1
21
2
87
3
3
7
88
30
33
323
245
3
2
180
105
14
13
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
namespace lemon { |
|
20 |
|
|
21 |
/** |
|
22 |
\page min_cost_flow Minimum Cost Flow Problem |
|
23 |
|
|
24 |
\section mcf_def Definition (GEQ form) |
|
25 |
|
|
26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
28 |
in a network with capacity constraints (lower and upper bounds) |
|
29 |
and arc costs. |
|
30 |
|
|
31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
|
32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
|
33 |
upper bounds for the flow values on the arcs, for which |
|
34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
|
36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
|
37 |
signed supply values of the nodes. |
|
38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
40 |
\f$-sup(u)\f$ demand. |
|
41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
|
42 |
of the following optimization problem. |
|
43 |
|
|
44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
46 |
sup(u) \quad \forall u\in V \f] |
|
47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
48 |
|
|
49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
50 |
zero or negative in order to have a feasible solution (since the sum |
|
51 |
of the expressions on the left-hand side of the inequalities is zero). |
|
52 |
It means that the total demand must be greater or equal to the total |
|
53 |
supply and all the supplies have to be carried out from the supply nodes, |
|
54 |
but there could be demands that are not satisfied. |
|
55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
56 |
constraints have to be satisfied with equality, i.e. all demands |
|
57 |
have to be satisfied and all supplies have to be used. |
|
58 |
|
|
59 |
|
|
60 |
\section mcf_algs Algorithms |
|
61 |
|
|
62 |
LEMON contains several algorithms for solving this problem, for more |
|
63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
|
64 |
|
|
65 |
A feasible solution for this problem can be found using \ref Circulation. |
|
66 |
|
|
67 |
|
|
68 |
\section mcf_dual Dual Solution |
|
69 |
|
|
70 |
The dual solution of the minimum cost flow problem is represented by |
|
71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
|
72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
|
73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
|
74 |
the following \e complementary \e slackness optimality conditions hold. |
|
75 |
|
|
76 |
- For all \f$uv\in A\f$ arcs: |
|
77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
80 |
- For all \f$u\in V\f$ nodes: |
|
81 |
- \f$\pi(u)<=0\f$; |
|
82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
83 |
then \f$\pi(u)=0\f$. |
|
84 |
|
|
85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
88 |
|
|
89 |
All algorithms provide dual solution (node potentials), as well, |
|
90 |
if an optimal flow is found. |
|
91 |
|
|
92 |
|
|
93 |
\section mcf_eq Equality Form |
|
94 |
|
|
95 |
The above \ref mcf_def "definition" is actually more general than the |
|
96 |
usual formulation of the minimum cost flow problem, in which strict |
|
97 |
equalities are required in the supply/demand contraints. |
|
98 |
|
|
99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
101 |
sup(u) \quad \forall u\in V \f] |
|
102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
103 |
|
|
104 |
However if the sum of the supply values is zero, then these two problems |
|
105 |
are equivalent. |
|
106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
|
107 |
form, so if you need the equality form, you have to ensure this additional |
|
108 |
contraint manually. |
|
109 |
|
|
110 |
|
|
111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
|
112 |
|
|
113 |
Another possible definition of the minimum cost flow problem is |
|
114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
|
115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
|
116 |
|
|
117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
119 |
sup(u) \quad \forall u\in V \f] |
|
120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
121 |
|
|
122 |
It means that the total demand must be less or equal to the |
|
123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
124 |
positive) and all the demands have to be satisfied, but there |
|
125 |
could be supplies that are not carried out from the supply |
|
126 |
nodes. |
|
127 |
The equality form is also a special case of this form, of course. |
|
128 |
|
|
129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
|
130 |
of the problem by reversing the direction of the arcs and taking the |
|
131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
|
132 |
\ref NegMap adaptors). |
|
133 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
134 |
for the sake of convenience. |
|
135 |
|
|
136 |
Note that the optimality conditions for this supply constraint type are |
|
137 |
slightly differ from the conditions that are discussed for the GEQ form, |
|
138 |
namely the potentials have to be non-negative instead of non-positive. |
|
139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
|
140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
|
141 |
node potentials the following conditions hold. |
|
142 |
|
|
143 |
- For all \f$uv\in A\f$ arcs: |
|
144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
147 |
- For all \f$u\in V\f$ nodes: |
|
148 |
- \f$\pi(u)>=0\f$; |
|
149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
150 |
then \f$\pi(u)=0\f$. |
|
151 |
|
|
152 |
*/ |
|
153 |
} |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/connectivity.h> |
|
20 |
#include <lemon/list_graph.h> |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
|
|
23 |
#include "test_tools.h" |
|
24 |
|
|
25 |
using namespace lemon; |
|
26 |
|
|
27 |
|
|
28 |
int main() |
|
29 |
{ |
|
30 |
typedef ListDigraph Digraph; |
|
31 |
typedef Undirector<Digraph> Graph; |
|
32 |
|
|
33 |
{ |
|
34 |
Digraph d; |
|
35 |
Digraph::NodeMap<int> order(d); |
|
36 |
Graph g(d); |
|
37 |
|
|
38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
39 |
check(countStronglyConnectedComponents(d) == 0, |
|
40 |
"The empty digraph has 0 strongly connected component"); |
|
41 |
check(connected(g), "The empty graph is connected"); |
|
42 |
check(countConnectedComponents(g) == 0, |
|
43 |
"The empty graph has 0 connected component"); |
|
44 |
|
|
45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
47 |
"The empty graph has 0 bi-node-connected component"); |
|
48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
50 |
"The empty graph has 0 bi-edge-connected component"); |
|
51 |
|
|
52 |
check(dag(d), "The empty digraph is DAG."); |
|
53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
57 |
|
|
58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
59 |
check(tree(g), "The empty graph is tree."); |
|
60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
64 |
} |
|
65 |
|
|
66 |
{ |
|
67 |
Digraph d; |
|
68 |
Digraph::NodeMap<int> order(d); |
|
69 |
Graph g(d); |
|
70 |
Digraph::Node n = d.addNode(); |
|
71 |
|
|
72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
73 |
check(countStronglyConnectedComponents(d) == 1, |
|
74 |
"This digraph has 1 strongly connected component"); |
|
75 |
check(connected(g), "This graph is connected"); |
|
76 |
check(countConnectedComponents(g) == 1, |
|
77 |
"This graph has 1 connected component"); |
|
78 |
|
|
79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
81 |
"This graph has 0 bi-node-connected component"); |
|
82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
84 |
"This graph has 1 bi-edge-connected component"); |
|
85 |
|
|
86 |
check(dag(d), "This digraph is DAG."); |
|
87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
88 |
check(loopFree(d), "This digraph is loop-free."); |
|
89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
90 |
check(simpleGraph(d), "This digraph is simple."); |
|
91 |
|
|
92 |
check(acyclic(g), "This graph is acyclic."); |
|
93 |
check(tree(g), "This graph is tree."); |
|
94 |
check(bipartite(g), "This graph is bipartite."); |
|
95 |
check(loopFree(g), "This graph is loop-free."); |
|
96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
97 |
check(simpleGraph(g), "This graph is simple."); |
|
98 |
} |
|
99 |
|
|
100 |
{ |
|
101 |
Digraph d; |
|
102 |
Digraph::NodeMap<int> order(d); |
|
103 |
Graph g(d); |
|
104 |
|
|
105 |
Digraph::Node n1 = d.addNode(); |
|
106 |
Digraph::Node n2 = d.addNode(); |
|
107 |
Digraph::Node n3 = d.addNode(); |
|
108 |
Digraph::Node n4 = d.addNode(); |
|
109 |
Digraph::Node n5 = d.addNode(); |
|
110 |
Digraph::Node n6 = d.addNode(); |
|
111 |
|
|
112 |
d.addArc(n1, n3); |
|
113 |
d.addArc(n3, n2); |
|
114 |
d.addArc(n2, n1); |
|
115 |
d.addArc(n4, n2); |
|
116 |
d.addArc(n4, n3); |
|
117 |
d.addArc(n5, n6); |
|
118 |
d.addArc(n6, n5); |
|
119 |
|
|
120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
121 |
check(countStronglyConnectedComponents(d) == 3, |
|
122 |
"This digraph has 3 strongly connected components"); |
|
123 |
check(!connected(g), "This graph is not connected"); |
|
124 |
check(countConnectedComponents(g) == 2, |
|
125 |
"This graph has 2 connected components"); |
|
126 |
|
|
127 |
check(!dag(d), "This digraph is not DAG."); |
|
128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
129 |
check(loopFree(d), "This digraph is loop-free."); |
|
130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
131 |
check(simpleGraph(d), "This digraph is simple."); |
|
132 |
|
|
133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
134 |
check(!tree(g), "This graph is not tree."); |
|
135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
136 |
check(loopFree(g), "This graph is loop-free."); |
|
137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
139 |
|
|
140 |
d.addArc(n3, n3); |
|
141 |
|
|
142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
145 |
|
|
146 |
d.addArc(n3, n2); |
|
147 |
|
|
148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
149 |
} |
|
150 |
|
|
151 |
{ |
|
152 |
Digraph d; |
|
153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
154 |
Graph g(d); |
|
155 |
|
|
156 |
Digraph::Node n1 = d.addNode(); |
|
157 |
Digraph::Node n2 = d.addNode(); |
|
158 |
Digraph::Node n3 = d.addNode(); |
|
159 |
Digraph::Node n4 = d.addNode(); |
|
160 |
Digraph::Node n5 = d.addNode(); |
|
161 |
Digraph::Node n6 = d.addNode(); |
|
162 |
Digraph::Node n7 = d.addNode(); |
|
163 |
Digraph::Node n8 = d.addNode(); |
|
164 |
|
|
165 |
d.addArc(n1, n2); |
|
166 |
d.addArc(n5, n1); |
|
167 |
d.addArc(n2, n8); |
|
168 |
d.addArc(n8, n5); |
|
169 |
d.addArc(n6, n4); |
|
170 |
d.addArc(n4, n6); |
|
171 |
d.addArc(n2, n5); |
|
172 |
d.addArc(n1, n8); |
|
173 |
d.addArc(n6, n7); |
|
174 |
d.addArc(n7, n6); |
|
175 |
|
|
176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
177 |
check(countStronglyConnectedComponents(d) == 3, |
|
178 |
"This digraph has 3 strongly connected components"); |
|
179 |
Digraph::NodeMap<int> scomp1(d); |
|
180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
181 |
"This digraph has 3 strongly connected components"); |
|
182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
187 |
"Wrong stronglyConnectedComponents()"); |
|
188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
190 |
"This digraph has 0 strongly connected cut arc."); |
|
191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
193 |
} |
|
194 |
|
|
195 |
check(!connected(g), "This graph is not connected"); |
|
196 |
check(countConnectedComponents(g) == 3, |
|
197 |
"This graph has 3 connected components"); |
|
198 |
Graph::NodeMap<int> comp(g); |
|
199 |
check(connectedComponents(g, comp) == 3, |
|
200 |
"This graph has 3 connected components"); |
|
201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
206 |
"Wrong connectedComponents()"); |
|
207 |
|
|
208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
213 |
|
|
214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
215 |
check(countStronglyConnectedComponents(d) == 3, |
|
216 |
"This digraph has 3 strongly connected components"); |
|
217 |
Digraph::NodeMap<int> scomp2(d); |
|
218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
219 |
"This digraph has 3 strongly connected components"); |
|
220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
224 |
"Wrong stronglyConnectedComponents()"); |
|
225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
227 |
"This digraph has 5 strongly connected cut arcs."); |
|
228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
230 |
} |
|
231 |
} |
|
232 |
|
|
233 |
{ |
|
234 |
// DAG example for topological sort from the book New Algorithms |
|
235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
236 |
Digraph d; |
|
237 |
Digraph::NodeMap<int> order(d); |
|
238 |
|
|
239 |
Digraph::Node belt = d.addNode(); |
|
240 |
Digraph::Node trousers = d.addNode(); |
|
241 |
Digraph::Node necktie = d.addNode(); |
|
242 |
Digraph::Node coat = d.addNode(); |
|
243 |
Digraph::Node socks = d.addNode(); |
|
244 |
Digraph::Node shirt = d.addNode(); |
|
245 |
Digraph::Node shoe = d.addNode(); |
|
246 |
Digraph::Node watch = d.addNode(); |
|
247 |
Digraph::Node pants = d.addNode(); |
|
248 |
|
|
249 |
d.addArc(socks, shoe); |
|
250 |
d.addArc(pants, shoe); |
|
251 |
d.addArc(pants, trousers); |
|
252 |
d.addArc(trousers, shoe); |
|
253 |
d.addArc(trousers, belt); |
|
254 |
d.addArc(belt, coat); |
|
255 |
d.addArc(shirt, belt); |
|
256 |
d.addArc(shirt, necktie); |
|
257 |
d.addArc(necktie, coat); |
|
258 |
|
|
259 |
check(dag(d), "This digraph is DAG."); |
|
260 |
topologicalSort(d, order); |
|
261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
262 |
check(order[d.source(a)] < order[d.target(a)], |
|
263 |
"Wrong topologicalSort()"); |
|
264 |
} |
|
265 |
} |
|
266 |
|
|
267 |
{ |
|
268 |
ListGraph g; |
|
269 |
ListGraph::NodeMap<bool> map(g); |
|
270 |
|
|
271 |
ListGraph::Node n1 = g.addNode(); |
|
272 |
ListGraph::Node n2 = g.addNode(); |
|
273 |
ListGraph::Node n3 = g.addNode(); |
|
274 |
ListGraph::Node n4 = g.addNode(); |
|
275 |
ListGraph::Node n5 = g.addNode(); |
|
276 |
ListGraph::Node n6 = g.addNode(); |
|
277 |
ListGraph::Node n7 = g.addNode(); |
|
278 |
|
|
279 |
g.addEdge(n1, n3); |
|
280 |
g.addEdge(n1, n4); |
|
281 |
g.addEdge(n2, n5); |
|
282 |
g.addEdge(n3, n6); |
|
283 |
g.addEdge(n4, n6); |
|
284 |
g.addEdge(n4, n7); |
|
285 |
g.addEdge(n5, n7); |
|
286 |
|
|
287 |
check(bipartite(g), "This graph is bipartite"); |
|
288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
289 |
|
|
290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
291 |
"Wrong bipartitePartitions()"); |
|
292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
293 |
"Wrong bipartitePartitions()"); |
|
294 |
} |
|
295 |
|
|
296 |
return 0; |
|
297 |
} |
1 |
2009-05-13 Version 1.1 released |
|
2 |
|
|
3 |
This is the second stable release of the 1.x series. It |
|
4 |
features a better coverage of the tools available in the 0.x |
|
5 |
series, a thoroughly reworked LP/MIP interface plus various |
|
6 |
improvements in the existing tools. |
|
7 |
|
|
8 |
* Much improved M$ Windows support |
|
9 |
* Various improvements in the CMAKE build system |
|
10 |
* Compilation warnings are fixed/suppressed |
|
11 |
* Support IBM xlC compiler |
|
12 |
* New algorithms |
|
13 |
* Connectivity related algorithms (#61) |
|
14 |
* Euler walks (#65) |
|
15 |
* Preflow push-relabel max. flow algorithm (#176) |
|
16 |
* Circulation algorithm (push-relabel based) (#175) |
|
17 |
* Suurballe algorithm (#47) |
|
18 |
* Gomory-Hu algorithm (#66) |
|
19 |
* Hao-Orlin algorithm (#58) |
|
20 |
* Edmond's maximum cardinality and weighted matching algorithms |
|
21 |
in general graphs (#48,#265) |
|
22 |
* Minimum cost arborescence/branching (#60) |
|
23 |
* Network Simplex min. cost flow algorithm (#234) |
|
24 |
* New data structures |
|
25 |
* Full graph structure (#57) |
|
26 |
* Grid graph structure (#57) |
|
27 |
* Hypercube graph structure (#57) |
|
28 |
* Graph adaptors (#67) |
|
29 |
* ArcSet and EdgeSet classes (#67) |
|
30 |
* Elevator class (#174) |
|
31 |
* Other new tools |
|
32 |
* LP/MIP interface (#44) |
|
33 |
* Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC |
|
34 |
* Reader for the Nauty file format (#55) |
|
35 |
* DIMACS readers (#167) |
|
36 |
* Radix sort algorithms (#72) |
|
37 |
* RangeIdMap and CrossRefMap (#160) |
|
38 |
* New command line tools |
|
39 |
* DIMACS to LGF converter (#182) |
|
40 |
* lgf-gen - a graph generator (#45) |
|
41 |
* DIMACS solver utility (#226) |
|
42 |
* Other code improvements |
|
43 |
* Lognormal distribution added to Random (#102) |
|
44 |
* Better (i.e. O(1) time) item counting in SmartGraph (#3) |
|
45 |
* The standard maps of graphs are guaranteed to be |
|
46 |
reference maps (#190) |
|
47 |
* Miscellaneous |
|
48 |
* Various doc improvements |
|
49 |
* Improved 0.x -> 1.x converter script |
|
50 |
|
|
51 |
* Several bugfixes (compared to release 1.0): |
|
52 |
#170: Bugfix SmartDigraph::split() |
|
53 |
#171: Bugfix in SmartGraph::restoreSnapshot() |
|
54 |
#172: Extended test cases for graphs and digraphs |
|
55 |
#173: Bugfix in Random |
|
56 |
* operator()s always return a double now |
|
57 |
* the faulty real<Num>(Num) and real<Num>(Num,Num) |
|
58 |
have been removed |
|
59 |
#187: Remove DijkstraWidestPathOperationTraits |
|
60 |
#61: Bugfix in DfsVisit |
|
61 |
#193: Bugfix in GraphReader::skipSection() |
|
62 |
#195: Bugfix in ConEdgeIt() |
|
63 |
#197: Bugfix in heap unionfind |
|
64 |
* This bug affects Edmond's general matching algorithms |
|
65 |
#207: Fix 'make install' without 'make html' using CMAKE |
|
66 |
#208: Suppress or fix VS2008 compilation warnings |
|
67 |
----: Update the LEMON icon |
|
68 |
----: Enable the component-based installer |
|
69 |
(in installers made by CPACK) |
|
70 |
----: Set the proper version for CMAKE in the tarballs |
|
71 |
(made by autotools) |
|
72 |
----: Minor clarification in the LICENSE file |
|
73 |
----: Add missing unistd.h include to time_measure.h |
|
74 |
#204: Compilation bug fixed in graph_to_eps.h with VS2005 |
|
75 |
#214,#215: windows.h should never be included by lemon headers |
|
76 |
#230: Build systems check the availability of 'long long' type |
|
77 |
#229: Default implementation of Tolerance<> is used for integer types |
|
78 |
#211,#212: Various fixes for compiling on AIX |
|
79 |
----: Improvements in CMAKE config |
|
80 |
- docs is installed in share/doc/ |
|
81 |
- detects newer versions of Ghostscript |
|
82 |
#239: Fix missing 'inline' specifier in time_measure.h |
|
83 |
#274,#280: Install lemon/config.h |
|
84 |
#275: Prefix macro names with LEMON_ in lemon/config.h |
|
85 |
----: Small script for making the release tarballs added |
|
86 |
----: Minor improvement in unify-sources.sh (a76f55d7d397) |
|
87 |
|
|
1 | 88 |
2009-03-27 LEMON joins to the COIN-OR initiative |
1 |
================================================================== |
|
2 |
LEMON - a Library of Efficient Models and Optimization in Networks |
|
3 |
================================================================== |
|
1 |
===================================================================== |
|
2 |
LEMON - a Library for Efficient Modeling and Optimization in Networks |
|
3 |
===================================================================== |
|
4 | 4 |
... | ... |
@@ -140,12 +140,2 @@ |
140 | 140 |
/** |
141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
|
142 |
@ingroup graphs |
|
143 |
\brief Graph types between real graphs and graph adaptors. |
|
144 |
|
|
145 |
This group contains some graph types between real graphs and graph adaptors. |
|
146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
|
147 |
On the other hand they are not light-weight structures as the adaptors. |
|
148 |
*/ |
|
149 |
|
|
150 |
/** |
|
151 | 141 |
@defgroup maps Maps |
... | ... |
@@ -317,2 +307,3 @@ |
317 | 307 |
|
308 |
|
|
318 | 309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
... | ... |
@@ -324,3 +315,3 @@ |
324 | 315 |
/** |
325 |
@defgroup |
|
316 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
|
326 | 317 |
@ingroup algs |
... | ... |
@@ -330,76 +321,4 @@ |
330 | 321 |
This group contains the algorithms for finding minimum cost flows and |
331 |
circulations. |
|
332 |
|
|
333 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
334 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
335 |
in a network with capacity constraints (lower and upper bounds) |
|
336 |
and arc costs. |
|
337 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
338 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
339 |
upper bounds for the flow values on the arcs, for which |
|
340 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
341 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
342 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
343 |
signed supply values of the nodes. |
|
344 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
345 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
346 |
\f$-sup(u)\f$ demand. |
|
347 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
348 |
of the following optimization problem. |
|
349 |
|
|
350 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
351 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
352 |
sup(u) \quad \forall u\in V \f] |
|
353 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
354 |
|
|
355 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
356 |
zero or negative in order to have a feasible solution (since the sum |
|
357 |
of the expressions on the left-hand side of the inequalities is zero). |
|
358 |
It means that the total demand must be greater or equal to the total |
|
359 |
supply and all the supplies have to be carried out from the supply nodes, |
|
360 |
but there could be demands that are not satisfied. |
|
361 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
362 |
constraints have to be satisfied with equality, i.e. all demands |
|
363 |
have to be satisfied and all supplies have to be used. |
|
364 |
|
|
365 |
If you need the opposite inequalities in the supply/demand constraints |
|
366 |
(i.e. the total demand is less than the total supply and all the demands |
|
367 |
have to be satisfied while there could be supplies that are not used), |
|
368 |
then you could easily transform the problem to the above form by reversing |
|
369 |
the direction of the arcs and taking the negative of the supply values |
|
370 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
371 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
372 |
for the sake of convenience. |
|
373 |
|
|
374 |
A feasible solution for this problem can be found using \ref Circulation. |
|
375 |
|
|
376 |
Note that the above formulation is actually more general than the usual |
|
377 |
definition of the minimum cost flow problem, in which strict equalities |
|
378 |
are required in the supply/demand contraints, i.e. |
|
379 |
|
|
380 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
381 |
sup(u) \quad \forall u\in V. \f] |
|
382 |
|
|
383 |
However if the sum of the supply values is zero, then these two problems |
|
384 |
are equivalent. So if you need the equality form, you have to ensure this |
|
385 |
additional contraint for the algorithms. |
|
386 |
|
|
387 |
The dual solution of the minimum cost flow problem is represented by node |
|
388 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
389 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
390 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
391 |
node potentials the following \e complementary \e slackness optimality |
|
392 |
conditions hold. |
|
393 |
|
|
394 |
- For all \f$uv\in A\f$ arcs: |
|
395 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
396 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
397 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
398 |
- For all \f$u\in V\f$ nodes: |
|
399 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
400 |
then \f$\pi(u)=0\f$. |
|
401 |
|
|
402 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
403 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
404 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
322 |
circulations. For more information about this problem and its dual |
|
323 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
405 | 324 |
|
... | ... |
@@ -481,6 +400,6 @@ |
481 | 400 |
@ingroup algs |
482 |
\brief Algorithms for finding |
|
401 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
483 | 402 |
|
484 |
This group contains the algorithms for finding a minimum cost spanning |
|
485 |
tree in a graph. |
|
403 |
This group contains the algorithms for finding minimum cost spanning |
|
404 |
trees and arborescences. |
|
486 | 405 |
*/ |
... | ... |
@@ -25,4 +25,3 @@ |
25 | 25 |
|
26 |
LEMON stands for |
|
27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
|
26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
28 | 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
... | ... |
@@ -43,10 +42,6 @@ |
43 | 42 |
|
44 |
If you want to get a quick start and see the most important features then |
|
45 |
take a look at our \ref quicktour |
|
46 |
"Quick Tour to LEMON" which will guide you along. |
|
47 |
|
|
48 |
If you |
|
43 |
If you would like to get to know the library, see |
|
49 | 44 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
50 | 45 |
|
51 |
If you know what you are looking for then try to find it under the |
|
46 |
If you know what you are looking for, then try to find it under the |
|
52 | 47 |
<a class="el" href="modules.html">Modules</a> section. |
... | ... |
@@ -1841,9 +1841,10 @@ |
1841 | 1841 |
|
1842 |
class Arc |
|
1842 |
class Arc { |
|
1843 | 1843 |
friend class UndirectorBase; |
1844 | 1844 |
protected: |
1845 |
Edge _edge; |
|
1845 | 1846 |
bool _forward; |
1846 | 1847 |
|
1847 |
Arc(const Edge& edge, bool forward) : |
|
1848 |
Edge(edge), _forward(forward) {} |
|
1848 |
Arc(const Edge& edge, bool forward) |
|
1849 |
: _edge(edge), _forward(forward) {} |
|
1849 | 1850 |
|
... | ... |
@@ -1852,11 +1853,11 @@ |
1852 | 1853 |
|
1853 |
Arc(Invalid) : |
|
1854 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
|
1855 |
|
|
1856 |
operator const Edge&() const { return _edge; } |
|
1854 | 1857 |
|
1855 | 1858 |
bool operator==(const Arc &other) const { |
1856 |
return _forward == other._forward && |
|
1857 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
|
1859 |
return _forward == other._forward && _edge == other._edge; |
|
1858 | 1860 |
} |
1859 | 1861 |
bool operator!=(const Arc &other) const { |
1860 |
return _forward != other._forward || |
|
1861 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
|
1862 |
return _forward != other._forward || _edge != other._edge; |
|
1862 | 1863 |
} |
... | ... |
@@ -1864,4 +1865,3 @@ |
1864 | 1865 |
return _forward < other._forward || |
1865 |
(_forward == other._forward && |
|
1866 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
|
1866 |
(_forward == other._forward && _edge < other._edge); |
|
1867 | 1867 |
} |
... | ... |
@@ -1878,3 +1878,3 @@ |
1878 | 1878 |
void first(Arc& a) const { |
1879 |
_digraph->first(a); |
|
1879 |
_digraph->first(a._edge); |
|
1880 | 1880 |
a._forward = true; |
... | ... |
@@ -1886,3 +1886,3 @@ |
1886 | 1886 |
} else { |
1887 |
_digraph->next(a); |
|
1887 |
_digraph->next(a._edge); |
|
1888 | 1888 |
a._forward = true; |
... | ... |
@@ -1900,7 +1900,7 @@ |
1900 | 1900 |
void firstOut(Arc& a, const Node& n) const { |
1901 |
_digraph->firstIn(a, n); |
|
1902 |
if( static_cast<const Edge&>(a) != INVALID ) { |
|
1901 |
_digraph->firstIn(a._edge, n); |
|
1902 |
if (a._edge != INVALID ) { |
|
1903 | 1903 |
a._forward = false; |
1904 | 1904 |
} else { |
1905 |
_digraph->firstOut(a, n); |
|
1905 |
_digraph->firstOut(a._edge, n); |
|
1906 | 1906 |
a._forward = true; |
... | ... |
@@ -1910,6 +1910,6 @@ |
1910 | 1910 |
if (!a._forward) { |
1911 |
Node n = _digraph->target(a); |
|
1912 |
_digraph->nextIn(a); |
|
1913 |
if (static_cast<const Edge&>(a) == INVALID ) { |
|
1914 |
_digraph->firstOut(a, n); |
|
1911 |
Node n = _digraph->target(a._edge); |
|
1912 |
_digraph->nextIn(a._edge); |
|
1913 |
if (a._edge == INVALID) { |
|
1914 |
_digraph->firstOut(a._edge, n); |
|
1915 | 1915 |
a._forward = true; |
... | ... |
@@ -1918,3 +1918,3 @@ |
1918 | 1918 |
else { |
1919 |
_digraph->nextOut(a); |
|
1919 |
_digraph->nextOut(a._edge); |
|
1920 | 1920 |
} |
... | ... |
@@ -1923,7 +1923,7 @@ |
1923 | 1923 |
void firstIn(Arc &a, const Node &n) const { |
1924 |
_digraph->firstOut(a, n); |
|
1925 |
if (static_cast<const Edge&>(a) != INVALID ) { |
|
1924 |
_digraph->firstOut(a._edge, n); |
|
1925 |
if (a._edge != INVALID ) { |
|
1926 | 1926 |
a._forward = false; |
1927 | 1927 |
} else { |
1928 |
_digraph->firstIn(a, n); |
|
1928 |
_digraph->firstIn(a._edge, n); |
|
1929 | 1929 |
a._forward = true; |
... | ... |
@@ -1933,6 +1933,6 @@ |
1933 | 1933 |
if (!a._forward) { |
1934 |
Node n = _digraph->source(a); |
|
1935 |
_digraph->nextOut(a); |
|
1936 |
if( static_cast<const Edge&>(a) == INVALID ) { |
|
1937 |
_digraph->firstIn(a, n); |
|
1934 |
Node n = _digraph->source(a._edge); |
|
1935 |
_digraph->nextOut(a._edge); |
|
1936 |
if (a._edge == INVALID ) { |
|
1937 |
_digraph->firstIn(a._edge, n); |
|
1938 | 1938 |
a._forward = true; |
... | ... |
@@ -1941,3 +1941,3 @@ |
1941 | 1941 |
else { |
1942 |
_digraph->nextIn(a); |
|
1942 |
_digraph->nextIn(a._edge); |
|
1943 | 1943 |
} |
... | ... |
@@ -1974,3 +1974,3 @@ |
1974 | 1974 |
Node source(const Arc &a) const { |
1975 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
|
1975 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
|
1976 | 1976 |
} |
... | ... |
@@ -1978,3 +1978,3 @@ |
1978 | 1978 |
Node target(const Arc &a) const { |
1979 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
|
1979 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
|
1980 | 1980 |
} |
... | ... |
@@ -1984,5 +1984,2 @@ |
1984 | 1984 |
} |
1985 |
Arc direct(const Edge &e, const Node& n) const { |
|
1986 |
return Arc(e, _digraph->source(e) == n); |
|
1987 |
} |
|
1988 | 1985 |
... | ... |
@@ -312,4 +312,4 @@ |
312 | 312 |
/// edge or it should be inherited from the undirected |
313 |
/// arc. |
|
314 |
class Arc : public Edge { |
|
313 |
/// edge. |
|
314 |
class Arc { |
|
315 | 315 |
public: |
... | ... |
@@ -324,3 +324,3 @@ |
324 | 324 |
/// |
325 |
Arc(const Arc& |
|
325 |
Arc(const Arc&) { } |
|
326 | 326 |
/// Initialize the iterator to be invalid. |
... | ... |
@@ -351,2 +351,4 @@ |
351 | 351 |
|
352 |
/// Converison to Edge |
|
353 |
operator Edge() const { return Edge(); } |
|
352 | 354 |
}; |
... | ... |
@@ -44,8 +44,12 @@ |
44 | 44 |
/// |
45 |
/// \brief Check whether |
|
45 |
/// \brief Check whether an undirected graph is connected. |
|
46 | 46 |
/// |
47 |
/// Check whether the given undirected graph is connected. |
|
48 |
/// \param graph The undirected graph. |
|
49 |
/// |
|
47 |
/// This function checks whether the given undirected graph is connected, |
|
48 |
/// i.e. there is a path between any two nodes in the graph. |
|
49 |
/// |
|
50 |
/// \return \c true if the graph is connected. |
|
50 | 51 |
/// \note By definition, the empty graph is connected. |
52 |
/// |
|
53 |
/// \see countConnectedComponents(), connectedComponents() |
|
54 |
/// \see stronglyConnected() |
|
51 | 55 |
template <typename Graph> |
... | ... |
@@ -69,8 +73,14 @@ |
69 | 73 |
/// |
70 |
/// |
|
74 |
/// This function counts the number of connected components of the given |
|
75 |
/// undirected graph. |
|
71 | 76 |
/// |
72 |
/// \param graph The graph. It must be undirected. |
|
73 |
/// \return The number of components |
|
77 |
/// The connected components are the classes of an equivalence relation |
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
79 |
/// if they are connected with a path. |
|
80 |
/// |
|
81 |
/// \return The number of connected components. |
|
74 | 82 |
/// \note By definition, the empty graph consists |
75 | 83 |
/// of zero connected components. |
84 |
/// |
|
85 |
/// \see connected(), connectedComponents() |
|
76 | 86 |
template <typename Graph> |
... | ... |
@@ -111,3 +121,8 @@ |
111 | 121 |
/// |
112 |
/// |
|
122 |
/// This function finds the connected components of the given undirected |
|
123 |
/// graph. |
|
124 |
/// |
|
125 |
/// The connected components are the classes of an equivalence relation |
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
127 |
/// if they are connected with a path. |
|
113 | 128 |
/// |
... | ... |
@@ -116,8 +131,12 @@ |
116 | 131 |
/// |
117 |
/// \param graph The |
|
132 |
/// \param graph The undirected graph. |
|
118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
119 |
/// the number of the connected components minus one. Each values of the map |
|
120 |
/// will be set exactly once, the values of a certain component will be |
|
134 |
/// the number of the connected components minus one. Each value of the map |
|
135 |
/// will be set exactly once, and the values of a certain component will be |
|
121 | 136 |
/// set continuously. |
122 |
/// \return The number of components |
|
137 |
/// \return The number of connected components. |
|
138 |
/// \note By definition, the empty graph consists |
|
139 |
/// of zero connected components. |
|
140 |
/// |
|
141 |
/// \see connected(), countConnectedComponents() |
|
123 | 142 |
template <class Graph, class NodeMap> |
... | ... |
@@ -233,11 +252,13 @@ |
233 | 252 |
/// |
234 |
/// \brief Check whether |
|
253 |
/// \brief Check whether a directed graph is strongly connected. |
|
235 | 254 |
/// |
236 |
/// Check whether the given directed graph is strongly connected. The |
|
237 |
/// graph is strongly connected when any two nodes of the graph are |
|
255 |
/// This function checks whether the given directed graph is strongly |
|
256 |
/// connected, i.e. any two nodes of the digraph are |
|
238 | 257 |
/// connected with directed paths in both direction. |
239 |
/// \return \c false when the graph is not strongly connected. |
|
240 |
/// \see connected |
|
241 | 258 |
/// |
242 |
/// \ |
|
259 |
/// \return \c true if the digraph is strongly connected. |
|
260 |
/// \note By definition, the empty digraph is strongly connected. |
|
261 |
/// |
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
263 |
/// \see connected() |
|
243 | 264 |
template <typename Digraph> |
... | ... |
@@ -272,3 +293,3 @@ |
272 | 293 |
|
273 |
typedef DfsVisitor< |
|
294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
274 | 295 |
RVisitor rvisitor; |
... | ... |
@@ -291,7 +312,10 @@ |
291 | 312 |
/// |
292 |
/// \brief Count the strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 |
/// directed graph |
|
293 | 315 |
/// |
294 |
/// |
|
316 |
/// This function counts the number of strongly connected components of |
|
317 |
/// the given directed graph. |
|
318 |
/// |
|
295 | 319 |
/// The strongly connected components are the classes of an |
296 |
/// equivalence relation on the nodes of |
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
297 | 321 |
/// the same class if they are connected with directed paths in both |
... | ... |
@@ -299,6 +323,7 @@ |
299 | 323 |
/// |
300 |
/// \param digraph The graph. |
|
301 |
/// \return The number of components |
|
302 |
/// \ |
|
324 |
/// \return The number of strongly connected components. |
|
325 |
/// \note By definition, the empty digraph has zero |
|
303 | 326 |
/// strongly connected components. |
327 |
/// |
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
304 | 329 |
template <typename Digraph> |
... | ... |
@@ -357,9 +382,11 @@ |
357 | 382 |
/// |
358 |
/// Find the strongly connected components of a directed graph. The |
|
359 |
/// strongly connected components are the classes of an equivalence |
|
360 |
/// relation on the nodes of the graph. Two nodes are in |
|
361 |
/// relationship when there are directed paths between them in both |
|
362 |
/// direction. In addition, the numbering of components will satisfy |
|
363 |
/// that there is no arc going from a higher numbered component to |
|
364 |
/// |
|
383 |
/// This function finds the strongly connected components of the given |
|
384 |
/// directed graph. In addition, the numbering of the components will |
|
385 |
/// satisfy that there is no arc going from a higher numbered component |
|
386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
387 |
/// |
|
388 |
/// The strongly connected components are the classes of an |
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
390 |
/// the same class if they are connected with directed paths in both |
|
391 |
/// direction. |
|
365 | 392 |
/// |
... | ... |
@@ -371,5 +398,9 @@ |
371 | 398 |
/// the number of the strongly connected components minus one. Each value |
372 |
/// of the map will be set exactly once, the values of a certain component |
|
373 |
/// will be set continuously. |
|
374 |
/// |
|
399 |
/// of the map will be set exactly once, and the values of a certain |
|
400 |
/// component will be set continuously. |
|
401 |
/// \return The number of strongly connected components. |
|
402 |
/// \note By definition, the empty digraph has zero |
|
403 |
/// strongly connected components. |
|
404 |
/// |
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
375 | 406 |
template <typename Digraph, typename NodeMap> |
... | ... |
@@ -426,15 +457,20 @@ |
426 | 457 |
/// |
427 |
/// Find the cut arcs of the strongly connected components. |
|
428 |
/// The strongly connected components are the classes of an equivalence |
|
429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
430 |
/// when there are directed paths between them in both direction. |
|
458 |
/// This function finds the cut arcs of the strongly connected components |
|
459 |
/// of the given digraph. |
|
460 |
/// |
|
461 |
/// The strongly connected components are the classes of an |
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
463 |
/// the same class if they are connected with directed paths in both |
|
464 |
/// direction. |
|
431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
432 | 466 |
/// |
433 |
/// \param graph The graph. |
|
434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
435 |
/// |
|
467 |
/// \param digraph The digraph. |
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
470 |
/// changed for other arcs. |
|
471 |
/// \return The number of cut arcs. |
|
436 | 472 |
/// |
437 |
/// \ |
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
438 | 474 |
template <typename Digraph, typename ArcMap> |
439 |
int stronglyConnectedCutArcs(const Digraph& |
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) { |
|
440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
... | ... |
@@ -450,3 +486,3 @@ |
450 | 486 |
|
451 |
Container nodes(countNodes( |
|
487 |
Container nodes(countNodes(digraph)); |
|
452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
... | ... |
@@ -454,5 +490,5 @@ |
454 | 490 |
|
455 |
DfsVisit<Digraph, Visitor> dfs( |
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
456 | 492 |
dfs.init(); |
457 |
for (NodeIt it( |
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
458 | 494 |
if (!dfs.reached(it)) { |
... | ... |
@@ -466,3 +502,3 @@ |
466 | 502 |
|
467 |
RDigraph |
|
503 |
RDigraph rdigraph(digraph); |
|
468 | 504 |
|
... | ... |
@@ -471,5 +507,5 @@ |
471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
472 |
RVisitor rvisitor( |
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
473 | 509 |
|
474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
475 | 511 |
|
... | ... |
@@ -708,10 +744,11 @@ |
708 | 744 |
/// |
709 |
/// \brief |
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
710 | 746 |
/// |
711 |
/// This function checks that the undirected graph is bi-node-connected |
|
712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
713 |
/// |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
714 | 749 |
/// |
715 |
/// \param graph The graph. |
|
716 |
/// \return \c true when the graph bi-node-connected. |
|
750 |
/// \return \c true if the graph bi-node-connected. |
|
751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
752 |
/// |
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
717 | 754 |
template <typename Graph> |
... | ... |
@@ -723,11 +760,15 @@ |
723 | 760 |
/// |
724 |
/// \brief Count the |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 |
/// undirected graph. |
|
725 | 763 |
/// |
726 |
/// This function finds the bi-node-connected components in an undirected |
|
727 |
/// graph. The biconnected components are the classes of an equivalence |
|
728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
729 |
/// when they are on same circle. |
|
764 |
/// This function counts the number of bi-node-connected components of |
|
765 |
/// the given undirected graph. |
|
730 | 766 |
/// |
731 |
/// \param graph The graph. |
|
732 |
/// \return The number of components. |
|
767 |
/// The bi-node-connected components are the classes of an equivalence |
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
769 |
/// same class if they are on same circle. |
|
770 |
/// |
|
771 |
/// \return The number of bi-node-connected components. |
|
772 |
/// |
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
733 | 774 |
template <typename Graph> |
... | ... |
@@ -758,8 +799,10 @@ |
758 | 799 |
/// |
759 |
/// \brief Find the bi-node-connected components. |
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
760 | 801 |
/// |
761 |
/// This function finds the bi-node-connected components in an undirected |
|
762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
764 |
/// when they are on same circle. |
|
802 |
/// This function finds the bi-node-connected components of the given |
|
803 |
/// undirected graph. |
|
804 |
/// |
|
805 |
/// The bi-node-connected components are the classes of an equivalence |
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
807 |
/// same class if they are on same circle. |
|
765 | 808 |
/// |
... | ... |
@@ -768,8 +811,10 @@ |
768 | 811 |
/// |
769 |
/// \param graph The graph. |
|
770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
771 |
/// to the number of the biconnected components minus one. Each values |
|
772 |
/// of the map will be set exactly once, the values of a certain component |
|
773 |
/// will be set continuously. |
|
774 |
/// \return The number of components. |
|
812 |
/// \param graph The undirected graph. |
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
814 |
/// to the number of the bi-node-connected components minus one. Each |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 |
/// certain component will be set continuously. |
|
817 |
/// \return The number of bi-node-connected components. |
|
818 |
/// |
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
775 | 820 |
template <typename Graph, typename EdgeMap> |
... | ... |
@@ -803,14 +848,21 @@ |
803 | 848 |
/// |
804 |
/// \brief Find the bi-node-connected cut nodes. |
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
805 | 850 |
/// |
806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
808 |
/// relation on the undirected edges. Two undirected edges are in |
|
809 |
/// relationship when they are on same circle. The biconnected components |
|
810 |
/// |
|
851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
852 |
/// undirected graph. |
|
811 | 853 |
/// |
812 |
/// \param graph The graph. |
|
813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
814 |
/// |
|
854 |
/// The bi-node-connected components are the classes of an equivalence |
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
856 |
/// same class if they are on same circle. |
|
857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
858 |
/// the components. |
|
859 |
/// |
|
860 |
/// \param graph The undirected graph. |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 |
/// \c true for the nodes that separate two or more components |
|
863 |
/// (exactly once for each cut node), and will not be changed for |
|
864 |
/// other nodes. |
|
815 | 865 |
/// \return The number of the cut nodes. |
866 |
/// |
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
816 | 868 |
template <typename Graph, typename NodeMap> |
... | ... |
@@ -1033,10 +1085,12 @@ |
1033 | 1085 |
/// |
1034 |
/// \brief |
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
1035 | 1087 |
/// |
1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
1038 |
/// |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
1090 |
/// two edge-disjoint paths. |
|
1039 | 1091 |
/// |
1040 |
/// \param graph The undirected graph. |
|
1041 |
/// \return The number of components. |
|
1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
1094 |
/// |
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
1042 | 1096 |
template <typename Graph> |
... | ... |
@@ -1048,11 +1102,16 @@ |
1048 | 1102 |
/// |
1049 |
/// \brief Count the bi-edge-connected components |
|
1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
1104 |
/// undirected graph. |
|
1050 | 1105 |
/// |
1051 |
/// This function count the bi-edge-connected components in an undirected |
|
1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1054 |
/// connected with at least two edge-disjoint paths. |
|
1106 |
/// This function counts the number of bi-edge-connected components of |
|
1107 |
/// the given undirected graph. |
|
1055 | 1108 |
/// |
1056 |
/// \param graph The undirected graph. |
|
1057 |
/// \return The number of components. |
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1111 |
/// same class if they are connected with at least two edge-disjoint |
|
1112 |
/// paths. |
|
1113 |
/// |
|
1114 |
/// \return The number of bi-edge-connected components. |
|
1115 |
/// |
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1058 | 1117 |
template <typename Graph> |
... | ... |
@@ -1083,8 +1142,11 @@ |
1083 | 1142 |
/// |
1084 |
/// \brief Find the bi-edge-connected components. |
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
1085 | 1144 |
/// |
1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1089 |
/// connected at least two edge-disjoint paths. |
|
1145 |
/// This function finds the bi-edge-connected components of the given |
|
1146 |
/// undirected graph. |
|
1147 |
/// |
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1150 |
/// same class if they are connected with at least two edge-disjoint |
|
1151 |
/// paths. |
|
1090 | 1152 |
/// |
... | ... |
@@ -1093,8 +1155,10 @@ |
1093 | 1155 |
/// |
1094 |
/// \param graph The graph. |
|
1156 |
/// \param graph The undirected graph. |
|
1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
1096 |
/// the number of the biconnected components minus one. Each values |
|
1097 |
/// of the map will be set exactly once, the values of a certain component |
|
1098 |
/// will be set continuously. |
|
1099 |
/// \return The number of components. |
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
1159 |
/// of the map will be set exactly once, and the values of a certain |
|
1160 |
/// component will be set continuously. |
|
1161 |
/// \return The number of bi-edge-connected components. |
|
1162 |
/// |
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
1100 | 1164 |
template <typename Graph, typename NodeMap> |
... | ... |
@@ -1127,15 +1191,21 @@ |
1127 | 1191 |
/// |
1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
1129 | 1193 |
/// |
1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
1134 |
/// components are separted by edges which are the cut edges of the |
|
1135 |
/// components. |
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
1195 |
/// undirected graph. |
|
1136 | 1196 |
/// |
1137 |
/// \param graph The graph. |
|
1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
1139 |
/// edge |
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1199 |
/// same class if they are connected with at least two edge-disjoint |
|
1200 |
/// paths. |
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
1202 |
/// the components. |
|
1203 |
/// |
|
1204 |
/// \param graph The undirected graph. |
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
1207 |
/// changed for other edges. |
|
1140 | 1208 |
/// \return The number of cut edges. |
1209 |
/// |
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1141 | 1211 |
template <typename Graph, typename EdgeMap> |
... | ... |
@@ -1191,15 +1261,58 @@ |
1191 | 1261 |
/// |
1262 |
/// \brief Check whether a digraph is DAG. |
|
1263 |
/// |
|
1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
1265 |
/// \e Directed \e Acyclic \e Graph. |
|
1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
1267 |
/// \see acyclic() |
|
1268 |
template <typename Digraph> |
|
1269 |
bool dag(const Digraph& digraph) { |
|
1270 |
|
|
1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1272 |
|
|
1273 |
typedef typename Digraph::Node Node; |
|
1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
1275 |
typedef typename Digraph::Arc Arc; |
|
1276 |
|
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1278 |
|
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1280 |
Create dfs(digraph); |
|
1281 |
|
|
1282 |
ProcessedMap processed(digraph); |
|
1283 |
dfs.processedMap(processed); |
|
1284 |
|
|
1285 |
dfs.init(); |
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1287 |
if (!dfs.reached(it)) { |
|
1288 |
dfs.addSource(it); |
|
1289 |
while (!dfs.emptyQueue()) { |
|
1290 |
Arc arc = dfs.nextArc(); |
|
1291 |
Node target = digraph.target(arc); |
|
1292 |
if (dfs.reached(target) && !processed[target]) { |
|
1293 |
return false; |
|
1294 |
} |
|
1295 |
dfs.processNextArc(); |
|
1296 |
} |
|
1297 |
} |
|
1298 |
} |
|
1299 |
return true; |
|
1300 |
} |
|
1301 |
|
|
1302 |
/// \ingroup graph_properties |
|
1303 |
/// |
|
1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1193 | 1305 |
/// |
1194 |
/// |
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1307 |
/// into topolgical order. |
|
1195 | 1308 |
/// |
1196 |
/// \param |
|
1309 |
/// \param digraph The digraph, which must be DAG. |
|
1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
1199 |
/// will be set exactly once, the values will be set descending order. |
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
1312 |
/// map will be set exactly once, and the values will be set descending |
|
1313 |
/// order. |
|
1200 | 1314 |
/// |
1201 |
/// \see checkedTopologicalSort |
|
1202 |
/// \see dag |
|
1315 |
/// \see dag(), checkedTopologicalSort() |
|
1203 | 1316 |
template <typename Digraph, typename NodeMap> |
1204 |
void topologicalSort(const Digraph& |
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) { |
|
1205 | 1318 |
using namespace _connectivity_bits; |
... | ... |
@@ -1214,9 +1327,9 @@ |
1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
1215 |
visitor(order, countNodes( |
|
1328 |
visitor(order, countNodes(digraph)); |
|
1216 | 1329 |
|
1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1218 |
dfs( |
|
1331 |
dfs(digraph, visitor); |
|
1219 | 1332 |
|
1220 | 1333 |
dfs.init(); |
1221 |
for (NodeIt it( |
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1222 | 1335 |
if (!dfs.reached(it)) { |
... | ... |
@@ -1232,14 +1345,14 @@ |
1232 | 1345 |
/// |
1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
1234 |
/// that the given graph is DAG. |
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1347 |
/// into topolgical order and also checks whether the given digraph |
|
1348 |
/// is DAG. |
|
1235 | 1349 |
/// |
1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
1237 |
/// \retval order A readable - writable node map. The values will be set |
|
1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
1239 |
/// of the map will be set exactly once, the values will be set descending |
|
1240 |
/// order. |
|
1241 |
/// \return \c false when the graph is not DAG. |
|
1350 |
/// \param digraph The digraph. |
|
1351 |
/// \retval order A readable and writable node map. The values will be |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 |
/// Each value of the map will be set exactly once, and the values will |
|
1354 |
/// be set descending order. |
|
1355 |
/// \return \c false if the digraph is not DAG. |
|
1242 | 1356 |
/// |
1243 |
/// \see topologicalSort |
|
1244 |
/// \see dag |
|
1357 |
/// \see dag(), topologicalSort() |
|
1245 | 1358 |
template <typename Digraph, typename NodeMap> |
... | ... |
@@ -1285,50 +1398,7 @@ |
1285 | 1398 |
/// |
1286 |
/// \brief Check |
|
1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
1287 | 1400 |
/// |
1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
1289 |
/// an Directed Acyclic Digraph. |
|
1290 |
/// \return \c false when the graph is not DAG. |
|
1291 |
/// \see acyclic |
|
1292 |
template <typename Digraph> |
|
1293 |
bool dag(const Digraph& digraph) { |
|
1294 |
|
|
1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1296 |
|
|
1297 |
typedef typename Digraph::Node Node; |
|
1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
1299 |
typedef typename Digraph::Arc Arc; |
|
1300 |
|
|
1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1302 |
|
|
1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1304 |
Create dfs(digraph); |
|
1305 |
|
|
1306 |
ProcessedMap processed(digraph); |
|
1307 |
dfs.processedMap(processed); |
|
1308 |
|
|
1309 |
dfs.init(); |
|
1310 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1311 |
if (!dfs.reached(it)) { |
|
1312 |
dfs.addSource(it); |
|
1313 |
while (!dfs.emptyQueue()) { |
|
1314 |
Arc edge = dfs.nextArc(); |
|
1315 |
Node target = digraph.target(edge); |
|
1316 |
if (dfs.reached(target) && !processed[target]) { |
|
1317 |
return false; |
|
1318 |
} |
|
1319 |
dfs.processNextArc(); |
|
1320 |
} |
|
1321 |
} |
|
1322 |
} |
|
1323 |
return true; |
|
1324 |
} |
|
1325 |
|
|
1326 |
/// \ingroup graph_properties |
|
1327 |
/// |
|
1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
1329 |
/// |
|
1330 |
/// Check that the given undirected graph acyclic. |
|
1331 |
/// \param graph The undirected graph. |
|
1332 |
/// \return \c true when there is no circle in the graph. |
|
1333 |
/// \see dag |
|
1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
1402 |
/// \return \c true if there is no cycle in the graph. |
|
1403 |
/// \see dag() |
|
1334 | 1404 |
template <typename Graph> |
... | ... |
@@ -1345,7 +1415,7 @@ |
1345 | 1415 |
while (!dfs.emptyQueue()) { |
1346 |
Arc edge = dfs.nextArc(); |
|
1347 |
Node source = graph.source(edge); |
|
1348 |
|
|
1416 |
Arc arc = dfs.nextArc(); |
|
1417 |
Node source = graph.source(arc); |
|
1418 |
Node target = graph.target(arc); |
|
1349 | 1419 |
if (dfs.reached(target) && |
1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1351 | 1421 |
return false; |
... | ... |
@@ -1361,7 +1431,7 @@ |
1361 | 1431 |
/// |
1362 |
/// \brief Check |
|
1432 |
/// \brief Check whether an undirected graph is tree. |
|
1363 | 1433 |
/// |
1364 |
/// Check that the given undirected graph is tree. |
|
1365 |
/// \param graph The undirected graph. |
|
1366 |
/// |
|
1434 |
/// This function checks whether the given undirected graph is tree. |
|
1435 |
/// \return \c true if the graph is acyclic and connected. |
|
1436 |
/// \see acyclic(), connected() |
|
1367 | 1437 |
template <typename Graph> |
... | ... |
@@ -1372,2 +1442,3 @@ |
1372 | 1442 |
typedef typename Graph::Arc Arc; |
1443 |
if (NodeIt(graph) == INVALID) return true; |
|
1373 | 1444 |
Dfs<Graph> dfs(graph); |
... | ... |
@@ -1376,7 +1447,7 @@ |
1376 | 1447 |
while (!dfs.emptyQueue()) { |
1377 |
Arc edge = dfs.nextArc(); |
|
1378 |
Node source = graph.source(edge); |
|
1379 |
|
|
1448 |
Arc arc = dfs.nextArc(); |
|
1449 |
Node source = graph.source(arc); |
|
1450 |
Node target = graph.target(arc); |
|
1380 | 1451 |
if (dfs.reached(target) && |
1381 |
dfs.predArc(source) != graph.oppositeArc( |
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1382 | 1453 |
return false; |
... | ... |
@@ -1453,11 +1524,10 @@ |
1453 | 1524 |
/// |
1454 |
/// \brief Check |
|
1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
1455 | 1526 |
/// |
1456 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
1457 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1458 |
/// \param graph The undirected graph. |
|
1459 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
1460 |
/// |
|
1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
1528 |
/// \return \c true if the graph is bipartite. |
|
1529 |
/// |
|
1530 |
/// \see bipartitePartitions() |
|
1461 | 1531 |
template<typename Graph> |
1462 |
|
|
1532 |
bool bipartite(const Graph &graph){ |
|
1463 | 1533 |
using namespace _connectivity_bits; |
... | ... |
@@ -1490,8 +1560,6 @@ |
1490 | 1560 |
/// |
1491 |
/// \brief |
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
1492 | 1562 |
/// |
1493 |
/// The function checks if the given undirected graph is bipartite |
|
1494 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1495 |
/// During the execution, the \c partMap will be set as the two |
|
1496 |
/// partitions of the graph. |
|
1563 |
/// This function checks whether the given undirected graph is bipartite |
|
1564 |
/// and gives back the bipartite partitions. |
|
1497 | 1565 |
/// |
... | ... |
@@ -1501,7 +1569,10 @@ |
1501 | 1569 |
/// \param graph The undirected graph. |
1502 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
1503 |
/// two partitions of the graph. |
|
1504 |
/// \ |
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
1571 |
/// type. The values will be set to \c true for one component and |
|
1572 |
/// \c false for the other one. |
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
1574 |
/// |
|
1575 |
/// \see bipartite() |
|
1505 | 1576 |
template<typename Graph, typename NodeMap> |
1506 |
|
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|
1507 | 1578 |
using namespace _connectivity_bits; |
... | ... |
@@ -1509,2 +1580,3 @@ |
1509 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
1510 | 1582 |
|
... | ... |
@@ -1533,9 +1605,12 @@ |
1533 | 1605 |
|
1534 |
/// \ |
|
1606 |
/// \ingroup graph_properties |
|
1535 | 1607 |
/// |
1536 |
/// Returns true when there are not loop edges in the graph. |
|
1537 |
template <typename Digraph> |
|
1538 |
bool loopFree(const Digraph& digraph) { |
|
1539 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
|
1540 |
|
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
1609 |
/// |
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
1612 |
template <typename Graph> |
|
1613 |
bool loopFree(const Graph& graph) { |
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) { |
|
1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
1541 | 1616 |
} |
... | ... |
@@ -1544,16 +1619,18 @@ |
1544 | 1619 |
|
1545 |
/// \ |
|
1620 |
/// \ingroup graph_properties |
|
1546 | 1621 |
/// |
1547 |
/// Returns true when there are not parallel edges in the graph. |
|
1548 |
template <typename Digraph> |
|
1549 |
bool parallelFree(const Digraph& digraph) { |
|
1550 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
1551 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
1552 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1553 |
if (reached[digraph.target(a)]) return false; |
|
1554 |
reached.set(digraph.target(a), true); |
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
1623 |
/// |
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
1626 |
template <typename Graph> |
|
1627 |
bool parallelFree(const Graph& graph) { |
|
1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
1629 |
int cnt = 1; |
|
1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|
1632 |
if (reached[graph.target(a)] == cnt) return false; |
|
1633 |
reached[graph.target(a)] = cnt; |
|
1555 | 1634 |
} |
1556 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1557 |
reached.set(digraph.target(a), false); |
|
1558 |
|
|
1635 |
++cnt; |
|
1559 | 1636 |
} |
... | ... |
@@ -1562,20 +1639,21 @@ |
1562 | 1639 |
|
1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
1564 |
/// edges in the graph. |
|
1640 |
/// \ingroup graph_properties |
|
1565 | 1641 |
/// |
1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
1567 |
/// the graph. |
|
1568 |
template <typename Digraph> |
|
1569 |
bool simpleDigraph(const Digraph& digraph) { |
|
1570 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
1571 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
1572 |
reached.set(n, true); |
|
1573 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1574 |
if (reached[digraph.target(a)]) return false; |
|
1575 |
reached.set(digraph.target(a), true); |
|
1642 |
/// \brief Check whether the given graph is simple. |
|
1643 |
/// |
|
1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
1646 |
/// The function works for both directed and undirected graphs. |
|
1647 |
/// \see loopFree(), parallelFree() |
|
1648 |
template <typename Graph> |
|
1649 |
bool simpleGraph(const Graph& graph) { |
|
1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
1651 |
int cnt = 1; |
|
1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1653 |
reached[n] = cnt; |
|
1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|
1655 |
if (reached[graph.target(a)] == cnt) return false; |
|
1656 |
reached[graph.target(a)] = cnt; |
|
1576 | 1657 |
} |
1577 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1578 |
reached.set(digraph.target(a), false); |
|
1579 |
} |
|
1580 |
reached.set(n, false); |
|
1658 |
++cnt; |
|
1581 | 1659 |
} |
... | ... |
@@ -24,3 +24,3 @@ |
24 | 24 |
|
25 |
/// \ingroup |
|
25 |
/// \ingroup graphs |
|
26 | 26 |
/// \file |
... | ... |
@@ -232,3 +232,3 @@ |
232 | 232 |
|
233 |
/// \ingroup |
|
233 |
/// \ingroup graphs |
|
234 | 234 |
/// |
... | ... |
@@ -656,3 +656,3 @@ |
656 | 656 |
|
657 |
/// \ingroup |
|
657 |
/// \ingroup graphs |
|
658 | 658 |
/// |
... | ... |
@@ -915,3 +915,3 @@ |
915 | 915 |
|
916 |
/// \ingroup |
|
916 |
/// \ingroup graphs |
|
917 | 917 |
/// |
... | ... |
@@ -1259,3 +1259,3 @@ |
1259 | 1259 |
|
1260 |
/// \ingroup |
|
1260 |
/// \ingroup graphs |
|
1261 | 1261 |
/// |
... | ... |
@@ -246,6 +246,6 @@ |
246 | 246 |
|
247 |
///Check if the given graph is |
|
247 |
///Check if the given graph is Eulerian |
|
248 | 248 |
|
249 | 249 |
/// \ingroup graph_properties |
250 |
///This function checks if the given graph is |
|
250 |
///This function checks if the given graph is Eulerian. |
|
251 | 251 |
///It works for both directed and undirected graphs. |
... | ... |
@@ -501,3 +501,3 @@ |
501 | 501 |
/// |
502 |
/// \pre \ref |
|
502 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
503 | 503 |
/// called before using this function. |
... | ... |
@@ -520,3 +520,3 @@ |
520 | 520 |
/// |
521 |
/// \pre \ref |
|
521 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
522 | 522 |
/// called before using this function. |
... | ... |
@@ -21,3 +21,3 @@ |
21 | 21 |
|
22 |
/// \ingroup |
|
22 |
/// \ingroup min_cost_flow_algs |
|
23 | 23 |
/// |
... | ... |
@@ -35,3 +35,3 @@ |
35 | 35 |
|
36 |
/// \addtogroup |
|
36 |
/// \addtogroup min_cost_flow_algs |
|
37 | 37 |
/// @{ |
... | ... |
@@ -104,46 +104,12 @@ |
104 | 104 |
/// |
105 |
/// The default supply type is \c GEQ, since this form is supported |
|
106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
107 |
/// algorithm, as well. |
|
108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
109 |
/// function. |
|
110 |
/// |
|
111 |
/// |
|
105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
|
106 |
/// selected using \ref supplyType(). |
|
107 |
/// The equality form is a special case of both supply types. |
|
112 | 108 |
enum SupplyType { |
113 |
|
|
114 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
116 |
/// formulation of the problem is the following. |
|
117 |
/** |
|
118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
120 |
sup(u) \quad \forall u\in V \f] |
|
121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
122 |
*/ |
|
123 |
/// It means that the total demand must be greater or equal to the |
|
124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
125 |
/// negative) and all the supplies have to be carried out from |
|
126 |
/// the supply nodes, but there could be demands that are not |
|
127 |
/// |
|
110 |
/// supply/demand constraints in the definition of the problem. |
|
128 | 111 |
GEQ, |
129 |
/// It is just an alias for the \c GEQ option. |
|
130 |
CARRY_SUPPLIES = GEQ, |
|
131 |
|
|
132 | 112 |
/// This option means that there are <em>"less or equal"</em> |
133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
134 |
/// formulation of the problem is the following. |
|
135 |
/** |
|
136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
138 |
sup(u) \quad \forall u\in V \f] |
|
139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
140 |
*/ |
|
141 |
/// It means that the total demand must be less or equal to the |
|
142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
143 |
/// positive) and all the demands have to be satisfied, but there |
|
144 |
/// could be supplies that are not carried out from the supply |
|
145 |
/// nodes. |
|
146 |
LEQ, |
|
147 |
/// It is just an alias for the \c LEQ option. |
|
148 |
SATISFY_DEMANDS = LEQ |
|
113 |
/// supply/demand constraints in the definition of the problem. |
|
114 |
LEQ |
|
149 | 115 |
}; |
... | ... |
@@ -217,2 +183,4 @@ |
217 | 183 |
int _arc_num; |
184 |
int _all_arc_num; |
|
185 |
int _search_arc_num; |
|
218 | 186 |
|
... | ... |
@@ -279,3 +247,3 @@ |
279 | 247 |
int &_in_arc; |
280 |
int |
|
248 |
int _search_arc_num; |
|
281 | 249 |
|
... | ... |
@@ -290,3 +258,4 @@ |
290 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
291 |
_in_arc(ns.in_arc), |
|
259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
260 |
_next_arc(0) |
|
292 | 261 |
{} |
... | ... |
@@ -296,3 +265,3 @@ |
296 | 265 |
Cost c; |
297 |
for (int e = _next_arc; e < |
|
266 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
298 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
... | ... |
@@ -330,3 +299,3 @@ |
330 | 299 |
int &_in_arc; |
331 |
int |
|
300 |
int _search_arc_num; |
|
332 | 301 |
|
... | ... |
@@ -338,3 +307,3 @@ |
338 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
339 |
_in_arc(ns.in_arc), |
|
308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
|
340 | 309 |
{} |
... | ... |
@@ -344,3 +313,3 @@ |
344 | 313 |
Cost c, min = 0; |
345 |
for (int e = 0; e < |
|
314 |
for (int e = 0; e < _search_arc_num; ++e) { |
|
346 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
... | ... |
@@ -369,3 +338,3 @@ |
369 | 338 |
int &_in_arc; |
370 |
int |
|
339 |
int _search_arc_num; |
|
371 | 340 |
|
... | ... |
@@ -381,6 +350,7 @@ |
381 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
382 |
_in_arc(ns.in_arc), |
|
351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
352 |
_next_arc(0) |
|
383 | 353 |
{ |
384 | 354 |
// The main parameters of the pivot rule |
385 |
const double BLOCK_SIZE_FACTOR = |
|
355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
|
386 | 356 |
const int MIN_BLOCK_SIZE = 10; |
... | ... |
@@ -388,3 +358,3 @@ |
388 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
389 |
std::sqrt(double( |
|
359 |
std::sqrt(double(_search_arc_num))), |
|
390 | 360 |
MIN_BLOCK_SIZE ); |
... | ... |
@@ -397,3 +367,3 @@ |
397 | 367 |
int e, min_arc = _next_arc; |
398 |
for (e = _next_arc; e < |
|
368 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
399 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
... | ... |
@@ -442,3 +412,3 @@ |
442 | 412 |
int &_in_arc; |
443 |
int |
|
413 |
int _search_arc_num; |
|
444 | 414 |
|
... | ... |
@@ -456,3 +426,4 @@ |
456 | 426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
457 |
_in_arc(ns.in_arc), |
|
427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
428 |
_next_arc(0) |
|
458 | 429 |
{ |
... | ... |
@@ -465,3 +436,3 @@ |
465 | 436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
466 |
std::sqrt(double( |
|
437 |
std::sqrt(double(_search_arc_num))), |
|
467 | 438 |
MIN_LIST_LENGTH ); |
... | ... |
@@ -502,3 +473,3 @@ |
502 | 473 |
_curr_length = 0; |
503 |
for (e = _next_arc; e < |
|
474 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
504 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
... | ... |
@@ -548,3 +519,3 @@ |
548 | 519 |
int &_in_arc; |
549 |
int |
|
520 |
int _search_arc_num; |
|
550 | 521 |
|
... | ... |
@@ -576,4 +547,4 @@ |
576 | 547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
|
579 | 550 |
{ |
... | ... |
@@ -586,3 +557,3 @@ |
586 | 557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
587 |
std::sqrt(double( |
|
558 |
std::sqrt(double(_search_arc_num))), |
|
588 | 559 |
MIN_BLOCK_SIZE ); |
... | ... |
@@ -612,3 +583,3 @@ |
612 | 583 |
|
613 |
for (int e = _next_arc; e < |
|
584 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
614 | 585 |
_cand_cost[e] = _state[e] * |
... | ... |
@@ -680,13 +651,13 @@ |
680 | 651 |
int all_node_num = _node_num + 1; |
681 |
int |
|
652 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
682 | 653 |
|
683 |
_source.resize(all_arc_num); |
|
684 |
_target.resize(all_arc_num); |
|
654 |
_source.resize(max_arc_num); |
|
655 |
_target.resize(max_arc_num); |
|
685 | 656 |
|
686 |
_lower.resize(all_arc_num); |
|
687 |
_upper.resize(all_arc_num); |
|
688 |
_cap.resize(all_arc_num); |
|
689 |
_cost.resize(all_arc_num); |
|
657 |
_lower.resize(_arc_num); |
|
658 |
_upper.resize(_arc_num); |
|
659 |
_cap.resize(max_arc_num); |
|
660 |
_cost.resize(max_arc_num); |
|
690 | 661 |
_supply.resize(all_node_num); |
691 |
_flow.resize( |
|
662 |
_flow.resize(max_arc_num); |
|
692 | 663 |
_pi.resize(all_node_num); |
... | ... |
@@ -700,3 +671,3 @@ |
700 | 671 |
_last_succ.resize(all_node_num); |
701 |
_state.resize( |
|
672 |
_state.resize(max_arc_num); |
|
702 | 673 |
|
... | ... |
@@ -1071,3 +1042,3 @@ |
1071 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1072 |
ART_COST = std::numeric_limits<Cost>::max() / |
|
1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
|
1073 | 1044 |
} else { |
... | ... |
@@ -1095,25 +1066,117 @@ |
1095 | 1066 |
_supply[_root] = -_sum_supply; |
1096 |
_pi[_root] = |
|
1067 |
_pi[_root] = 0; |
|
1097 | 1068 |
|
1098 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1100 |
_parent[u] = _root; |
|
1101 |
_pred[u] = e; |
|
1102 |
_thread[u] = u + 1; |
|
1103 |
_rev_thread[u + 1] = u; |
|
1104 |
_succ_num[u] = 1; |
|
1105 |
_last_succ[u] = u; |
|
1106 |
_cost[e] = ART_COST; |
|
1107 |
_cap[e] = INF; |
|
1108 |
_state[e] = STATE_TREE; |
|
1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1110 |
_flow[e] = _supply[u]; |
|
1111 |
_forward[u] = true; |
|
1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1113 |
} else { |
|
1114 |
_flow[e] = -_supply[u]; |
|
1115 |
_forward[u] = false; |
|
1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
1070 |
if (_sum_supply == 0) { |
|
1071 |
// EQ supply constraints |
|
1072 |
_search_arc_num = _arc_num; |
|
1073 |
_all_arc_num = _arc_num + _node_num; |
|
1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1075 |
_parent[u] = _root; |
|
1076 |
_pred[u] = e; |
|
1077 |
_thread[u] = u + 1; |
|
1078 |
_rev_thread[u + 1] = u; |
|
1079 |
_succ_num[u] = 1; |
|
1080 |
_last_succ[u] = u; |
|
1081 |
_cap[e] = INF; |
|
1082 |
_state[e] = STATE_TREE; |
|
1083 |
if (_supply[u] >= 0) { |
|
1084 |
_forward[u] = true; |
|
1085 |
_pi[u] = 0; |
|
1086 |
_source[e] = u; |
|
1087 |
_target[e] = _root; |
|
1088 |
_flow[e] = _supply[u]; |
|
1089 |
_cost[e] = 0; |
|
1090 |
} else { |
|
1091 |
_forward[u] = false; |
|
1092 |
_pi[u] = ART_COST; |
|
1093 |
_source[e] = _root; |
|
1094 |
_target[e] = u; |
|
1095 |
_flow[e] = -_supply[u]; |
|
1096 |
_cost[e] = ART_COST; |
|
1097 |
} |
|
1117 | 1098 |
} |
1118 | 1099 |
} |
1100 |
else if (_sum_supply > 0) { |
|
1101 |
// LEQ supply constraints |
|
1102 |
_search_arc_num = _arc_num + _node_num; |
|
1103 |
int f = _arc_num + _node_num; |
|
1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1105 |
_parent[u] = _root; |
|
1106 |
_thread[u] = u + 1; |
|
1107 |
_rev_thread[u + 1] = u; |
|
1108 |
_succ_num[u] = 1; |
|
1109 |
_last_succ[u] = u; |
|
1110 |
if (_supply[u] >= 0) { |
|
1111 |
_forward[u] = true; |
|
1112 |
_pi[u] = 0; |
|
1113 |
_pred[u] = e; |
|
1114 |
_source[e] = u; |
|
1115 |
_target[e] = _root; |
|
1116 |
_cap[e] = INF; |
|
1117 |
_flow[e] = _supply[u]; |
|
1118 |
_cost[e] = 0; |
|
1119 |
_state[e] = STATE_TREE; |
|
1120 |
} else { |
|
1121 |
_forward[u] = false; |
|
1122 |
_pi[u] = ART_COST; |
|
1123 |
_pred[u] = f; |
|
1124 |
_source[f] = _root; |
|
1125 |
_target[f] = u; |
|
1126 |
_cap[f] = INF; |
|
1127 |
_flow[f] = -_supply[u]; |
|
1128 |
_cost[f] = ART_COST; |
|
1129 |
_state[f] = STATE_TREE; |
|
1130 |
_source[e] = u; |
|
1131 |
_target[e] = _root; |
|
1132 |
_cap[e] = INF; |
|
1133 |
_flow[e] = 0; |
|
1134 |
_cost[e] = 0; |
|
1135 |
_state[e] = STATE_LOWER; |
|
1136 |
++f; |
|
1137 |
} |
|
1138 |
} |
|
1139 |
_all_arc_num = f; |
|
1140 |
} |
|
1141 |
else { |
|
1142 |
// GEQ supply constraints |
|
1143 |
_search_arc_num = _arc_num + _node_num; |
|
1144 |
int f = _arc_num + _node_num; |
|
1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1146 |
_parent[u] = _root; |
|
1147 |
_thread[u] = u + 1; |
|
1148 |
_rev_thread[u + 1] = u; |
|
1149 |
_succ_num[u] = 1; |
|
1150 |
_last_succ[u] = u; |
|
1151 |
if (_supply[u] <= 0) { |
|
1152 |
_forward[u] = false; |
|
1153 |
_pi[u] = 0; |
|
1154 |
_pred[u] = e; |
|
1155 |
_source[e] = _root; |
|
1156 |
_target[e] = u; |
|
1157 |
_cap[e] = INF; |
|
1158 |
_flow[e] = -_supply[u]; |
|
1159 |
_cost[e] = 0; |
|
1160 |
_state[e] = STATE_TREE; |
|
1161 |
} else { |
|
1162 |
_forward[u] = true; |
|
1163 |
_pi[u] = -ART_COST; |
|
1164 |
_pred[u] = f; |
|
1165 |
_source[f] = u; |
|
1166 |
_target[f] = _root; |
|
1167 |
_cap[f] = INF; |
|
1168 |
_flow[f] = _supply[u]; |
|
1169 |
_state[f] = STATE_TREE; |
|
1170 |
_cost[f] = ART_COST; |
|
1171 |
_source[e] = _root; |
|
1172 |
_target[e] = u; |
|
1173 |
_cap[e] = INF; |
|
1174 |
_flow[e] = 0; |
|
1175 |
_cost[e] = 0; |
|
1176 |
_state[e] = STATE_LOWER; |
|
1177 |
++f; |
|
1178 |
} |
|
1179 |
} |
|
1180 |
_all_arc_num = f; |
|
1181 |
} |
|
1119 | 1182 |
|
... | ... |
@@ -1376,16 +1439,4 @@ |
1376 | 1439 |
// Check feasibility |
1377 |
if (_sum_supply < 0) { |
|
1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1380 |
} |
|
1381 |
} |
|
1382 |
else if (_sum_supply > 0) { |
|
1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1385 |
} |
|
1386 |
} |
|
1387 |
else { |
|
1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1390 |
} |
|
1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
|
1441 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1391 | 1442 |
} |
... | ... |
@@ -1403,2 +1454,26 @@ |
1403 | 1454 |
} |
1455 |
|
|
1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
|
1457 |
// optimality conditions |
|
1458 |
if (_sum_supply == 0) { |
|
1459 |
if (_stype == GEQ) { |
|
1460 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
|
1461 |
for (int i = 0; i != _node_num; ++i) { |
|
1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
|
1463 |
} |
|
1464 |
if (max_pot > 0) { |
|
1465 |
for (int i = 0; i != _node_num; ++i) |
|
1466 |
_pi[i] -= max_pot; |
|
1467 |
} |
|
1468 |
} else { |
|
1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
|
1470 |
for (int i = 0; i != _node_num; ++i) { |
|
1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
|
1472 |
} |
|
1473 |
if (min_pot < 0) { |
|
1474 |
for (int i = 0; i != _node_num; ++i) |
|
1475 |
_pi[i] -= min_pot; |
|
1476 |
} |
|
1477 |
} |
|
1478 |
} |
|
1404 | 1479 |
... | ... |
@@ -176,3 +176,3 @@ |
176 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
177 |
const PM& pi ) |
|
177 |
const PM& pi, SupplyType type ) |
|
178 | 178 |
{ |
... | ... |
@@ -195,3 +195,7 @@ |
195 | 195 |
sum -= flow[e]; |
196 |
|
|
196 |
if (type != LEQ) { |
|
197 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
|
198 |
} else { |
|
199 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
|
200 |
} |
|
197 | 201 |
} |
... | ... |
@@ -201,2 +205,36 @@ |
201 | 205 |
|
206 |
// Check whether the dual cost is equal to the primal cost |
|
207 |
template < typename GR, typename LM, typename UM, |
|
208 |
typename CM, typename SM, typename PM > |
|
209 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
|
210 |
const CM& cost, const SM& supply, const PM& pi, |
|
211 |
typename CM::Value total ) |
|
212 |
{ |
|
213 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
214 |
|
|
215 |
typename CM::Value dual_cost = 0; |
|
216 |
SM red_supply(gr); |
|
217 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
218 |
red_supply[n] = supply[n]; |
|
219 |
} |
|
220 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
221 |
if (lower[a] != 0) { |
|
222 |
dual_cost += lower[a] * cost[a]; |
|
223 |
red_supply[gr.source(a)] -= lower[a]; |
|
224 |
red_supply[gr.target(a)] += lower[a]; |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
229 |
dual_cost -= red_supply[n] * pi[n]; |
|
230 |
} |
|
231 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
232 |
typename CM::Value red_cost = |
|
233 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
|
234 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
|
235 |
} |
|
236 |
|
|
237 |
return dual_cost == total; |
|
238 |
} |
|
239 |
|
|
202 | 240 |
// Run a minimum cost flow algorithm and check the results |
... | ... |
@@ -222,4 +260,6 @@ |
222 | 260 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
261 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
|
224 | 262 |
"Wrong potentials " + test_id); |
263 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
|
264 |
"Wrong dual cost " + test_id); |
|
225 | 265 |
} |
... | ... |
@@ -268,41 +308,52 @@ |
268 | 308 |
|
269 |
// Build a test digraph for testing negative costs |
|
270 |
Digraph ngr; |
|
271 |
Node n1 = ngr.addNode(); |
|
272 |
Node n2 = ngr.addNode(); |
|
273 |
Node n3 = ngr.addNode(); |
|
274 |
Node n4 = ngr.addNode(); |
|
275 |
Node n5 = ngr.addNode(); |
|
276 |
Node n6 = ngr.addNode(); |
|
277 |
|
|
309 |
// Build test digraphs with negative costs |
|
310 |
Digraph neg_gr; |
|
311 |
Node n1 = neg_gr.addNode(); |
|
312 |
Node n2 = neg_gr.addNode(); |
|
313 |
Node n3 = neg_gr.addNode(); |
|
314 |
Node n4 = neg_gr.addNode(); |
|
315 |
Node n5 = neg_gr.addNode(); |
|
316 |
Node n6 = neg_gr.addNode(); |
|
317 |
Node n7 = neg_gr.addNode(); |
|
278 | 318 |
|
279 |
Arc a1 = ngr.addArc(n1, n2); |
|
280 |
Arc a2 = ngr.addArc(n1, n3); |
|
281 |
Arc a3 = ngr.addArc(n2, n4); |
|
282 |
Arc a4 = ngr.addArc(n3, n4); |
|
283 |
Arc a5 = ngr.addArc(n3, n2); |
|
284 |
Arc a6 = ngr.addArc(n5, n3); |
|
285 |
Arc a7 = ngr.addArc(n5, n6); |
|
286 |
Arc a8 = ngr.addArc(n6, n7); |
|
287 |
Arc |
|
319 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
320 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
321 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
322 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
323 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
324 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
325 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
326 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
327 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
288 | 328 |
|
289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
291 |
Digraph:: |
|
329 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
330 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
331 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
292 | 332 |
|
293 |
nl2[a7] = 1000; |
|
294 |
nl2[a8] = -1000; |
|
333 |
neg_l2[a7] = 1000; |
|
334 |
neg_l2[a8] = -1000; |
|
295 | 335 |
|
296 |
ns[n1] = 100; |
|
297 |
ns[n4] = -100; |
|
336 |
neg_s[n1] = 100; |
|
337 |
neg_s[n4] = -100; |
|
298 | 338 |
|
299 |
nc[a1] = 100; |
|
300 |
nc[a2] = 30; |
|
301 |
nc[a3] = 20; |
|
302 |
nc[a4] = 80; |
|
303 |
nc[a5] = 50; |
|
304 |
nc[a6] = 10; |
|
305 |
nc[a7] = 80; |
|
306 |
nc[a8] = 30; |
|
307 |
|
|
339 |
neg_c[a1] = 100; |
|
340 |
neg_c[a2] = 30; |
|
341 |
neg_c[a3] = 20; |
|
342 |
neg_c[a4] = 80; |
|
343 |
neg_c[a5] = 50; |
|
344 |
neg_c[a6] = 10; |
|
345 |
neg_c[a7] = 80; |
|
346 |
neg_c[a8] = 30; |
|
347 |
neg_c[a9] = -120; |
|
348 |
|
|
349 |
Digraph negs_gr; |
|
350 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
351 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
352 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
353 |
n1 = negs_gr.addNode(); |
|
354 |
n2 = negs_gr.addNode(); |
|
355 |
negs_s[n1] = 100; |
|
356 |
negs_s[n2] = -300; |
|
357 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
|
358 |
|
|
308 | 359 |
|
... | ... |
@@ -344,3 +395,3 @@ |
344 | 395 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
345 |
mcf. |
|
396 |
mcf.supplyMap(s6); |
|
346 | 397 |
checkMcf(mcf, mcf.run(), |
... | ... |
@@ -355,3 +406,3 @@ |
355 | 406 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
356 |
mcf. |
|
407 |
mcf.supplyMap(s5); |
|
357 | 408 |
checkMcf(mcf, mcf.run(), |
... | ... |
@@ -360,11 +411,17 @@ |
360 | 411 |
// Check negative costs |
361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
363 |
checkMcf(nmcf, nmcf.run(), |
|
364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
368 |
checkMcf(nmcf, nmcf.run(), |
|
369 |
|
|
412 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
413 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
414 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
415 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
416 |
neg_mcf.upperMap(neg_u2); |
|
417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
418 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
419 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
421 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
422 |
|
|
423 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
424 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
425 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
426 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
|
370 | 427 |
} |
... | ... |
@@ -20,3 +20,3 @@ |
20 | 20 |
/// \file |
21 |
/// \brief Special plane |
|
21 |
/// \brief Special plane graph generator. |
|
22 | 22 |
/// |
... | ... |
@@ -28,3 +28,3 @@ |
28 | 28 |
/// \endcode |
29 |
/// for more |
|
29 |
/// for more information on the usage. |
|
30 | 30 |
|
... | ... |
@@ -688,16 +688,17 @@ |
688 | 688 |
.refOption("area", "Full relative area of the cities (default is 1)", area) |
689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)", |
|
689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)", |
|
690 |
disc_d) |
|
690 | 691 |
.optionGroup("dist", "disc") |
691 |
.refOption("square", "Nodes are evenly distributed on a unit square", |
|
692 |
.refOption("square", "Nodes are evenly distributed on a unit square", |
|
693 |
square_d) |
|
692 | 694 |
.optionGroup("dist", "square") |
693 |
.refOption("gauss", |
|
694 |
"Nodes are located according to a two-dim gauss distribution", |
|
695 |
|
|
695 |
.refOption("gauss", "Nodes are located according to a two-dim Gauss " |
|
696 |
"distribution", gauss_d) |
|
696 | 697 |
.optionGroup("dist", "gauss") |
697 |
// .mandatoryGroup("dist") |
|
698 | 698 |
.onlyOneGroup("dist") |
699 |
.boolOption("eps", "Also generate .eps output (prefix.eps)") |
|
700 |
.boolOption("nonodes", "Draw the edges only in the generated .eps") |
|
701 |
.boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)") |
|
702 |
.boolOption("2con", "Create a two connected planar digraph") |
|
699 |
.boolOption("eps", "Also generate .eps output (<prefix>.eps)") |
|
700 |
.boolOption("nonodes", "Draw only the edges in the generated .eps output") |
|
701 |
.boolOption("dir", "Directed graph is generated (each edge is replaced by " |
|
702 |
"two directed arcs)") |
|
703 |
.boolOption("2con", "Create a two connected planar graph") |
|
703 | 704 |
.optionGroup("alg","2con") |
... | ... |
@@ -709,3 +710,3 @@ |
709 | 710 |
.optionGroup("alg","tsp2") |
710 |
.boolOption("dela", "Delaunay triangulation |
|
711 |
.boolOption("dela", "Delaunay triangulation graph") |
|
711 | 712 |
.optionGroup("alg","dela") |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
|
20 |
#define LEMON_BITS_BASE_EXTENDER_H |
|
21 |
|
|
22 |
#include <lemon/core.h> |
|
23 |
#include <lemon/error.h> |
|
24 |
|
|
25 |
#include <lemon/bits/map_extender.h> |
|
26 |
#include <lemon/bits/default_map.h> |
|
27 |
|
|
28 |
#include <lemon/concept_check.h> |
|
29 |
#include <lemon/concepts/maps.h> |
|
30 |
|
|
31 |
//\ingroup digraphbits |
|
32 |
//\file |
|
33 |
//\brief Extenders for the graph types |
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
// \ingroup digraphbits |
|
37 |
// |
|
38 |
// \brief BaseDigraph to BaseGraph extender |
|
39 |
template <typename Base> |
|
40 |
class UndirDigraphExtender : public Base { |
|
41 |
typedef Base Parent; |
|
42 |
|
|
43 |
public: |
|
44 |
|
|
45 |
typedef typename Parent::Arc Edge; |
|
46 |
typedef typename Parent::Node Node; |
|
47 |
|
|
48 |
typedef True UndirectedTag; |
|
49 |
|
|
50 |
class Arc : public Edge { |
|
51 |
friend class UndirDigraphExtender; |
|
52 |
|
|
53 |
protected: |
|
54 |
bool forward; |
|
55 |
|
|
56 |
Arc(const Edge &ue, bool _forward) : |
|
57 |
Edge(ue), forward(_forward) {} |
|
58 |
|
|
59 |
public: |
|
60 |
Arc() {} |
|
61 |
|
|
62 |
// Invalid arc constructor |
|
63 |
Arc(Invalid i) : Edge(i), forward(true) {} |
|
64 |
|
|
65 |
bool operator==(const Arc &that) const { |
|
66 |
return forward==that.forward && Edge(*this)==Edge(that); |
|
67 |
} |
|
68 |
bool operator!=(const Arc &that) const { |
|
69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
|
70 |
} |
|
71 |
bool operator<(const Arc &that) const { |
|
72 |
return forward<that.forward || |
|
73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
|
74 |
} |
|
75 |
}; |
|
76 |
|
|
77 |
// First node of the edge |
|
78 |
Node u(const Edge &e) const { |
|
79 |
return Parent::source(e); |
|
80 |
} |
|
81 |
|
|
82 |
// Source of the given arc |
|
83 |
Node source(const Arc &e) const { |
|
84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
|
85 |
} |
|
86 |
|
|
87 |
// Second node of the edge |
|
88 |
Node v(const Edge &e) const { |
|
89 |
return Parent::target(e); |
|
90 |
} |
|
91 |
|
|
92 |
// Target of the given arc |
|
93 |
Node target(const Arc &e) const { |
|
94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
|
95 |
} |
|
96 |
|
|
97 |
// \brief Directed arc from an edge. |
|
98 |
// |
|
99 |
// Returns a directed arc corresponding to the specified edge. |
|
100 |
// If the given bool is true, the first node of the given edge and |
|
101 |
// the source node of the returned arc are the same. |
|
102 |
static Arc direct(const Edge &e, bool d) { |
|
103 |
return Arc(e, d); |
|
104 |
} |
|
105 |
|
|
106 |
// Returns whether the given directed arc has the same orientation |
|
107 |
// as the corresponding edge. |
|
108 |
static bool direction(const Arc &a) { return a.forward; } |
|
109 |
|
|
110 |
using Parent::first; |
|
111 |
using Parent::next; |
|
112 |
|
|
113 |
void first(Arc &e) const { |
|
114 |
Parent::first(e); |
|
115 |
e.forward=true; |
|
116 |
} |
|
117 |
|
|
118 |
void next(Arc &e) const { |
|
119 |
if( e.forward ) { |
|
120 |
e.forward = false; |
|
121 |
} |
|
122 |
else { |
|
123 |
Parent::next(e); |
|
124 |
e.forward = true; |
|
125 |
} |
|
126 |
} |
|
127 |
|
|
128 |
void firstOut(Arc &e, const Node &n) const { |
|
129 |
Parent::firstIn(e,n); |
|
130 |
if( Edge(e) != INVALID ) { |
|
131 |
e.forward = false; |
|
132 |
} |
|
133 |
else { |
|
134 |
Parent::firstOut(e,n); |
|
135 |
e.forward = true; |
|
136 |
} |
|
137 |
} |
|
138 |
void nextOut(Arc &e) const { |
|
139 |
if( ! e.forward ) { |
|
140 |
Node n = Parent::target(e); |
|
141 |
Parent::nextIn(e); |
|
142 |
if( Edge(e) == INVALID ) { |
|
143 |
Parent::firstOut(e, n); |
|
144 |
e.forward = true; |
|
145 |
} |
|
146 |
} |
|
147 |
else { |
|
148 |
Parent::nextOut(e); |
|
149 |
} |
|
150 |
} |
|
151 |
|
|
152 |
void firstIn(Arc &e, const Node &n) const { |
|
153 |
Parent::firstOut(e,n); |
|
154 |
if( Edge(e) != INVALID ) { |
|
155 |
e.forward = false; |
|
156 |
} |
|
157 |
else { |
|
158 |
Parent::firstIn(e,n); |
|
159 |
e.forward = true; |
|
160 |
} |
|
161 |
} |
|
162 |
void nextIn(Arc &e) const { |
|
163 |
if( ! e.forward ) { |
|
164 |
Node n = Parent::source(e); |
|
165 |
Parent::nextOut(e); |
|
166 |
if( Edge(e) == INVALID ) { |
|
167 |
Parent::firstIn(e, n); |
|
168 |
e.forward = true; |
|
169 |
} |
|
170 |
} |
|
171 |
else { |
|
172 |
Parent::nextIn(e); |
|
173 |
} |
|
174 |
} |
|
175 |
|
|
176 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
|
177 |
d = true; |
|
178 |
Parent::firstOut(e, n); |
|
179 |
if (e != INVALID) return; |
|
180 |
d = false; |
|
181 |
Parent::firstIn(e, n); |
|
182 |
} |
|
183 |
|
|
184 |
void nextInc(Edge &e, bool &d) const { |
|
185 |
if (d) { |
|
186 |
Node s = Parent::source(e); |
|
187 |
Parent::nextOut(e); |
|
188 |
if (e != INVALID) return; |
|
189 |
d = false; |
|
190 |
Parent::firstIn(e, s); |
|
191 |
} else { |
|
192 |
Parent::nextIn(e); |
|
193 |
} |
|
194 |
} |
|
195 |
|
|
196 |
Node nodeFromId(int ix) const { |
|
197 |
return Parent::nodeFromId(ix); |
|
198 |
} |
|
199 |
|
|
200 |
Arc arcFromId(int ix) const { |
|
201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
|
202 |
} |
|
203 |
|
|
204 |
Edge edgeFromId(int ix) const { |
|
205 |
return Parent::arcFromId(ix); |
|
206 |
} |
|
207 |
|
|
208 |
int id(const Node &n) const { |
|
209 |
return Parent::id(n); |
|
210 |
} |
|
211 |
|
|
212 |
int id(const Edge &e) const { |
|
213 |
return Parent::id(e); |
|
214 |
} |
|
215 |
|
|
216 |
int id(const Arc &e) const { |
|
217 |
return 2 * Parent::id(e) + int(e.forward); |
|
218 |
} |
|
219 |
|
|
220 |
int maxNodeId() const { |
|
221 |
return Parent::maxNodeId(); |
|
222 |
} |
|
223 |
|
|
224 |
int maxArcId() const { |
|
225 |
return 2 * Parent::maxArcId() + 1; |
|
226 |
} |
|
227 |
|
|
228 |
int maxEdgeId() const { |
|
229 |
return Parent::maxArcId(); |
|
230 |
} |
|
231 |
|
|
232 |
int arcNum() const { |
|
233 |
return 2 * Parent::arcNum(); |
|
234 |
} |
|
235 |
|
|
236 |
int edgeNum() const { |
|
237 |
return Parent::arcNum(); |
|
238 |
} |
|
239 |
|
|
240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
|
241 |
if (p == INVALID) { |
|
242 |
Edge arc = Parent::findArc(s, t); |
|
243 |
if (arc != INVALID) return direct(arc, true); |
|
244 |
arc = Parent::findArc(t, s); |
|
245 |
if (arc != INVALID) return direct(arc, false); |
|
246 |
} else if (direction(p)) { |
|
247 |
Edge arc = Parent::findArc(s, t, p); |
|
248 |
if (arc != INVALID) return direct(arc, true); |
|
249 |
arc = Parent::findArc(t, s); |
|
250 |
if (arc != INVALID) return direct(arc, false); |
|
251 |
} else { |
|
252 |
Edge arc = Parent::findArc(t, s, p); |
|
253 |
if (arc != INVALID) return direct(arc, false); |
|
254 |
} |
|
255 |
return INVALID; |
|
256 |
} |
|
257 |
|
|
258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
|
259 |
if (s != t) { |
|
260 |
if (p == INVALID) { |
|
261 |
Edge arc = Parent::findArc(s, t); |
|
262 |
if (arc != INVALID) return arc; |
|
263 |
arc = Parent::findArc(t, s); |
|
264 |
if (arc != INVALID) return arc; |
|
265 |
} else if (Parent::s(p) == s) { |
|
266 |
Edge arc = Parent::findArc(s, t, p); |
|
267 |
if (arc != INVALID) return arc; |
|
268 |
arc = Parent::findArc(t, s); |
|
269 |
if (arc != INVALID) return arc; |
|
270 |
} else { |
|
271 |
Edge arc = Parent::findArc(t, s, p); |
|
272 |
if (arc != INVALID) return arc; |
|
273 |
} |
|
274 |
} else { |
|
275 |
return Parent::findArc(s, t, p); |
|
276 |
} |
|
277 |
return INVALID; |
|
278 |
} |
|
279 |
}; |
|
280 |
|
|
281 |
template <typename Base> |
|
282 |
class BidirBpGraphExtender : public Base { |
|
283 |
typedef Base Parent; |
|
284 |
|
|
285 |
public: |
|
286 |
typedef BidirBpGraphExtender Digraph; |
|
287 |
|
|
288 |
typedef typename Parent::Node Node; |
|
289 |
typedef typename Parent::Edge Edge; |
|
290 |
|
|
291 |
|
|
292 |
using Parent::first; |
|
293 |
using Parent::next; |
|
294 |
|
|
295 |
using Parent::id; |
|
296 |
|
|
297 |
class Red : public Node { |
|
298 |
friend class BidirBpGraphExtender; |
|
299 |
public: |
|
300 |
Red() {} |
|
301 |
Red(const Node& node) : Node(node) { |
|
302 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
303 |
typename Parent::NodeSetError()); |
|
304 |
} |
|
305 |
Red& operator=(const Node& node) { |
|
306 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
307 |
typename Parent::NodeSetError()); |
|
308 |
Node::operator=(node); |
|
309 |
return *this; |
|
310 |
} |
|
311 |
Red(Invalid) : Node(INVALID) {} |
|
312 |
Red& operator=(Invalid) { |
|
313 |
Node::operator=(INVALID); |
|
314 |
return *this; |
|
315 |
} |
|
316 |
}; |
|
317 |
|
|
318 |
void first(Red& node) const { |
|
319 |
Parent::firstRed(static_cast<Node&>(node)); |
|
320 |
} |
|
321 |
void next(Red& node) const { |
|
322 |
Parent::nextRed(static_cast<Node&>(node)); |
|
323 |
} |
|
324 |
|
|
325 |
int id(const Red& node) const { |
|
326 |
return Parent::redId(node); |
|
327 |
} |
|
328 |
|
|
329 |
class Blue : public Node { |
|
330 |
friend class BidirBpGraphExtender; |
|
331 |
public: |
|
332 |
Blue() {} |
|
333 |
Blue(const Node& node) : Node(node) { |
|
334 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
335 |
typename Parent::NodeSetError()); |
|
336 |
} |
|
337 |
Blue& operator=(const Node& node) { |
|
338 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
339 |
typename Parent::NodeSetError()); |
|
340 |
Node::operator=(node); |
|
341 |
return *this; |
|
342 |
} |
|
343 |
Blue(Invalid) : Node(INVALID) {} |
|
344 |
Blue& operator=(Invalid) { |
|
345 |
Node::operator=(INVALID); |
|
346 |
return *this; |
|
347 |
} |
|
348 |
}; |
|
349 |
|
|
350 |
void first(Blue& node) const { |
|
351 |
Parent::firstBlue(static_cast<Node&>(node)); |
|
352 |
} |
|
353 |
void next(Blue& node) const { |
|
354 |
Parent::nextBlue(static_cast<Node&>(node)); |
|
355 |
} |
|
356 |
|
|
357 |
int id(const Blue& node) const { |
|
358 |
return Parent::redId(node); |
|
359 |
} |
|
360 |
|
|
361 |
Node source(const Edge& arc) const { |
|
362 |
return red(arc); |
|
363 |
} |
|
364 |
Node target(const Edge& arc) const { |
|
365 |
return blue(arc); |
|
366 |
} |
|
367 |
|
|
368 |
void firstInc(Edge& arc, bool& dir, const Node& node) const { |
|
369 |
if (Parent::red(node)) { |
|
370 |
Parent::firstFromRed(arc, node); |
|
371 |
dir = true; |
|
372 |
} else { |
|
373 |
Parent::firstFromBlue(arc, node); |
|
374 |
dir = static_cast<Edge&>(arc) == INVALID; |
|
375 |
} |
|
376 |
} |
|
377 |
void nextInc(Edge& arc, bool& dir) const { |
|
378 |
if (dir) { |
|
379 |
Parent::nextFromRed(arc); |
|
380 |
} else { |
|
381 |
Parent::nextFromBlue(arc); |
|
382 |
if (arc == INVALID) dir = true; |
|
383 |
} |
|
384 |
} |
|
385 |
|
|
386 |
class Arc : public Edge { |
|
387 |
friend class BidirBpGraphExtender; |
|
388 |
protected: |
|
389 |
bool forward; |
|
390 |
|
|
391 |
Arc(const Edge& arc, bool _forward) |
|
392 |
: Edge(arc), forward(_forward) {} |
|
393 |
|
|
394 |
public: |
|
395 |
Arc() {} |
|
396 |
Arc (Invalid) : Edge(INVALID), forward(true) {} |
|
397 |
bool operator==(const Arc& i) const { |
|
398 |
return Edge::operator==(i) && forward == i.forward; |
|
399 |
} |
|
400 |
bool operator!=(const Arc& i) const { |
|
401 |
return Edge::operator!=(i) || forward != i.forward; |
|
402 |
} |
|
403 |
bool operator<(const Arc& i) const { |
|
404 |
return Edge::operator<(i) || |
|
405 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
|
406 |
} |
|
407 |
}; |
|
408 |
|
|
409 |
void first(Arc& arc) const { |
|
410 |
Parent::first(static_cast<Edge&>(arc)); |
|
411 |
arc.forward = true; |
|
412 |
} |
|
413 |
|
|
414 |
void next(Arc& arc) const { |
|
415 |
if (!arc.forward) { |
|
416 |
Parent::next(static_cast<Edge&>(arc)); |
|
417 |
} |
|
418 |
arc.forward = !arc.forward; |
|
419 |
} |
|
420 |
|
|
421 |
void firstOut(Arc& arc, const Node& node) const { |
|
422 |
if (Parent::red(node)) { |
|
423 |
Parent::firstFromRed(arc, node); |
|
424 |
arc.forward = true; |
|
425 |
} else { |
|
426 |
Parent::firstFromBlue(arc, node); |
|
427 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
428 |
} |
|
429 |
} |
|
430 |
void nextOut(Arc& arc) const { |
|
431 |
if (arc.forward) { |
|
432 |
Parent::nextFromRed(arc); |
|
433 |
} else { |
|
434 |
Parent::nextFromBlue(arc); |
|
435 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
436 |
} |
|
437 |
} |
|
438 |
|
|
439 |
void firstIn(Arc& arc, const Node& node) const { |
|
440 |
if (Parent::blue(node)) { |
|
441 |
Parent::firstFromBlue(arc, node); |
|
442 |
arc.forward = true; |
|
443 |
} else { |
|
444 |
Parent::firstFromRed(arc, node); |
|
445 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
446 |
} |
|
447 |
} |
|
448 |
void nextIn(Arc& arc) const { |
|
449 |
if (arc.forward) { |
|
450 |
Parent::nextFromBlue(arc); |
|
451 |
} else { |
|
452 |
Parent::nextFromRed(arc); |
|
453 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
454 |
} |
|
455 |
} |
|
456 |
|
|
457 |
Node source(const Arc& arc) const { |
|
458 |
return arc.forward ? Parent::red(arc) : Parent::blue(arc); |
|
459 |
} |
|
460 |
Node target(const Arc& arc) const { |
|
461 |
return arc.forward ? Parent::blue(arc) : Parent::red(arc); |
|
462 |
} |
|
463 |
|
|
464 |
int id(const Arc& arc) const { |
|
465 |
return (Parent::id(static_cast<const Edge&>(arc)) << 1) + |
|
466 |
(arc.forward ? 0 : 1); |
|
467 |
} |
|
468 |
Arc arcFromId(int ix) const { |
|
469 |
return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0); |
|
470 |
} |
|
471 |
int maxArcId() const { |
|
472 |
return (Parent::maxEdgeId() << 1) + 1; |
|
473 |
} |
|
474 |
|
|
475 |
bool direction(const Arc& arc) const { |
|
476 |
return arc.forward; |
|
477 |
} |
|
478 |
|
|
479 |
Arc direct(const Edge& arc, bool dir) const { |
|
480 |
return Arc(arc, dir); |
|
481 |
} |
|
482 |
|
|
483 |
int arcNum() const { |
|
484 |
return 2 * Parent::edgeNum(); |
|
485 |
} |
|
486 |
|
|
487 |
int edgeNum() const { |
|
488 |
return Parent::edgeNum(); |
|
489 |
} |
|
490 |
|
|
491 |
|
|
492 |
}; |
|
493 |
} |
|
494 |
|
|
495 |
#endif |
0 comments (0 inline)