↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
namespace lemon {
20

	
21
/**
22
\page min_cost_flow Minimum Cost Flow Problem
23

	
24
\section mcf_def Definition (GEQ form)
25

	
26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27
minimum total cost from a set of supply nodes to a set of demand nodes
28
in a network with capacity constraints (lower and upper bounds)
29
and arc costs.
30

	
31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33
upper bounds for the flow values on the arcs, for which
34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
36
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
37
signed supply values of the nodes.
38
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
39
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
40
\f$-sup(u)\f$ demand.
41
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
42
of the following optimization problem.
43

	
44
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
45
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
46
    sup(u) \quad \forall u\in V \f]
47
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
48

	
49
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
50
zero or negative in order to have a feasible solution (since the sum
51
of the expressions on the left-hand side of the inequalities is zero).
52
It means that the total demand must be greater or equal to the total
53
supply and all the supplies have to be carried out from the supply nodes,
54
but there could be demands that are not satisfied.
55
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
56
constraints have to be satisfied with equality, i.e. all demands
57
have to be satisfied and all supplies have to be used.
58

	
59

	
60
\section mcf_algs Algorithms
61

	
62
LEMON contains several algorithms for solving this problem, for more
63
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms".
64

	
65
A feasible solution for this problem can be found using \ref Circulation.
66

	
67

	
68
\section mcf_dual Dual Solution
69

	
70
The dual solution of the minimum cost flow problem is represented by
71
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
72
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
73
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
74
the following \e complementary \e slackness optimality conditions hold.
75

	
76
 - For all \f$uv\in A\f$ arcs:
77
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80
 - For all \f$u\in V\f$ nodes:
81
   - \f$\pi(u)<=0\f$;
82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83
     then \f$\pi(u)=0\f$.
84
 
85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88

	
89
All algorithms provide dual solution (node potentials), as well,
90
if an optimal flow is found.
91

	
92

	
93
\section mcf_eq Equality Form
94

	
95
The above \ref mcf_def "definition" is actually more general than the
96
usual formulation of the minimum cost flow problem, in which strict
97
equalities are required in the supply/demand contraints.
98

	
99
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
100
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
101
    sup(u) \quad \forall u\in V \f]
102
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
103

	
104
However if the sum of the supply values is zero, then these two problems
105
are equivalent.
106
The \ref min_cost_flow_algs "algorithms" in LEMON support the general
107
form, so if you need the equality form, you have to ensure this additional
108
contraint manually.
109

	
110

	
111
\section mcf_leq Opposite Inequalites (LEQ Form)
112

	
113
Another possible definition of the minimum cost flow problem is
114
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints,
115
instead of the <em>"greater or equal"</em> (GEQ) constraints.
116

	
117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119
    sup(u) \quad \forall u\in V \f]
120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121

	
122
It means that the total demand must be less or equal to the 
123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124
positive) and all the demands have to be satisfied, but there
125
could be supplies that are not carried out from the supply
126
nodes.
127
The equality form is also a special case of this form, of course.
128

	
129
You could easily transform this case to the \ref mcf_def "GEQ form"
130
of the problem by reversing the direction of the arcs and taking the
131
negative of the supply values (e.g. using \ref ReverseDigraph and
132
\ref NegMap adaptors).
133
However \ref NetworkSimplex algorithm also supports this form directly
134
for the sake of convenience.
135

	
136
Note that the optimality conditions for this supply constraint type are
137
slightly differ from the conditions that are discussed for the GEQ form,
138
namely the potentials have to be non-negative instead of non-positive.
139
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
140
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
141
node potentials the following conditions hold.
142

	
143
 - For all \f$uv\in A\f$ arcs:
144
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
145
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
146
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
147
 - For all \f$u\in V\f$ nodes:
148
   - \f$\pi(u)>=0\f$;
149
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
150
     then \f$\pi(u)=0\f$.
151

	
152
*/
153
}
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <lemon/connectivity.h>
20
#include <lemon/list_graph.h>
21
#include <lemon/adaptors.h>
22

	
23
#include "test_tools.h"
24

	
25
using namespace lemon;
26

	
27

	
28
int main()
29
{
30
  typedef ListDigraph Digraph;
31
  typedef Undirector<Digraph> Graph;
32
  
33
  {
34
    Digraph d;
35
    Digraph::NodeMap<int> order(d);
36
    Graph g(d);
37
    
38
    check(stronglyConnected(d), "The empty digraph is strongly connected");
39
    check(countStronglyConnectedComponents(d) == 0,
40
          "The empty digraph has 0 strongly connected component");
41
    check(connected(g), "The empty graph is connected");
42
    check(countConnectedComponents(g) == 0,
43
          "The empty graph has 0 connected component");
44

	
45
    check(biNodeConnected(g), "The empty graph is bi-node-connected");
46
    check(countBiNodeConnectedComponents(g) == 0,
47
          "The empty graph has 0 bi-node-connected component");
48
    check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
49
    check(countBiEdgeConnectedComponents(g) == 0,
50
          "The empty graph has 0 bi-edge-connected component");
51
          
52
    check(dag(d), "The empty digraph is DAG.");
53
    check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
54
    check(loopFree(d), "The empty digraph is loop-free.");
55
    check(parallelFree(d), "The empty digraph is parallel-free.");
56
    check(simpleGraph(d), "The empty digraph is simple.");
57

	
58
    check(acyclic(g), "The empty graph is acyclic.");
59
    check(tree(g), "The empty graph is tree.");
60
    check(bipartite(g), "The empty graph is bipartite.");
61
    check(loopFree(g), "The empty graph is loop-free.");
62
    check(parallelFree(g), "The empty graph is parallel-free.");
63
    check(simpleGraph(g), "The empty graph is simple.");
64
  }
65

	
66
  {
67
    Digraph d;
68
    Digraph::NodeMap<int> order(d);
69
    Graph g(d);
70
    Digraph::Node n = d.addNode();
71

	
72
    check(stronglyConnected(d), "This digraph is strongly connected");
73
    check(countStronglyConnectedComponents(d) == 1,
74
          "This digraph has 1 strongly connected component");
75
    check(connected(g), "This graph is connected");
76
    check(countConnectedComponents(g) == 1,
77
          "This graph has 1 connected component");
78

	
79
    check(biNodeConnected(g), "This graph is bi-node-connected");
80
    check(countBiNodeConnectedComponents(g) == 0,
81
          "This graph has 0 bi-node-connected component");
82
    check(biEdgeConnected(g), "This graph is bi-edge-connected");
83
    check(countBiEdgeConnectedComponents(g) == 1,
84
          "This graph has 1 bi-edge-connected component");
85
          
86
    check(dag(d), "This digraph is DAG.");
87
    check(checkedTopologicalSort(d, order), "This digraph is DAG.");
88
    check(loopFree(d), "This digraph is loop-free.");
89
    check(parallelFree(d), "This digraph is parallel-free.");
90
    check(simpleGraph(d), "This digraph is simple.");
91

	
92
    check(acyclic(g), "This graph is acyclic.");
93
    check(tree(g), "This graph is tree.");
94
    check(bipartite(g), "This graph is bipartite.");
95
    check(loopFree(g), "This graph is loop-free.");
96
    check(parallelFree(g), "This graph is parallel-free.");
97
    check(simpleGraph(g), "This graph is simple.");
98
  }
99

	
100
  {
101
    Digraph d;
102
    Digraph::NodeMap<int> order(d);
103
    Graph g(d);
104
    
105
    Digraph::Node n1 = d.addNode();
106
    Digraph::Node n2 = d.addNode();
107
    Digraph::Node n3 = d.addNode();
108
    Digraph::Node n4 = d.addNode();
109
    Digraph::Node n5 = d.addNode();
110
    Digraph::Node n6 = d.addNode();
111
    
112
    d.addArc(n1, n3);
113
    d.addArc(n3, n2);
114
    d.addArc(n2, n1);
115
    d.addArc(n4, n2);
116
    d.addArc(n4, n3);
117
    d.addArc(n5, n6);
118
    d.addArc(n6, n5);
119

	
120
    check(!stronglyConnected(d), "This digraph is not strongly connected");
121
    check(countStronglyConnectedComponents(d) == 3,
122
          "This digraph has 3 strongly connected components");
123
    check(!connected(g), "This graph is not connected");
124
    check(countConnectedComponents(g) == 2,
125
          "This graph has 2 connected components");
126

	
127
    check(!dag(d), "This digraph is not DAG.");
128
    check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
129
    check(loopFree(d), "This digraph is loop-free.");
130
    check(parallelFree(d), "This digraph is parallel-free.");
131
    check(simpleGraph(d), "This digraph is simple.");
132

	
133
    check(!acyclic(g), "This graph is not acyclic.");
134
    check(!tree(g), "This graph is not tree.");
135
    check(!bipartite(g), "This graph is not bipartite.");
136
    check(loopFree(g), "This graph is loop-free.");
137
    check(!parallelFree(g), "This graph is not parallel-free.");
138
    check(!simpleGraph(g), "This graph is not simple.");
139
    
140
    d.addArc(n3, n3);
141
    
142
    check(!loopFree(d), "This digraph is not loop-free.");
143
    check(!loopFree(g), "This graph is not loop-free.");
144
    check(!simpleGraph(d), "This digraph is not simple.");
145
    
146
    d.addArc(n3, n2);
147
    
148
    check(!parallelFree(d), "This digraph is not parallel-free.");
149
  }
150
  
151
  {
152
    Digraph d;
153
    Digraph::ArcMap<bool> cutarcs(d, false);
154
    Graph g(d);
155
    
156
    Digraph::Node n1 = d.addNode();
157
    Digraph::Node n2 = d.addNode();
158
    Digraph::Node n3 = d.addNode();
159
    Digraph::Node n4 = d.addNode();
160
    Digraph::Node n5 = d.addNode();
161
    Digraph::Node n6 = d.addNode();
162
    Digraph::Node n7 = d.addNode();
163
    Digraph::Node n8 = d.addNode();
164

	
165
    d.addArc(n1, n2);
166
    d.addArc(n5, n1);
167
    d.addArc(n2, n8);
168
    d.addArc(n8, n5);
169
    d.addArc(n6, n4);
170
    d.addArc(n4, n6);
171
    d.addArc(n2, n5);
172
    d.addArc(n1, n8);
173
    d.addArc(n6, n7);
174
    d.addArc(n7, n6);
175
   
176
    check(!stronglyConnected(d), "This digraph is not strongly connected");
177
    check(countStronglyConnectedComponents(d) == 3,
178
          "This digraph has 3 strongly connected components");
179
    Digraph::NodeMap<int> scomp1(d);
180
    check(stronglyConnectedComponents(d, scomp1) == 3,
181
          "This digraph has 3 strongly connected components");
182
    check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
183
          scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
184
    check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
185
          scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
186
    check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
187
          "Wrong stronglyConnectedComponents()");
188
    Digraph::ArcMap<bool> scut1(d, false);
189
    check(stronglyConnectedCutArcs(d, scut1) == 0,
190
          "This digraph has 0 strongly connected cut arc.");
191
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
192
      check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
193
    }
194

	
195
    check(!connected(g), "This graph is not connected");
196
    check(countConnectedComponents(g) == 3,
197
          "This graph has 3 connected components");
198
    Graph::NodeMap<int> comp(g);
199
    check(connectedComponents(g, comp) == 3,
200
          "This graph has 3 connected components");
201
    check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
202
          comp[n3] != comp[n4], "Wrong connectedComponents()");
203
    check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
204
          comp[n1] == comp[n8], "Wrong connectedComponents()");
205
    check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
206
          "Wrong connectedComponents()");
207

	
208
    cutarcs[d.addArc(n3, n1)] = true;
209
    cutarcs[d.addArc(n3, n5)] = true;
210
    cutarcs[d.addArc(n3, n8)] = true;
211
    cutarcs[d.addArc(n8, n6)] = true;
212
    cutarcs[d.addArc(n8, n7)] = true;
213

	
214
    check(!stronglyConnected(d), "This digraph is not strongly connected");
215
    check(countStronglyConnectedComponents(d) == 3,
216
          "This digraph has 3 strongly connected components");
217
    Digraph::NodeMap<int> scomp2(d);
218
    check(stronglyConnectedComponents(d, scomp2) == 3,
219
          "This digraph has 3 strongly connected components");
220
    check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
221
    check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
222
          scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
223
    check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
224
          "Wrong stronglyConnectedComponents()");
225
    Digraph::ArcMap<bool> scut2(d, false);
226
    check(stronglyConnectedCutArcs(d, scut2) == 5,
227
          "This digraph has 5 strongly connected cut arcs.");
228
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
229
      check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
230
    }
231
  }
232

	
233
  {
234
    // DAG example for topological sort from the book New Algorithms
235
    // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
236
    Digraph d;
237
    Digraph::NodeMap<int> order(d);
238
    
239
    Digraph::Node belt = d.addNode();
240
    Digraph::Node trousers = d.addNode();
241
    Digraph::Node necktie = d.addNode();
242
    Digraph::Node coat = d.addNode();
243
    Digraph::Node socks = d.addNode();
244
    Digraph::Node shirt = d.addNode();
245
    Digraph::Node shoe = d.addNode();
246
    Digraph::Node watch = d.addNode();
247
    Digraph::Node pants = d.addNode();
248

	
249
    d.addArc(socks, shoe);
250
    d.addArc(pants, shoe);
251
    d.addArc(pants, trousers);
252
    d.addArc(trousers, shoe);
253
    d.addArc(trousers, belt);
254
    d.addArc(belt, coat);
255
    d.addArc(shirt, belt);
256
    d.addArc(shirt, necktie);
257
    d.addArc(necktie, coat);
258
    
259
    check(dag(d), "This digraph is DAG.");
260
    topologicalSort(d, order);
261
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
262
      check(order[d.source(a)] < order[d.target(a)],
263
            "Wrong topologicalSort()");
264
    }
265
  }
266

	
267
  {
268
    ListGraph g;
269
    ListGraph::NodeMap<bool> map(g);
270
    
271
    ListGraph::Node n1 = g.addNode();
272
    ListGraph::Node n2 = g.addNode();
273
    ListGraph::Node n3 = g.addNode();
274
    ListGraph::Node n4 = g.addNode();
275
    ListGraph::Node n5 = g.addNode();
276
    ListGraph::Node n6 = g.addNode();
277
    ListGraph::Node n7 = g.addNode();
278

	
279
    g.addEdge(n1, n3);
280
    g.addEdge(n1, n4);
281
    g.addEdge(n2, n5);
282
    g.addEdge(n3, n6);
283
    g.addEdge(n4, n6);
284
    g.addEdge(n4, n7);
285
    g.addEdge(n5, n7);
286
   
287
    check(bipartite(g), "This graph is bipartite");
288
    check(bipartitePartitions(g, map), "This graph is bipartite");
289
    
290
    check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
291
          "Wrong bipartitePartitions()");
292
    check(map[n3] == map[n4] && map[n3] == map[n5],
293
          "Wrong bipartitePartitions()");
294
  }
295

	
296
  return 0;
297
}
Ignore white space 6 line context
... ...
@@ -44,7 +44,7 @@
44 44
    SET(CPACK_PACKAGE_NAME ${PROJECT_NAME})
45 45
    SET(CPACK_PACKAGE_VENDOR "EGRES")
46 46
    SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY
47
      "LEMON - Library of Efficient Models and Optimization in Networks")
47
      "LEMON - Library for Efficient Modeling and Optimization in Networks")
48 48
    SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
49 49

	
50 50
    SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
Ignore white space 6 line context
1
2009-05-13 Version 1.1 released
2

	
3
        This is the second stable release of the 1.x series. It
4
        features a better coverage of the tools available in the 0.x
5
        series, a thoroughly reworked LP/MIP interface plus various
6
        improvements in the existing tools.
7

	
8
        * Much improved M$ Windows support
9
          * Various improvements in the CMAKE build system
10
          * Compilation warnings are fixed/suppressed
11
        * Support IBM xlC compiler
12
        * New algorithms
13
          * Connectivity related algorithms (#61)
14
          * Euler walks (#65)
15
          * Preflow push-relabel max. flow algorithm (#176)
16
          * Circulation algorithm (push-relabel based) (#175)
17
          * Suurballe algorithm (#47)
18
          * Gomory-Hu algorithm (#66)
19
          * Hao-Orlin algorithm (#58)
20
          * Edmond's maximum cardinality and weighted matching algorithms
21
            in general graphs (#48,#265)
22
          * Minimum cost arborescence/branching (#60)
23
          * Network Simplex min. cost flow algorithm (#234)
24
        * New data structures
25
          * Full graph structure (#57)
26
          * Grid graph structure (#57)
27
          * Hypercube graph structure (#57)
28
          * Graph adaptors (#67)
29
          * ArcSet and EdgeSet classes (#67)
30
          * Elevator class (#174)
31
        * Other new tools
32
          * LP/MIP interface (#44)
33
            * Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC
34
          * Reader for the Nauty file format (#55)
35
          * DIMACS readers (#167)
36
          * Radix sort algorithms (#72)
37
          * RangeIdMap and CrossRefMap (#160)
38
        * New command line tools
39
          * DIMACS to LGF converter (#182)
40
          * lgf-gen - a graph generator (#45)
41
          * DIMACS solver utility (#226)
42
        * Other code improvements
43
          * Lognormal distribution added to Random (#102)
44
          * Better (i.e. O(1) time) item counting in SmartGraph (#3)
45
          * The standard maps of graphs are guaranteed to be
46
            reference maps (#190)
47
        * Miscellaneous
48
          * Various doc improvements
49
          * Improved 0.x -> 1.x converter script
50

	
51
        * Several bugfixes (compared to release 1.0):
52
          #170: Bugfix SmartDigraph::split()
53
          #171: Bugfix in SmartGraph::restoreSnapshot()
54
          #172: Extended test cases for graphs and digraphs
55
          #173: Bugfix in Random
56
                * operator()s always return a double now
57
                * the faulty real<Num>(Num) and real<Num>(Num,Num)
58
                  have been removed
59
          #187: Remove DijkstraWidestPathOperationTraits
60
          #61:  Bugfix in DfsVisit
61
          #193: Bugfix in GraphReader::skipSection()
62
          #195: Bugfix in ConEdgeIt()
63
          #197: Bugfix in heap unionfind
64
                * This bug affects Edmond's general matching algorithms
65
          #207: Fix 'make install' without 'make html' using CMAKE
66
          #208: Suppress or fix VS2008 compilation warnings
67
          ----: Update the LEMON icon
68
          ----: Enable the component-based installer
69
                (in installers made by CPACK)
70
          ----: Set the proper version for CMAKE in the tarballs
71
                (made by autotools)
72
          ----: Minor clarification in the LICENSE file
73
          ----: Add missing unistd.h include to time_measure.h
74
          #204: Compilation bug fixed in graph_to_eps.h with VS2005
75
          #214,#215: windows.h should never be included by lemon headers
76
          #230: Build systems check the availability of 'long long' type
77
          #229: Default implementation of Tolerance<> is used for integer types
78
          #211,#212: Various fixes for compiling on AIX
79
          ----: Improvements in CMAKE config
80
                - docs is installed in share/doc/
81
                - detects newer versions of Ghostscript
82
          #239: Fix missing 'inline' specifier in time_measure.h
83
          #274,#280: Install lemon/config.h
84
          #275: Prefix macro names with LEMON_ in lemon/config.h
85
          ----: Small script for making the release tarballs added
86
          ----: Minor improvement in unify-sources.sh (a76f55d7d397)
87

	
1 88
2009-03-27 LEMON joins to the COIN-OR initiative
2 89

	
3 90
        COIN-OR (Computational Infrastructure for Operations Research,
Ignore white space 6 line context
1
==================================================================
2
LEMON - a Library of Efficient Models and Optimization in Networks
3
==================================================================
1
=====================================================================
2
LEMON - a Library for Efficient Modeling and Optimization in Networks
3
=====================================================================
4 4

	
5 5
LEMON is an open source library written in C++. It provides
6 6
easy-to-use implementations of common data structures and algorithms
Ignore white space 6 line context
... ...
@@ -8,6 +8,7 @@
8 8
	doc/license.dox \
9 9
	doc/mainpage.dox \
10 10
	doc/migration.dox \
11
	doc/min_cost_flow.dox \
11 12
	doc/named-param.dox \
12 13
	doc/namespaces.dox \
13 14
	doc/html \
Ignore white space 6 line context
... ...
@@ -138,16 +138,6 @@
138 138
*/
139 139

	
140 140
/**
141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
142
@ingroup graphs
143
\brief Graph types between real graphs and graph adaptors.
144

	
145
This group contains some graph types between real graphs and graph adaptors.
146
These classes wrap graphs to give new functionality as the adaptors do it.
147
On the other hand they are not light-weight structures as the adaptors.
148
*/
149

	
150
/**
151 141
@defgroup maps Maps
152 142
@ingroup datas
153 143
\brief Map structures implemented in LEMON.
... ...
@@ -315,6 +305,7 @@
315 305
Tarjan for solving this problem. It also provides functions to query the
316 306
minimum cut, which is the dual problem of maximum flow.
317 307

	
308

	
318 309
\ref Circulation is a preflow push-relabel algorithm implemented directly 
319 310
for finding feasible circulations, which is a somewhat different problem,
320 311
but it is strongly related to maximum flow.
... ...
@@ -322,86 +313,14 @@
322 313
*/
323 314

	
324 315
/**
325
@defgroup min_cost_flow Minimum Cost Flow Algorithms
316
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
326 317
@ingroup algs
327 318

	
328 319
\brief Algorithms for finding minimum cost flows and circulations.
329 320

	
330 321
This group contains the algorithms for finding minimum cost flows and
331
circulations.
332

	
333
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
334
minimum total cost from a set of supply nodes to a set of demand nodes
335
in a network with capacity constraints (lower and upper bounds)
336
and arc costs.
337
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
338
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
339
upper bounds for the flow values on the arcs, for which
340
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
341
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
342
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
343
signed supply values of the nodes.
344
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
345
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
346
\f$-sup(u)\f$ demand.
347
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
348
of the following optimization problem.
349

	
350
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
351
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
352
    sup(u) \quad \forall u\in V \f]
353
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
354

	
355
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
356
zero or negative in order to have a feasible solution (since the sum
357
of the expressions on the left-hand side of the inequalities is zero).
358
It means that the total demand must be greater or equal to the total
359
supply and all the supplies have to be carried out from the supply nodes,
360
but there could be demands that are not satisfied.
361
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
362
constraints have to be satisfied with equality, i.e. all demands
363
have to be satisfied and all supplies have to be used.
364

	
365
If you need the opposite inequalities in the supply/demand constraints
366
(i.e. the total demand is less than the total supply and all the demands
367
have to be satisfied while there could be supplies that are not used),
368
then you could easily transform the problem to the above form by reversing
369
the direction of the arcs and taking the negative of the supply values
370
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
371
However \ref NetworkSimplex algorithm also supports this form directly
372
for the sake of convenience.
373

	
374
A feasible solution for this problem can be found using \ref Circulation.
375

	
376
Note that the above formulation is actually more general than the usual
377
definition of the minimum cost flow problem, in which strict equalities
378
are required in the supply/demand contraints, i.e.
379

	
380
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
381
    sup(u) \quad \forall u\in V. \f]
382

	
383
However if the sum of the supply values is zero, then these two problems
384
are equivalent. So if you need the equality form, you have to ensure this
385
additional contraint for the algorithms.
386

	
387
The dual solution of the minimum cost flow problem is represented by node 
388
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
389
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
390
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
391
node potentials the following \e complementary \e slackness optimality
392
conditions hold.
393

	
394
 - For all \f$uv\in A\f$ arcs:
395
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
396
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
397
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
398
 - For all \f$u\in V\f$ nodes:
399
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
400
     then \f$\pi(u)=0\f$.
401
 
402
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
403
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
404
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
322
circulations. For more information about this problem and its dual
323
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
405 324

	
406 325
\ref NetworkSimplex is an efficient implementation of the primal Network
407 326
Simplex algorithm for finding minimum cost flows. It also provides dual
... ...
@@ -479,10 +398,10 @@
479 398
/**
480 399
@defgroup spantree Minimum Spanning Tree Algorithms
481 400
@ingroup algs
482
\brief Algorithms for finding a minimum cost spanning tree in a graph.
401
\brief Algorithms for finding minimum cost spanning trees and arborescences.
483 402

	
484
This group contains the algorithms for finding a minimum cost spanning
485
tree in a graph.
403
This group contains the algorithms for finding minimum cost spanning
404
trees and arborescences.
486 405
*/
487 406

	
488 407
/**
Ignore white space 6 line context
... ...
@@ -23,8 +23,7 @@
23 23

	
24 24
\subsection whatis What is LEMON
25 25

	
26
LEMON stands for
27
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels
26
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling
28 27
and <b>O</b>ptimization in <b>N</b>etworks.
29 28
It is a C++ template
30 29
library aimed at combinatorial optimization tasks which
... ...
@@ -41,14 +40,10 @@
41 40

	
42 41
\subsection howtoread How to read the documentation
43 42

	
44
If you want to get a quick start and see the most important features then
45
take a look at our \ref quicktour
46
"Quick Tour to LEMON" which will guide you along.
47

	
48
If you already feel like using our library, see the
43
If you would like to get to know the library, see
49 44
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>.
50 45

	
51
If you know what you are looking for then try to find it under the
46
If you know what you are looking for, then try to find it under the
52 47
<a class="el" href="modules.html">Modules</a> section.
53 48

	
54 49
If you are a user of the old (0.x) series of LEMON, please check out the
Ignore white space 6 line context
... ...
@@ -111,7 +111,6 @@
111 111
bits_HEADERS += \
112 112
	lemon/bits/alteration_notifier.h \
113 113
	lemon/bits/array_map.h \
114
	lemon/bits/base_extender.h \
115 114
	lemon/bits/bezier.h \
116 115
	lemon/bits/default_map.h \
117 116
	lemon/bits/edge_set_extender.h \
Ignore white space 6 line context
... ...
@@ -1839,31 +1839,31 @@
1839 1839
    typedef typename Digraph::Arc Edge;
1840 1840
    typedef typename Digraph::Node Node;
1841 1841

	
1842
    class Arc : public Edge {
1842
    class Arc {
1843 1843
      friend class UndirectorBase;
1844 1844
    protected:
1845
      Edge _edge;
1845 1846
      bool _forward;
1846 1847

	
1847
      Arc(const Edge& edge, bool forward) :
1848
        Edge(edge), _forward(forward) {}
1848
      Arc(const Edge& edge, bool forward) 
1849
        : _edge(edge), _forward(forward) {}
1849 1850

	
1850 1851
    public:
1851 1852
      Arc() {}
1852 1853

	
1853
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1854
      Arc(Invalid) : _edge(INVALID), _forward(true) {}
1855

	
1856
      operator const Edge&() const { return _edge; }
1854 1857

	
1855 1858
      bool operator==(const Arc &other) const {
1856
        return _forward == other._forward &&
1857
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1859
        return _forward == other._forward && _edge == other._edge;
1858 1860
      }
1859 1861
      bool operator!=(const Arc &other) const {
1860
        return _forward != other._forward ||
1861
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1862
        return _forward != other._forward || _edge != other._edge;
1862 1863
      }
1863 1864
      bool operator<(const Arc &other) const {
1864 1865
        return _forward < other._forward ||
1865
          (_forward == other._forward &&
1866
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1866
          (_forward == other._forward && _edge < other._edge);
1867 1867
      }
1868 1868
    };
1869 1869

	
... ...
@@ -1876,7 +1876,7 @@
1876 1876
    }
1877 1877

	
1878 1878
    void first(Arc& a) const {
1879
      _digraph->first(a);
1879
      _digraph->first(a._edge);
1880 1880
      a._forward = true;
1881 1881
    }
1882 1882

	
... ...
@@ -1884,7 +1884,7 @@
1884 1884
      if (a._forward) {
1885 1885
        a._forward = false;
1886 1886
      } else {
1887
        _digraph->next(a);
1887
        _digraph->next(a._edge);
1888 1888
        a._forward = true;
1889 1889
      }
1890 1890
    }
... ...
@@ -1898,48 +1898,48 @@
1898 1898
    }
1899 1899

	
1900 1900
    void firstOut(Arc& a, const Node& n) const {
1901
      _digraph->firstIn(a, n);
1902
      if( static_cast<const Edge&>(a) != INVALID ) {
1901
      _digraph->firstIn(a._edge, n);
1902
      if (a._edge != INVALID ) {
1903 1903
        a._forward = false;
1904 1904
      } else {
1905
        _digraph->firstOut(a, n);
1905
        _digraph->firstOut(a._edge, n);
1906 1906
        a._forward = true;
1907 1907
      }
1908 1908
    }
1909 1909
    void nextOut(Arc &a) const {
1910 1910
      if (!a._forward) {
1911
        Node n = _digraph->target(a);
1912
        _digraph->nextIn(a);
1913
        if (static_cast<const Edge&>(a) == INVALID ) {
1914
          _digraph->firstOut(a, n);
1911
        Node n = _digraph->target(a._edge);
1912
        _digraph->nextIn(a._edge);
1913
        if (a._edge == INVALID) {
1914
          _digraph->firstOut(a._edge, n);
1915 1915
          a._forward = true;
1916 1916
        }
1917 1917
      }
1918 1918
      else {
1919
        _digraph->nextOut(a);
1919
        _digraph->nextOut(a._edge);
1920 1920
      }
1921 1921
    }
1922 1922

	
1923 1923
    void firstIn(Arc &a, const Node &n) const {
1924
      _digraph->firstOut(a, n);
1925
      if (static_cast<const Edge&>(a) != INVALID ) {
1924
      _digraph->firstOut(a._edge, n);
1925
      if (a._edge != INVALID ) {
1926 1926
        a._forward = false;
1927 1927
      } else {
1928
        _digraph->firstIn(a, n);
1928
        _digraph->firstIn(a._edge, n);
1929 1929
        a._forward = true;
1930 1930
      }
1931 1931
    }
1932 1932
    void nextIn(Arc &a) const {
1933 1933
      if (!a._forward) {
1934
        Node n = _digraph->source(a);
1935
        _digraph->nextOut(a);
1936
        if( static_cast<const Edge&>(a) == INVALID ) {
1937
          _digraph->firstIn(a, n);
1934
        Node n = _digraph->source(a._edge);
1935
        _digraph->nextOut(a._edge);
1936
        if (a._edge == INVALID ) {
1937
          _digraph->firstIn(a._edge, n);
1938 1938
          a._forward = true;
1939 1939
        }
1940 1940
      }
1941 1941
      else {
1942
        _digraph->nextIn(a);
1942
        _digraph->nextIn(a._edge);
1943 1943
      }
1944 1944
    }
1945 1945

	
... ...
@@ -1972,19 +1972,16 @@
1972 1972
    }
1973 1973

	
1974 1974
    Node source(const Arc &a) const {
1975
      return a._forward ? _digraph->source(a) : _digraph->target(a);
1975
      return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
1976 1976
    }
1977 1977

	
1978 1978
    Node target(const Arc &a) const {
1979
      return a._forward ? _digraph->target(a) : _digraph->source(a);
1979
      return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
1980 1980
    }
1981 1981

	
1982 1982
    static Arc direct(const Edge &e, bool d) {
1983 1983
      return Arc(e, d);
1984 1984
    }
1985
    Arc direct(const Edge &e, const Node& n) const {
1986
      return Arc(e, _digraph->source(e) == n);
1987
    }
1988 1985

	
1989 1986
    static bool direction(const Arc &a) { return a._forward; }
1990 1987

	
Ignore white space 6 line context
... ...
@@ -310,8 +310,8 @@
310 310

	
311 311
      /// The directed arc type. It can be converted to the
312 312
      /// edge or it should be inherited from the undirected
313
      /// arc.
314
      class Arc : public Edge {
313
      /// edge.
314
      class Arc {
315 315
      public:
316 316
        /// Default constructor
317 317

	
... ...
@@ -322,7 +322,7 @@
322 322

	
323 323
        /// Copy constructor.
324 324
        ///
325
        Arc(const Arc& e) : Edge(e) { }
325
        Arc(const Arc&) { }
326 326
        /// Initialize the iterator to be invalid.
327 327

	
328 328
        /// Initialize the iterator to be invalid.
... ...
@@ -349,6 +349,8 @@
349 349
        /// ordering of the items.
350 350
        bool operator<(Arc) const { return false; }
351 351

	
352
        /// Converison to Edge
353
        operator Edge() const { return Edge(); }
352 354
      };
353 355
      /// This iterator goes through each directed arc.
354 356

	
Ignore white space 6 line context
... ...
@@ -42,12 +42,16 @@
42 42

	
43 43
  /// \ingroup graph_properties
44 44
  ///
45
  /// \brief Check whether the given undirected graph is connected.
45
  /// \brief Check whether an undirected graph is connected.
46 46
  ///
47
  /// Check whether the given undirected graph is connected.
48
  /// \param graph The undirected graph.
49
  /// \return \c true when there is path between any two nodes in the graph.
47
  /// This function checks whether the given undirected graph is connected,
48
  /// i.e. there is a path between any two nodes in the graph.
49
  ///
50
  /// \return \c true if the graph is connected.
50 51
  /// \note By definition, the empty graph is connected.
52
  ///
53
  /// \see countConnectedComponents(), connectedComponents()
54
  /// \see stronglyConnected()
51 55
  template <typename Graph>
52 56
  bool connected(const Graph& graph) {
53 57
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -67,12 +71,18 @@
67 71
  ///
68 72
  /// \brief Count the number of connected components of an undirected graph
69 73
  ///
70
  /// Count the number of connected components of an undirected graph
74
  /// This function counts the number of connected components of the given
75
  /// undirected graph.
71 76
  ///
72
  /// \param graph The graph. It must be undirected.
73
  /// \return The number of components
77
  /// The connected components are the classes of an equivalence relation
78
  /// on the nodes of an undirected graph. Two nodes are in the same class
79
  /// if they are connected with a path.
80
  ///
81
  /// \return The number of connected components.
74 82
  /// \note By definition, the empty graph consists
75 83
  /// of zero connected components.
84
  ///
85
  /// \see connected(), connectedComponents()
76 86
  template <typename Graph>
77 87
  int countConnectedComponents(const Graph &graph) {
78 88
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -109,17 +119,26 @@
109 119
  ///
110 120
  /// \brief Find the connected components of an undirected graph
111 121
  ///
112
  /// Find the connected components of an undirected graph.
122
  /// This function finds the connected components of the given undirected
123
  /// graph.
124
  ///
125
  /// The connected components are the classes of an equivalence relation
126
  /// on the nodes of an undirected graph. Two nodes are in the same class
127
  /// if they are connected with a path.
113 128
  ///
114 129
  /// \image html connected_components.png
115 130
  /// \image latex connected_components.eps "Connected components" width=\textwidth
116 131
  ///
117
  /// \param graph The graph. It must be undirected.
132
  /// \param graph The undirected graph.
118 133
  /// \retval compMap A writable node map. The values will be set from 0 to
119
  /// the number of the connected components minus one. Each values of the map
120
  /// will be set exactly once, the values of a certain component will be
134
  /// the number of the connected components minus one. Each value of the map
135
  /// will be set exactly once, and the values of a certain component will be
121 136
  /// set continuously.
122
  /// \return The number of components
137
  /// \return The number of connected components.
138
  /// \note By definition, the empty graph consists
139
  /// of zero connected components.
140
  ///
141
  /// \see connected(), countConnectedComponents()
123 142
  template <class Graph, class NodeMap>
124 143
  int connectedComponents(const Graph &graph, NodeMap &compMap) {
125 144
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -231,15 +250,17 @@
231 250

	
232 251
  /// \ingroup graph_properties
233 252
  ///
234
  /// \brief Check whether the given directed graph is strongly connected.
253
  /// \brief Check whether a directed graph is strongly connected.
235 254
  ///
236
  /// Check whether the given directed graph is strongly connected. The
237
  /// graph is strongly connected when any two nodes of the graph are
255
  /// This function checks whether the given directed graph is strongly
256
  /// connected, i.e. any two nodes of the digraph are
238 257
  /// connected with directed paths in both direction.
239
  /// \return \c false when the graph is not strongly connected.
240
  /// \see connected
241 258
  ///
242
  /// \note By definition, the empty graph is strongly connected.
259
  /// \return \c true if the digraph is strongly connected.
260
  /// \note By definition, the empty digraph is strongly connected.
261
  /// 
262
  /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
263
  /// \see connected()
243 264
  template <typename Digraph>
244 265
  bool stronglyConnected(const Digraph& digraph) {
245 266
    checkConcept<concepts::Digraph, Digraph>();
... ...
@@ -270,7 +291,7 @@
270 291
    typedef typename RDigraph::NodeIt RNodeIt;
271 292
    RDigraph rdigraph(digraph);
272 293

	
273
    typedef DfsVisitor<Digraph> RVisitor;
294
    typedef DfsVisitor<RDigraph> RVisitor;
274 295
    RVisitor rvisitor;
275 296

	
276 297
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
... ...
@@ -289,18 +310,22 @@
289 310

	
290 311
  /// \ingroup graph_properties
291 312
  ///
292
  /// \brief Count the strongly connected components of a directed graph
313
  /// \brief Count the number of strongly connected components of a 
314
  /// directed graph
293 315
  ///
294
  /// Count the strongly connected components of a directed graph.
316
  /// This function counts the number of strongly connected components of
317
  /// the given directed graph.
318
  ///
295 319
  /// The strongly connected components are the classes of an
296
  /// equivalence relation on the nodes of the graph. Two nodes are in
320
  /// equivalence relation on the nodes of a digraph. Two nodes are in
297 321
  /// the same class if they are connected with directed paths in both
298 322
  /// direction.
299 323
  ///
300
  /// \param digraph The graph.
301
  /// \return The number of components
302
  /// \note By definition, the empty graph has zero
324
  /// \return The number of strongly connected components.
325
  /// \note By definition, the empty digraph has zero
303 326
  /// strongly connected components.
327
  ///
328
  /// \see stronglyConnected(), stronglyConnectedComponents()
304 329
  template <typename Digraph>
305 330
  int countStronglyConnectedComponents(const Digraph& digraph) {
306 331
    checkConcept<concepts::Digraph, Digraph>();
... ...
@@ -355,13 +380,15 @@
355 380
  ///
356 381
  /// \brief Find the strongly connected components of a directed graph
357 382
  ///
358
  /// Find the strongly connected components of a directed graph.  The
359
  /// strongly connected components are the classes of an equivalence
360
  /// relation on the nodes of the graph. Two nodes are in
361
  /// relationship when there are directed paths between them in both
362
  /// direction. In addition, the numbering of components will satisfy
363
  /// that there is no arc going from a higher numbered component to
364
  /// a lower.
383
  /// This function finds the strongly connected components of the given
384
  /// directed graph. In addition, the numbering of the components will
385
  /// satisfy that there is no arc going from a higher numbered component
386
  /// to a lower one (i.e. it provides a topological order of the components).
387
  ///
388
  /// The strongly connected components are the classes of an
389
  /// equivalence relation on the nodes of a digraph. Two nodes are in
390
  /// the same class if they are connected with directed paths in both
391
  /// direction.
365 392
  ///
366 393
  /// \image html strongly_connected_components.png
367 394
  /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
... ...
@@ -369,9 +396,13 @@
369 396
  /// \param digraph The digraph.
370 397
  /// \retval compMap A writable node map. The values will be set from 0 to
371 398
  /// the number of the strongly connected components minus one. Each value
372
  /// of the map will be set exactly once, the values of a certain component
373
  /// will be set continuously.
374
  /// \return The number of components
399
  /// of the map will be set exactly once, and the values of a certain
400
  /// component will be set continuously.
401
  /// \return The number of strongly connected components.
402
  /// \note By definition, the empty digraph has zero
403
  /// strongly connected components.
404
  ///
405
  /// \see stronglyConnected(), countStronglyConnectedComponents()
375 406
  template <typename Digraph, typename NodeMap>
376 407
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
377 408
    checkConcept<concepts::Digraph, Digraph>();
... ...
@@ -424,19 +455,24 @@
424 455
  ///
425 456
  /// \brief Find the cut arcs of the strongly connected components.
426 457
  ///
427
  /// Find the cut arcs of the strongly connected components.
428
  /// The strongly connected components are the classes of an equivalence
429
  /// relation on the nodes of the graph. Two nodes are in relationship
430
  /// when there are directed paths between them in both direction.
458
  /// This function finds the cut arcs of the strongly connected components
459
  /// of the given digraph.
460
  ///
461
  /// The strongly connected components are the classes of an
462
  /// equivalence relation on the nodes of a digraph. Two nodes are in
463
  /// the same class if they are connected with directed paths in both
464
  /// direction.
431 465
  /// The strongly connected components are separated by the cut arcs.
432 466
  ///
433
  /// \param graph The graph.
434
  /// \retval cutMap A writable node map. The values will be set true when the
435
  /// arc is a cut arc.
467
  /// \param digraph The digraph.
468
  /// \retval cutMap A writable arc map. The values will be set to \c true
469
  /// for the cut arcs (exactly once for each cut arc), and will not be
470
  /// changed for other arcs.
471
  /// \return The number of cut arcs.
436 472
  ///
437
  /// \return The number of cut arcs
473
  /// \see stronglyConnected(), stronglyConnectedComponents()
438 474
  template <typename Digraph, typename ArcMap>
439
  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
475
  int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
440 476
    checkConcept<concepts::Digraph, Digraph>();
441 477
    typedef typename Digraph::Node Node;
442 478
    typedef typename Digraph::Arc Arc;
... ...
@@ -448,13 +484,13 @@
448 484
    typedef std::vector<Node> Container;
449 485
    typedef typename Container::iterator Iterator;
450 486

	
451
    Container nodes(countNodes(graph));
487
    Container nodes(countNodes(digraph));
452 488
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
453 489
    Visitor visitor(nodes.begin());
454 490

	
455
    DfsVisit<Digraph, Visitor> dfs(graph, visitor);
491
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
456 492
    dfs.init();
457
    for (NodeIt it(graph); it != INVALID; ++it) {
493
    for (NodeIt it(digraph); it != INVALID; ++it) {
458 494
      if (!dfs.reached(it)) {
459 495
        dfs.addSource(it);
460 496
        dfs.start();
... ...
@@ -464,14 +500,14 @@
464 500
    typedef typename Container::reverse_iterator RIterator;
465 501
    typedef ReverseDigraph<const Digraph> RDigraph;
466 502

	
467
    RDigraph rgraph(graph);
503
    RDigraph rdigraph(digraph);
468 504

	
469 505
    int cutNum = 0;
470 506

	
471 507
    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
472
    RVisitor rvisitor(rgraph, cutMap, cutNum);
508
    RVisitor rvisitor(rdigraph, cutMap, cutNum);
473 509

	
474
    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
510
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
475 511

	
476 512
    rdfs.init();
477 513
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
... ...
@@ -706,14 +742,15 @@
706 742

	
707 743
  /// \ingroup graph_properties
708 744
  ///
709
  /// \brief Checks the graph is bi-node-connected.
745
  /// \brief Check whether an undirected graph is bi-node-connected.
710 746
  ///
711
  /// This function checks that the undirected graph is bi-node-connected
712
  /// graph. The graph is bi-node-connected if any two undirected edge is
713
  /// on same circle.
747
  /// This function checks whether the given undirected graph is 
748
  /// bi-node-connected, i.e. any two edges are on same circle.
714 749
  ///
715
  /// \param graph The graph.
716
  /// \return \c true when the graph bi-node-connected.
750
  /// \return \c true if the graph bi-node-connected.
751
  /// \note By definition, the empty graph is bi-node-connected.
752
  ///
753
  /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
717 754
  template <typename Graph>
718 755
  bool biNodeConnected(const Graph& graph) {
719 756
    return countBiNodeConnectedComponents(graph) <= 1;
... ...
@@ -721,15 +758,19 @@
721 758

	
722 759
  /// \ingroup graph_properties
723 760
  ///
724
  /// \brief Count the biconnected components.
761
  /// \brief Count the number of bi-node-connected components of an 
762
  /// undirected graph.
725 763
  ///
726
  /// This function finds the bi-node-connected components in an undirected
727
  /// graph. The biconnected components are the classes of an equivalence
728
  /// relation on the undirected edges. Two undirected edge is in relationship
729
  /// when they are on same circle.
764
  /// This function counts the number of bi-node-connected components of
765
  /// the given undirected graph.
730 766
  ///
731
  /// \param graph The graph.
732
  /// \return The number of components.
767
  /// The bi-node-connected components are the classes of an equivalence
768
  /// relation on the edges of a undirected graph. Two edges are in the
769
  /// same class if they are on same circle.
770
  ///
771
  /// \return The number of bi-node-connected components.
772
  ///
773
  /// \see biNodeConnected(), biNodeConnectedComponents()
733 774
  template <typename Graph>
734 775
  int countBiNodeConnectedComponents(const Graph& graph) {
735 776
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -756,22 +797,26 @@
756 797

	
757 798
  /// \ingroup graph_properties
758 799
  ///
759
  /// \brief Find the bi-node-connected components.
800
  /// \brief Find the bi-node-connected components of an undirected graph.
760 801
  ///
761
  /// This function finds the bi-node-connected components in an undirected
762
  /// graph. The bi-node-connected components are the classes of an equivalence
763
  /// relation on the undirected edges. Two undirected edge are in relationship
764
  /// when they are on same circle.
802
  /// This function finds the bi-node-connected components of the given
803
  /// undirected graph.
804
  ///
805
  /// The bi-node-connected components are the classes of an equivalence
806
  /// relation on the edges of a undirected graph. Two edges are in the
807
  /// same class if they are on same circle.
765 808
  ///
766 809
  /// \image html node_biconnected_components.png
767 810
  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
768 811
  ///
769
  /// \param graph The graph.
770
  /// \retval compMap A writable uedge map. The values will be set from 0
771
  /// to the number of the biconnected components minus one. Each values
772
  /// of the map will be set exactly once, the values of a certain component
773
  /// will be set continuously.
774
  /// \return The number of components.
812
  /// \param graph The undirected graph.
813
  /// \retval compMap A writable edge map. The values will be set from 0
814
  /// to the number of the bi-node-connected components minus one. Each
815
  /// value of the map will be set exactly once, and the values of a 
816
  /// certain component will be set continuously.
817
  /// \return The number of bi-node-connected components.
818
  ///
819
  /// \see biNodeConnected(), countBiNodeConnectedComponents()
775 820
  template <typename Graph, typename EdgeMap>
776 821
  int biNodeConnectedComponents(const Graph& graph,
777 822
                                EdgeMap& compMap) {
... ...
@@ -801,18 +846,25 @@
801 846

	
802 847
  /// \ingroup graph_properties
803 848
  ///
804
  /// \brief Find the bi-node-connected cut nodes.
849
  /// \brief Find the bi-node-connected cut nodes in an undirected graph.
805 850
  ///
806
  /// This function finds the bi-node-connected cut nodes in an undirected
807
  /// graph. The bi-node-connected components are the classes of an equivalence
808
  /// relation on the undirected edges. Two undirected edges are in
809
  /// relationship when they are on same circle. The biconnected components
810
  /// are separted by nodes which are the cut nodes of the components.
851
  /// This function finds the bi-node-connected cut nodes in the given
852
  /// undirected graph.
811 853
  ///
812
  /// \param graph The graph.
813
  /// \retval cutMap A writable edge map. The values will be set true when
814
  /// the node separate two or more components.
854
  /// The bi-node-connected components are the classes of an equivalence
855
  /// relation on the edges of a undirected graph. Two edges are in the
856
  /// same class if they are on same circle.
857
  /// The bi-node-connected components are separted by the cut nodes of
858
  /// the components.
859
  ///
860
  /// \param graph The undirected graph.
861
  /// \retval cutMap A writable node map. The values will be set to 
862
  /// \c true for the nodes that separate two or more components
863
  /// (exactly once for each cut node), and will not be changed for
864
  /// other nodes.
815 865
  /// \return The number of the cut nodes.
866
  ///
867
  /// \see biNodeConnected(), biNodeConnectedComponents()
816 868
  template <typename Graph, typename NodeMap>
817 869
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
818 870
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1031,14 +1083,16 @@
1031 1083

	
1032 1084
  /// \ingroup graph_properties
1033 1085
  ///
1034
  /// \brief Checks that the graph is bi-edge-connected.
1086
  /// \brief Check whether an undirected graph is bi-edge-connected.
1035 1087
  ///
1036
  /// This function checks that the graph is bi-edge-connected. The undirected
1037
  /// graph is bi-edge-connected when any two nodes are connected with two
1038
  /// edge-disjoint paths.
1088
  /// This function checks whether the given undirected graph is 
1089
  /// bi-edge-connected, i.e. any two nodes are connected with at least
1090
  /// two edge-disjoint paths.
1039 1091
  ///
1040
  /// \param graph The undirected graph.
1041
  /// \return The number of components.
1092
  /// \return \c true if the graph is bi-edge-connected.
1093
  /// \note By definition, the empty graph is bi-edge-connected.
1094
  ///
1095
  /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
1042 1096
  template <typename Graph>
1043 1097
  bool biEdgeConnected(const Graph& graph) {
1044 1098
    return countBiEdgeConnectedComponents(graph) <= 1;
... ...
@@ -1046,15 +1100,20 @@
1046 1100

	
1047 1101
  /// \ingroup graph_properties
1048 1102
  ///
1049
  /// \brief Count the bi-edge-connected components.
1103
  /// \brief Count the number of bi-edge-connected components of an
1104
  /// undirected graph.
1050 1105
  ///
1051
  /// This function count the bi-edge-connected components in an undirected
1052
  /// graph. The bi-edge-connected components are the classes of an equivalence
1053
  /// relation on the nodes. Two nodes are in relationship when they are
1054
  /// connected with at least two edge-disjoint paths.
1106
  /// This function counts the number of bi-edge-connected components of
1107
  /// the given undirected graph.
1055 1108
  ///
1056
  /// \param graph The undirected graph.
1057
  /// \return The number of components.
1109
  /// The bi-edge-connected components are the classes of an equivalence
1110
  /// relation on the nodes of an undirected graph. Two nodes are in the
1111
  /// same class if they are connected with at least two edge-disjoint
1112
  /// paths.
1113
  ///
1114
  /// \return The number of bi-edge-connected components.
1115
  ///
1116
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
1058 1117
  template <typename Graph>
1059 1118
  int countBiEdgeConnectedComponents(const Graph& graph) {
1060 1119
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1081,22 +1140,27 @@
1081 1140

	
1082 1141
  /// \ingroup graph_properties
1083 1142
  ///
1084
  /// \brief Find the bi-edge-connected components.
1143
  /// \brief Find the bi-edge-connected components of an undirected graph.
1085 1144
  ///
1086
  /// This function finds the bi-edge-connected components in an undirected
1087
  /// graph. The bi-edge-connected components are the classes of an equivalence
1088
  /// relation on the nodes. Two nodes are in relationship when they are
1089
  /// connected at least two edge-disjoint paths.
1145
  /// This function finds the bi-edge-connected components of the given
1146
  /// undirected graph.
1147
  ///
1148
  /// The bi-edge-connected components are the classes of an equivalence
1149
  /// relation on the nodes of an undirected graph. Two nodes are in the
1150
  /// same class if they are connected with at least two edge-disjoint
1151
  /// paths.
1090 1152
  ///
1091 1153
  /// \image html edge_biconnected_components.png
1092 1154
  /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
1093 1155
  ///
1094
  /// \param graph The graph.
1156
  /// \param graph The undirected graph.
1095 1157
  /// \retval compMap A writable node map. The values will be set from 0 to
1096
  /// the number of the biconnected components minus one. Each values
1097
  /// of the map will be set exactly once, the values of a certain component
1098
  /// will be set continuously.
1099
  /// \return The number of components.
1158
  /// the number of the bi-edge-connected components minus one. Each value
1159
  /// of the map will be set exactly once, and the values of a certain
1160
  /// component will be set continuously.
1161
  /// \return The number of bi-edge-connected components.
1162
  ///
1163
  /// \see biEdgeConnected(), countBiEdgeConnectedComponents()
1100 1164
  template <typename Graph, typename NodeMap>
1101 1165
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
1102 1166
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1125,19 +1189,25 @@
1125 1189

	
1126 1190
  /// \ingroup graph_properties
1127 1191
  ///
1128
  /// \brief Find the bi-edge-connected cut edges.
1192
  /// \brief Find the bi-edge-connected cut edges in an undirected graph.
1129 1193
  ///
1130
  /// This function finds the bi-edge-connected components in an undirected
1131
  /// graph. The bi-edge-connected components are the classes of an equivalence
1132
  /// relation on the nodes. Two nodes are in relationship when they are
1133
  /// connected with at least two edge-disjoint paths. The bi-edge-connected
1134
  /// components are separted by edges which are the cut edges of the
1135
  /// components.
1194
  /// This function finds the bi-edge-connected cut edges in the given
1195
  /// undirected graph. 
1136 1196
  ///
1137
  /// \param graph The graph.
1138
  /// \retval cutMap A writable node map. The values will be set true when the
1139
  /// edge is a cut edge.
1197
  /// The bi-edge-connected components are the classes of an equivalence
1198
  /// relation on the nodes of an undirected graph. Two nodes are in the
1199
  /// same class if they are connected with at least two edge-disjoint
1200
  /// paths.
1201
  /// The bi-edge-connected components are separted by the cut edges of
1202
  /// the components.
1203
  ///
1204
  /// \param graph The undirected graph.
1205
  /// \retval cutMap A writable edge map. The values will be set to \c true
1206
  /// for the cut edges (exactly once for each cut edge), and will not be
1207
  /// changed for other edges.
1140 1208
  /// \return The number of cut edges.
1209
  ///
1210
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
1141 1211
  template <typename Graph, typename EdgeMap>
1142 1212
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
1143 1213
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1189,19 +1259,62 @@
1189 1259

	
1190 1260
  /// \ingroup graph_properties
1191 1261
  ///
1262
  /// \brief Check whether a digraph is DAG.
1263
  ///
1264
  /// This function checks whether the given digraph is DAG, i.e.
1265
  /// \e Directed \e Acyclic \e Graph.
1266
  /// \return \c true if there is no directed cycle in the digraph.
1267
  /// \see acyclic()
1268
  template <typename Digraph>
1269
  bool dag(const Digraph& digraph) {
1270

	
1271
    checkConcept<concepts::Digraph, Digraph>();
1272

	
1273
    typedef typename Digraph::Node Node;
1274
    typedef typename Digraph::NodeIt NodeIt;
1275
    typedef typename Digraph::Arc Arc;
1276

	
1277
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1278

	
1279
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1280
      Create dfs(digraph);
1281

	
1282
    ProcessedMap processed(digraph);
1283
    dfs.processedMap(processed);
1284

	
1285
    dfs.init();
1286
    for (NodeIt it(digraph); it != INVALID; ++it) {
1287
      if (!dfs.reached(it)) {
1288
        dfs.addSource(it);
1289
        while (!dfs.emptyQueue()) {
1290
          Arc arc = dfs.nextArc();
1291
          Node target = digraph.target(arc);
1292
          if (dfs.reached(target) && !processed[target]) {
1293
            return false;
1294
          }
1295
          dfs.processNextArc();
1296
        }
1297
      }
1298
    }
1299
    return true;
1300
  }
1301

	
1302
  /// \ingroup graph_properties
1303
  ///
1192 1304
  /// \brief Sort the nodes of a DAG into topolgical order.
1193 1305
  ///
1194
  /// Sort the nodes of a DAG into topolgical order.
1306
  /// This function sorts the nodes of the given acyclic digraph (DAG)
1307
  /// into topolgical order.
1195 1308
  ///
1196
  /// \param graph The graph. It must be directed and acyclic.
1309
  /// \param digraph The digraph, which must be DAG.
1197 1310
  /// \retval order A writable node map. The values will be set from 0 to
1198
  /// the number of the nodes in the graph minus one. Each values of the map
1199
  /// will be set exactly once, the values  will be set descending order.
1311
  /// the number of the nodes in the digraph minus one. Each value of the
1312
  /// map will be set exactly once, and the values will be set descending
1313
  /// order.
1200 1314
  ///
1201
  /// \see checkedTopologicalSort
1202
  /// \see dag
1315
  /// \see dag(), checkedTopologicalSort()
1203 1316
  template <typename Digraph, typename NodeMap>
1204
  void topologicalSort(const Digraph& graph, NodeMap& order) {
1317
  void topologicalSort(const Digraph& digraph, NodeMap& order) {
1205 1318
    using namespace _connectivity_bits;
1206 1319

	
1207 1320
    checkConcept<concepts::Digraph, Digraph>();
... ...
@@ -1212,13 +1325,13 @@
1212 1325
    typedef typename Digraph::Arc Arc;
1213 1326

	
1214 1327
    TopologicalSortVisitor<Digraph, NodeMap>
1215
      visitor(order, countNodes(graph));
1328
      visitor(order, countNodes(digraph));
1216 1329

	
1217 1330
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1218
      dfs(graph, visitor);
1331
      dfs(digraph, visitor);
1219 1332

	
1220 1333
    dfs.init();
1221
    for (NodeIt it(graph); it != INVALID; ++it) {
1334
    for (NodeIt it(digraph); it != INVALID; ++it) {
1222 1335
      if (!dfs.reached(it)) {
1223 1336
        dfs.addSource(it);
1224 1337
        dfs.start();
... ...
@@ -1230,18 +1343,18 @@
1230 1343
  ///
1231 1344
  /// \brief Sort the nodes of a DAG into topolgical order.
1232 1345
  ///
1233
  /// Sort the nodes of a DAG into topolgical order. It also checks
1234
  /// that the given graph is DAG.
1346
  /// This function sorts the nodes of the given acyclic digraph (DAG)
1347
  /// into topolgical order and also checks whether the given digraph
1348
  /// is DAG.
1235 1349
  ///
1236
  /// \param digraph The graph. It must be directed and acyclic.
1237
  /// \retval order A readable - writable node map. The values will be set
1238
  /// from 0 to the number of the nodes in the graph minus one. Each values
1239
  /// of the map will be set exactly once, the values will be set descending
1240
  /// order.
1241
  /// \return \c false when the graph is not DAG.
1350
  /// \param digraph The digraph.
1351
  /// \retval order A readable and writable node map. The values will be
1352
  /// set from 0 to the number of the nodes in the digraph minus one. 
1353
  /// Each value of the map will be set exactly once, and the values will
1354
  /// be set descending order.
1355
  /// \return \c false if the digraph is not DAG.
1242 1356
  ///
1243
  /// \see topologicalSort
1244
  /// \see dag
1357
  /// \see dag(), topologicalSort()
1245 1358
  template <typename Digraph, typename NodeMap>
1246 1359
  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
1247 1360
    using namespace _connectivity_bits;
... ...
@@ -1283,54 +1396,11 @@
1283 1396

	
1284 1397
  /// \ingroup graph_properties
1285 1398
  ///
1286
  /// \brief Check that the given directed graph is a DAG.
1399
  /// \brief Check whether an undirected graph is acyclic.
1287 1400
  ///
1288
  /// Check that the given directed graph is a DAG. The DAG is
1289
  /// an Directed Acyclic Digraph.
1290
  /// \return \c false when the graph is not DAG.
1291
  /// \see acyclic
1292
  template <typename Digraph>
1293
  bool dag(const Digraph& digraph) {
1294

	
1295
    checkConcept<concepts::Digraph, Digraph>();
1296

	
1297
    typedef typename Digraph::Node Node;
1298
    typedef typename Digraph::NodeIt NodeIt;
1299
    typedef typename Digraph::Arc Arc;
1300

	
1301
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1302

	
1303
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1304
      Create dfs(digraph);
1305

	
1306
    ProcessedMap processed(digraph);
1307
    dfs.processedMap(processed);
1308

	
1309
    dfs.init();
1310
    for (NodeIt it(digraph); it != INVALID; ++it) {
1311
      if (!dfs.reached(it)) {
1312
        dfs.addSource(it);
1313
        while (!dfs.emptyQueue()) {
1314
          Arc edge = dfs.nextArc();
1315
          Node target = digraph.target(edge);
1316
          if (dfs.reached(target) && !processed[target]) {
1317
            return false;
1318
          }
1319
          dfs.processNextArc();
1320
        }
1321
      }
1322
    }
1323
    return true;
1324
  }
1325

	
1326
  /// \ingroup graph_properties
1327
  ///
1328
  /// \brief Check that the given undirected graph is acyclic.
1329
  ///
1330
  /// Check that the given undirected graph acyclic.
1331
  /// \param graph The undirected graph.
1332
  /// \return \c true when there is no circle in the graph.
1333
  /// \see dag
1401
  /// This function checks whether the given undirected graph is acyclic.
1402
  /// \return \c true if there is no cycle in the graph.
1403
  /// \see dag()
1334 1404
  template <typename Graph>
1335 1405
  bool acyclic(const Graph& graph) {
1336 1406
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1343,11 +1413,11 @@
1343 1413
      if (!dfs.reached(it)) {
1344 1414
        dfs.addSource(it);
1345 1415
        while (!dfs.emptyQueue()) {
1346
          Arc edge = dfs.nextArc();
1347
          Node source = graph.source(edge);
1348
          Node target = graph.target(edge);
1416
          Arc arc = dfs.nextArc();
1417
          Node source = graph.source(arc);
1418
          Node target = graph.target(arc);
1349 1419
          if (dfs.reached(target) &&
1350
              dfs.predArc(source) != graph.oppositeArc(edge)) {
1420
              dfs.predArc(source) != graph.oppositeArc(arc)) {
1351 1421
            return false;
1352 1422
          }
1353 1423
          dfs.processNextArc();
... ...
@@ -1359,26 +1429,27 @@
1359 1429

	
1360 1430
  /// \ingroup graph_properties
1361 1431
  ///
1362
  /// \brief Check that the given undirected graph is tree.
1432
  /// \brief Check whether an undirected graph is tree.
1363 1433
  ///
1364
  /// Check that the given undirected graph is tree.
1365
  /// \param graph The undirected graph.
1366
  /// \return \c true when the graph is acyclic and connected.
1434
  /// This function checks whether the given undirected graph is tree.
1435
  /// \return \c true if the graph is acyclic and connected.
1436
  /// \see acyclic(), connected()
1367 1437
  template <typename Graph>
1368 1438
  bool tree(const Graph& graph) {
1369 1439
    checkConcept<concepts::Graph, Graph>();
1370 1440
    typedef typename Graph::Node Node;
1371 1441
    typedef typename Graph::NodeIt NodeIt;
1372 1442
    typedef typename Graph::Arc Arc;
1443
    if (NodeIt(graph) == INVALID) return true;
1373 1444
    Dfs<Graph> dfs(graph);
1374 1445
    dfs.init();
1375 1446
    dfs.addSource(NodeIt(graph));
1376 1447
    while (!dfs.emptyQueue()) {
1377
      Arc edge = dfs.nextArc();
1378
      Node source = graph.source(edge);
1379
      Node target = graph.target(edge);
1448
      Arc arc = dfs.nextArc();
1449
      Node source = graph.source(arc);
1450
      Node target = graph.target(arc);
1380 1451
      if (dfs.reached(target) &&
1381
          dfs.predArc(source) != graph.oppositeArc(edge)) {
1452
          dfs.predArc(source) != graph.oppositeArc(arc)) {
1382 1453
        return false;
1383 1454
      }
1384 1455
      dfs.processNextArc();
... ...
@@ -1451,15 +1522,14 @@
1451 1522

	
1452 1523
  /// \ingroup graph_properties
1453 1524
  ///
1454
  /// \brief Check if the given undirected graph is bipartite or not
1525
  /// \brief Check whether an undirected graph is bipartite.
1455 1526
  ///
1456
  /// The function checks if the given undirected \c graph graph is bipartite
1457
  /// or not. The \ref Bfs algorithm is used to calculate the result.
1458
  /// \param graph The undirected graph.
1459
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1460
  /// \sa bipartitePartitions
1527
  /// The function checks whether the given undirected graph is bipartite.
1528
  /// \return \c true if the graph is bipartite.
1529
  ///
1530
  /// \see bipartitePartitions()
1461 1531
  template<typename Graph>
1462
  inline bool bipartite(const Graph &graph){
1532
  bool bipartite(const Graph &graph){
1463 1533
    using namespace _connectivity_bits;
1464 1534

	
1465 1535
    checkConcept<concepts::Graph, Graph>();
... ...
@@ -1488,25 +1558,27 @@
1488 1558

	
1489 1559
  /// \ingroup graph_properties
1490 1560
  ///
1491
  /// \brief Check if the given undirected graph is bipartite or not
1561
  /// \brief Find the bipartite partitions of an undirected graph.
1492 1562
  ///
1493
  /// The function checks if the given undirected graph is bipartite
1494
  /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result.
1495
  /// During the execution, the \c partMap will be set as the two
1496
  /// partitions of the graph.
1563
  /// This function checks whether the given undirected graph is bipartite
1564
  /// and gives back the bipartite partitions.
1497 1565
  ///
1498 1566
  /// \image html bipartite_partitions.png
1499 1567
  /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
1500 1568
  ///
1501 1569
  /// \param graph The undirected graph.
1502
  /// \retval partMap A writable bool map of nodes. It will be set as the
1503
  /// two partitions of the graph.
1504
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1570
  /// \retval partMap A writable node map of \c bool (or convertible) value
1571
  /// type. The values will be set to \c true for one component and
1572
  /// \c false for the other one.
1573
  /// \return \c true if the graph is bipartite, \c false otherwise.
1574
  ///
1575
  /// \see bipartite()
1505 1576
  template<typename Graph, typename NodeMap>
1506
  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1577
  bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1507 1578
    using namespace _connectivity_bits;
1508 1579

	
1509 1580
    checkConcept<concepts::Graph, Graph>();
1581
    checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
1510 1582

	
1511 1583
    typedef typename Graph::Node Node;
1512 1584
    typedef typename Graph::NodeIt NodeIt;
... ...
@@ -1531,53 +1603,59 @@
1531 1603
    return true;
1532 1604
  }
1533 1605

	
1534
  /// \brief Returns true when there are not loop edges in the graph.
1606
  /// \ingroup graph_properties
1535 1607
  ///
1536
  /// Returns true when there are not loop edges in the graph.
1537
  template <typename Digraph>
1538
  bool loopFree(const Digraph& digraph) {
1539
    for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
1540
      if (digraph.source(it) == digraph.target(it)) return false;
1608
  /// \brief Check whether the given graph contains no loop arcs/edges.
1609
  ///
1610
  /// This function returns \c true if there are no loop arcs/edges in
1611
  /// the given graph. It works for both directed and undirected graphs.
1612
  template <typename Graph>
1613
  bool loopFree(const Graph& graph) {
1614
    for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
1615
      if (graph.source(it) == graph.target(it)) return false;
1541 1616
    }
1542 1617
    return true;
1543 1618
  }
1544 1619

	
1545
  /// \brief Returns true when there are not parallel edges in the graph.
1620
  /// \ingroup graph_properties
1546 1621
  ///
1547
  /// Returns true when there are not parallel edges in the graph.
1548
  template <typename Digraph>
1549
  bool parallelFree(const Digraph& digraph) {
1550
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1551
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1552
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1553
        if (reached[digraph.target(a)]) return false;
1554
        reached.set(digraph.target(a), true);
1622
  /// \brief Check whether the given graph contains no parallel arcs/edges.
1623
  ///
1624
  /// This function returns \c true if there are no parallel arcs/edges in
1625
  /// the given graph. It works for both directed and undirected graphs.
1626
  template <typename Graph>
1627
  bool parallelFree(const Graph& graph) {
1628
    typename Graph::template NodeMap<int> reached(graph, 0);
1629
    int cnt = 1;
1630
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1631
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
1632
        if (reached[graph.target(a)] == cnt) return false;
1633
        reached[graph.target(a)] = cnt;
1555 1634
      }
1556
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1557
        reached.set(digraph.target(a), false);
1558
      }
1635
      ++cnt;
1559 1636
    }
1560 1637
    return true;
1561 1638
  }
1562 1639

	
1563
  /// \brief Returns true when there are not loop edges and parallel
1564
  /// edges in the graph.
1640
  /// \ingroup graph_properties
1565 1641
  ///
1566
  /// Returns true when there are not loop edges and parallel edges in
1567
  /// the graph.
1568
  template <typename Digraph>
1569
  bool simpleDigraph(const Digraph& digraph) {
1570
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1571
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1572
      reached.set(n, true);
1573
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1574
        if (reached[digraph.target(a)]) return false;
1575
        reached.set(digraph.target(a), true);
1642
  /// \brief Check whether the given graph is simple.
1643
  ///
1644
  /// This function returns \c true if the given graph is simple, i.e.
1645
  /// it contains no loop arcs/edges and no parallel arcs/edges.
1646
  /// The function works for both directed and undirected graphs.
1647
  /// \see loopFree(), parallelFree()
1648
  template <typename Graph>
1649
  bool simpleGraph(const Graph& graph) {
1650
    typename Graph::template NodeMap<int> reached(graph, 0);
1651
    int cnt = 1;
1652
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1653
      reached[n] = cnt;
1654
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
1655
        if (reached[graph.target(a)] == cnt) return false;
1656
        reached[graph.target(a)] = cnt;
1576 1657
      }
1577
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1578
        reached.set(digraph.target(a), false);
1579
      }
1580
      reached.set(n, false);
1658
      ++cnt;
1581 1659
    }
1582 1660
    return true;
1583 1661
  }
Ignore white space 6 line context
... ...
@@ -22,7 +22,7 @@
22 22
#include <lemon/core.h>
23 23
#include <lemon/bits/edge_set_extender.h>
24 24

	
25
/// \ingroup semi_adaptors
25
/// \ingroup graphs
26 26
/// \file
27 27
/// \brief ArcSet and EdgeSet classes.
28 28
///
... ...
@@ -230,7 +230,7 @@
230 230

	
231 231
  };
232 232

	
233
  /// \ingroup semi_adaptors
233
  /// \ingroup graphs
234 234
  ///
235 235
  /// \brief Digraph using a node set of another digraph or graph and
236 236
  /// an own arc set.
... ...
@@ -654,7 +654,7 @@
654 654

	
655 655
  };
656 656

	
657
  /// \ingroup semi_adaptors
657
  /// \ingroup graphs
658 658
  ///
659 659
  /// \brief Graph using a node set of another digraph or graph and an
660 660
  /// own edge set.
... ...
@@ -913,7 +913,7 @@
913 913
  };
914 914

	
915 915

	
916
  /// \ingroup semi_adaptors
916
  /// \ingroup graphs
917 917
  ///
918 918
  /// \brief Digraph using a node set of another digraph or graph and
919 919
  /// an own arc set.
... ...
@@ -1257,7 +1257,7 @@
1257 1257

	
1258 1258
  };
1259 1259

	
1260
  /// \ingroup semi_adaptors
1260
  /// \ingroup graphs
1261 1261
  ///
1262 1262
  /// \brief Graph using a node set of another digraph or graph and an
1263 1263
  /// own edge set.
Ignore white space 6 line context
... ...
@@ -244,10 +244,10 @@
244 244
  };
245 245

	
246 246

	
247
  ///Check if the given graph is \e Eulerian
247
  ///Check if the given graph is Eulerian
248 248

	
249 249
  /// \ingroup graph_properties
250
  ///This function checks if the given graph is \e Eulerian.
250
  ///This function checks if the given graph is Eulerian.
251 251
  ///It works for both directed and undirected graphs.
252 252
  ///
253 253
  ///By definition, a digraph is called \e Eulerian if
Ignore white space 6 line context
... ...
@@ -26,9 +26,10 @@
26 26
#include <lemon/lp_base.h>
27 27

	
28 28
// forward declaration
29
#ifndef _GLP_PROB
29
#if !defined _GLP_PROB && !defined GLP_PROB
30 30
#define _GLP_PROB
31
typedef struct { double _prob; } glp_prob;
31
#define GLP_PROB
32
typedef struct { double _opaque_prob; } glp_prob;
32 33
/* LP/MIP problem object */
33 34
#endif
34 35

	
Ignore white space 6 line context
... ...
@@ -4,7 +4,7 @@
4 4
includedir=@includedir@
5 5

	
6 6
Name: @PACKAGE_NAME@
7
Description: Library of Efficient Models and Optimization in Networks
7
Description: Library for Efficient Modeling and Optimization in Networks
8 8
Version: @PACKAGE_VERSION@
9 9
Libs: -L${libdir} -lemon @GLPK_LIBS@ @CPLEX_LIBS@ @SOPLEX_LIBS@ @CLP_LIBS@ @CBC_LIBS@
10 10
Cflags: -I${includedir}
Ignore white space 6 line context
... ...
@@ -499,7 +499,7 @@
499 499
    ///
500 500
    /// This function runs the original Edmonds' algorithm.
501 501
    ///
502
    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
502
    /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
503 503
    /// called before using this function.
504 504
    void startSparse() {
505 505
      for(NodeIt n(_graph); n != INVALID; ++n) {
... ...
@@ -518,7 +518,7 @@
518 518
    /// This function runs Edmonds' algorithm with a heuristic of postponing
519 519
    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
520 520
    ///
521
    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
521
    /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
522 522
    /// called before using this function.
523 523
    void startDense() {
524 524
      for(NodeIt n(_graph); n != INVALID; ++n) {
Ignore white space 6 line context
... ...
@@ -19,7 +19,7 @@
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22
/// \ingroup min_cost_flow
22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
... ...
@@ -33,7 +33,7 @@
33 33

	
34 34
namespace lemon {
35 35

	
36
  /// \addtogroup min_cost_flow
36
  /// \addtogroup min_cost_flow_algs
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
... ...
@@ -102,50 +102,16 @@
102 102
    /// i.e. the direction of the inequalities in the supply/demand
103 103
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
104 104
    ///
105
    /// The default supply type is \c GEQ, since this form is supported
106
    /// by other minimum cost flow algorithms and the \ref Circulation
107
    /// algorithm, as well.
108
    /// The \c LEQ problem type can be selected using the \ref supplyType()
109
    /// function.
110
    ///
111
    /// Note that the equality form is a special case of both supply types.
105
    /// The default supply type is \c GEQ, the \c LEQ type can be
106
    /// selected using \ref supplyType().
107
    /// The equality form is a special case of both supply types.
112 108
    enum SupplyType {
113

	
114 109
      /// This option means that there are <em>"greater or equal"</em>
115
      /// supply/demand constraints in the definition, i.e. the exact
116
      /// formulation of the problem is the following.
117
      /**
118
          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
119
          \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
120
              sup(u) \quad \forall u\in V \f]
121
          \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
122
      */
123
      /// It means that the total demand must be greater or equal to the 
124
      /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
125
      /// negative) and all the supplies have to be carried out from 
126
      /// the supply nodes, but there could be demands that are not 
127
      /// satisfied.
110
      /// supply/demand constraints in the definition of the problem.
128 111
      GEQ,
129
      /// It is just an alias for the \c GEQ option.
130
      CARRY_SUPPLIES = GEQ,
131

	
132 112
      /// This option means that there are <em>"less or equal"</em>
133
      /// supply/demand constraints in the definition, i.e. the exact
134
      /// formulation of the problem is the following.
135
      /**
136
          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
137
          \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
138
              sup(u) \quad \forall u\in V \f]
139
          \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
140
      */
141
      /// It means that the total demand must be less or equal to the 
142
      /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
143
      /// positive) and all the demands have to be satisfied, but there
144
      /// could be supplies that are not carried out from the supply
145
      /// nodes.
146
      LEQ,
147
      /// It is just an alias for the \c LEQ option.
148
      SATISFY_DEMANDS = LEQ
113
      /// supply/demand constraints in the definition of the problem.
114
      LEQ
149 115
    };
150 116
    
151 117
    /// \brief Constants for selecting the pivot rule.
... ...
@@ -215,6 +181,8 @@
215 181
    const GR &_graph;
216 182
    int _node_num;
217 183
    int _arc_num;
184
    int _all_arc_num;
185
    int _search_arc_num;
218 186

	
219 187
    // Parameters of the problem
220 188
    bool _have_lower;
... ...
@@ -277,7 +245,7 @@
277 245
      const IntVector  &_state;
278 246
      const CostVector &_pi;
279 247
      int &_in_arc;
280
      int _arc_num;
248
      int _search_arc_num;
281 249

	
282 250
      // Pivot rule data
283 251
      int _next_arc;
... ...
@@ -288,13 +256,14 @@
288 256
      FirstEligiblePivotRule(NetworkSimplex &ns) :
289 257
        _source(ns._source), _target(ns._target),
290 258
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
291
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
259
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
260
        _next_arc(0)
292 261
      {}
293 262

	
294 263
      // Find next entering arc
295 264
      bool findEnteringArc() {
296 265
        Cost c;
297
        for (int e = _next_arc; e < _arc_num; ++e) {
266
        for (int e = _next_arc; e < _search_arc_num; ++e) {
298 267
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
299 268
          if (c < 0) {
300 269
            _in_arc = e;
... ...
@@ -328,7 +297,7 @@
328 297
      const IntVector  &_state;
329 298
      const CostVector &_pi;
330 299
      int &_in_arc;
331
      int _arc_num;
300
      int _search_arc_num;
332 301

	
333 302
    public:
334 303

	
... ...
@@ -336,13 +305,13 @@
336 305
      BestEligiblePivotRule(NetworkSimplex &ns) :
337 306
        _source(ns._source), _target(ns._target),
338 307
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
339
        _in_arc(ns.in_arc), _arc_num(ns._arc_num)
308
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
340 309
      {}
341 310

	
342 311
      // Find next entering arc
343 312
      bool findEnteringArc() {
344 313
        Cost c, min = 0;
345
        for (int e = 0; e < _arc_num; ++e) {
314
        for (int e = 0; e < _search_arc_num; ++e) {
346 315
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
347 316
          if (c < min) {
348 317
            min = c;
... ...
@@ -367,7 +336,7 @@
367 336
      const IntVector  &_state;
368 337
      const CostVector &_pi;
369 338
      int &_in_arc;
370
      int _arc_num;
339
      int _search_arc_num;
371 340

	
372 341
      // Pivot rule data
373 342
      int _block_size;
... ...
@@ -379,14 +348,15 @@
379 348
      BlockSearchPivotRule(NetworkSimplex &ns) :
380 349
        _source(ns._source), _target(ns._target),
381 350
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
382
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
351
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
352
        _next_arc(0)
383 353
      {
384 354
        // The main parameters of the pivot rule
385
        const double BLOCK_SIZE_FACTOR = 2.0;
355
        const double BLOCK_SIZE_FACTOR = 0.5;
386 356
        const int MIN_BLOCK_SIZE = 10;
387 357

	
388 358
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
389
                                    std::sqrt(double(_arc_num))),
359
                                    std::sqrt(double(_search_arc_num))),
390 360
                                MIN_BLOCK_SIZE );
391 361
      }
392 362

	
... ...
@@ -395,7 +365,7 @@
395 365
        Cost c, min = 0;
396 366
        int cnt = _block_size;
397 367
        int e, min_arc = _next_arc;
398
        for (e = _next_arc; e < _arc_num; ++e) {
368
        for (e = _next_arc; e < _search_arc_num; ++e) {
399 369
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
400 370
          if (c < min) {
401 371
            min = c;
... ...
@@ -440,7 +410,7 @@
440 410
      const IntVector  &_state;
441 411
      const CostVector &_pi;
442 412
      int &_in_arc;
443
      int _arc_num;
413
      int _search_arc_num;
444 414

	
445 415
      // Pivot rule data
446 416
      IntVector _candidates;
... ...
@@ -454,7 +424,8 @@
454 424
      CandidateListPivotRule(NetworkSimplex &ns) :
455 425
        _source(ns._source), _target(ns._target),
456 426
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
457
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
427
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
428
        _next_arc(0)
458 429
      {
459 430
        // The main parameters of the pivot rule
460 431
        const double LIST_LENGTH_FACTOR = 1.0;
... ...
@@ -463,7 +434,7 @@
463 434
        const int MIN_MINOR_LIMIT = 3;
464 435

	
465 436
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
466
                                     std::sqrt(double(_arc_num))),
437
                                     std::sqrt(double(_search_arc_num))),
467 438
                                 MIN_LIST_LENGTH );
468 439
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
469 440
                                 MIN_MINOR_LIMIT );
... ...
@@ -500,7 +471,7 @@
500 471
        // Major iteration: build a new candidate list
501 472
        min = 0;
502 473
        _curr_length = 0;
503
        for (e = _next_arc; e < _arc_num; ++e) {
474
        for (e = _next_arc; e < _search_arc_num; ++e) {
504 475
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
505 476
          if (c < 0) {
506 477
            _candidates[_curr_length++] = e;
... ...
@@ -546,7 +517,7 @@
546 517
      const IntVector  &_state;
547 518
      const CostVector &_pi;
548 519
      int &_in_arc;
549
      int _arc_num;
520
      int _search_arc_num;
550 521

	
551 522
      // Pivot rule data
552 523
      int _block_size, _head_length, _curr_length;
... ...
@@ -574,8 +545,8 @@
574 545
      AlteringListPivotRule(NetworkSimplex &ns) :
575 546
        _source(ns._source), _target(ns._target),
576 547
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
577
        _in_arc(ns.in_arc), _arc_num(ns._arc_num),
578
        _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
548
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
549
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
579 550
      {
580 551
        // The main parameters of the pivot rule
581 552
        const double BLOCK_SIZE_FACTOR = 1.5;
... ...
@@ -584,7 +555,7 @@
584 555
        const int MIN_HEAD_LENGTH = 3;
585 556

	
586 557
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
587
                                    std::sqrt(double(_arc_num))),
558
                                    std::sqrt(double(_search_arc_num))),
588 559
                                MIN_BLOCK_SIZE );
589 560
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
590 561
                                 MIN_HEAD_LENGTH );
... ...
@@ -610,7 +581,7 @@
610 581
        int last_arc = 0;
611 582
        int limit = _head_length;
612 583

	
613
        for (int e = _next_arc; e < _arc_num; ++e) {
584
        for (int e = _next_arc; e < _search_arc_num; ++e) {
614 585
          _cand_cost[e] = _state[e] *
615 586
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
616 587
          if (_cand_cost[e] < 0) {
... ...
@@ -678,17 +649,17 @@
678 649
      _node_num = countNodes(_graph);
679 650
      _arc_num = countArcs(_graph);
680 651
      int all_node_num = _node_num + 1;
681
      int all_arc_num = _arc_num + _node_num;
652
      int max_arc_num = _arc_num + 2 * _node_num;
682 653

	
683
      _source.resize(all_arc_num);
684
      _target.resize(all_arc_num);
654
      _source.resize(max_arc_num);
655
      _target.resize(max_arc_num);
685 656

	
686
      _lower.resize(all_arc_num);
687
      _upper.resize(all_arc_num);
688
      _cap.resize(all_arc_num);
689
      _cost.resize(all_arc_num);
657
      _lower.resize(_arc_num);
658
      _upper.resize(_arc_num);
659
      _cap.resize(max_arc_num);
660
      _cost.resize(max_arc_num);
690 661
      _supply.resize(all_node_num);
691
      _flow.resize(all_arc_num);
662
      _flow.resize(max_arc_num);
692 663
      _pi.resize(all_node_num);
693 664

	
694 665
      _parent.resize(all_node_num);
... ...
@@ -698,7 +669,7 @@
698 669
      _rev_thread.resize(all_node_num);
699 670
      _succ_num.resize(all_node_num);
700 671
      _last_succ.resize(all_node_num);
701
      _state.resize(all_arc_num);
672
      _state.resize(max_arc_num);
702 673

	
703 674
      // Copy the graph (store the arcs in a mixed order)
704 675
      int i = 0;
... ...
@@ -1069,7 +1040,7 @@
1069 1040
      // Initialize artifical cost
1070 1041
      Cost ART_COST;
1071 1042
      if (std::numeric_limits<Cost>::is_exact) {
1072
        ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
1043
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1073 1044
      } else {
1074 1045
        ART_COST = std::numeric_limits<Cost>::min();
1075 1046
        for (int i = 0; i != _arc_num; ++i) {
... ...
@@ -1093,29 +1064,121 @@
1093 1064
      _succ_num[_root] = _node_num + 1;
1094 1065
      _last_succ[_root] = _root - 1;
1095 1066
      _supply[_root] = -_sum_supply;
1096
      _pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST;
1067
      _pi[_root] = 0;
1097 1068

	
1098 1069
      // Add artificial arcs and initialize the spanning tree data structure
1099
      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1100
        _parent[u] = _root;
1101
        _pred[u] = e;
1102
        _thread[u] = u + 1;
1103
        _rev_thread[u + 1] = u;
1104
        _succ_num[u] = 1;
1105
        _last_succ[u] = u;
1106
        _cost[e] = ART_COST;
1107
        _cap[e] = INF;
1108
        _state[e] = STATE_TREE;
1109
        if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
1110
          _flow[e] = _supply[u];
1111
          _forward[u] = true;
1112
          _pi[u] = -ART_COST + _pi[_root];
1113
        } else {
1114
          _flow[e] = -_supply[u];
1115
          _forward[u] = false;
1116
          _pi[u] = ART_COST + _pi[_root];
1070
      if (_sum_supply == 0) {
1071
        // EQ supply constraints
1072
        _search_arc_num = _arc_num;
1073
        _all_arc_num = _arc_num + _node_num;
1074
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1075
          _parent[u] = _root;
1076
          _pred[u] = e;
1077
          _thread[u] = u + 1;
1078
          _rev_thread[u + 1] = u;
1079
          _succ_num[u] = 1;
1080
          _last_succ[u] = u;
1081
          _cap[e] = INF;
1082
          _state[e] = STATE_TREE;
1083
          if (_supply[u] >= 0) {
1084
            _forward[u] = true;
1085
            _pi[u] = 0;
1086
            _source[e] = u;
1087
            _target[e] = _root;
1088
            _flow[e] = _supply[u];
1089
            _cost[e] = 0;
1090
          } else {
1091
            _forward[u] = false;
1092
            _pi[u] = ART_COST;
1093
            _source[e] = _root;
1094
            _target[e] = u;
1095
            _flow[e] = -_supply[u];
1096
            _cost[e] = ART_COST;
1097
          }
1117 1098
        }
1118 1099
      }
1100
      else if (_sum_supply > 0) {
1101
        // LEQ supply constraints
1102
        _search_arc_num = _arc_num + _node_num;
1103
        int f = _arc_num + _node_num;
1104
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1105
          _parent[u] = _root;
1106
          _thread[u] = u + 1;
1107
          _rev_thread[u + 1] = u;
1108
          _succ_num[u] = 1;
1109
          _last_succ[u] = u;
1110
          if (_supply[u] >= 0) {
1111
            _forward[u] = true;
1112
            _pi[u] = 0;
1113
            _pred[u] = e;
1114
            _source[e] = u;
1115
            _target[e] = _root;
1116
            _cap[e] = INF;
1117
            _flow[e] = _supply[u];
1118
            _cost[e] = 0;
1119
            _state[e] = STATE_TREE;
1120
          } else {
1121
            _forward[u] = false;
1122
            _pi[u] = ART_COST;
1123
            _pred[u] = f;
1124
            _source[f] = _root;
1125
            _target[f] = u;
1126
            _cap[f] = INF;
1127
            _flow[f] = -_supply[u];
1128
            _cost[f] = ART_COST;
1129
            _state[f] = STATE_TREE;
1130
            _source[e] = u;
1131
            _target[e] = _root;
1132
            _cap[e] = INF;
1133
            _flow[e] = 0;
1134
            _cost[e] = 0;
1135
            _state[e] = STATE_LOWER;
1136
            ++f;
1137
          }
1138
        }
1139
        _all_arc_num = f;
1140
      }
1141
      else {
1142
        // GEQ supply constraints
1143
        _search_arc_num = _arc_num + _node_num;
1144
        int f = _arc_num + _node_num;
1145
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1146
          _parent[u] = _root;
1147
          _thread[u] = u + 1;
1148
          _rev_thread[u + 1] = u;
1149
          _succ_num[u] = 1;
1150
          _last_succ[u] = u;
1151
          if (_supply[u] <= 0) {
1152
            _forward[u] = false;
1153
            _pi[u] = 0;
1154
            _pred[u] = e;
1155
            _source[e] = _root;
1156
            _target[e] = u;
1157
            _cap[e] = INF;
1158
            _flow[e] = -_supply[u];
1159
            _cost[e] = 0;
1160
            _state[e] = STATE_TREE;
1161
          } else {
1162
            _forward[u] = true;
1163
            _pi[u] = -ART_COST;
1164
            _pred[u] = f;
1165
            _source[f] = u;
1166
            _target[f] = _root;
1167
            _cap[f] = INF;
1168
            _flow[f] = _supply[u];
1169
            _state[f] = STATE_TREE;
1170
            _cost[f] = ART_COST;
1171
            _source[e] = _root;
1172
            _target[e] = u;
1173
            _cap[e] = INF;
1174
            _flow[e] = 0;
1175
            _cost[e] = 0;
1176
            _state[e] = STATE_LOWER;
1177
            ++f;
1178
          }
1179
        }
1180
        _all_arc_num = f;
1181
      }
1119 1182

	
1120 1183
      return true;
1121 1184
    }
... ...
@@ -1374,20 +1437,8 @@
1374 1437
      }
1375 1438
      
1376 1439
      // Check feasibility
1377
      if (_sum_supply < 0) {
1378
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1379
          if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE;
1380
        }
1381
      }
1382
      else if (_sum_supply > 0) {
1383
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1384
          if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE;
1385
        }
1386
      }
1387
      else {
1388
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1389
          if (_flow[e] != 0) return INFEASIBLE;
1390
        }
1440
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1441
        if (_flow[e] != 0) return INFEASIBLE;
1391 1442
      }
1392 1443

	
1393 1444
      // Transform the solution and the supply map to the original form
... ...
@@ -1401,6 +1452,30 @@
1401 1452
          }
1402 1453
        }
1403 1454
      }
1455
      
1456
      // Shift potentials to meet the requirements of the GEQ/LEQ type
1457
      // optimality conditions
1458
      if (_sum_supply == 0) {
1459
        if (_stype == GEQ) {
1460
          Cost max_pot = std::numeric_limits<Cost>::min();
1461
          for (int i = 0; i != _node_num; ++i) {
1462
            if (_pi[i] > max_pot) max_pot = _pi[i];
1463
          }
1464
          if (max_pot > 0) {
1465
            for (int i = 0; i != _node_num; ++i)
1466
              _pi[i] -= max_pot;
1467
          }
1468
        } else {
1469
          Cost min_pot = std::numeric_limits<Cost>::max();
1470
          for (int i = 0; i != _node_num; ++i) {
1471
            if (_pi[i] < min_pot) min_pot = _pi[i];
1472
          }
1473
          if (min_pot < 0) {
1474
            for (int i = 0; i != _node_num; ++i)
1475
              _pi[i] -= min_pot;
1476
          }
1477
        }
1478
      }
1404 1479

	
1405 1480
      return OPTIMAL;
1406 1481
    }
Ignore white space 6 line context
... ...
@@ -6,6 +6,10 @@
6 6
function hg_year() {
7 7
    if [ -n "$(hg st $1)" ]; then
8 8
        echo $YEAR
9
    else
10
        hg log -l 1 --template='{date|isodate}\n' $1 |
11
        cut -d '-' -f 1
12
    fi
9 13
}
10 14

	
11 15
# file enumaration modes
Ignore white space 6 line context
... ...
@@ -9,6 +9,7 @@
9 9
  adaptors_test
10 10
  bfs_test
11 11
  circulation_test
12
  connectivity_test
12 13
  counter_test
13 14
  dfs_test
14 15
  digraph_test
Ignore white space 6 line context
... ...
@@ -9,6 +9,7 @@
9 9
	test/adaptors_test \
10 10
	test/bfs_test \
11 11
	test/circulation_test \
12
	test/connectivity_test \
12 13
	test/counter_test \
13 14
	test/dfs_test \
14 15
	test/digraph_test \
... ...
@@ -54,6 +55,7 @@
54 55
test_bfs_test_SOURCES = test/bfs_test.cc
55 56
test_circulation_test_SOURCES = test/circulation_test.cc
56 57
test_counter_test_SOURCES = test/counter_test.cc
58
test_connectivity_test_SOURCES = test/connectivity_test.cc
57 59
test_dfs_test_SOURCES = test/dfs_test.cc
58 60
test_digraph_test_SOURCES = test/digraph_test.cc
59 61
test_dijkstra_test_SOURCES = test/dijkstra_test.cc
Ignore white space 6 line context
... ...
@@ -174,7 +174,7 @@
174 174
           typename CM, typename SM, typename FM, typename PM >
175 175
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
176 176
                     const CM& cost, const SM& supply, const FM& flow, 
177
                     const PM& pi )
177
                     const PM& pi, SupplyType type )
178 178
{
179 179
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
180 180

	
... ...
@@ -193,12 +193,50 @@
193 193
      sum += flow[e];
194 194
    for (InArcIt e(gr, n); e != INVALID; ++e)
195 195
      sum -= flow[e];
196
    opt = (sum == supply[n]) || (pi[n] == 0);
196
    if (type != LEQ) {
197
      opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
198
    } else {
199
      opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
200
    }
197 201
  }
198 202
  
199 203
  return opt;
200 204
}
201 205

	
206
// Check whether the dual cost is equal to the primal cost
207
template < typename GR, typename LM, typename UM,
208
           typename CM, typename SM, typename PM >
209
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
210
                    const CM& cost, const SM& supply, const PM& pi,
211
                    typename CM::Value total )
212
{
213
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
214

	
215
  typename CM::Value dual_cost = 0;
216
  SM red_supply(gr);
217
  for (NodeIt n(gr); n != INVALID; ++n) {
218
    red_supply[n] = supply[n];
219
  }
220
  for (ArcIt a(gr); a != INVALID; ++a) {
221
    if (lower[a] != 0) {
222
      dual_cost += lower[a] * cost[a];
223
      red_supply[gr.source(a)] -= lower[a];
224
      red_supply[gr.target(a)] += lower[a];
225
    }
226
  }
227
  
228
  for (NodeIt n(gr); n != INVALID; ++n) {
229
    dual_cost -= red_supply[n] * pi[n];
230
  }
231
  for (ArcIt a(gr); a != INVALID; ++a) {
232
    typename CM::Value red_cost =
233
      cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
234
    dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
235
  }
236
  
237
  return dual_cost == total;
238
}
239

	
202 240
// Run a minimum cost flow algorithm and check the results
203 241
template < typename MCF, typename GR,
204 242
           typename LM, typename UM,
... ...
@@ -220,8 +258,10 @@
220 258
    check(checkFlow(gr, lower, upper, supply, flow, type),
221 259
          "The flow is not feasible " + test_id);
222 260
    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
223
    check(checkPotential(gr, lower, upper, cost, supply, flow, pi),
261
    check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
224 262
          "Wrong potentials " + test_id);
263
    check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
264
          "Wrong dual cost " + test_id);
225 265
  }
226 266
}
227 267

	
... ...
@@ -266,45 +306,56 @@
266 306
    .node("target", w)
267 307
    .run();
268 308
  
269
  // Build a test digraph for testing negative costs
270
  Digraph ngr;
271
  Node n1 = ngr.addNode();
272
  Node n2 = ngr.addNode();
273
  Node n3 = ngr.addNode();
274
  Node n4 = ngr.addNode();
275
  Node n5 = ngr.addNode();
276
  Node n6 = ngr.addNode();
277
  Node n7 = ngr.addNode();
309
  // Build test digraphs with negative costs
310
  Digraph neg_gr;
311
  Node n1 = neg_gr.addNode();
312
  Node n2 = neg_gr.addNode();
313
  Node n3 = neg_gr.addNode();
314
  Node n4 = neg_gr.addNode();
315
  Node n5 = neg_gr.addNode();
316
  Node n6 = neg_gr.addNode();
317
  Node n7 = neg_gr.addNode();
278 318
  
279
  Arc a1 = ngr.addArc(n1, n2);
280
  Arc a2 = ngr.addArc(n1, n3);
281
  Arc a3 = ngr.addArc(n2, n4);
282
  Arc a4 = ngr.addArc(n3, n4);
283
  Arc a5 = ngr.addArc(n3, n2);
284
  Arc a6 = ngr.addArc(n5, n3);
285
  Arc a7 = ngr.addArc(n5, n6);
286
  Arc a8 = ngr.addArc(n6, n7);
287
  Arc a9 = ngr.addArc(n7, n5);
319
  Arc a1 = neg_gr.addArc(n1, n2);
320
  Arc a2 = neg_gr.addArc(n1, n3);
321
  Arc a3 = neg_gr.addArc(n2, n4);
322
  Arc a4 = neg_gr.addArc(n3, n4);
323
  Arc a5 = neg_gr.addArc(n3, n2);
324
  Arc a6 = neg_gr.addArc(n5, n3);
325
  Arc a7 = neg_gr.addArc(n5, n6);
326
  Arc a8 = neg_gr.addArc(n6, n7);
327
  Arc a9 = neg_gr.addArc(n7, n5);
288 328
  
289
  Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0);
290
  ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000);
291
  Digraph::NodeMap<int> ns(ngr, 0);
329
  Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
330
  ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
331
  Digraph::NodeMap<int> neg_s(neg_gr, 0);
292 332
  
293
  nl2[a7] =  1000;
294
  nl2[a8] = -1000;
333
  neg_l2[a7] =  1000;
334
  neg_l2[a8] = -1000;
295 335
  
296
  ns[n1] =  100;
297
  ns[n4] = -100;
336
  neg_s[n1] =  100;
337
  neg_s[n4] = -100;
298 338
  
299
  nc[a1] =  100;
300
  nc[a2] =   30;
301
  nc[a3] =   20;
302
  nc[a4] =   80;
303
  nc[a5] =   50;
304
  nc[a6] =   10;
305
  nc[a7] =   80;
306
  nc[a8] =   30;
307
  nc[a9] = -120;
339
  neg_c[a1] =  100;
340
  neg_c[a2] =   30;
341
  neg_c[a3] =   20;
342
  neg_c[a4] =   80;
343
  neg_c[a5] =   50;
344
  neg_c[a6] =   10;
345
  neg_c[a7] =   80;
346
  neg_c[a8] =   30;
347
  neg_c[a9] = -120;
348

	
349
  Digraph negs_gr;
350
  Digraph::NodeMap<int> negs_s(negs_gr);
351
  Digraph::ArcMap<int> negs_c(negs_gr);
352
  ConstMap<Arc, int> negs_l(0), negs_u(1000);
353
  n1 = negs_gr.addNode();
354
  n2 = negs_gr.addNode();
355
  negs_s[n1] = 100;
356
  negs_s[n2] = -300;
357
  negs_c[negs_gr.addArc(n1, n2)] = -1;
358

	
308 359

	
309 360
  // A. Test NetworkSimplex with the default pivot rule
310 361
  {
... ...
@@ -342,7 +393,7 @@
342 393
    mcf.supplyType(mcf.GEQ);
343 394
    checkMcf(mcf, mcf.lowerMap(l2).run(),
344 395
             gr, l2, u, c, s5, mcf.OPTIMAL, true,   4540, "#A11", GEQ);
345
    mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6);
396
    mcf.supplyMap(s6);
346 397
    checkMcf(mcf, mcf.run(),
347 398
             gr, l2, u, c, s6, mcf.INFEASIBLE, false,  0, "#A12", GEQ);
348 399

	
... ...
@@ -353,20 +404,26 @@
353 404
             gr, l1, u, c, s6, mcf.OPTIMAL, true,   5080, "#A13", LEQ);
354 405
    checkMcf(mcf, mcf.lowerMap(l2).run(),
355 406
             gr, l2, u, c, s6, mcf.OPTIMAL, true,   5930, "#A14", LEQ);
356
    mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5);
407
    mcf.supplyMap(s5);
357 408
    checkMcf(mcf, mcf.run(),
358 409
             gr, l2, u, c, s5, mcf.INFEASIBLE, false,  0, "#A15", LEQ);
359 410

	
360 411
    // Check negative costs
361
    NetworkSimplex<Digraph> nmcf(ngr);
362
    nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns);
363
    checkMcf(nmcf, nmcf.run(),
364
      ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A16");
365
    checkMcf(nmcf, nmcf.upperMap(nu2).run(),
366
      ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true,  -40000, "#A17");
367
    nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns);
368
    checkMcf(nmcf, nmcf.run(),
369
      ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A18");
412
    NetworkSimplex<Digraph> neg_mcf(neg_gr);
413
    neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
414
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
415
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A16");
416
    neg_mcf.upperMap(neg_u2);
417
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
418
      neg_c, neg_s, neg_mcf.OPTIMAL, true,  -40000, "#A17");
419
    neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
420
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
421
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A18");
422
      
423
    NetworkSimplex<Digraph> negs_mcf(negs_gr);
424
    negs_mcf.costMap(negs_c).supplyMap(negs_s);
425
    checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
426
      negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
370 427
  }
371 428

	
372 429
  // B. Test NetworkSimplex with each pivot rule
Ignore white space 6 line context
... ...
@@ -18,7 +18,7 @@
18 18

	
19 19
/// \ingroup tools
20 20
/// \file
21
/// \brief Special plane digraph generator.
21
/// \brief Special plane graph generator.
22 22
///
23 23
/// Graph generator application for various types of plane graphs.
24 24
///
... ...
@@ -26,7 +26,7 @@
26 26
/// \code
27 27
///   lgf-gen --help
28 28
/// \endcode
29
/// for more info on the usage.
29
/// for more information on the usage.
30 30

	
31 31
#include <algorithm>
32 32
#include <set>
... ...
@@ -686,20 +686,21 @@
686 686
    .intOption("g", "Girth parameter (default is 10)", 10)
687 687
    .refOption("cities", "Number of cities (default is 1)", num_of_cities)
688 688
    .refOption("area", "Full relative area of the cities (default is 1)", area)
689
    .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d)
689
    .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",
690
               disc_d)
690 691
    .optionGroup("dist", "disc")
691
    .refOption("square", "Nodes are evenly distributed on a unit square", square_d)
692
    .refOption("square", "Nodes are evenly distributed on a unit square",
693
               square_d)
692 694
    .optionGroup("dist", "square")
693
    .refOption("gauss",
694
            "Nodes are located according to a two-dim gauss distribution",
695
            gauss_d)
695
    .refOption("gauss", "Nodes are located according to a two-dim Gauss "
696
               "distribution", gauss_d)
696 697
    .optionGroup("dist", "gauss")
697
//     .mandatoryGroup("dist")
698 698
    .onlyOneGroup("dist")
699
    .boolOption("eps", "Also generate .eps output (prefix.eps)")
700
    .boolOption("nonodes", "Draw the edges only in the generated .eps")
701
    .boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)")
702
    .boolOption("2con", "Create a two connected planar digraph")
699
    .boolOption("eps", "Also generate .eps output (<prefix>.eps)")
700
    .boolOption("nonodes", "Draw only the edges in the generated .eps output")
701
    .boolOption("dir", "Directed graph is generated (each edge is replaced by "
702
                "two directed arcs)")
703
    .boolOption("2con", "Create a two connected planar graph")
703 704
    .optionGroup("alg","2con")
704 705
    .boolOption("tree", "Create a min. cost spanning tree")
705 706
    .optionGroup("alg","tree")
... ...
@@ -707,7 +708,7 @@
707 708
    .optionGroup("alg","tsp")
708 709
    .boolOption("tsp2", "Create a TSP tour (tree based)")
709 710
    .optionGroup("alg","tsp2")
710
    .boolOption("dela", "Delaunay triangulation digraph")
711
    .boolOption("dela", "Delaunay triangulation graph")
711 712
    .optionGroup("alg","dela")
712 713
    .onlyOneGroup("alg")
713 714
    .boolOption("rand", "Use time seed for random number generator")
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BITS_BASE_EXTENDER_H
20
#define LEMON_BITS_BASE_EXTENDER_H
21

	
22
#include <lemon/core.h>
23
#include <lemon/error.h>
24

	
25
#include <lemon/bits/map_extender.h>
26
#include <lemon/bits/default_map.h>
27

	
28
#include <lemon/concept_check.h>
29
#include <lemon/concepts/maps.h>
30

	
31
//\ingroup digraphbits
32
//\file
33
//\brief Extenders for the graph types
34
namespace lemon {
35

	
36
  // \ingroup digraphbits
37
  //
38
  // \brief BaseDigraph to BaseGraph extender
39
  template <typename Base>
40
  class UndirDigraphExtender : public Base {
41
    typedef Base Parent;
42

	
43
  public:
44

	
45
    typedef typename Parent::Arc Edge;
46
    typedef typename Parent::Node Node;
47

	
48
    typedef True UndirectedTag;
49

	
50
    class Arc : public Edge {
51
      friend class UndirDigraphExtender;
52

	
53
    protected:
54
      bool forward;
55

	
56
      Arc(const Edge &ue, bool _forward) :
57
        Edge(ue), forward(_forward) {}
58

	
59
    public:
60
      Arc() {}
61

	
62
      // Invalid arc constructor
63
      Arc(Invalid i) : Edge(i), forward(true) {}
64

	
65
      bool operator==(const Arc &that) const {
66
        return forward==that.forward && Edge(*this)==Edge(that);
67
      }
68
      bool operator!=(const Arc &that) const {
69
        return forward!=that.forward || Edge(*this)!=Edge(that);
70
      }
71
      bool operator<(const Arc &that) const {
72
        return forward<that.forward ||
73
          (!(that.forward<forward) && Edge(*this)<Edge(that));
74
      }
75
    };
76

	
77
    // First node of the edge
78
    Node u(const Edge &e) const {
79
      return Parent::source(e);
80
    }
81

	
82
    // Source of the given arc
83
    Node source(const Arc &e) const {
84
      return e.forward ? Parent::source(e) : Parent::target(e);
85
    }
86

	
87
    // Second node of the edge
88
    Node v(const Edge &e) const {
89
      return Parent::target(e);
90
    }
91

	
92
    // Target of the given arc
93
    Node target(const Arc &e) const {
94
      return e.forward ? Parent::target(e) : Parent::source(e);
95
    }
96

	
97
    // \brief Directed arc from an edge.
98
    //
99
    // Returns a directed arc corresponding to the specified edge.
100
    // If the given bool is true, the first node of the given edge and
101
    // the source node of the returned arc are the same.
102
    static Arc direct(const Edge &e, bool d) {
103
      return Arc(e, d);
104
    }
105

	
106
    // Returns whether the given directed arc has the same orientation
107
    // as the corresponding edge.
108
    static bool direction(const Arc &a) { return a.forward; }
109

	
110
    using Parent::first;
111
    using Parent::next;
112

	
113
    void first(Arc &e) const {
114
      Parent::first(e);
115
      e.forward=true;
116
    }
117

	
118
    void next(Arc &e) const {
119
      if( e.forward ) {
120
        e.forward = false;
121
      }
122
      else {
123
        Parent::next(e);
124
        e.forward = true;
125
      }
126
    }
127

	
128
    void firstOut(Arc &e, const Node &n) const {
129
      Parent::firstIn(e,n);
130
      if( Edge(e) != INVALID ) {
131
        e.forward = false;
132
      }
133
      else {
134
        Parent::firstOut(e,n);
135
        e.forward = true;
136
      }
137
    }
138
    void nextOut(Arc &e) const {
139
      if( ! e.forward ) {
140
        Node n = Parent::target(e);
141
        Parent::nextIn(e);
142
        if( Edge(e) == INVALID ) {
143
          Parent::firstOut(e, n);
144
          e.forward = true;
145
        }
146
      }
147
      else {
148
        Parent::nextOut(e);
149
      }
150
    }
151

	
152
    void firstIn(Arc &e, const Node &n) const {
153
      Parent::firstOut(e,n);
154
      if( Edge(e) != INVALID ) {
155
        e.forward = false;
156
      }
157
      else {
158
        Parent::firstIn(e,n);
159
        e.forward = true;
160
      }
161
    }
162
    void nextIn(Arc &e) const {
163
      if( ! e.forward ) {
164
        Node n = Parent::source(e);
165
        Parent::nextOut(e);
166
        if( Edge(e) == INVALID ) {
167
          Parent::firstIn(e, n);
168
          e.forward = true;
169
        }
170
      }
171
      else {
172
        Parent::nextIn(e);
173
      }
174
    }
175

	
176
    void firstInc(Edge &e, bool &d, const Node &n) const {
177
      d = true;
178
      Parent::firstOut(e, n);
179
      if (e != INVALID) return;
180
      d = false;
181
      Parent::firstIn(e, n);
182
    }
183

	
184
    void nextInc(Edge &e, bool &d) const {
185
      if (d) {
186
        Node s = Parent::source(e);
187
        Parent::nextOut(e);
188
        if (e != INVALID) return;
189
        d = false;
190
        Parent::firstIn(e, s);
191
      } else {
192
        Parent::nextIn(e);
193
      }
194
    }
195

	
196
    Node nodeFromId(int ix) const {
197
      return Parent::nodeFromId(ix);
198
    }
199

	
200
    Arc arcFromId(int ix) const {
201
      return direct(Parent::arcFromId(ix >> 1), bool(ix & 1));
202
    }
203

	
204
    Edge edgeFromId(int ix) const {
205
      return Parent::arcFromId(ix);
206
    }
207

	
208
    int id(const Node &n) const {
209
      return Parent::id(n);
210
    }
211

	
212
    int id(const Edge &e) const {
213
      return Parent::id(e);
214
    }
215

	
216
    int id(const Arc &e) const {
217
      return 2 * Parent::id(e) + int(e.forward);
218
    }
219

	
220
    int maxNodeId() const {
221
      return Parent::maxNodeId();
222
    }
223

	
224
    int maxArcId() const {
225
      return 2 * Parent::maxArcId() + 1;
226
    }
227

	
228
    int maxEdgeId() const {
229
      return Parent::maxArcId();
230
    }
231

	
232
    int arcNum() const {
233
      return 2 * Parent::arcNum();
234
    }
235

	
236
    int edgeNum() const {
237
      return Parent::arcNum();
238
    }
239

	
240
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
241
      if (p == INVALID) {
242
        Edge arc = Parent::findArc(s, t);
243
        if (arc != INVALID) return direct(arc, true);
244
        arc = Parent::findArc(t, s);
245
        if (arc != INVALID) return direct(arc, false);
246
      } else if (direction(p)) {
247
        Edge arc = Parent::findArc(s, t, p);
248
        if (arc != INVALID) return direct(arc, true);
249
        arc = Parent::findArc(t, s);
250
        if (arc != INVALID) return direct(arc, false);
251
      } else {
252
        Edge arc = Parent::findArc(t, s, p);
253
        if (arc != INVALID) return direct(arc, false);
254
      }
255
      return INVALID;
256
    }
257

	
258
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
259
      if (s != t) {
260
        if (p == INVALID) {
261
          Edge arc = Parent::findArc(s, t);
262
          if (arc != INVALID) return arc;
263
          arc = Parent::findArc(t, s);
264
          if (arc != INVALID) return arc;
265
        } else if (Parent::s(p) == s) {
266
          Edge arc = Parent::findArc(s, t, p);
267
          if (arc != INVALID) return arc;
268
          arc = Parent::findArc(t, s);
269
          if (arc != INVALID) return arc;
270
        } else {
271
          Edge arc = Parent::findArc(t, s, p);
272
          if (arc != INVALID) return arc;
273
        }
274
      } else {
275
        return Parent::findArc(s, t, p);
276
      }
277
      return INVALID;
278
    }
279
  };
280

	
281
  template <typename Base>
282
  class BidirBpGraphExtender : public Base {
283
    typedef Base Parent;
284

	
285
  public:
286
    typedef BidirBpGraphExtender Digraph;
287

	
288
    typedef typename Parent::Node Node;
289
    typedef typename Parent::Edge Edge;
290

	
291

	
292
    using Parent::first;
293
    using Parent::next;
294

	
295
    using Parent::id;
296

	
297
    class Red : public Node {
298
      friend class BidirBpGraphExtender;
299
    public:
300
      Red() {}
301
      Red(const Node& node) : Node(node) {
302
        LEMON_DEBUG(Parent::red(node) || node == INVALID,
303
                    typename Parent::NodeSetError());
304
      }
305
      Red& operator=(const Node& node) {
306
        LEMON_DEBUG(Parent::red(node) || node == INVALID,
307
                    typename Parent::NodeSetError());
308
        Node::operator=(node);
309
        return *this;
310
      }
311
      Red(Invalid) : Node(INVALID) {}
312
      Red& operator=(Invalid) {
313
        Node::operator=(INVALID);
314
        return *this;
315
      }
316
    };
317

	
318
    void first(Red& node) const {
319
      Parent::firstRed(static_cast<Node&>(node));
320
    }
321
    void next(Red& node) const {
322
      Parent::nextRed(static_cast<Node&>(node));
323
    }
324

	
325
    int id(const Red& node) const {
326
      return Parent::redId(node);
327
    }
328

	
329
    class Blue : public Node {
330
      friend class BidirBpGraphExtender;
331
    public:
332
      Blue() {}
333
      Blue(const Node& node) : Node(node) {
334
        LEMON_DEBUG(Parent::blue(node) || node == INVALID,
335
                    typename Parent::NodeSetError());
336
      }
337
      Blue& operator=(const Node& node) {
338
        LEMON_DEBUG(Parent::blue(node) || node == INVALID,
339
                    typename Parent::NodeSetError());
340
        Node::operator=(node);
341
        return *this;
342
      }
343
      Blue(Invalid) : Node(INVALID) {}
344
      Blue& operator=(Invalid) {
345
        Node::operator=(INVALID);
346
        return *this;
347
      }
348
    };
349

	
350
    void first(Blue& node) const {
351
      Parent::firstBlue(static_cast<Node&>(node));
352
    }
353
    void next(Blue& node) const {
354
      Parent::nextBlue(static_cast<Node&>(node));
355
    }
356

	
357
    int id(const Blue& node) const {
358
      return Parent::redId(node);
359
    }
360

	
361
    Node source(const Edge& arc) const {
362
      return red(arc);
363
    }
364
    Node target(const Edge& arc) const {
365
      return blue(arc);
366
    }
367

	
368
    void firstInc(Edge& arc, bool& dir, const Node& node) const {
369
      if (Parent::red(node)) {
370
        Parent::firstFromRed(arc, node);
371
        dir = true;
372
      } else {
373
        Parent::firstFromBlue(arc, node);
374
        dir = static_cast<Edge&>(arc) == INVALID;
375
      }
376
    }
377
    void nextInc(Edge& arc, bool& dir) const {
378
      if (dir) {
379
        Parent::nextFromRed(arc);
380
      } else {
381
        Parent::nextFromBlue(arc);
382
        if (arc == INVALID) dir = true;
383
      }
384
    }
385

	
386
    class Arc : public Edge {
387
      friend class BidirBpGraphExtender;
388
    protected:
389
      bool forward;
390

	
391
      Arc(const Edge& arc, bool _forward)
392
        : Edge(arc), forward(_forward) {}
393

	
394
    public:
395
      Arc() {}
396
      Arc (Invalid) : Edge(INVALID), forward(true) {}
397
      bool operator==(const Arc& i) const {
398
        return Edge::operator==(i) && forward == i.forward;
399
      }
400
      bool operator!=(const Arc& i) const {
401
        return Edge::operator!=(i) || forward != i.forward;
402
      }
403
      bool operator<(const Arc& i) const {
404
        return Edge::operator<(i) ||
405
          (!(i.forward<forward) && Edge(*this)<Edge(i));
406
      }
407
    };
408

	
409
    void first(Arc& arc) const {
410
      Parent::first(static_cast<Edge&>(arc));
411
      arc.forward = true;
412
    }
413

	
414
    void next(Arc& arc) const {
415
      if (!arc.forward) {
416
        Parent::next(static_cast<Edge&>(arc));
417
      }
418
      arc.forward = !arc.forward;
419
    }
420

	
421
    void firstOut(Arc& arc, const Node& node) const {
422
      if (Parent::red(node)) {
423
        Parent::firstFromRed(arc, node);
424
        arc.forward = true;
425
      } else {
426
        Parent::firstFromBlue(arc, node);
427
        arc.forward = static_cast<Edge&>(arc) == INVALID;
428
      }
429
    }
430
    void nextOut(Arc& arc) const {
431
      if (arc.forward) {
432
        Parent::nextFromRed(arc);
433
      } else {
434
        Parent::nextFromBlue(arc);
435
        arc.forward = static_cast<Edge&>(arc) == INVALID;
436
      }
437
    }
438

	
439
    void firstIn(Arc& arc, const Node& node) const {
440
      if (Parent::blue(node)) {
441
        Parent::firstFromBlue(arc, node);
442
        arc.forward = true;
443
      } else {
444
        Parent::firstFromRed(arc, node);
445
        arc.forward = static_cast<Edge&>(arc) == INVALID;
446
      }
447
    }
448
    void nextIn(Arc& arc) const {
449
      if (arc.forward) {
450
        Parent::nextFromBlue(arc);
451
      } else {
452
        Parent::nextFromRed(arc);
453
        arc.forward = static_cast<Edge&>(arc) == INVALID;
454
      }
455
    }
456

	
457
    Node source(const Arc& arc) const {
458
      return arc.forward ? Parent::red(arc) : Parent::blue(arc);
459
    }
460
    Node target(const Arc& arc) const {
461
      return arc.forward ? Parent::blue(arc) : Parent::red(arc);
462
    }
463

	
464
    int id(const Arc& arc) const {
465
      return (Parent::id(static_cast<const Edge&>(arc)) << 1) +
466
        (arc.forward ? 0 : 1);
467
    }
468
    Arc arcFromId(int ix) const {
469
      return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0);
470
    }
471
    int maxArcId() const {
472
      return (Parent::maxEdgeId() << 1) + 1;
473
    }
474

	
475
    bool direction(const Arc& arc) const {
476
      return arc.forward;
477
    }
478

	
479
    Arc direct(const Edge& arc, bool dir) const {
480
      return Arc(arc, dir);
481
    }
482

	
483
    int arcNum() const {
484
      return 2 * Parent::edgeNum();
485
    }
486

	
487
    int edgeNum() const {
488
      return Parent::edgeNum();
489
    }
490

	
491

	
492
  };
493
}
494

	
495
#endif
0 comments (0 inline)