | 1755 |
|
1757 | 1756 |
/// Constructor |
1758 | 1757 |
LoggerBoolMap(Iterator it) |
1759 | 1758 |
: _begin(it), _end(it) {} |
1760 | 1759 |
|
1761 | 1760 |
/// Gives back the given iterator set for the first key |
1762 | 1761 |
Iterator begin() const { |
1763 | 1762 |
return _begin; |
1764 | 1763 |
} |
1765 | 1764 |
|
1766 | 1765 |
/// Gives back the the 'after the last' iterator |
1767 | 1766 |
Iterator end() const { |
1768 | 1767 |
return _end; |
1769 | 1768 |
} |
1770 | 1769 |
|
1771 | 1770 |
/// The set function of the map |
1772 | 1771 |
void set(const Key& key, Value value) { |
1773 | 1772 |
if (value) { |
1774 | 1773 |
*_end++ = key; |
1775 | 1774 |
} |
1776 | 1775 |
} |
1777 | 1776 |
|
1778 | 1777 |
private: |
1779 | 1778 |
Iterator _begin; |
1780 | 1779 |
Iterator _end; |
1781 | 1780 |
}; |
1782 | 1781 |
|
1783 | 1782 |
/// Returns a \c LoggerBoolMap class |
1784 | 1783 |
|
1785 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1786 | 1785 |
/// |
1787 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1788 | 1787 |
/// that were marked \c true by an algorithm. |
1789 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1790 |
/// \code |
1792 | 1791 |
/// std::vector<Node> v; |
1793 | 1792 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1794 | 1793 |
/// \endcode |
1795 | 1794 |
/// \code |
1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1796 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1798 | 1797 |
/// \endcode |
1799 | 1798 |
/// |
1800 | 1799 |
/// \note The container of the iterator must contain enough space |
1801 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1801 |
/// |
1803 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1805 |
/// |
1807 | 1806 |
/// \relates LoggerBoolMap |
1808 | 1807 |
template<typename Iterator> |
1809 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1810 |
} |
1812 | 1811 |
|
1813 | 1812 |
/// @} |
1814 | 1813 |
|
1815 | 1814 |
/// \addtogroup graph_maps |
1816 | 1815 |
/// @{ |
1817 | 1816 |
|
1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1818 |
/// |
1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1822 | 1821 |
/// - \b unique: different items get different ids, |
1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1823 |
/// delete other nodes). |
1825 | 1824 |
/// |
1826 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1827 |
/// function of the graph. This map can be inverted with its member |
1829 | 1828 |
/// class \c InverseMap or with the \c operator()() member. |
1830 | 1829 |
/// |
1831 | 1830 |
/// \tparam GR The graph type. |
1832 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1832 |
/// \c GR::Edge). |
1834 | 1833 |
/// |
1835 | 1834 |
/// \see RangeIdMap |
1836 | 1835 |
template <typename GR, typename K> |
1837 | 1836 |
class IdMap : public MapBase<K, int> { |
1838 | 1837 |
public: |
1839 | 1838 |
/// The graph type of IdMap. |
1840 | 1839 |
typedef GR Graph; |
1841 | 1840 |
typedef GR Digraph; |
1842 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1843 | 1842 |
typedef K Item; |
1844 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1845 | 1844 |
typedef K Key; |
1846 | 1845 |
/// The value type of IdMap. |
1847 | 1846 |
typedef int Value; |
1848 | 1847 |
|
1849 | 1848 |
/// \brief Constructor. |
1850 | 1849 |
/// |
1851 | 1850 |
/// Constructor of the map. |
1852 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1853 | 1852 |
|
1854 | 1853 |
/// \brief Gives back the \e id of the item. |
1855 | 1854 |
/// |
1856 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1857 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1858 | 1857 |
|
1859 | 1858 |
/// \brief Gives back the \e item by its id. |
1860 | 1859 |
/// |
1861 | 1860 |
/// Gives back the \e item by its id. |
1862 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1863 | 1862 |
|
1864 | 1863 |
private: |
1865 | 1864 |
const Graph* _graph; |
1866 | 1865 |
|
1867 | 1866 |
public: |
1868 | 1867 |
|
1869 | 1868 |
/// \brief This class represents the inverse of its owner (IdMap). |
1870 | 1869 |
/// |
1871 | 1870 |
/// This class represents the inverse of its owner (IdMap). |
1872 | 1871 |
/// \see inverse() |
1873 | 1872 |
class InverseMap { |
1874 | 1873 |
public: |
1875 | 1874 |
|
1876 | 1875 |
/// \brief Constructor. |
1877 | 1876 |
/// |
1878 | 1877 |
/// Constructor for creating an id-to-item map. |
1879 | 1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1880 | 1879 |
|
1881 | 1880 |
/// \brief Constructor. |
1882 | 1881 |
/// |
1883 | 1882 |
/// Constructor for creating an id-to-item map. |
1884 | 1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1885 | 1884 |
|
1886 | 1885 |
/// \brief Gives back the given item from its id. |
1887 | 1886 |
/// |
1888 | 1887 |
/// Gives back the given item from its id. |
1889 | 1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1890 | 1889 |
|
1891 | 1890 |
private: |
1892 | 1891 |
const Graph* _graph; |
1893 | 1892 |
}; |
1894 | 1893 |
|
1895 | 1894 |
/// \brief Gives back the inverse of the map. |
1896 | 1895 |
/// |
1897 | 1896 |
/// Gives back the inverse of the IdMap. |
1898 | 1897 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1899 | 1898 |
}; |
1900 | 1899 |
|
1901 | 1900 |
|
1902 | 1901 |
/// \brief General cross reference graph map type. |
1903 | 1902 |
|
1904 | 1903 |
/// This class provides simple invertable graph maps. |
1905 | 1904 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1906 | 1905 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1907 | 1906 |
/// The values of the map can be accessed |
1908 | 1907 |
/// with stl compatible forward iterator. |
1909 | 1908 |
/// |
1910 | 1909 |
/// This type is not reference map, so it cannot be modified with |
1911 | 1910 |
/// the subscript operator. |
1912 | 1911 |
/// |
1913 | 1912 |
/// \tparam GR The graph type. |
1914 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1915 | 1914 |
/// \c GR::Edge). |
1916 | 1915 |
/// \tparam V The value type of the map. |
1917 | 1916 |
/// |
1918 | 1917 |
/// \see IterableValueMap |
1919 | 1918 |
template <typename GR, typename K, typename V> |
1920 | 1919 |
class CrossRefMap |
1921 | 1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1922 | 1921 |
private: |
1923 | 1922 |
|
1924 | 1923 |
typedef typename ItemSetTraits<GR, K>:: |
1925 | 1924 |
template Map<V>::Type Map; |
1926 | 1925 |
|
1927 | 1926 |
typedef std::multimap<V, K> Container; |
1928 | 1927 |
Container _inv_map; |
1929 | 1928 |
|
1930 | 1929 |
public: |
1931 | 1930 |
|
1932 | 1931 |
/// The graph type of CrossRefMap. |
1933 | 1932 |
typedef GR Graph; |
1934 | 1933 |
typedef GR Digraph; |
1935 | 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1936 | 1935 |
typedef K Item; |
1937 | 1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1938 | 1937 |
typedef K Key; |
1939 | 1938 |
/// The value type of CrossRefMap. |
1940 | 1939 |
typedef V Value; |
1941 | 1940 |
|
1942 | 1941 |
/// \brief Constructor. |
1943 | 1942 |
/// |
1944 | 1943 |
/// Construct a new CrossRefMap for the given graph. |
1945 | 1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1946 | 1945 |
|
1947 | 1946 |
/// \brief Forward iterator for values. |
1948 | 1947 |
/// |
1949 | 1948 |
/// This iterator is an stl compatible forward |
1950 | 1949 |
/// iterator on the values of the map. The values can |
1951 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1952 | 1951 |
/// They are considered with multiplicity, so each value is |
1953 | 1952 |
/// traversed for each item it is assigned to. |
1954 | 1953 |
class ValueIterator |
1955 | 1954 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1956 | 1955 |
friend class CrossRefMap; |
1957 | 1956 |
private: |
1958 | 1957 |
ValueIterator(typename Container::const_iterator _it) |
1959 | 1958 |
: it(_it) {} |
1960 | 1959 |
public: |
1961 | 1960 |
|
1962 | 1961 |
ValueIterator() {} |
1963 | 1962 |
|
1964 | 1963 |
ValueIterator& operator++() { ++it; return *this; } |
1965 | 1964 |
ValueIterator operator++(int) { |
1966 | 1965 |
ValueIterator tmp(*this); |
1967 | 1966 |
operator++(); |
1968 | 1967 |
return tmp; |
1969 | 1968 |
} |
1970 | 1969 |
|
1971 | 1970 |
const Value& operator*() const { return it->first; } |
1972 | 1971 |
const Value* operator->() const { return &(it->first); } |
1973 | 1972 |
|
1974 | 1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1975 | 1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1976 | 1975 |
|
1977 | 1976 |
private: |
1978 | 1977 |
typename Container::const_iterator it; |
1979 | 1978 |
}; |
1980 | 1979 |
|
1981 | 1980 |
/// \brief Returns an iterator to the first value. |
1982 | 1981 |
/// |
1983 | 1982 |
/// Returns an stl compatible iterator to the |
1984 | 1983 |
/// first value of the map. The values of the |
1985 | 1984 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1986 | 1985 |
/// range. |
1987 | 1986 |
ValueIterator beginValue() const { |
1988 | 1987 |
return ValueIterator(_inv_map.begin()); |
1989 | 1988 |
} |
1990 | 1989 |
|
1991 | 1990 |
/// \brief Returns an iterator after the last value. |
1992 | 1991 |
/// |
1993 | 1992 |
/// Returns an stl compatible iterator after the |
1994 | 1993 |
/// last value of the map. The values of the |
1995 | 1994 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1996 | 1995 |
/// range. |
1997 | 1996 |
ValueIterator endValue() const { |
1998 | 1997 |
return ValueIterator(_inv_map.end()); |
1999 | 1998 |
} |
2000 | 1999 |
|
2001 | 2000 |
/// \brief Sets the value associated with the given key. |
2002 | 2001 |
/// |
2003 | 2002 |
/// Sets the value associated with the given key. |
2004 | 2003 |
void set(const Key& key, const Value& val) { |
2005 | 2004 |
Value oldval = Map::operator[](key); |
2006 | 2005 |
typename Container::iterator it; |
2007 | 2006 |
for (it = _inv_map.equal_range(oldval).first; |
2008 | 2007 |
it != _inv_map.equal_range(oldval).second; ++it) { |
2009 | 2008 |
if (it->second == key) { |
2010 | 2009 |
_inv_map.erase(it); |
2011 | 2010 |
break; |
2012 | 2011 |
} |
2013 | 2012 |
} |
2014 | 2013 |
_inv_map.insert(std::make_pair(val, key)); |
2015 | 2014 |
Map::set(key, val); |
2016 | 2015 |
} |
2017 | 2016 |
|
2018 | 2017 |
/// \brief Returns the value associated with the given key. |
2019 | 2018 |
/// |
2020 | 2019 |
/// Returns the value associated with the given key. |
2021 | 2020 |
typename MapTraits<Map>::ConstReturnValue |
2022 | 2021 |
operator[](const Key& key) const { |
2023 | 2022 |
return Map::operator[](key); |
2024 | 2023 |
} |
2025 | 2024 |
|
2026 | 2025 |
/// \brief Gives back an item by its value. |
2027 | 2026 |
/// |
2028 | 2027 |
/// This function gives back an item that is assigned to |
2029 | 2028 |
/// the given value or \c INVALID if no such item exists. |
2030 | 2029 |
/// If there are more items with the same associated value, |
2031 | 2030 |
/// only one of them is returned. |
2032 | 2031 |
Key operator()(const Value& val) const { |
2033 | 2032 |
typename Container::const_iterator it = _inv_map.find(val); |
2034 | 2033 |
return it != _inv_map.end() ? it->second : INVALID; |
2035 | 2034 |
} |
2036 | 2035 |
|
2037 | 2036 |
/// \brief Returns the number of items with the given value. |
2038 | 2037 |
/// |
2039 | 2038 |
/// This function returns the number of items with the given value |
2040 | 2039 |
/// associated with it. |
2041 | 2040 |
int count(const Value &val) const { |
2042 | 2041 |
return _inv_map.count(val); |
2043 | 2042 |
} |
2044 | 2043 |
|
2045 | 2044 |
protected: |
2046 | 2045 |
|
2047 | 2046 |
/// \brief Erase the key from the map and the inverse map. |
2048 | 2047 |
/// |
2049 | 2048 |
/// Erase the key from the map and the inverse map. It is called by the |
2050 | 2049 |
/// \c AlterationNotifier. |
2051 | 2050 |
virtual void erase(const Key& key) { |
2052 | 2051 |
Value val = Map::operator[](key); |
2053 | 2052 |
typename Container::iterator it; |
2054 | 2053 |
for (it = _inv_map.equal_range(val).first; |
2055 | 2054 |
it != _inv_map.equal_range(val).second; ++it) { |
2056 | 2055 |
if (it->second == key) { |
2057 | 2056 |
_inv_map.erase(it); |
2058 | 2057 |
break; |
2059 | 2058 |
} |
2060 | 2059 |
} |
2061 | 2060 |
Map::erase(key); |
2062 | 2061 |
} |
2063 | 2062 |
|
2064 | 2063 |
/// \brief Erase more keys from the map and the inverse map. |
2065 | 2064 |
/// |
2066 | 2065 |
/// Erase more keys from the map and the inverse map. It is called by the |
2067 | 2066 |
/// \c AlterationNotifier. |
2068 | 2067 |
virtual void erase(const std::vector<Key>& keys) { |
2069 | 2068 |
for (int i = 0; i < int(keys.size()); ++i) { |
2070 | 2069 |
Value val = Map::operator[](keys[i]); |
2071 | 2070 |
typename Container::iterator it; |
2072 | 2071 |
for (it = _inv_map.equal_range(val).first; |
2073 | 2072 |
it != _inv_map.equal_range(val).second; ++it) { |
2074 | 2073 |
if (it->second == keys[i]) { |
2075 | 2074 |
_inv_map.erase(it); |
2076 | 2075 |
break; |
2077 | 2076 |
} |
2078 | 2077 |
} |
2079 | 2078 |
} |
2080 | 2079 |
Map::erase(keys); |
2081 | 2080 |
} |
2082 | 2081 |
|
2083 | 2082 |
/// \brief Clear the keys from the map and the inverse map. |
2084 | 2083 |
/// |
2085 | 2084 |
/// Clear the keys from the map and the inverse map. It is called by the |
2086 | 2085 |
/// \c AlterationNotifier. |
2087 | 2086 |
virtual void clear() { |
2088 | 2087 |
_inv_map.clear(); |
2089 | 2088 |
Map::clear(); |
2090 | 2089 |
} |
2091 | 2090 |
|
2092 | 2091 |
public: |
2093 | 2092 |
|
2094 | 2093 |
/// \brief The inverse map type. |
2095 | 2094 |
/// |
2096 | 2095 |
/// The inverse of this map. The subscript operator of the map |
2097 | 2096 |
/// gives back the item that was last assigned to the value. |
2098 | 2097 |
class InverseMap { |
2099 | 2098 |
public: |
2100 | 2099 |
/// \brief Constructor |
2101 | 2100 |
/// |
2102 | 2101 |
/// Constructor of the InverseMap. |
2103 | 2102 |
explicit InverseMap(const CrossRefMap& inverted) |
2104 | 2103 |
: _inverted(inverted) {} |
2105 | 2104 |
|
2106 | 2105 |
/// The value type of the InverseMap. |
2107 | 2106 |
typedef typename CrossRefMap::Key Value; |
2108 | 2107 |
/// The key type of the InverseMap. |
2109 | 2108 |
typedef typename CrossRefMap::Value Key; |
2110 | 2109 |
|
2111 | 2110 |
/// \brief Subscript operator. |
2112 | 2111 |
/// |
2113 | 2112 |
/// Subscript operator. It gives back an item |
2114 | 2113 |
/// that is assigned to the given value or \c INVALID |
2115 | 2114 |
/// if no such item exists. |
2116 | 2115 |
Value operator[](const Key& key) const { |
2117 | 2116 |
return _inverted(key); |
2118 | 2117 |
} |
2119 | 2118 |
|
2120 | 2119 |
private: |
2121 | 2120 |
const CrossRefMap& _inverted; |
2122 | 2121 |
}; |
2123 | 2122 |
|
2124 | 2123 |
/// \brief It gives back the read-only inverse map. |
2125 | 2124 |
/// |
2126 | 2125 |
/// It gives back the read-only inverse map. |
2127 | 2126 |
InverseMap inverse() const { |
2128 | 2127 |
return InverseMap(*this); |
2129 | 2128 |
} |
2130 | 2129 |
|
2131 | 2130 |
}; |
2132 | 2131 |
|
2133 | 2132 |
/// \brief Provides continuous and unique id for the |
2134 | 2133 |
/// items of a graph. |
2135 | 2134 |
/// |
2136 | 2135 |
/// RangeIdMap provides a unique and continuous |
2137 | 2136 |
/// id for each item of a given type (\c Node, \c Arc or |
2138 | 2137 |
/// \c Edge) in a graph. This id is |
2139 | 2138 |
/// - \b unique: different items get different ids, |
2140 | 2139 |
/// - \b continuous: the range of the ids is the set of integers |
2141 | 2140 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2142 | 2141 |
/// this type (\c Node, \c Arc or \c Edge). |
2143 | 2142 |
/// - So, the ids can change when deleting an item of the same type. |
2144 | 2143 |
/// |
2145 | 2144 |
/// Thus this id is not (necessarily) the same as what can get using |
2146 | 2145 |
/// the \c id() function of the graph or \ref IdMap. |
2147 | 2146 |
/// This map can be inverted with its member class \c InverseMap, |
2148 | 2147 |
/// or with the \c operator()() member. |
2149 | 2148 |
/// |
2150 | 2149 |
/// \tparam GR The graph type. |
2151 | 2150 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2152 | 2151 |
/// \c GR::Edge). |
2153 | 2152 |
/// |
2154 | 2153 |
/// \see IdMap |
2155 | 2154 |
template <typename GR, typename K> |
2156 | 2155 |
class RangeIdMap |
2157 | 2156 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2158 | 2157 |
|
2159 | 2158 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2160 | 2159 |
|
2161 | 2160 |
public: |
2162 | 2161 |
/// The graph type of RangeIdMap. |
2163 | 2162 |
typedef GR Graph; |
2164 | 2163 |
typedef GR Digraph; |
2165 | 2164 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2166 | 2165 |
typedef K Item; |
2167 | 2166 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2168 | 2167 |
typedef K Key; |
2169 | 2168 |
/// The value type of RangeIdMap. |
2170 | 2169 |
typedef int Value; |
2171 | 2170 |
|
2172 | 2171 |
/// \brief Constructor. |
2173 | 2172 |
/// |
2174 | 2173 |
/// Constructor. |
2175 | 2174 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
2176 | 2175 |
Item it; |
2177 | 2176 |
const typename Map::Notifier* nf = Map::notifier(); |
2178 | 2177 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2179 | 2178 |
Map::set(it, _inv_map.size()); |
2180 | 2179 |
_inv_map.push_back(it); |
2181 | 2180 |
} |
2182 | 2181 |
} |
2183 | 2182 |
|
2184 | 2183 |
protected: |
2185 | 2184 |
|
2186 | 2185 |
/// \brief Adds a new key to the map. |
2187 | 2186 |
/// |
2188 | 2187 |
/// Add a new key to the map. It is called by the |
2189 | 2188 |
/// \c AlterationNotifier. |
2190 | 2189 |
virtual void add(const Item& item) { |
2191 | 2190 |
Map::add(item); |
2192 | 2191 |
Map::set(item, _inv_map.size()); |
2193 | 2192 |
_inv_map.push_back(item); |
2194 | 2193 |
} |
2195 | 2194 |
|
2196 | 2195 |
/// \brief Add more new keys to the map. |
2197 | 2196 |
/// |
2198 | 2197 |
/// Add more new keys to the map. It is called by the |
2199 | 2198 |
/// \c AlterationNotifier. |
2200 | 2199 |
virtual void add(const std::vector<Item>& items) { |
2201 | 2200 |
Map::add(items); |
2202 | 2201 |
for (int i = 0; i < int(items.size()); ++i) { |
2203 | 2202 |
Map::set(items[i], _inv_map.size()); |
2204 | 2203 |
_inv_map.push_back(items[i]); |
2205 | 2204 |
} |
2206 | 2205 |
} |
2207 | 2206 |
|
2208 | 2207 |
/// \brief Erase the key from the map. |
2209 | 2208 |
/// |
2210 | 2209 |
/// Erase the key from the map. It is called by the |
2211 | 2210 |
/// \c AlterationNotifier. |
2212 | 2211 |
virtual void erase(const Item& item) { |
2213 | 2212 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2214 | 2213 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2215 | 2214 |
_inv_map.pop_back(); |
2216 | 2215 |
Map::erase(item); |
2217 | 2216 |
} |
2218 | 2217 |
|
2219 | 2218 |
/// \brief Erase more keys from the map. |
2220 | 2219 |
/// |
2221 | 2220 |
/// Erase more keys from the map. It is called by the |
2222 | 2221 |
/// \c AlterationNotifier. |
2223 | 2222 |
virtual void erase(const std::vector<Item>& items) { |
2224 | 2223 |
for (int i = 0; i < int(items.size()); ++i) { |
2225 | 2224 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2226 | 2225 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2227 | 2226 |
_inv_map.pop_back(); |
2228 | 2227 |
} |
2229 | 2228 |
Map::erase(items); |
2230 | 2229 |
} |
2231 | 2230 |
|
2232 | 2231 |
/// \brief Build the unique map. |
2233 | 2232 |
/// |
2234 | 2233 |
/// Build the unique map. It is called by the |
2235 | 2234 |
/// \c AlterationNotifier. |
2236 | 2235 |
virtual void build() { |
2237 | 2236 |
Map::build(); |
2238 | 2237 |
Item it; |
2239 | 2238 |
const typename Map::Notifier* nf = Map::notifier(); |
2240 | 2239 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2241 | 2240 |
Map::set(it, _inv_map.size()); |
2242 | 2241 |
_inv_map.push_back(it); |
2243 | 2242 |
} |
2244 | 2243 |
} |
2245 | 2244 |
|
2246 | 2245 |
/// \brief Clear the keys from the map. |
2247 | 2246 |
/// |
2248 | 2247 |
/// Clear the keys from the map. It is called by the |
2249 | 2248 |
/// \c AlterationNotifier. |
2250 | 2249 |
virtual void clear() { |
2251 | 2250 |
_inv_map.clear(); |
2252 | 2251 |
Map::clear(); |
2253 | 2252 |
} |
2254 | 2253 |
|
2255 | 2254 |
public: |
2256 | 2255 |
|
2257 | 2256 |
/// \brief Returns the maximal value plus one. |
2258 | 2257 |
/// |
2259 | 2258 |
/// Returns the maximal value plus one in the map. |
2260 | 2259 |
unsigned int size() const { |
2261 | 2260 |
return _inv_map.size(); |
2262 | 2261 |
} |
2263 | 2262 |
|
2264 | 2263 |
/// \brief Swaps the position of the two items in the map. |
2265 | 2264 |
/// |
2266 | 2265 |
/// Swaps the position of the two items in the map. |
2267 | 2266 |
void swap(const Item& p, const Item& q) { |
2268 | 2267 |
int pi = Map::operator[](p); |
2269 | 2268 |
int qi = Map::operator[](q); |
2270 | 2269 |
Map::set(p, qi); |
2271 | 2270 |
_inv_map[qi] = p; |
2272 | 2271 |
Map::set(q, pi); |
2273 | 2272 |
_inv_map[pi] = q; |
2274 | 2273 |
} |
2275 | 2274 |
|
2276 | 2275 |
/// \brief Gives back the \e RangeId of the item |
2277 | 2276 |
/// |
2278 | 2277 |
/// Gives back the \e RangeId of the item. |
2279 | 2278 |
int operator[](const Item& item) const { |
2280 | 2279 |
return Map::operator[](item); |
2281 | 2280 |
} |
2282 | 2281 |
|
2283 | 2282 |
/// \brief Gives back the item belonging to a \e RangeId |
2284 |
/// |
|
2283 |
/// |
|
2285 | 2284 |
/// Gives back the item belonging to a \e RangeId. |
2286 | 2285 |
Item operator()(int id) const { |
2287 | 2286 |
return _inv_map[id]; |
2288 | 2287 |
} |
2289 | 2288 |
|
2290 | 2289 |
private: |
2291 | 2290 |
|
2292 | 2291 |
typedef std::vector<Item> Container; |
2293 | 2292 |
Container _inv_map; |
2294 | 2293 |
|
2295 | 2294 |
public: |
2296 | 2295 |
|
2297 | 2296 |
/// \brief The inverse map type of RangeIdMap. |
2298 | 2297 |
/// |
2299 | 2298 |
/// The inverse map type of RangeIdMap. |
2300 | 2299 |
class InverseMap { |
2301 | 2300 |
public: |
2302 | 2301 |
/// \brief Constructor |
2303 | 2302 |
/// |
2304 | 2303 |
/// Constructor of the InverseMap. |
2305 | 2304 |
explicit InverseMap(const RangeIdMap& inverted) |
2306 | 2305 |
: _inverted(inverted) {} |
2307 | 2306 |
|
2308 | 2307 |
|
2309 | 2308 |
/// The value type of the InverseMap. |
2310 | 2309 |
typedef typename RangeIdMap::Key Value; |
2311 | 2310 |
/// The key type of the InverseMap. |
2312 | 2311 |
typedef typename RangeIdMap::Value Key; |
2313 | 2312 |
|
2314 | 2313 |
/// \brief Subscript operator. |
2315 | 2314 |
/// |
2316 | 2315 |
/// Subscript operator. It gives back the item |
2317 | 2316 |
/// that the descriptor currently belongs to. |
2318 | 2317 |
Value operator[](const Key& key) const { |
2319 | 2318 |
return _inverted(key); |
2320 | 2319 |
} |
2321 | 2320 |
|
2322 | 2321 |
/// \brief Size of the map. |
2323 | 2322 |
/// |
2324 | 2323 |
/// Returns the size of the map. |
2325 | 2324 |
unsigned int size() const { |
2326 | 2325 |
return _inverted.size(); |
2327 | 2326 |
} |
2328 | 2327 |
|
2329 | 2328 |
private: |
2330 | 2329 |
const RangeIdMap& _inverted; |
2331 | 2330 |
}; |
2332 | 2331 |
|
2333 | 2332 |
/// \brief Gives back the inverse of the map. |
2334 | 2333 |
/// |
2335 | 2334 |
/// Gives back the inverse of the map. |
2336 | 2335 |
const InverseMap inverse() const { |
2337 | 2336 |
return InverseMap(*this); |
2338 | 2337 |
} |
2339 | 2338 |
}; |
2340 | 2339 |
|
2340 |
/// \brief Dynamic iterable \c bool map. |
|
2341 |
/// |
|
2342 |
/// This class provides a special graph map type which can store a |
|
2343 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
2344 |
/// For both \c true and \c false values it is possible to iterate on |
|
2345 |
/// the keys. |
|
2346 |
/// |
|
2347 |
/// This type is a reference map, so it can be modified with the |
|
2348 |
/// subscription operator. |
|
2349 |
/// |
|
2350 |
/// \tparam GR The graph type. |
|
2351 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2352 |
/// \c GR::Edge). |
|
2353 |
/// |
|
2354 |
/// \see IterableIntMap, IterableValueMap |
|
2355 |
/// \see CrossRefMap |
|
2356 |
template <typename GR, typename K> |
|
2357 |
class IterableBoolMap |
|
2358 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|
2359 |
private: |
|
2360 |
typedef GR Graph; |
|
2361 |
|
|
2362 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
2363 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
2364 |
|
|
2365 |
std::vector<K> _array; |
|
2366 |
int _sep; |
|
2367 |
|
|
2368 |
public: |
|
2369 |
|
|
2370 |
/// Indicates that the map is reference map. |
|
2371 |
typedef True ReferenceMapTag; |
|
2372 |
|
|
2373 |
/// The key type |
|
2374 |
typedef K Key; |
|
2375 |
/// The value type |
|
2376 |
typedef bool Value; |
|
2377 |
/// The const reference type. |
|
2378 |
typedef const Value& ConstReference; |
|
2379 |
|
|
2380 |
private: |
|
2381 |
|
|
2382 |
int position(const Key& key) const { |
|
2383 |
return Parent::operator[](key); |
|
2384 |
} |
|
2385 |
|
|
2386 |
public: |
|
2387 |
|
|
2388 |
/// \brief Reference to the value of the map. |
|
2389 |
/// |
|
2390 |
/// This class is similar to the \c bool type. It can be converted to |
|
2391 |
/// \c bool and it provides the same operators. |
|
2392 |
class Reference { |
|
2393 |
friend class IterableBoolMap; |
|
2394 |
private: |
|
2395 |
Reference(IterableBoolMap& map, const Key& key) |
|
2396 |
: _key(key), _map(map) {} |
|
2397 |
public: |
|
2398 |
|
|
2399 |
Reference& operator=(const Reference& value) { |
|
2400 |
_map.set(_key, static_cast<bool>(value)); |
|
2401 |
return *this; |
|
2402 |
} |
|
2403 |
|
|
2404 |
operator bool() const { |
|
2405 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
2406 |
} |
|
2407 |
|
|
2408 |
Reference& operator=(bool value) { |
|
2409 |
_map.set(_key, value); |
|
2410 |
return *this; |
|
2411 |
} |
|
2412 |
Reference& operator&=(bool value) { |
|
2413 |
_map.set(_key, _map[_key] & value); |
|
2414 |
return *this; |
|
2415 |
} |
|
2416 |
Reference& operator|=(bool value) { |
|
2417 |
_map.set(_key, _map[_key] | value); |
|
2418 |
return *this; |
|
2419 |
} |
|
2420 |
Reference& operator^=(bool value) { |
|
2421 |
_map.set(_key, _map[_key] ^ value); |
|
2422 |
return *this; |
|
2423 |
} |
|
2424 |
private: |
|
2425 |
Key _key; |
|
2426 |
IterableBoolMap& _map; |
|
2427 |
}; |
|
2428 |
|
|
2429 |
/// \brief Constructor of the map with a default value. |
|
2430 |
/// |
|
2431 |
/// Constructor of the map with a default value. |
|
2432 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
2433 |
: Parent(graph) { |
|
2434 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2435 |
Key it; |
|
2436 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2437 |
Parent::set(it, _array.size()); |
|
2438 |
_array.push_back(it); |
|
2439 |
} |
|
2440 |
_sep = (def ? _array.size() : 0); |
|
2441 |
} |
|
2442 |
|
|
2443 |
/// \brief Const subscript operator of the map. |
|
2444 |
/// |
|
2445 |
/// Const subscript operator of the map. |
|
2446 |
bool operator[](const Key& key) const { |
|
2447 |
return position(key) < _sep; |
|
2448 |
} |
|
2449 |
|
|
2450 |
/// \brief Subscript operator of the map. |
|
2451 |
/// |
|
2452 |
/// Subscript operator of the map. |
|
2453 |
Reference operator[](const Key& key) { |
|
2454 |
return Reference(*this, key); |
|
2455 |
} |
|
2456 |
|
|
2457 |
/// \brief Set operation of the map. |
|
2458 |
/// |
|
2459 |
/// Set operation of the map. |
|
2460 |
void set(const Key& key, bool value) { |
|
2461 |
int pos = position(key); |
|
2462 |
if (value) { |
|
2463 |
if (pos < _sep) return; |
|
2464 |
Key tmp = _array[_sep]; |
|
2465 |
_array[_sep] = key; |
|
2466 |
Parent::set(key, _sep); |
|
2467 |
_array[pos] = tmp; |
|
2468 |
Parent::set(tmp, pos); |
|
2469 |
++_sep; |
|
2470 |
} else { |
|
2471 |
if (pos >= _sep) return; |
|
2472 |
--_sep; |
|
2473 |
Key tmp = _array[_sep]; |
|
2474 |
_array[_sep] = key; |
|
2475 |
Parent::set(key, _sep); |
|
2476 |
_array[pos] = tmp; |
|
2477 |
Parent::set(tmp, pos); |
|
2478 |
} |
|
2479 |
} |
|
2480 |
|
|
2481 |
/// \brief Set all items. |
|
2482 |
/// |
|
2483 |
/// Set all items in the map. |
|
2484 |
/// \note Constant time operation. |
|
2485 |
void setAll(bool value) { |
|
2486 |
_sep = (value ? _array.size() : 0); |
|
2487 |
} |
|
2488 |
|
|
2489 |
/// \brief Returns the number of the keys mapped to \c true. |
|
2490 |
/// |
|
2491 |
/// Returns the number of the keys mapped to \c true. |
|
2492 |
int trueNum() const { |
|
2493 |
return _sep; |
|
2494 |
} |
|
2495 |
|
|
2496 |
/// \brief Returns the number of the keys mapped to \c false. |
|
2497 |
/// |
|
2498 |
/// Returns the number of the keys mapped to \c false. |
|
2499 |
int falseNum() const { |
|
2500 |
return _array.size() - _sep; |
|
2501 |
} |
|
2502 |
|
|
2503 |
/// \brief Iterator for the keys mapped to \c true. |
|
2504 |
/// |
|
2505 |
/// Iterator for the keys mapped to \c true. It works |
|
2506 |
/// like a graph item iterator, it can be converted to |
|
2507 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2508 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2509 |
/// \c INVALID. |
|
2510 |
class TrueIt : public Key { |
|
2511 |
public: |
|
2512 |
typedef Key Parent; |
|
2513 |
|
|
2514 |
/// \brief Creates an iterator. |
|
2515 |
/// |
|
2516 |
/// Creates an iterator. It iterates on the |
|
2517 |
/// keys mapped to \c true. |
|
2518 |
/// \param map The IterableBoolMap. |
|
2519 |
explicit TrueIt(const IterableBoolMap& map) |
|
2520 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
2521 |
_map(&map) {} |
|
2522 |
|
|
2523 |
/// \brief Invalid constructor \& conversion. |
|
2524 |
/// |
|
2525 |
/// This constructor initializes the iterator to be invalid. |
|
2526 |
/// \sa Invalid for more details. |
|
2527 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2528 |
|
|
2529 |
/// \brief Increment operator. |
|
2530 |
/// |
|
2531 |
/// Increment operator. |
|
2532 |
TrueIt& operator++() { |
|
2533 |
int pos = _map->position(*this); |
|
2534 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
2535 |
return *this; |
|
2536 |
} |
|
2537 |
|
|
2538 |
private: |
|
2539 |
const IterableBoolMap* _map; |
|
2540 |
}; |
|
2541 |
|
|
2542 |
/// \brief Iterator for the keys mapped to \c false. |
|
2543 |
/// |
|
2544 |
/// Iterator for the keys mapped to \c false. It works |
|
2545 |
/// like a graph item iterator, it can be converted to |
|
2546 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2547 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2548 |
/// \c INVALID. |
|
2549 |
class FalseIt : public Key { |
|
2550 |
public: |
|
2551 |
typedef Key Parent; |
|
2552 |
|
|
2553 |
/// \brief Creates an iterator. |
|
2554 |
/// |
|
2555 |
/// Creates an iterator. It iterates on the |
|
2556 |
/// keys mapped to \c false. |
|
2557 |
/// \param map The IterableBoolMap. |
|
2558 |
explicit FalseIt(const IterableBoolMap& map) |
|
2559 |
: Parent(map._sep < int(map._array.size()) ? |
|
2560 |
map._array.back() : INVALID), _map(&map) {} |
|
2561 |
|
|
2562 |
/// \brief Invalid constructor \& conversion. |
|
2563 |
/// |
|
2564 |
/// This constructor initializes the iterator to be invalid. |
|
2565 |
/// \sa Invalid for more details. |
|
2566 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2567 |
|
|
2568 |
/// \brief Increment operator. |
|
2569 |
/// |
|
2570 |
/// Increment operator. |
|
2571 |
FalseIt& operator++() { |
|
2572 |
int pos = _map->position(*this); |
|
2573 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
2574 |
return *this; |
|
2575 |
} |
|
2576 |
|
|
2577 |
private: |
|
2578 |
const IterableBoolMap* _map; |
|
2579 |
}; |
|
2580 |
|
|
2581 |
/// \brief Iterator for the keys mapped to a given value. |
|
2582 |
/// |
|
2583 |
/// Iterator for the keys mapped to a given value. It works |
|
2584 |
/// like a graph item iterator, it can be converted to |
|
2585 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2586 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2587 |
/// \c INVALID. |
|
2588 |
class ItemIt : public Key { |
|
2589 |
public: |
|
2590 |
typedef Key Parent; |
|
2591 |
|
|
2592 |
/// \brief Creates an iterator with a value. |
|
2593 |
/// |
|
2594 |
/// Creates an iterator with a value. It iterates on the |
|
2595 |
/// keys mapped to the given value. |
|
2596 |
/// \param map The IterableBoolMap. |
|
2597 |
/// \param value The value. |
|
2598 |
ItemIt(const IterableBoolMap& map, bool value) |
|
2599 |
: Parent(value ? |
|
2600 |
(map._sep > 0 ? |
|
2601 |
map._array[map._sep - 1] : INVALID) : |
|
2602 |
(map._sep < int(map._array.size()) ? |
|
2603 |
map._array.back() : INVALID)), _map(&map) {} |
|
2604 |
|
|
2605 |
/// \brief Invalid constructor \& conversion. |
|
2606 |
/// |
|
2607 |
/// This constructor initializes the iterator to be invalid. |
|
2608 |
/// \sa Invalid for more details. |
|
2609 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2610 |
|
|
2611 |
/// \brief Increment operator. |
|
2612 |
/// |
|
2613 |
/// Increment operator. |
|
2614 |
ItemIt& operator++() { |
|
2615 |
int pos = _map->position(*this); |
|
2616 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
2617 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
2618 |
return *this; |
|
2619 |
} |
|
2620 |
|
|
2621 |
private: |
|
2622 |
const IterableBoolMap* _map; |
|
2623 |
}; |
|
2624 |
|
|
2625 |
protected: |
|
2626 |
|
|
2627 |
virtual void add(const Key& key) { |
|
2628 |
Parent::add(key); |
|
2629 |
Parent::set(key, _array.size()); |
|
2630 |
_array.push_back(key); |
|
2631 |
} |
|
2632 |
|
|
2633 |
virtual void add(const std::vector<Key>& keys) { |
|
2634 |
Parent::add(keys); |
|
2635 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2636 |
Parent::set(keys[i], _array.size()); |
|
2637 |
_array.push_back(keys[i]); |
|
2638 |
} |
|
2639 |
} |
|
2640 |
|
|
2641 |
virtual void erase(const Key& key) { |
|
2642 |
int pos = position(key); |
|
2643 |
if (pos < _sep) { |
|
2644 |
--_sep; |
|
2645 |
Parent::set(_array[_sep], pos); |
|
2646 |
_array[pos] = _array[_sep]; |
|
2647 |
Parent::set(_array.back(), _sep); |
|
2648 |
_array[_sep] = _array.back(); |
|
2649 |
_array.pop_back(); |
|
2650 |
} else { |
|
2651 |
Parent::set(_array.back(), pos); |
|
2652 |
_array[pos] = _array.back(); |
|
2653 |
_array.pop_back(); |
|
2654 |
} |
|
2655 |
Parent::erase(key); |
|
2656 |
} |
|
2657 |
|
|
2658 |
virtual void erase(const std::vector<Key>& keys) { |
|
2659 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2660 |
int pos = position(keys[i]); |
|
2661 |
if (pos < _sep) { |
|
2662 |
--_sep; |
|
2663 |
Parent::set(_array[_sep], pos); |
|
2664 |
_array[pos] = _array[_sep]; |
|
2665 |
Parent::set(_array.back(), _sep); |
|
2666 |
_array[_sep] = _array.back(); |
|
2667 |
_array.pop_back(); |
|
2668 |
} else { |
|
2669 |
Parent::set(_array.back(), pos); |
|
2670 |
_array[pos] = _array.back(); |
|
2671 |
_array.pop_back(); |
|
2672 |
} |
|
2673 |
} |
|
2674 |
Parent::erase(keys); |
|
2675 |
} |
|
2676 |
|
|
2677 |
virtual void build() { |
|
2678 |
Parent::build(); |
|
2679 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2680 |
Key it; |
|
2681 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2682 |
Parent::set(it, _array.size()); |
|
2683 |
_array.push_back(it); |
|
2684 |
} |
|
2685 |
_sep = 0; |
|
2686 |
} |
|
2687 |
|
|
2688 |
virtual void clear() { |
|
2689 |
_array.clear(); |
|
2690 |
_sep = 0; |
|
2691 |
Parent::clear(); |
|
2692 |
} |
|
2693 |
|
|
2694 |
}; |
|
2695 |
|
|
2696 |
|
|
2697 |
namespace _maps_bits { |
|
2698 |
template <typename Item> |
|
2699 |
struct IterableIntMapNode { |
|
2700 |
IterableIntMapNode() : value(-1) {} |
|
2701 |
IterableIntMapNode(int _value) : value(_value) {} |
|
2702 |
Item prev, next; |
|
2703 |
int value; |
|
2704 |
}; |
|
2705 |
} |
|
2706 |
|
|
2707 |
/// \brief Dynamic iterable integer map. |
|
2708 |
/// |
|
2709 |
/// This class provides a special graph map type which can store an |
|
2710 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
2711 |
/// For each non-negative value it is possible to iterate on the keys |
|
2712 |
/// mapped to the value. |
|
2713 |
/// |
|
2714 |
/// This type is a reference map, so it can be modified with the |
|
2715 |
/// subscription operator. |
|
2716 |
/// |
|
2717 |
/// \note The size of the data structure depends on the largest |
|
2718 |
/// value in the map. |
|
2719 |
/// |
|
2720 |
/// \tparam GR The graph type. |
|
2721 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2722 |
/// \c GR::Edge). |
|
2723 |
/// |
|
2724 |
/// \see IterableBoolMap, IterableValueMap |
|
2725 |
/// \see CrossRefMap |
|
2726 |
template <typename GR, typename K> |
|
2727 |
class IterableIntMap |
|
2728 |
: protected ItemSetTraits<GR, K>:: |
|
2729 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
|
2730 |
public: |
|
2731 |
typedef typename ItemSetTraits<GR, K>:: |
|
2732 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
2733 |
|
|
2734 |
/// The key type |
|
2735 |
typedef K Key; |
|
2736 |
/// The value type |
|
2737 |
typedef int Value; |
|
2738 |
/// The graph type |
|
2739 |
typedef GR Graph; |
|
2740 |
|
|
2741 |
/// \brief Constructor of the map. |
|
2742 |
/// |
|
2743 |
/// Constructor of the map. It sets all values to -1. |
|
2744 |
explicit IterableIntMap(const Graph& graph) |
|
2745 |
: Parent(graph) {} |
|
2746 |
|
|
2747 |
/// \brief Constructor of the map with a given value. |
|
2748 |
/// |
|
2749 |
/// Constructor of the map with a given value. |
|
2750 |
explicit IterableIntMap(const Graph& graph, int value) |
|
2751 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
|
2752 |
if (value >= 0) { |
|
2753 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
2754 |
lace(it); |
|
2755 |
} |
|
2756 |
} |
|
2757 |
} |
|
2758 |
|
|
2759 |
private: |
|
2760 |
|
|
2761 |
void unlace(const Key& key) { |
|
2762 |
typename Parent::Value& node = Parent::operator[](key); |
|
2763 |
if (node.value < 0) return; |
|
2764 |
if (node.prev != INVALID) { |
|
2765 |
Parent::operator[](node.prev).next = node.next; |
|
2766 |
} else { |
|
2767 |
_first[node.value] = node.next; |
|
2768 |
} |
|
2769 |
if (node.next != INVALID) { |
|
2770 |
Parent::operator[](node.next).prev = node.prev; |
|
2771 |
} |
|
2772 |
while (!_first.empty() && _first.back() == INVALID) { |
|
2773 |
_first.pop_back(); |
|
2774 |
} |
|
2775 |
} |
|
2776 |
|
|
2777 |
void lace(const Key& key) { |
|
2778 |
typename Parent::Value& node = Parent::operator[](key); |
|
2779 |
if (node.value < 0) return; |
|
2780 |
if (node.value >= int(_first.size())) { |
|
2781 |
_first.resize(node.value + 1, INVALID); |
|
2782 |
} |
|
2783 |
node.prev = INVALID; |
|
2784 |
node.next = _first[node.value]; |
|
2785 |
if (node.next != INVALID) { |
|
2786 |
Parent::operator[](node.next).prev = key; |
|
2787 |
} |
|
2788 |
_first[node.value] = key; |
|
2789 |
} |
|
2790 |
|
|
2791 |
public: |
|
2792 |
|
|
2793 |
/// Indicates that the map is reference map. |
|
2794 |
typedef True ReferenceMapTag; |
|
2795 |
|
|
2796 |
/// \brief Reference to the value of the map. |
|
2797 |
/// |
|
2798 |
/// This class is similar to the \c int type. It can |
|
2799 |
/// be converted to \c int and it has the same operators. |
|
2800 |
class Reference { |
|
2801 |
friend class IterableIntMap; |
|
2802 |
private: |
|
2803 |
Reference(IterableIntMap& map, const Key& key) |
|
2804 |
: _key(key), _map(map) {} |
|
2805 |
public: |
|
2806 |
|
|
2807 |
Reference& operator=(const Reference& value) { |
|
2808 |
_map.set(_key, static_cast<const int&>(value)); |
|
2809 |
return *this; |
|
2810 |
} |
|
2811 |
|
|
2812 |
operator const int&() const { |
|
2813 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
2814 |
} |
|
2815 |
|
|
2816 |
Reference& operator=(int value) { |
|
2817 |
_map.set(_key, value); |
|
2818 |
return *this; |
|
2819 |
} |
|
2820 |
Reference& operator++() { |
|
2821 |
_map.set(_key, _map[_key] + 1); |
|
2822 |
return *this; |
|
2823 |
} |
|
2824 |
int operator++(int) { |
|
2825 |
int value = _map[_key]; |
|
2826 |
_map.set(_key, value + 1); |
|
2827 |
return value; |
|
2828 |
} |
|
2829 |
Reference& operator--() { |
|
2830 |
_map.set(_key, _map[_key] - 1); |
|
2831 |
return *this; |
|
2832 |
} |
|
2833 |
int operator--(int) { |
|
2834 |
int value = _map[_key]; |
|
2835 |
_map.set(_key, value - 1); |
|
2836 |
return value; |
|
2837 |
} |
|
2838 |
Reference& operator+=(int value) { |
|
2839 |
_map.set(_key, _map[_key] + value); |
|
2840 |
return *this; |
|
2841 |
} |
|
2842 |
Reference& operator-=(int value) { |
|
2843 |
_map.set(_key, _map[_key] - value); |
|
2844 |
return *this; |
|
2845 |
} |
|
2846 |
Reference& operator*=(int value) { |
|
2847 |
_map.set(_key, _map[_key] * value); |
|
2848 |
return *this; |
|
2849 |
} |
|
2850 |
Reference& operator/=(int value) { |
|
2851 |
_map.set(_key, _map[_key] / value); |
|
2852 |
return *this; |
|
2853 |
} |
|
2854 |
Reference& operator%=(int value) { |
|
2855 |
_map.set(_key, _map[_key] % value); |
|
2856 |
return *this; |
|
2857 |
} |
|
2858 |
Reference& operator&=(int value) { |
|
2859 |
_map.set(_key, _map[_key] & value); |
|
2860 |
return *this; |
|
2861 |
} |
|
2862 |
Reference& operator|=(int value) { |
|
2863 |
_map.set(_key, _map[_key] | value); |
|
2864 |
return *this; |
|
2865 |
} |
|
2866 |
Reference& operator^=(int value) { |
|
2867 |
_map.set(_key, _map[_key] ^ value); |
|
2868 |
return *this; |
|
2869 |
} |
|
2870 |
Reference& operator<<=(int value) { |
|
2871 |
_map.set(_key, _map[_key] << value); |
|
2872 |
return *this; |
|
2873 |
} |
|
2874 |
Reference& operator>>=(int value) { |
|
2875 |
_map.set(_key, _map[_key] >> value); |
|
2876 |
return *this; |
|
2877 |
} |
|
2878 |
|
|
2879 |
private: |
|
2880 |
Key _key; |
|
2881 |
IterableIntMap& _map; |
|
2882 |
}; |
|
2883 |
|
|
2884 |
/// The const reference type. |
|
2885 |
typedef const Value& ConstReference; |
|
2886 |
|
|
2887 |
/// \brief Gives back the maximal value plus one. |
|
2888 |
/// |
|
2889 |
/// Gives back the maximal value plus one. |
|
2890 |
int size() const { |
|
2891 |
return _first.size(); |
|
2892 |
} |
|
2893 |
|
|
2894 |
/// \brief Set operation of the map. |
|
2895 |
/// |
|
2896 |
/// Set operation of the map. |
|
2897 |
void set(const Key& key, const Value& value) { |
|
2898 |
unlace(key); |
|
2899 |
Parent::operator[](key).value = value; |
|
2900 |
lace(key); |
|
2901 |
} |
|
2902 |
|
|
2903 |
/// \brief Const subscript operator of the map. |
|
2904 |
/// |
|
2905 |
/// Const subscript operator of the map. |
|
2906 |
const Value& operator[](const Key& key) const { |
|
2907 |
return Parent::operator[](key).value; |
|
2908 |
} |
|
2909 |
|
|
2910 |
/// \brief Subscript operator of the map. |
|
2911 |
/// |
|
2912 |
/// Subscript operator of the map. |
|
2913 |
Reference operator[](const Key& key) { |
|
2914 |
return Reference(*this, key); |
|
2915 |
} |
|
2916 |
|
|
2917 |
/// \brief Iterator for the keys with the same value. |
|
2918 |
/// |
|
2919 |
/// Iterator for the keys with the same value. It works |
|
2920 |
/// like a graph item iterator, it can be converted to |
|
2921 |
/// the item type of the map, incremented with \c ++ operator, and |
|
2922 |
/// if the iterator leaves the last valid item, it will be equal to |
|
2923 |
/// \c INVALID. |
|
2924 |
class ItemIt : public Key { |
|
2925 |
public: |
|
2926 |
typedef Key Parent; |
|
2927 |
|
|
2928 |
/// \brief Invalid constructor \& conversion. |
|
2929 |
/// |
|
2930 |
/// This constructor initializes the iterator to be invalid. |
|
2931 |
/// \sa Invalid for more details. |
|
2932 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2933 |
|
|
2934 |
/// \brief Creates an iterator with a value. |
|
2935 |
/// |
|
2936 |
/// Creates an iterator with a value. It iterates on the |
|
2937 |
/// keys mapped to the given value. |
|
2938 |
/// \param map The IterableIntMap. |
|
2939 |
/// \param value The value. |
|
2940 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
|
2941 |
if (value < 0 || value >= int(_map->_first.size())) { |
|
2942 |
Parent::operator=(INVALID); |
|
2943 |
} else { |
|
2944 |
Parent::operator=(_map->_first[value]); |
|
2945 |
} |
|
2946 |
} |
|
2947 |
|
|
2948 |
/// \brief Increment operator. |
|
2949 |
/// |
|
2950 |
/// Increment operator. |
|
2951 |
ItemIt& operator++() { |
|
2952 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
2953 |
operator[](static_cast<Parent&>(*this)).next); |
|
2954 |
return *this; |
|
2955 |
} |
|
2956 |
|
|
2957 |
private: |
|
2958 |
const IterableIntMap* _map; |
|
2959 |
}; |
|
2960 |
|
|
2961 |
protected: |
|
2962 |
|
|
2963 |
virtual void erase(const Key& key) { |
|
2964 |
unlace(key); |
|
2965 |
Parent::erase(key); |
|
2966 |
} |
|
2967 |
|
|
2968 |
virtual void erase(const std::vector<Key>& keys) { |
|
2969 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2970 |
unlace(keys[i]); |
|
2971 |
} |
|
2972 |
Parent::erase(keys); |
|
2973 |
} |
|
2974 |
|
|
2975 |
virtual void clear() { |
|
2976 |
_first.clear(); |
|
2977 |
Parent::clear(); |
|
2978 |
} |
|
2979 |
|
|
2980 |
private: |
|
2981 |
std::vector<Key> _first; |
|
2982 |
}; |
|
2983 |
|
|
2984 |
namespace _maps_bits { |
|
2985 |
template <typename Item, typename Value> |
|
2986 |
struct IterableValueMapNode { |
|
2987 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
|
2988 |
Item prev, next; |
|
2989 |
Value value; |
|
2990 |
}; |
|
2991 |
} |
|
2992 |
|
|
2993 |
/// \brief Dynamic iterable map for comparable values. |
|
2994 |
/// |
|
2995 |
/// This class provides a special graph map type which can store an |
|
2996 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
2997 |
/// For each value it is possible to iterate on the keys mapped to |
|
2998 |
/// the value. |
|
2999 |
/// |
|
3000 |
/// The map stores for each value a linked list with |
|
3001 |
/// the items which mapped to the value, and the values are stored |
|
3002 |
/// in balanced binary tree. The values of the map can be accessed |
|
3003 |
/// with stl compatible forward iterator. |
|
3004 |
/// |
|
3005 |
/// This type is not reference map, so it cannot be modified with |
|
3006 |
/// the subscription operator. |
|
3007 |
/// |
|
3008 |
/// \tparam GR The graph type. |
|
3009 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
3010 |
/// \c GR::Edge). |
|
3011 |
/// \tparam V The value type of the map. It can be any comparable |
|
3012 |
/// value type. |
|
3013 |
/// |
|
3014 |
/// \see IterableBoolMap, IterableIntMap |
|
3015 |
/// \see CrossRefMap |
|
3016 |
template <typename GR, typename K, typename V> |
|
3017 |
class IterableValueMap |
|
3018 |
: protected ItemSetTraits<GR, K>:: |
|
3019 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
|
3020 |
public: |
|
3021 |
typedef typename ItemSetTraits<GR, K>:: |
|
3022 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
3023 |
|
|
3024 |
/// The key type |
|
3025 |
typedef K Key; |
|
3026 |
/// The value type |
|
3027 |
typedef V Value; |
|
3028 |
/// The graph type |
|
3029 |
typedef GR Graph; |
|
3030 |
|
|
3031 |
public: |
|
3032 |
|
|
3033 |
/// \brief Constructor of the map with a given value. |
|
3034 |
/// |
|
3035 |
/// Constructor of the map with a given value. |
|
3036 |
explicit IterableValueMap(const Graph& graph, |
|
3037 |
const Value& value = Value()) |
|
3038 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
|
3039 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3040 |
lace(it); |
|
3041 |
} |
|
3042 |
} |
|
3043 |
|
|
3044 |
protected: |
|
3045 |
|
|
3046 |
void unlace(const Key& key) { |
|
3047 |
typename Parent::Value& node = Parent::operator[](key); |
|
3048 |
if (node.prev != INVALID) { |
|
3049 |
Parent::operator[](node.prev).next = node.next; |
|
3050 |
} else { |
|
3051 |
if (node.next != INVALID) { |
|
3052 |
_first[node.value] = node.next; |
|
3053 |
} else { |
|
3054 |
_first.erase(node.value); |
|
3055 |
} |
|
3056 |
} |
|
3057 |
if (node.next != INVALID) { |
|
3058 |
Parent::operator[](node.next).prev = node.prev; |
|
3059 |
} |
|
3060 |
} |
|
3061 |
|
|
3062 |
void lace(const Key& key) { |
|
3063 |
typename Parent::Value& node = Parent::operator[](key); |
|
3064 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
3065 |
if (it == _first.end()) { |
|
3066 |
node.prev = node.next = INVALID; |
|
3067 |
_first.insert(std::make_pair(node.value, key)); |
|
3068 |
} else { |
|
3069 |
node.prev = INVALID; |
|
3070 |
node.next = it->second; |
|
3071 |
if (node.next != INVALID) { |
|
3072 |
Parent::operator[](node.next).prev = key; |
|
3073 |
} |
|
3074 |
it->second = key; |
|
3075 |
} |
|
3076 |
} |
|
3077 |
|
|
3078 |
public: |
|
3079 |
|
|
3080 |
/// \brief Forward iterator for values. |
|
3081 |
/// |
|
3082 |
/// This iterator is an stl compatible forward |
|
3083 |
/// iterator on the values of the map. The values can |
|
3084 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
3085 |
class ValueIterator |
|
3086 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
3087 |
friend class IterableValueMap; |
|
3088 |
private: |
|
3089 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
3090 |
: it(_it) {} |
|
3091 |
public: |
|
3092 |
|
|
3093 |
ValueIterator() {} |
|
3094 |
|
|
3095 |
ValueIterator& operator++() { ++it; return *this; } |
|
3096 |
ValueIterator operator++(int) { |
|
3097 |
ValueIterator tmp(*this); |
|
3098 |
operator++(); |
|
3099 |
return tmp; |
|
3100 |
} |
|
3101 |
|
|
3102 |
const Value& operator*() const { return it->first; } |
|
3103 |
const Value* operator->() const { return &(it->first); } |
|
3104 |
|
|
3105 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3106 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3107 |
|
|
3108 |
private: |
|
3109 |
typename std::map<Value, Key>::const_iterator it; |
|
3110 |
}; |
|
3111 |
|
|
3112 |
/// \brief Returns an iterator to the first value. |
|
3113 |
/// |
|
3114 |
/// Returns an stl compatible iterator to the |
|
3115 |
/// first value of the map. The values of the |
|
3116 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3117 |
/// range. |
|
3118 |
ValueIterator beginValue() const { |
|
3119 |
return ValueIterator(_first.begin()); |
|
3120 |
} |
|
3121 |
|
|
3122 |
/// \brief Returns an iterator after the last value. |
|
3123 |
/// |
|
3124 |
/// Returns an stl compatible iterator after the |
|
3125 |
/// last value of the map. The values of the |
|
3126 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3127 |
/// range. |
|
3128 |
ValueIterator endValue() const { |
|
3129 |
return ValueIterator(_first.end()); |
|
3130 |
} |
|
3131 |
|
|
3132 |
/// \brief Set operation of the map. |
|
3133 |
/// |
|
3134 |
/// Set operation of the map. |
|
3135 |
void set(const Key& key, const Value& value) { |
|
3136 |
unlace(key); |
|
3137 |
Parent::operator[](key).value = value; |
|
3138 |
lace(key); |
|
3139 |
} |
|
3140 |
|
|
3141 |
/// \brief Const subscript operator of the map. |
|
3142 |
/// |
|
3143 |
/// Const subscript operator of the map. |
|
3144 |
const Value& operator[](const Key& key) const { |
|
3145 |
return Parent::operator[](key).value; |
|
3146 |
} |
|
3147 |
|
|
3148 |
/// \brief Iterator for the keys with the same value. |
|
3149 |
/// |
|
3150 |
/// Iterator for the keys with the same value. It works |
|
3151 |
/// like a graph item iterator, it can be converted to |
|
3152 |
/// the item type of the map, incremented with \c ++ operator, and |
|
3153 |
/// if the iterator leaves the last valid item, it will be equal to |
|
3154 |
/// \c INVALID. |
|
3155 |
class ItemIt : public Key { |
|
3156 |
public: |
|
3157 |
typedef Key Parent; |
|
3158 |
|
|
3159 |
/// \brief Invalid constructor \& conversion. |
|
3160 |
/// |
|
3161 |
/// This constructor initializes the iterator to be invalid. |
|
3162 |
/// \sa Invalid for more details. |
|
3163 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
3164 |
|
|
3165 |
/// \brief Creates an iterator with a value. |
|
3166 |
/// |
|
3167 |
/// Creates an iterator with a value. It iterates on the |
|
3168 |
/// keys which have the given value. |
|
3169 |
/// \param map The IterableValueMap |
|
3170 |
/// \param value The value |
|
3171 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
|
3172 |
typename std::map<Value, Key>::const_iterator it = |
|
3173 |
map._first.find(value); |
|
3174 |
if (it == map._first.end()) { |
|
3175 |
Parent::operator=(INVALID); |
|
3176 |
} else { |
|
3177 |
Parent::operator=(it->second); |
|
3178 |
} |
|
3179 |
} |
|
3180 |
|
|
3181 |
/// \brief Increment operator. |
|
3182 |
/// |
|
3183 |
/// Increment Operator. |
|
3184 |
ItemIt& operator++() { |
|
3185 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
3186 |
operator[](static_cast<Parent&>(*this)).next); |
|
3187 |
return *this; |
|
3188 |
} |
|
3189 |
|
|
3190 |
|
|
3191 |
private: |
|
3192 |
const IterableValueMap* _map; |
|
3193 |
}; |
|
3194 |
|
|
3195 |
protected: |
|
3196 |
|
|
3197 |
virtual void add(const Key& key) { |
|
3198 |
Parent::add(key); |
|
3199 |
unlace(key); |
|
3200 |
} |
|
3201 |
|
|
3202 |
virtual void add(const std::vector<Key>& keys) { |
|
3203 |
Parent::add(keys); |
|
3204 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3205 |
lace(keys[i]); |
|
3206 |
} |
|
3207 |
} |
|
3208 |
|
|
3209 |
virtual void erase(const Key& key) { |
|
3210 |
unlace(key); |
|
3211 |
Parent::erase(key); |
|
3212 |
} |
|
3213 |
|
|
3214 |
virtual void erase(const std::vector<Key>& keys) { |
|
3215 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3216 |
unlace(keys[i]); |
|
3217 |
} |
|
3218 |
Parent::erase(keys); |
|
3219 |
} |
|
3220 |
|
|
3221 |
virtual void build() { |
|
3222 |
Parent::build(); |
|
3223 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3224 |
lace(it); |
|
3225 |
} |
|
3226 |
} |
|
3227 |
|
|
3228 |
virtual void clear() { |
|
3229 |
_first.clear(); |
|
3230 |
Parent::clear(); |
|
3231 |
} |
|
3232 |
|
|
3233 |
private: |
|
3234 |
std::map<Value, Key> _first; |
|
3235 |
}; |
|
3236 |
|
|
2341 | 3237 |
/// \brief Map of the source nodes of arcs in a digraph. |
2342 | 3238 |
/// |
2343 | 3239 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2344 | 3240 |
/// which is returned by the \c source() function of the digraph. |
2345 | 3241 |
/// \tparam GR The digraph type. |
2346 | 3242 |
/// \see TargetMap |
2347 | 3243 |
template <typename GR> |
2348 | 3244 |
class SourceMap { |
2349 | 3245 |
public: |
2350 | 3246 |
|
2351 | 3247 |
///\e |
2352 | 3248 |
typedef typename GR::Arc Key; |
2353 | 3249 |
///\e |
2354 | 3250 |
typedef typename GR::Node Value; |
2355 | 3251 |
|
2356 | 3252 |
/// \brief Constructor |
2357 | 3253 |
/// |
2358 | 3254 |
/// Constructor. |
2359 | 3255 |
/// \param digraph The digraph that the map belongs to. |
2360 | 3256 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2361 | 3257 |
|
2362 | 3258 |
/// \brief Returns the source node of the given arc. |
2363 | 3259 |
/// |
2364 | 3260 |
/// Returns the source node of the given arc. |
2365 | 3261 |
Value operator[](const Key& arc) const { |
2366 | 3262 |
return _graph.source(arc); |
2367 | 3263 |
} |
2368 | 3264 |
|
2369 | 3265 |
private: |
2370 | 3266 |
const GR& _graph; |
2371 | 3267 |
}; |
2372 | 3268 |
|
2373 | 3269 |
/// \brief Returns a \c SourceMap class. |
2374 | 3270 |
/// |
2375 | 3271 |
/// This function just returns an \c SourceMap class. |
2376 | 3272 |
/// \relates SourceMap |
2377 | 3273 |
template <typename GR> |
2378 | 3274 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2379 | 3275 |
return SourceMap<GR>(graph); |
2380 | 3276 |
} |
2381 | 3277 |
|
2382 | 3278 |
/// \brief Map of the target nodes of arcs in a digraph. |
2383 | 3279 |
/// |
2384 | 3280 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2385 | 3281 |
/// which is returned by the \c target() function of the digraph. |
2386 | 3282 |
/// \tparam GR The digraph type. |
2387 | 3283 |
/// \see SourceMap |
2388 | 3284 |
template <typename GR> |
2389 | 3285 |
class TargetMap { |
2390 | 3286 |
public: |
2391 | 3287 |
|
2392 | 3288 |
///\e |
2393 | 3289 |
typedef typename GR::Arc Key; |
2394 | 3290 |
///\e |
2395 | 3291 |
typedef typename GR::Node Value; |
2396 | 3292 |
|
2397 | 3293 |
/// \brief Constructor |
2398 | 3294 |
/// |
2399 | 3295 |
/// Constructor. |
2400 | 3296 |
/// \param digraph The digraph that the map belongs to. |
2401 | 3297 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
2402 | 3298 |
|
2403 | 3299 |
/// \brief Returns the target node of the given arc. |
2404 | 3300 |
/// |
2405 | 3301 |
/// Returns the target node of the given arc. |
2406 | 3302 |
Value operator[](const Key& e) const { |
2407 | 3303 |
return _graph.target(e); |
2408 | 3304 |
} |
2409 | 3305 |
|
2410 | 3306 |
private: |
2411 | 3307 |
const GR& _graph; |
2412 | 3308 |
}; |
2413 | 3309 |
|
2414 | 3310 |
/// \brief Returns a \c TargetMap class. |
2415 | 3311 |
/// |
2416 | 3312 |
/// This function just returns a \c TargetMap class. |
2417 | 3313 |
/// \relates TargetMap |
2418 | 3314 |
template <typename GR> |
2419 | 3315 |
inline TargetMap<GR> targetMap(const GR& graph) { |
2420 | 3316 |
return TargetMap<GR>(graph); |
2421 | 3317 |
} |
2422 | 3318 |
|
2423 | 3319 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
2424 | 3320 |
/// |
2425 | 3321 |
/// ForwardMap provides access for the "forward" directed arc view of |
2426 | 3322 |
/// each edge in a graph, which is returned by the \c direct() function |
2427 | 3323 |
/// of the graph with \c true parameter. |
2428 | 3324 |
/// \tparam GR The graph type. |
2429 | 3325 |
/// \see BackwardMap |
2430 | 3326 |
template <typename GR> |
2431 | 3327 |
class ForwardMap { |
2432 | 3328 |
public: |
2433 | 3329 |
|
2434 | 3330 |
typedef typename GR::Arc Value; |
2435 | 3331 |
typedef typename GR::Edge Key; |
2436 | 3332 |
|
2437 | 3333 |
/// \brief Constructor |
2438 | 3334 |
/// |
2439 | 3335 |
/// Constructor. |
2440 | 3336 |
/// \param graph The graph that the map belongs to. |
2441 | 3337 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
2442 | 3338 |
|
2443 | 3339 |
/// \brief Returns the "forward" directed arc view of the given edge. |
2444 | 3340 |
/// |
2445 | 3341 |
/// Returns the "forward" directed arc view of the given edge. |
2446 | 3342 |
Value operator[](const Key& key) const { |
2447 | 3343 |
return _graph.direct(key, true); |
2448 | 3344 |
} |
2449 | 3345 |
|
2450 | 3346 |
private: |
2451 | 3347 |
const GR& _graph; |
2452 | 3348 |
}; |
2453 | 3349 |
|
2454 | 3350 |
/// \brief Returns a \c ForwardMap class. |
2455 | 3351 |
/// |
2456 | 3352 |
/// This function just returns an \c ForwardMap class. |
2457 | 3353 |
/// \relates ForwardMap |
2458 | 3354 |
template <typename GR> |
2459 | 3355 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
2460 | 3356 |
return ForwardMap<GR>(graph); |
2461 | 3357 |
} |
2462 | 3358 |
|
2463 | 3359 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2464 | 3360 |
/// |
2465 | 3361 |
/// BackwardMap provides access for the "backward" directed arc view of |
2466 | 3362 |
/// each edge in a graph, which is returned by the \c direct() function |
2467 | 3363 |
/// of the graph with \c false parameter. |
2468 | 3364 |
/// \tparam GR The graph type. |
2469 | 3365 |
/// \see ForwardMap |
2470 | 3366 |
template <typename GR> |
2471 | 3367 |
class BackwardMap { |
2472 | 3368 |
public: |
2473 | 3369 |
|
2474 | 3370 |
typedef typename GR::Arc Value; |
2475 | 3371 |
typedef typename GR::Edge Key; |
2476 | 3372 |
|
2477 | 3373 |
/// \brief Constructor |
2478 | 3374 |
/// |
2479 | 3375 |
/// Constructor. |
2480 | 3376 |
/// \param graph The graph that the map belongs to. |
2481 | 3377 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2482 | 3378 |
|
2483 | 3379 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2484 | 3380 |
/// |
2485 | 3381 |
/// Returns the "backward" directed arc view of the given edge. |
2486 | 3382 |
Value operator[](const Key& key) const { |
2487 | 3383 |
return _graph.direct(key, false); |
2488 | 3384 |
} |
2489 | 3385 |
|
2490 | 3386 |
private: |
2491 | 3387 |
const GR& _graph; |
2492 | 3388 |
}; |
2493 | 3389 |
|
2494 | 3390 |
/// \brief Returns a \c BackwardMap class |
2495 | 3391 |
|
2496 | 3392 |
/// This function just returns a \c BackwardMap class. |
2497 | 3393 |
/// \relates BackwardMap |
2498 | 3394 |
template <typename GR> |
2499 | 3395 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2500 | 3396 |
return BackwardMap<GR>(graph); |
2501 | 3397 |
} |
2502 | 3398 |
|
2503 | 3399 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2504 | 3400 |
/// |
2505 | 3401 |
/// This map returns the in-degree of a node. Once it is constructed, |
2506 | 3402 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2507 | 3403 |
/// in constant time. On the other hand, the values are updated automatically |
2508 | 3404 |
/// whenever the digraph changes. |
2509 | 3405 |
/// |
2510 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3406 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2511 | 3407 |
/// may provide alternative ways to modify the digraph. |
2512 | 3408 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2513 | 3409 |
/// features are used. For example the functions |
2514 | 3410 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2515 | 3411 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2516 | 3412 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2517 | 3413 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2518 | 3414 |
/// |
2519 | 3415 |
/// \sa OutDegMap |
2520 | 3416 |
template <typename GR> |
2521 | 3417 |
class InDegMap |
2522 | 3418 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2523 | 3419 |
::ItemNotifier::ObserverBase { |
2524 | 3420 |
|
2525 | 3421 |
public: |
2526 |
|
|
3422 |
|
|
2527 | 3423 |
/// The graph type of InDegMap |
2528 | 3424 |
typedef GR Graph; |
2529 | 3425 |
typedef GR Digraph; |
2530 | 3426 |
/// The key type |
2531 | 3427 |
typedef typename Digraph::Node Key; |
2532 | 3428 |
/// The value type |
2533 | 3429 |
typedef int Value; |
2534 | 3430 |
|
2535 | 3431 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2536 | 3432 |
::ItemNotifier::ObserverBase Parent; |
2537 | 3433 |
|
2538 | 3434 |
private: |
2539 | 3435 |
|
2540 | 3436 |
class AutoNodeMap |
2541 | 3437 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2542 | 3438 |
public: |
2543 | 3439 |
|
2544 | 3440 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2545 | 3441 |
template Map<int>::Type Parent; |
2546 | 3442 |
|
2547 | 3443 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2548 | 3444 |
|
2549 | 3445 |
virtual void add(const Key& key) { |
2550 | 3446 |
Parent::add(key); |
2551 | 3447 |
Parent::set(key, 0); |
2552 | 3448 |
} |
2553 | 3449 |
|
2554 | 3450 |
virtual void add(const std::vector<Key>& keys) { |
2555 | 3451 |
Parent::add(keys); |
2556 | 3452 |
for (int i = 0; i < int(keys.size()); ++i) { |
2557 | 3453 |
Parent::set(keys[i], 0); |
2558 | 3454 |
} |
2559 | 3455 |
} |
2560 | 3456 |
|
2561 | 3457 |
virtual void build() { |
2562 | 3458 |
Parent::build(); |
2563 | 3459 |
Key it; |
2564 | 3460 |
typename Parent::Notifier* nf = Parent::notifier(); |
2565 | 3461 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2566 | 3462 |
Parent::set(it, 0); |
2567 | 3463 |
} |
2568 | 3464 |
} |
2569 | 3465 |
}; |
2570 | 3466 |
|
2571 | 3467 |
public: |
2572 | 3468 |
|
2573 | 3469 |
/// \brief Constructor. |
2574 | 3470 |
/// |
2575 | 3471 |
/// Constructor for creating an in-degree map. |
2576 | 3472 |
explicit InDegMap(const Digraph& graph) |
2577 | 3473 |
: _digraph(graph), _deg(graph) { |
2578 | 3474 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2579 | 3475 |
|
2580 | 3476 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2581 | 3477 |
_deg[it] = countInArcs(_digraph, it); |
2582 | 3478 |
} |
2583 | 3479 |
} |
2584 | 3480 |
|
2585 | 3481 |
/// \brief Gives back the in-degree of a Node. |
2586 | 3482 |
/// |
2587 | 3483 |
/// Gives back the in-degree of a Node. |
2588 | 3484 |
int operator[](const Key& key) const { |
2589 | 3485 |
return _deg[key]; |
2590 | 3486 |
} |
2591 | 3487 |
|
2592 | 3488 |
protected: |
2593 | 3489 |
|
2594 | 3490 |
typedef typename Digraph::Arc Arc; |
2595 | 3491 |
|
2596 | 3492 |
virtual void add(const Arc& arc) { |
2597 | 3493 |
++_deg[_digraph.target(arc)]; |
2598 | 3494 |
} |
2599 | 3495 |
|
2600 | 3496 |
virtual void add(const std::vector<Arc>& arcs) { |
2601 | 3497 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2602 | 3498 |
++_deg[_digraph.target(arcs[i])]; |
2603 | 3499 |
} |
2604 | 3500 |
} |
2605 | 3501 |
|
2606 | 3502 |
virtual void erase(const Arc& arc) { |
2607 | 3503 |
--_deg[_digraph.target(arc)]; |
2608 | 3504 |
} |
2609 | 3505 |
|
2610 | 3506 |
virtual void erase(const std::vector<Arc>& arcs) { |
2611 | 3507 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2612 | 3508 |
--_deg[_digraph.target(arcs[i])]; |
2613 | 3509 |
} |
2614 | 3510 |
} |
2615 | 3511 |
|
2616 | 3512 |
virtual void build() { |
2617 | 3513 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2618 | 3514 |
_deg[it] = countInArcs(_digraph, it); |
2619 | 3515 |
} |
2620 | 3516 |
} |
2621 | 3517 |
|
2622 | 3518 |
virtual void clear() { |
2623 | 3519 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2624 | 3520 |
_deg[it] = 0; |
2625 | 3521 |
} |
2626 | 3522 |
} |
2627 | 3523 |
private: |
2628 | 3524 |
|
2629 | 3525 |
const Digraph& _digraph; |
2630 | 3526 |
AutoNodeMap _deg; |
2631 | 3527 |
}; |
2632 | 3528 |
|
2633 | 3529 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2634 | 3530 |
/// |
2635 | 3531 |
/// This map returns the out-degree of a node. Once it is constructed, |
2636 | 3532 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2637 | 3533 |
/// in constant time. On the other hand, the values are updated automatically |
2638 | 3534 |
/// whenever the digraph changes. |
2639 | 3535 |
/// |
2640 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3536 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2641 | 3537 |
/// may provide alternative ways to modify the digraph. |
2642 | 3538 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2643 | 3539 |
/// features are used. For example the functions |
2644 | 3540 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2645 | 3541 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2646 | 3542 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2647 | 3543 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2648 | 3544 |
/// |
2649 | 3545 |
/// \sa InDegMap |
2650 | 3546 |
template <typename GR> |
2651 | 3547 |
class OutDegMap |
2652 | 3548 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2653 | 3549 |
::ItemNotifier::ObserverBase { |
2654 | 3550 |
|
2655 | 3551 |
public: |
2656 | 3552 |
|
2657 | 3553 |
/// The graph type of OutDegMap |
2658 | 3554 |
typedef GR Graph; |
2659 | 3555 |
typedef GR Digraph; |
2660 | 3556 |
/// The key type |
2661 | 3557 |
typedef typename Digraph::Node Key; |
2662 | 3558 |
/// The value type |
2663 | 3559 |
typedef int Value; |
2664 | 3560 |
|
2665 | 3561 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2666 | 3562 |
::ItemNotifier::ObserverBase Parent; |
2667 | 3563 |
|
2668 | 3564 |
private: |
2669 | 3565 |
|
2670 | 3566 |
class AutoNodeMap |
2671 | 3567 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2672 | 3568 |
public: |
2673 | 3569 |
|
2674 | 3570 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2675 | 3571 |
template Map<int>::Type Parent; |
2676 | 3572 |
|
2677 | 3573 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2678 | 3574 |
|
2679 | 3575 |
virtual void add(const Key& key) { |
2680 | 3576 |
Parent::add(key); |
2681 | 3577 |
Parent::set(key, 0); |
2682 | 3578 |
} |
2683 | 3579 |
virtual void add(const std::vector<Key>& keys) { |
2684 | 3580 |
Parent::add(keys); |
2685 | 3581 |
for (int i = 0; i < int(keys.size()); ++i) { |
2686 | 3582 |
Parent::set(keys[i], 0); |
2687 | 3583 |
} |
2688 | 3584 |
} |
2689 | 3585 |
virtual void build() { |
2690 | 3586 |
Parent::build(); |
2691 | 3587 |
Key it; |
2692 | 3588 |
typename Parent::Notifier* nf = Parent::notifier(); |
2693 | 3589 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2694 | 3590 |
Parent::set(it, 0); |
2695 | 3591 |
} |
2696 | 3592 |
} |
2697 | 3593 |
}; |
2698 | 3594 |
|
2699 | 3595 |
public: |
2700 | 3596 |
|
2701 | 3597 |
/// \brief Constructor. |
2702 | 3598 |
/// |
2703 | 3599 |
/// Constructor for creating an out-degree map. |
2704 | 3600 |
explicit OutDegMap(const Digraph& graph) |
2705 | 3601 |
: _digraph(graph), _deg(graph) { |
2706 | 3602 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2707 | 3603 |
|
2708 | 3604 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2709 | 3605 |
_deg[it] = countOutArcs(_digraph, it); |
2710 | 3606 |
} |
2711 | 3607 |
} |
2712 | 3608 |
|
2713 | 3609 |
/// \brief Gives back the out-degree of a Node. |
2714 | 3610 |
/// |
2715 | 3611 |
/// Gives back the out-degree of a Node. |
2716 | 3612 |
int operator[](const Key& key) const { |
2717 | 3613 |
return _deg[key]; |
2718 | 3614 |
} |
2719 | 3615 |
|
2720 | 3616 |
protected: |
2721 | 3617 |
|
2722 | 3618 |
typedef typename Digraph::Arc Arc; |
2723 | 3619 |
|
2724 | 3620 |
virtual void add(const Arc& arc) { |
2725 | 3621 |
++_deg[_digraph.source(arc)]; |
2726 | 3622 |
} |
2727 | 3623 |
|
2728 | 3624 |
virtual void add(const std::vector<Arc>& arcs) { |
2729 | 3625 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2730 | 3626 |
++_deg[_digraph.source(arcs[i])]; |
2731 | 3627 |
} |
2732 | 3628 |
} |
2733 | 3629 |
|
2734 | 3630 |
virtual void erase(const Arc& arc) { |
2735 | 3631 |
--_deg[_digraph.source(arc)]; |
2736 | 3632 |
} |
2737 | 3633 |
|
2738 | 3634 |
virtual void erase(const std::vector<Arc>& arcs) { |
2739 | 3635 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2740 | 3636 |
--_deg[_digraph.source(arcs[i])]; |
2741 | 3637 |
} |
2742 | 3638 |
} |
2743 | 3639 |
|
2744 | 3640 |
virtual void build() { |
2745 | 3641 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2746 | 3642 |
_deg[it] = countOutArcs(_digraph, it); |
2747 | 3643 |
} |
2748 | 3644 |
} |
2749 | 3645 |
|
2750 | 3646 |
virtual void clear() { |
2751 | 3647 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2752 | 3648 |
_deg[it] = 0; |
2753 | 3649 |
} |
2754 | 3650 |
} |
2755 | 3651 |
private: |
2756 | 3652 |
|
2757 | 3653 |
const Digraph& _digraph; |
2758 | 3654 |
AutoNodeMap _deg; |
2759 | 3655 |
}; |
2760 | 3656 |
|
2761 | 3657 |
/// \brief Potential difference map |
2762 | 3658 |
/// |
2763 | 3659 |
/// PotentialDifferenceMap returns the difference between the potentials of |
2764 | 3660 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
2765 | 3661 |
/// \code |
2766 | 3662 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2767 | 3663 |
/// \endcode |
2768 | 3664 |
/// \tparam GR The digraph type. |
2769 | 3665 |
/// \tparam POT A node map storing the potentials. |
2770 | 3666 |
template <typename GR, typename POT> |
2771 | 3667 |
class PotentialDifferenceMap { |
2772 | 3668 |
public: |
2773 | 3669 |
/// Key type |
2774 | 3670 |
typedef typename GR::Arc Key; |
2775 | 3671 |
/// Value type |
2776 | 3672 |
typedef typename POT::Value Value; |
2777 | 3673 |
|
2778 | 3674 |
/// \brief Constructor |
2779 | 3675 |
/// |
2780 | 3676 |
/// Contructor of the map. |
2781 | 3677 |
explicit PotentialDifferenceMap(const GR& gr, |
2782 | 3678 |
const POT& potential) |
2783 | 3679 |
: _digraph(gr), _potential(potential) {} |
2784 | 3680 |
|
2785 | 3681 |
/// \brief Returns the potential difference for the given arc. |
2786 | 3682 |
/// |
2787 | 3683 |
/// Returns the potential difference for the given arc, i.e. |
2788 | 3684 |
/// \code |
2789 | 3685 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2790 | 3686 |
/// \endcode |
2791 | 3687 |
Value operator[](const Key& arc) const { |
2792 | 3688 |
return _potential[_digraph.target(arc)] - |
2793 | 3689 |
_potential[_digraph.source(arc)]; |
2794 | 3690 |
} |
2795 | 3691 |
|
2796 | 3692 |
private: |
2797 | 3693 |
const GR& _digraph; |
2798 | 3694 |
const POT& _potential; |
2799 | 3695 |
}; |
2800 | 3696 |
|
2801 | 3697 |
/// \brief Returns a PotentialDifferenceMap. |
2802 | 3698 |
/// |
2803 | 3699 |
/// This function just returns a PotentialDifferenceMap. |
2804 | 3700 |
/// \relates PotentialDifferenceMap |
2805 | 3701 |
template <typename GR, typename POT> |
2806 | 3702 |
PotentialDifferenceMap<GR, POT> |
2807 | 3703 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
2808 | 3704 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
2809 | 3705 |
} |
2810 | 3706 |
|
2811 | 3707 |
/// @} |
2812 | 3708 |
} |
2813 | 3709 |
|
2814 | 3710 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/lgf_reader.h> |
30 | 30 |
#include <lemon/dijkstra.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/bin_heap.h> |
34 |
#include <lemon/fib_heap.h> |
|
35 |
#include <lemon/radix_heap.h> |
|
36 |
#include <lemon/bucket_heap.h> |
|
34 | 37 |
|
35 | 38 |
#include "test_tools.h" |
36 | 39 |
|
37 | 40 |
using namespace lemon; |
38 | 41 |
using namespace lemon::concepts; |
39 | 42 |
|
40 | 43 |
typedef ListDigraph Digraph; |
41 | 44 |
DIGRAPH_TYPEDEFS(Digraph); |
42 | 45 |
|
43 | 46 |
char test_lgf[] = |
44 | 47 |
"@nodes\n" |
45 | 48 |
"label\n" |
46 | 49 |
"0\n" |
47 | 50 |
"1\n" |
48 | 51 |
"2\n" |
49 | 52 |
"3\n" |
50 | 53 |
"4\n" |
51 | 54 |
"5\n" |
52 | 55 |
"6\n" |
53 | 56 |
"7\n" |
54 | 57 |
"8\n" |
55 | 58 |
"9\n" |
56 | 59 |
"@arcs\n" |
57 | 60 |
" label capacity\n" |
58 | 61 |
"0 5 0 94\n" |
59 | 62 |
"3 9 1 11\n" |
60 | 63 |
"8 7 2 83\n" |
61 | 64 |
"1 2 3 94\n" |
62 | 65 |
"5 7 4 35\n" |
63 | 66 |
"7 4 5 84\n" |
64 | 67 |
"9 5 6 38\n" |
65 | 68 |
"0 4 7 96\n" |
66 | 69 |
"6 7 8 6\n" |
67 | 70 |
"3 1 9 27\n" |
68 | 71 |
"5 2 10 77\n" |
69 | 72 |
"5 6 11 69\n" |
70 | 73 |
"6 5 12 41\n" |
71 | 74 |
"4 6 13 70\n" |
72 | 75 |
"3 2 14 45\n" |
73 | 76 |
"7 9 15 93\n" |
74 | 77 |
"5 9 16 50\n" |
75 | 78 |
"9 0 17 94\n" |
76 | 79 |
"9 6 18 67\n" |
77 | 80 |
"0 9 19 86\n" |
78 | 81 |
"@attributes\n" |
79 | 82 |
"source 3\n"; |
80 | 83 |
|
81 | 84 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
82 | 85 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
83 | 86 |
|
84 | 87 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
85 | 88 |
|
86 | 89 |
template <typename Heap> |
87 | 90 |
void heapSortTest() { |
88 | 91 |
RangeMap<int> map(test_len, -1); |
89 | 92 |
|
90 | 93 |
Heap heap(map); |
91 | 94 |
|
92 | 95 |
std::vector<int> v(test_len); |
93 | 96 |
|
94 | 97 |
for (int i = 0; i < test_len; ++i) { |
95 | 98 |
v[i] = test_seq[i]; |
96 | 99 |
heap.push(i, v[i]); |
97 | 100 |
} |
98 | 101 |
std::sort(v.begin(), v.end()); |
99 | 102 |
for (int i = 0; i < test_len; ++i) { |
100 | 103 |
check(v[i] == heap.prio() ,"Wrong order in heap sort."); |
101 | 104 |
heap.pop(); |
102 | 105 |
} |
103 | 106 |
} |
104 | 107 |
|
105 | 108 |
template <typename Heap> |
106 | 109 |
void heapIncreaseTest() { |
107 | 110 |
RangeMap<int> map(test_len, -1); |
108 | 111 |
|
109 | 112 |
Heap heap(map); |
110 | 113 |
|
111 | 114 |
std::vector<int> v(test_len); |
112 | 115 |
|
113 | 116 |
for (int i = 0; i < test_len; ++i) { |
114 | 117 |
v[i] = test_seq[i]; |
115 | 118 |
heap.push(i, v[i]); |
116 | 119 |
} |
117 | 120 |
for (int i = 0; i < test_len; ++i) { |
118 | 121 |
v[i] += test_inc[i]; |
119 | 122 |
heap.increase(i, v[i]); |
120 | 123 |
} |
121 | 124 |
std::sort(v.begin(), v.end()); |
122 | 125 |
for (int i = 0; i < test_len; ++i) { |
123 | 126 |
check(v[i] == heap.prio() ,"Wrong order in heap increase test."); |
124 | 127 |
heap.pop(); |
125 | 128 |
} |
126 | 129 |
} |
127 | 130 |
|
128 | 131 |
|
129 | 132 |
|
130 | 133 |
template <typename Heap> |
131 | 134 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
132 | 135 |
Node source) { |
133 | 136 |
|
134 | 137 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
135 | 138 |
Create dijkstra(digraph, length); |
136 | 139 |
|
137 | 140 |
dijkstra.run(source); |
138 | 141 |
|
139 | 142 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
140 | 143 |
Node s = digraph.source(a); |
141 | 144 |
Node t = digraph.target(a); |
142 | 145 |
if (dijkstra.reached(s)) { |
143 | 146 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
144 | 147 |
"Error in a shortest path tree!"); |
145 | 148 |
} |
146 | 149 |
} |
147 | 150 |
|
148 | 151 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
149 | 152 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
150 | 153 |
Arc a = dijkstra.predArc(n); |
151 | 154 |
Node s = digraph.source(a); |
152 | 155 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
153 | 156 |
"Error in a shortest path tree!"); |
154 | 157 |
} |
155 | 158 |
} |
156 | 159 |
|
157 | 160 |
} |
158 | 161 |
|
159 | 162 |
int main() { |
160 | 163 |
|
161 | 164 |
typedef int Item; |
162 | 165 |
typedef int Prio; |
163 | 166 |
typedef RangeMap<int> ItemIntMap; |
164 | 167 |
|
165 | 168 |
Digraph digraph; |
166 | 169 |
IntArcMap length(digraph); |
167 | 170 |
Node source; |
168 | 171 |
|
169 | 172 |
std::istringstream input(test_lgf); |
170 | 173 |
digraphReader(digraph, input). |
171 | 174 |
arcMap("capacity", length). |
172 | 175 |
node("source", source). |
173 | 176 |
run(); |
174 | 177 |
|
175 | 178 |
{ |
176 | 179 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
177 | 180 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
178 | 181 |
heapSortTest<IntHeap>(); |
179 | 182 |
heapIncreaseTest<IntHeap>(); |
180 | 183 |
|
181 | 184 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
182 | 185 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
183 | 186 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
184 | 187 |
} |
185 | 188 |
|
189 |
{ |
|
190 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
{ |
|
201 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
202 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
203 |
heapSortTest<IntHeap>(); |
|
204 |
heapIncreaseTest<IntHeap>(); |
|
205 |
|
|
206 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
207 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
208 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
209 |
} |
|
210 |
|
|
211 |
{ |
|
212 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
213 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
214 |
heapSortTest<IntHeap>(); |
|
215 |
heapIncreaseTest<IntHeap>(); |
|
216 |
|
|
217 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
218 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
219 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
220 |
} |
|
221 |
|
|
222 |
|
|
186 | 223 |
return 0; |
187 | 224 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 | 25 |
#include <lemon/list_graph.h> |
26 |
#include <lemon/smart_graph.h> |
|
26 | 27 |
|
27 | 28 |
#include "test_tools.h" |
28 | 29 |
|
29 | 30 |
using namespace lemon; |
30 | 31 |
using namespace lemon::concepts; |
31 | 32 |
|
32 | 33 |
struct A {}; |
33 | 34 |
inline bool operator<(A, A) { return true; } |
34 | 35 |
struct B {}; |
35 | 36 |
|
36 | 37 |
class C { |
37 | 38 |
int x; |
38 | 39 |
public: |
39 | 40 |
C(int _x) : x(_x) {} |
40 | 41 |
}; |
41 | 42 |
|
42 | 43 |
class F { |
43 | 44 |
public: |
44 | 45 |
typedef A argument_type; |
45 | 46 |
typedef B result_type; |
46 | 47 |
|
47 | 48 |
B operator()(const A&) const { return B(); } |
48 | 49 |
private: |
49 | 50 |
F& operator=(const F&); |
50 | 51 |
}; |
51 | 52 |
|
52 | 53 |
int func(A) { return 3; } |
53 | 54 |
|
54 | 55 |
int binc(int a, B) { return a+1; } |
55 | 56 |
|
56 | 57 |
typedef ReadMap<A, double> DoubleMap; |
57 | 58 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
58 | 59 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
59 | 60 |
|
60 | 61 |
typedef ReadMap<A, bool> BoolMap; |
61 | 62 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
62 | 63 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
63 | 64 |
|
64 | 65 |
int main() |
65 | 66 |
{ |
66 | 67 |
// Map concepts |
67 | 68 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
68 | 69 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
69 | 70 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
70 | 71 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
71 | 72 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
72 | 73 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
73 | 74 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
74 | 75 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
75 | 76 |
|
76 | 77 |
// NullMap |
77 | 78 |
{ |
78 | 79 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
79 | 80 |
NullMap<A,B> map1; |
80 | 81 |
NullMap<A,B> map2 = map1; |
81 | 82 |
map1 = nullMap<A,B>(); |
82 | 83 |
} |
83 | 84 |
|
84 | 85 |
// ConstMap |
85 | 86 |
{ |
86 | 87 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
87 | 88 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
88 | 89 |
ConstMap<A,B> map1; |
89 | 90 |
ConstMap<A,B> map2 = B(); |
90 | 91 |
ConstMap<A,B> map3 = map1; |
91 | 92 |
map1 = constMap<A>(B()); |
92 | 93 |
map1 = constMap<A,B>(); |
93 | 94 |
map1.setAll(B()); |
94 | 95 |
ConstMap<A,C> map4(C(1)); |
95 | 96 |
ConstMap<A,C> map5 = map4; |
96 | 97 |
map4 = constMap<A>(C(2)); |
97 | 98 |
map4.setAll(C(3)); |
98 | 99 |
|
99 | 100 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
100 | 101 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
101 | 102 |
|
102 | 103 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
103 | 104 |
ConstMap<A,Const<int,10> > map6; |
104 | 105 |
ConstMap<A,Const<int,10> > map7 = map6; |
105 | 106 |
map6 = constMap<A,int,10>(); |
106 | 107 |
map7 = constMap<A,Const<int,10> >(); |
107 | 108 |
check(map6[A()] == 10 && map7[A()] == 10, |
108 | 109 |
"Something is wrong with ConstMap"); |
109 | 110 |
} |
110 | 111 |
|
111 | 112 |
// IdentityMap |
112 | 113 |
{ |
113 | 114 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
114 | 115 |
IdentityMap<A> map1; |
115 | 116 |
IdentityMap<A> map2 = map1; |
116 | 117 |
map1 = identityMap<A>(); |
117 | 118 |
|
118 | 119 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
119 | 120 |
check(identityMap<double>()[1.0] == 1.0 && |
120 | 121 |
identityMap<double>()[3.14] == 3.14, |
121 | 122 |
"Something is wrong with IdentityMap"); |
122 | 123 |
} |
123 | 124 |
|
124 | 125 |
// RangeMap |
125 | 126 |
{ |
126 | 127 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
127 | 128 |
RangeMap<B> map1; |
128 | 129 |
RangeMap<B> map2(10); |
129 | 130 |
RangeMap<B> map3(10,B()); |
130 | 131 |
RangeMap<B> map4 = map1; |
131 | 132 |
RangeMap<B> map5 = rangeMap<B>(); |
132 | 133 |
RangeMap<B> map6 = rangeMap<B>(10); |
133 | 134 |
RangeMap<B> map7 = rangeMap(10,B()); |
134 | 135 |
|
135 | 136 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
136 | 137 |
RangeMap<double> >(); |
137 | 138 |
std::vector<double> v(10, 0); |
138 | 139 |
v[5] = 100; |
139 | 140 |
RangeMap<double> map8(v); |
140 | 141 |
RangeMap<double> map9 = rangeMap(v); |
141 | 142 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
142 | 143 |
"Something is wrong with RangeMap"); |
143 | 144 |
} |
144 | 145 |
|
145 | 146 |
// SparseMap |
146 | 147 |
{ |
147 | 148 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
148 | 149 |
SparseMap<A,B> map1; |
149 | 150 |
SparseMap<A,B> map2 = B(); |
150 | 151 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
151 | 152 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
152 | 153 |
|
153 | 154 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
154 | 155 |
SparseMap<double, int> >(); |
155 | 156 |
std::map<double, int> m; |
156 | 157 |
SparseMap<double, int> map5(m); |
157 | 158 |
SparseMap<double, int> map6(m,10); |
158 | 159 |
SparseMap<double, int> map7 = sparseMap(m); |
159 | 160 |
SparseMap<double, int> map8 = sparseMap(m,10); |
160 | 161 |
|
161 | 162 |
check(map5[1.0] == 0 && map5[3.14] == 0 && |
162 | 163 |
map6[1.0] == 10 && map6[3.14] == 10, |
163 | 164 |
"Something is wrong with SparseMap"); |
164 | 165 |
map5[1.0] = map6[3.14] = 100; |
165 | 166 |
check(map5[1.0] == 100 && map5[3.14] == 0 && |
166 | 167 |
map6[1.0] == 10 && map6[3.14] == 100, |
167 | 168 |
"Something is wrong with SparseMap"); |
168 | 169 |
} |
169 | 170 |
|
170 | 171 |
// ComposeMap |
171 | 172 |
{ |
172 | 173 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
173 | 174 |
checkConcept<ReadMap<B,double>, CompMap>(); |
174 | 175 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
175 | 176 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
176 | 177 |
|
177 | 178 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
178 | 179 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
179 | 180 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
180 | 181 |
"Something is wrong with ComposeMap") |
181 | 182 |
} |
182 | 183 |
|
183 | 184 |
// CombineMap |
184 | 185 |
{ |
185 | 186 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
186 | 187 |
checkConcept<ReadMap<A,double>, CombMap>(); |
187 | 188 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
188 | 189 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
189 | 190 |
|
190 | 191 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
191 | 192 |
"Something is wrong with CombineMap"); |
192 | 193 |
} |
193 | 194 |
|
194 | 195 |
// FunctorToMap, MapToFunctor |
195 | 196 |
{ |
196 | 197 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
197 | 198 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
198 | 199 |
FunctorToMap<F> map1; |
199 | 200 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
200 | 201 |
B b = functorToMap(F())[A()]; |
201 | 202 |
|
202 | 203 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
203 | 204 |
MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
204 | 205 |
|
205 | 206 |
check(functorToMap(&func)[A()] == 3, |
206 | 207 |
"Something is wrong with FunctorToMap"); |
207 | 208 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
208 | 209 |
"Something is wrong with MapToFunctor"); |
209 | 210 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
210 | 211 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
211 | 212 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
212 | 213 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
213 | 214 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
214 | 215 |
} |
215 | 216 |
|
216 | 217 |
// ConvertMap |
217 | 218 |
{ |
218 | 219 |
checkConcept<ReadMap<double,double>, |
219 | 220 |
ConvertMap<ReadMap<double, int>, double> >(); |
220 | 221 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
221 | 222 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
222 | 223 |
} |
223 | 224 |
|
224 | 225 |
// ForkMap |
225 | 226 |
{ |
226 | 227 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
227 | 228 |
|
228 | 229 |
typedef RangeMap<double> RM; |
229 | 230 |
typedef SparseMap<int, double> SM; |
230 | 231 |
RM m1(10, -1); |
231 | 232 |
SM m2(-1); |
232 | 233 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
233 | 234 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
234 | 235 |
ForkMap<RM, SM> map1(m1,m2); |
235 | 236 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
236 | 237 |
map2.set(5, 10); |
237 | 238 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && |
238 | 239 |
m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
239 | 240 |
"Something is wrong with ForkMap"); |
240 | 241 |
} |
241 | 242 |
|
242 | 243 |
// Arithmetic maps: |
243 | 244 |
// - AddMap, SubMap, MulMap, DivMap |
244 | 245 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
245 | 246 |
// - NegMap, NegWriteMap, AbsMap |
246 | 247 |
{ |
247 | 248 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
248 | 249 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
249 | 250 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
250 | 251 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
251 | 252 |
|
252 | 253 |
ConstMap<int, double> c1(1.0), c2(3.14); |
253 | 254 |
IdentityMap<int> im; |
254 | 255 |
ConvertMap<IdentityMap<int>, double> id(im); |
255 | 256 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, |
256 | 257 |
"Something is wrong with AddMap"); |
257 | 258 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, |
258 | 259 |
"Something is wrong with SubMap"); |
259 | 260 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, |
260 | 261 |
"Something is wrong with MulMap"); |
261 | 262 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, |
262 | 263 |
"Something is wrong with DivMap"); |
263 | 264 |
|
264 | 265 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
265 | 266 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
266 | 267 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
267 | 268 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
268 | 269 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
269 | 270 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
270 | 271 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
271 | 272 |
|
272 | 273 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
273 | 274 |
"Something is wrong with ShiftMap"); |
274 | 275 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && |
275 | 276 |
shiftWriteMap(id, 2.0)[10] == 12.0, |
276 | 277 |
"Something is wrong with ShiftWriteMap"); |
277 | 278 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
278 | 279 |
"Something is wrong with ScaleMap"); |
279 | 280 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && |
280 | 281 |
scaleWriteMap(id, 2.0)[10] == 20.0, |
281 | 282 |
"Something is wrong with ScaleWriteMap"); |
282 | 283 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
283 | 284 |
"Something is wrong with NegMap"); |
284 | 285 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
285 | 286 |
"Something is wrong with NegWriteMap"); |
286 | 287 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
287 | 288 |
"Something is wrong with AbsMap"); |
288 | 289 |
} |
289 | 290 |
|
290 | 291 |
// Logical maps: |
291 | 292 |
// - TrueMap, FalseMap |
292 | 293 |
// - AndMap, OrMap |
293 | 294 |
// - NotMap, NotWriteMap |
294 | 295 |
// - EqualMap, LessMap |
295 | 296 |
{ |
296 | 297 |
checkConcept<BoolMap, TrueMap<A> >(); |
297 | 298 |
checkConcept<BoolMap, FalseMap<A> >(); |
298 | 299 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
299 | 300 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
300 | 301 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
301 | 302 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
302 | 303 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
303 | 304 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
304 | 305 |
|
305 | 306 |
TrueMap<int> tm; |
306 | 307 |
FalseMap<int> fm; |
307 | 308 |
RangeMap<bool> rm(2); |
308 | 309 |
rm[0] = true; rm[1] = false; |
309 | 310 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
310 | 311 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
311 | 312 |
"Something is wrong with AndMap"); |
312 | 313 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
313 | 314 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
314 | 315 |
"Something is wrong with OrMap"); |
315 | 316 |
check(!notMap(rm)[0] && notMap(rm)[1], |
316 | 317 |
"Something is wrong with NotMap"); |
317 | 318 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
318 | 319 |
"Something is wrong with NotWriteMap"); |
319 | 320 |
|
320 | 321 |
ConstMap<int, double> cm(2.0); |
321 | 322 |
IdentityMap<int> im; |
322 | 323 |
ConvertMap<IdentityMap<int>, double> id(im); |
323 | 324 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
324 | 325 |
"Something is wrong with LessMap"); |
325 | 326 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
326 | 327 |
"Something is wrong with EqualMap"); |
327 | 328 |
} |
328 | 329 |
|
329 | 330 |
// LoggerBoolMap |
330 | 331 |
{ |
331 | 332 |
typedef std::vector<int> vec; |
332 | 333 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
333 | 334 |
checkConcept<WriteMap<int, bool>, |
334 | 335 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
335 | 336 |
|
336 | 337 |
vec v1; |
337 | 338 |
vec v2(10); |
338 | 339 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
339 | 340 |
map1(std::back_inserter(v1)); |
340 | 341 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
341 | 342 |
map1.set(10, false); |
342 | 343 |
map1.set(20, true); map2.set(20, true); |
343 | 344 |
map1.set(30, false); map2.set(40, false); |
344 | 345 |
map1.set(50, true); map2.set(50, true); |
345 | 346 |
map1.set(60, true); map2.set(60, true); |
346 | 347 |
check(v1.size() == 3 && v2.size() == 10 && |
347 | 348 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
348 | 349 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
349 | 350 |
"Something is wrong with LoggerBoolMap"); |
350 | 351 |
|
351 | 352 |
int i = 0; |
352 | 353 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
353 | 354 |
it != map2.end(); ++it ) |
354 | 355 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
355 | 356 |
} |
356 | 357 |
|
357 | 358 |
// IdMap, RangeIdMap |
358 | 359 |
{ |
359 | 360 |
typedef ListDigraph Graph; |
360 | 361 |
DIGRAPH_TYPEDEFS(Graph); |
361 | 362 |
|
362 | 363 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
363 | 364 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
364 | 365 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
365 | 366 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
366 | 367 |
|
367 | 368 |
Graph gr; |
368 | 369 |
IdMap<Graph, Node> nmap(gr); |
369 | 370 |
IdMap<Graph, Arc> amap(gr); |
370 | 371 |
RangeIdMap<Graph, Node> nrmap(gr); |
371 | 372 |
RangeIdMap<Graph, Arc> armap(gr); |
372 | 373 |
|
373 | 374 |
Node n0 = gr.addNode(); |
374 | 375 |
Node n1 = gr.addNode(); |
375 | 376 |
Node n2 = gr.addNode(); |
376 | 377 |
|
377 | 378 |
Arc a0 = gr.addArc(n0, n1); |
378 | 379 |
Arc a1 = gr.addArc(n0, n2); |
379 | 380 |
Arc a2 = gr.addArc(n2, n1); |
380 | 381 |
Arc a3 = gr.addArc(n2, n0); |
381 | 382 |
|
382 | 383 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
383 | 384 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
384 | 385 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
385 | 386 |
|
386 | 387 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
387 | 388 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
388 | 389 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
389 | 390 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
390 | 391 |
|
391 | 392 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
392 | 393 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
393 | 394 |
|
394 | 395 |
check(nrmap.size() == 3 && armap.size() == 4, |
395 | 396 |
"Wrong RangeIdMap::size()"); |
396 | 397 |
|
397 | 398 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
398 | 399 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
399 | 400 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
400 | 401 |
|
401 | 402 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
402 | 403 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
403 | 404 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
404 | 405 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
405 | 406 |
|
406 | 407 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
407 | 408 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
408 | 409 |
|
409 | 410 |
gr.erase(n1); |
410 | 411 |
|
411 | 412 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
412 | 413 |
nrmap.swap(n2, n0); |
413 | 414 |
if (armap[a1] == 1) armap.swap(a1, a3); |
414 | 415 |
armap.swap(a3, a1); |
415 | 416 |
|
416 | 417 |
check(nrmap.size() == 2 && armap.size() == 2, |
417 | 418 |
"Wrong RangeIdMap::size()"); |
418 | 419 |
|
419 | 420 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
420 | 421 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
421 | 422 |
|
422 | 423 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
423 | 424 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
424 | 425 |
|
425 | 426 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
426 | 427 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
427 | 428 |
} |
428 | 429 |
|
429 | 430 |
// CrossRefMap |
430 | 431 |
{ |
431 | 432 |
typedef ListDigraph Graph; |
432 | 433 |
DIGRAPH_TYPEDEFS(Graph); |
433 | 434 |
|
434 | 435 |
checkConcept<ReadWriteMap<Node, int>, |
435 | 436 |
CrossRefMap<Graph, Node, int> >(); |
436 | 437 |
checkConcept<ReadWriteMap<Node, bool>, |
437 | 438 |
CrossRefMap<Graph, Node, bool> >(); |
438 | 439 |
checkConcept<ReadWriteMap<Node, double>, |
439 | 440 |
CrossRefMap<Graph, Node, double> >(); |
440 | 441 |
|
441 | 442 |
Graph gr; |
442 | 443 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
443 | 444 |
typedef CRMap::ValueIterator ValueIt; |
444 | 445 |
CRMap map(gr); |
445 | 446 |
|
446 | 447 |
Node n0 = gr.addNode(); |
447 | 448 |
Node n1 = gr.addNode(); |
448 | 449 |
Node n2 = gr.addNode(); |
449 | 450 |
|
450 | 451 |
map.set(n0, 'A'); |
451 | 452 |
map.set(n1, 'B'); |
452 | 453 |
map.set(n2, 'C'); |
453 | 454 |
|
454 | 455 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
455 | 456 |
"Wrong CrossRefMap"); |
456 | 457 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
457 | 458 |
"Wrong CrossRefMap"); |
458 | 459 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
459 | 460 |
"Wrong CrossRefMap"); |
460 | 461 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
461 | 462 |
"Wrong CrossRefMap::count()"); |
462 | 463 |
|
463 | 464 |
ValueIt it = map.beginValue(); |
464 | 465 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
465 | 466 |
it == map.endValue(), "Wrong value iterator"); |
466 | 467 |
|
467 | 468 |
map.set(n2, 'A'); |
468 | 469 |
|
469 | 470 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
470 | 471 |
"Wrong CrossRefMap"); |
471 | 472 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
472 | 473 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
473 | 474 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
474 | 475 |
"Wrong CrossRefMap"); |
475 | 476 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
476 | 477 |
"Wrong CrossRefMap::count()"); |
477 | 478 |
|
478 | 479 |
it = map.beginValue(); |
479 | 480 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
480 | 481 |
it == map.endValue(), "Wrong value iterator"); |
481 | 482 |
|
482 | 483 |
map.set(n0, 'C'); |
483 | 484 |
|
484 | 485 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
485 | 486 |
"Wrong CrossRefMap"); |
486 | 487 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
487 | 488 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
488 | 489 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
489 | 490 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
490 | 491 |
"Wrong CrossRefMap::count()"); |
491 | 492 |
|
492 | 493 |
it = map.beginValue(); |
493 | 494 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
494 | 495 |
it == map.endValue(), "Wrong value iterator"); |
495 | 496 |
} |
496 | 497 |
|
498 |
// Iterable bool map |
|
499 |
{ |
|
500 |
typedef SmartGraph Graph; |
|
501 |
typedef SmartGraph::Node Item; |
|
502 |
|
|
503 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
504 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
505 |
|
|
506 |
const int num = 10; |
|
507 |
Graph g; |
|
508 |
std::vector<Item> items; |
|
509 |
for (int i = 0; i < num; ++i) { |
|
510 |
items.push_back(g.addNode()); |
|
511 |
} |
|
512 |
|
|
513 |
Ibm map1(g, true); |
|
514 |
int n = 0; |
|
515 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
516 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
517 |
++n; |
|
518 |
} |
|
519 |
check(n == num, "Wrong number"); |
|
520 |
|
|
521 |
n = 0; |
|
522 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
523 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
524 |
++n; |
|
525 |
} |
|
526 |
check(n == num, "Wrong number"); |
|
527 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
528 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
529 |
|
|
530 |
map1[items[5]] = true; |
|
531 |
|
|
532 |
n = 0; |
|
533 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
|
534 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
535 |
++n; |
|
536 |
} |
|
537 |
check(n == num, "Wrong number"); |
|
538 |
|
|
539 |
map1[items[num / 2]] = false; |
|
540 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
541 |
|
|
542 |
n = 0; |
|
543 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
544 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
545 |
++n; |
|
546 |
} |
|
547 |
check(n == num - 1, "Wrong number"); |
|
548 |
|
|
549 |
n = 0; |
|
550 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
551 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
552 |
++n; |
|
553 |
} |
|
554 |
check(n == 1, "Wrong number"); |
|
555 |
|
|
556 |
map1[items[0]] = false; |
|
557 |
check(map1[items[0]] == false, "Wrong map value"); |
|
558 |
|
|
559 |
map1[items[num - 1]] = false; |
|
560 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
561 |
|
|
562 |
n = 0; |
|
563 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
|
564 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
565 |
++n; |
|
566 |
} |
|
567 |
check(n == num - 3, "Wrong number"); |
|
568 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
569 |
|
|
570 |
n = 0; |
|
571 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
|
572 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
573 |
++n; |
|
574 |
} |
|
575 |
check(n == 3, "Wrong number"); |
|
576 |
check(map1.falseNum() == 3, "Wrong number"); |
|
577 |
} |
|
578 |
|
|
579 |
// Iterable int map |
|
580 |
{ |
|
581 |
typedef SmartGraph Graph; |
|
582 |
typedef SmartGraph::Node Item; |
|
583 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
584 |
|
|
585 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
586 |
|
|
587 |
const int num = 10; |
|
588 |
Graph g; |
|
589 |
std::vector<Item> items; |
|
590 |
for (int i = 0; i < num; ++i) { |
|
591 |
items.push_back(g.addNode()); |
|
592 |
} |
|
593 |
|
|
594 |
Iim map1(g); |
|
595 |
check(map1.size() == 0, "Wrong size"); |
|
596 |
|
|
597 |
for (int i = 0; i < num; ++i) { |
|
598 |
map1[items[i]] = i; |
|
599 |
} |
|
600 |
check(map1.size() == num, "Wrong size"); |
|
601 |
|
|
602 |
for (int i = 0; i < num; ++i) { |
|
603 |
Iim::ItemIt it(map1, i); |
|
604 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
605 |
++it; |
|
606 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
607 |
} |
|
608 |
|
|
609 |
for (int i = 0; i < num; ++i) { |
|
610 |
map1[items[i]] = i % 2; |
|
611 |
} |
|
612 |
check(map1.size() == 2, "Wrong size"); |
|
613 |
|
|
614 |
int n = 0; |
|
615 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) { |
|
616 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
617 |
++n; |
|
618 |
} |
|
619 |
check(n == (num + 1) / 2, "Wrong number"); |
|
620 |
|
|
621 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) { |
|
622 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
623 |
++n; |
|
624 |
} |
|
625 |
check(n == num, "Wrong number"); |
|
626 |
|
|
627 |
} |
|
628 |
|
|
629 |
// Iterable value map |
|
630 |
{ |
|
631 |
typedef SmartGraph Graph; |
|
632 |
typedef SmartGraph::Node Item; |
|
633 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
634 |
|
|
635 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
636 |
|
|
637 |
const int num = 10; |
|
638 |
Graph g; |
|
639 |
std::vector<Item> items; |
|
640 |
for (int i = 0; i < num; ++i) { |
|
641 |
items.push_back(g.addNode()); |
|
642 |
} |
|
643 |
|
|
644 |
Ivm map1(g, 0.0); |
|
645 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
646 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
647 |
|
|
648 |
for (int i = 0; i < num; ++i) { |
|
649 |
map1.set(items[i], static_cast<double>(i)); |
|
650 |
} |
|
651 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
652 |
|
|
653 |
for (int i = 0; i < num; ++i) { |
|
654 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
655 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
656 |
++it; |
|
657 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
658 |
} |
|
659 |
|
|
660 |
for (Ivm::ValueIterator vit = map1.beginValue(); |
|
661 |
vit != map1.endValue(); ++vit) { |
|
662 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
663 |
"Wrong ValueIterator"); |
|
664 |
} |
|
665 |
|
|
666 |
for (int i = 0; i < num; ++i) { |
|
667 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
668 |
} |
|
669 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
670 |
|
|
671 |
int n = 0; |
|
672 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { |
|
673 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
674 |
++n; |
|
675 |
} |
|
676 |
check(n == (num + 1) / 2, "Wrong number"); |
|
677 |
|
|
678 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
|
679 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
680 |
++n; |
|
681 |
} |
|
682 |
check(n == num, "Wrong number"); |
|
683 |
|
|
684 |
} |
|
497 | 685 |
return 0; |
498 | 686 |
} |
0 comments (0 inline)