0
7
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 |
#include <lemon/bits/map_extender.h> |
|
33 | 34 |
#include <lemon/tolerance.h> |
34 | 35 |
|
35 | 36 |
#include <algorithm> |
36 | 37 |
|
37 | 38 |
namespace lemon { |
38 | 39 |
|
39 | 40 |
#ifdef _MSC_VER |
40 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
41 | 42 |
#else |
42 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
43 | 44 |
#endif |
44 | 45 |
|
45 | 46 |
template<typename DGR> |
46 | 47 |
class DigraphAdaptorBase { |
47 | 48 |
public: |
48 | 49 |
typedef DGR Digraph; |
49 | 50 |
typedef DigraphAdaptorBase Adaptor; |
50 | 51 |
|
51 | 52 |
protected: |
52 | 53 |
DGR* _digraph; |
53 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
54 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
55 | 56 |
|
56 | 57 |
public: |
57 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
58 | 59 |
|
59 | 60 |
typedef typename DGR::Node Node; |
60 | 61 |
typedef typename DGR::Arc Arc; |
61 | 62 |
|
62 | 63 |
void first(Node& i) const { _digraph->first(i); } |
63 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
64 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
65 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
66 | 67 |
|
67 | 68 |
void next(Node& i) const { _digraph->next(i); } |
68 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
69 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
70 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
71 | 72 |
|
72 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
73 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
74 | 75 |
|
75 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
76 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
77 | 78 |
|
78 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
79 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
80 | 81 |
|
81 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
82 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
83 | 84 |
return _digraph->findArc(u, v, prev); |
84 | 85 |
} |
85 | 86 |
|
86 | 87 |
Node addNode() { return _digraph->addNode(); } |
87 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
88 | 89 |
|
89 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
90 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
91 | 92 |
|
92 | 93 |
void clear() { _digraph->clear(); } |
93 | 94 |
|
94 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
95 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
96 | 97 |
|
97 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
98 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
99 | 100 |
|
100 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
101 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
102 | 103 |
|
103 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
104 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
105 | 106 |
|
106 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
107 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
108 | 109 |
|
109 | 110 |
template <typename V> |
110 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
111 | 112 |
public: |
112 | 113 |
|
113 | 114 |
typedef typename DGR::template NodeMap<V> Parent; |
114 | 115 |
|
115 | 116 |
explicit NodeMap(const Adaptor& adaptor) |
116 | 117 |
: Parent(*adaptor._digraph) {} |
117 | 118 |
|
118 | 119 |
NodeMap(const Adaptor& adaptor, const V& value) |
119 | 120 |
: Parent(*adaptor._digraph, value) { } |
120 | 121 |
|
121 | 122 |
private: |
122 | 123 |
NodeMap& operator=(const NodeMap& cmap) { |
123 | 124 |
return operator=<NodeMap>(cmap); |
124 | 125 |
} |
125 | 126 |
|
126 | 127 |
template <typename CMap> |
127 | 128 |
NodeMap& operator=(const CMap& cmap) { |
128 | 129 |
Parent::operator=(cmap); |
129 | 130 |
return *this; |
130 | 131 |
} |
131 | 132 |
|
132 | 133 |
}; |
133 | 134 |
|
134 | 135 |
template <typename V> |
135 | 136 |
class ArcMap : public DGR::template ArcMap<V> { |
136 | 137 |
public: |
137 | 138 |
|
138 | 139 |
typedef typename DGR::template ArcMap<V> Parent; |
139 | 140 |
|
140 | 141 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
141 | 142 |
: Parent(*adaptor._digraph) {} |
142 | 143 |
|
143 | 144 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
144 | 145 |
: Parent(*adaptor._digraph, value) {} |
145 | 146 |
|
146 | 147 |
private: |
147 | 148 |
ArcMap& operator=(const ArcMap& cmap) { |
148 | 149 |
return operator=<ArcMap>(cmap); |
149 | 150 |
} |
150 | 151 |
|
151 | 152 |
template <typename CMap> |
152 | 153 |
ArcMap& operator=(const CMap& cmap) { |
153 | 154 |
Parent::operator=(cmap); |
154 | 155 |
return *this; |
155 | 156 |
} |
156 | 157 |
|
157 | 158 |
}; |
158 | 159 |
|
159 | 160 |
}; |
160 | 161 |
|
161 | 162 |
template<typename GR> |
162 | 163 |
class GraphAdaptorBase { |
163 | 164 |
public: |
164 | 165 |
typedef GR Graph; |
165 | 166 |
|
166 | 167 |
protected: |
167 | 168 |
GR* _graph; |
168 | 169 |
|
169 | 170 |
GraphAdaptorBase() : _graph(0) {} |
170 | 171 |
|
171 | 172 |
void initialize(GR& graph) { _graph = &graph; } |
172 | 173 |
|
173 | 174 |
public: |
174 | 175 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
175 | 176 |
|
176 | 177 |
typedef typename GR::Node Node; |
177 | 178 |
typedef typename GR::Arc Arc; |
178 | 179 |
typedef typename GR::Edge Edge; |
179 | 180 |
|
180 | 181 |
void first(Node& i) const { _graph->first(i); } |
181 | 182 |
void first(Arc& i) const { _graph->first(i); } |
182 | 183 |
void first(Edge& i) const { _graph->first(i); } |
183 | 184 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
184 | 185 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
185 | 186 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
186 | 187 |
_graph->firstInc(i, d, n); |
187 | 188 |
} |
188 | 189 |
|
189 | 190 |
void next(Node& i) const { _graph->next(i); } |
190 | 191 |
void next(Arc& i) const { _graph->next(i); } |
191 | 192 |
void next(Edge& i) const { _graph->next(i); } |
192 | 193 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
193 | 194 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
194 | 195 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
195 | 196 |
|
196 | 197 |
Node u(const Edge& e) const { return _graph->u(e); } |
197 | 198 |
Node v(const Edge& e) const { return _graph->v(e); } |
198 | 199 |
|
199 | 200 |
Node source(const Arc& a) const { return _graph->source(a); } |
200 | 201 |
Node target(const Arc& a) const { return _graph->target(a); } |
201 | 202 |
|
202 | 203 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
203 | 204 |
int nodeNum() const { return _graph->nodeNum(); } |
204 | 205 |
|
205 | 206 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
206 | 207 |
int arcNum() const { return _graph->arcNum(); } |
207 | 208 |
|
208 | 209 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
209 | 210 |
int edgeNum() const { return _graph->edgeNum(); } |
210 | 211 |
|
211 | 212 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
212 | 213 |
Arc findArc(const Node& u, const Node& v, |
213 | 214 |
const Arc& prev = INVALID) const { |
214 | 215 |
return _graph->findArc(u, v, prev); |
215 | 216 |
} |
216 | 217 |
|
217 | 218 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
218 | 219 |
Edge findEdge(const Node& u, const Node& v, |
219 | 220 |
const Edge& prev = INVALID) const { |
220 | 221 |
return _graph->findEdge(u, v, prev); |
221 | 222 |
} |
222 | 223 |
|
223 | 224 |
Node addNode() { return _graph->addNode(); } |
224 | 225 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } |
225 | 226 |
|
226 | 227 |
void erase(const Node& i) { _graph->erase(i); } |
227 | 228 |
void erase(const Edge& i) { _graph->erase(i); } |
228 | 229 |
|
229 | 230 |
void clear() { _graph->clear(); } |
230 | 231 |
|
231 | 232 |
bool direction(const Arc& a) const { return _graph->direction(a); } |
232 | 233 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } |
233 | 234 |
|
234 | 235 |
int id(const Node& v) const { return _graph->id(v); } |
235 | 236 |
int id(const Arc& a) const { return _graph->id(a); } |
236 | 237 |
int id(const Edge& e) const { return _graph->id(e); } |
237 | 238 |
|
238 | 239 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
239 | 240 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
240 | 241 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
241 | 242 |
|
242 | 243 |
int maxNodeId() const { return _graph->maxNodeId(); } |
243 | 244 |
int maxArcId() const { return _graph->maxArcId(); } |
244 | 245 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
245 | 246 |
|
246 | 247 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
247 | 248 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
248 | 249 |
|
249 | 250 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
250 | 251 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
251 | 252 |
|
252 | 253 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
253 | 254 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
254 | 255 |
|
255 | 256 |
template <typename V> |
256 | 257 |
class NodeMap : public GR::template NodeMap<V> { |
257 | 258 |
public: |
258 | 259 |
typedef typename GR::template NodeMap<V> Parent; |
259 | 260 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
260 | 261 |
: Parent(*adapter._graph) {} |
261 | 262 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
262 | 263 |
: Parent(*adapter._graph, value) {} |
263 | 264 |
|
264 | 265 |
private: |
265 | 266 |
NodeMap& operator=(const NodeMap& cmap) { |
266 | 267 |
return operator=<NodeMap>(cmap); |
267 | 268 |
} |
268 | 269 |
|
269 | 270 |
template <typename CMap> |
270 | 271 |
NodeMap& operator=(const CMap& cmap) { |
271 | 272 |
Parent::operator=(cmap); |
272 | 273 |
return *this; |
273 | 274 |
} |
274 | 275 |
|
275 | 276 |
}; |
276 | 277 |
|
277 | 278 |
template <typename V> |
278 | 279 |
class ArcMap : public GR::template ArcMap<V> { |
279 | 280 |
public: |
280 | 281 |
typedef typename GR::template ArcMap<V> Parent; |
281 | 282 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
282 | 283 |
: Parent(*adapter._graph) {} |
283 | 284 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
284 | 285 |
: Parent(*adapter._graph, value) {} |
285 | 286 |
|
286 | 287 |
private: |
287 | 288 |
ArcMap& operator=(const ArcMap& cmap) { |
288 | 289 |
return operator=<ArcMap>(cmap); |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
template <typename CMap> |
292 | 293 |
ArcMap& operator=(const CMap& cmap) { |
293 | 294 |
Parent::operator=(cmap); |
294 | 295 |
return *this; |
295 | 296 |
} |
296 | 297 |
}; |
297 | 298 |
|
298 | 299 |
template <typename V> |
299 | 300 |
class EdgeMap : public GR::template EdgeMap<V> { |
300 | 301 |
public: |
301 | 302 |
typedef typename GR::template EdgeMap<V> Parent; |
302 | 303 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
303 | 304 |
: Parent(*adapter._graph) {} |
304 | 305 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
305 | 306 |
: Parent(*adapter._graph, value) {} |
306 | 307 |
|
307 | 308 |
private: |
308 | 309 |
EdgeMap& operator=(const EdgeMap& cmap) { |
309 | 310 |
return operator=<EdgeMap>(cmap); |
310 | 311 |
} |
311 | 312 |
|
312 | 313 |
template <typename CMap> |
313 | 314 |
EdgeMap& operator=(const CMap& cmap) { |
314 | 315 |
Parent::operator=(cmap); |
315 | 316 |
return *this; |
316 | 317 |
} |
317 | 318 |
}; |
318 | 319 |
|
319 | 320 |
}; |
320 | 321 |
|
321 | 322 |
template <typename DGR> |
322 | 323 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> { |
323 | 324 |
public: |
324 | 325 |
typedef DGR Digraph; |
325 | 326 |
typedef DigraphAdaptorBase<DGR> Parent; |
326 | 327 |
protected: |
327 | 328 |
ReverseDigraphBase() : Parent() { } |
328 | 329 |
public: |
329 | 330 |
typedef typename Parent::Node Node; |
330 | 331 |
typedef typename Parent::Arc Arc; |
331 | 332 |
|
332 | 333 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
333 | 334 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
334 | 335 |
|
335 | 336 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
336 | 337 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
337 | 338 |
|
338 | 339 |
Node source(const Arc& a) const { return Parent::target(a); } |
339 | 340 |
Node target(const Arc& a) const { return Parent::source(a); } |
340 | 341 |
|
341 | 342 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
342 | 343 |
|
343 | 344 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
344 | 345 |
Arc findArc(const Node& u, const Node& v, |
345 | 346 |
const Arc& prev = INVALID) const { |
346 | 347 |
return Parent::findArc(v, u, prev); |
347 | 348 |
} |
348 | 349 |
|
349 | 350 |
}; |
350 | 351 |
|
351 | 352 |
/// \ingroup graph_adaptors |
352 | 353 |
/// |
353 | 354 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
354 | 355 |
/// a digraph. |
355 | 356 |
/// |
356 | 357 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
357 | 358 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
358 | 359 |
/// |
359 | 360 |
/// The adapted digraph can also be modified through this adaptor |
360 | 361 |
/// by adding or removing nodes or arcs, unless the \c GR template |
361 | 362 |
/// parameter is set to be \c const. |
362 | 363 |
/// |
363 | 364 |
/// \tparam DGR The type of the adapted digraph. |
364 | 365 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
365 | 366 |
/// It can also be specified to be \c const. |
366 | 367 |
/// |
367 | 368 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
368 | 369 |
/// digraph are convertible to each other. |
369 | 370 |
template<typename DGR> |
370 | 371 |
#ifdef DOXYGEN |
371 | 372 |
class ReverseDigraph { |
372 | 373 |
#else |
373 | 374 |
class ReverseDigraph : |
374 | 375 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > { |
375 | 376 |
#endif |
376 | 377 |
public: |
377 | 378 |
/// The type of the adapted digraph. |
378 | 379 |
typedef DGR Digraph; |
379 | 380 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
380 | 381 |
protected: |
381 | 382 |
ReverseDigraph() { } |
382 | 383 |
public: |
383 | 384 |
|
384 | 385 |
/// \brief Constructor |
385 | 386 |
/// |
386 | 387 |
/// Creates a reverse digraph adaptor for the given digraph. |
387 | 388 |
explicit ReverseDigraph(DGR& digraph) { |
388 | 389 |
Parent::initialize(digraph); |
389 | 390 |
} |
390 | 391 |
}; |
391 | 392 |
|
392 | 393 |
/// \brief Returns a read-only ReverseDigraph adaptor |
393 | 394 |
/// |
394 | 395 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
395 | 396 |
/// \ingroup graph_adaptors |
396 | 397 |
/// \relates ReverseDigraph |
397 | 398 |
template<typename DGR> |
398 | 399 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
399 | 400 |
return ReverseDigraph<const DGR>(digraph); |
400 | 401 |
} |
401 | 402 |
|
402 | 403 |
|
403 | 404 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
404 | 405 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
405 | 406 |
public: |
406 | 407 |
typedef DGR Digraph; |
407 | 408 |
typedef NF NodeFilterMap; |
408 | 409 |
typedef AF ArcFilterMap; |
409 | 410 |
|
410 | 411 |
typedef SubDigraphBase Adaptor; |
411 | 412 |
typedef DigraphAdaptorBase<DGR> Parent; |
412 | 413 |
protected: |
413 | 414 |
NF* _node_filter; |
414 | 415 |
AF* _arc_filter; |
415 | 416 |
SubDigraphBase() |
416 | 417 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
417 | 418 |
|
418 | 419 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
419 | 420 |
Parent::initialize(digraph); |
420 | 421 |
_node_filter = &node_filter; |
421 | 422 |
_arc_filter = &arc_filter; |
422 | 423 |
} |
423 | 424 |
|
424 | 425 |
public: |
425 | 426 |
|
426 | 427 |
typedef typename Parent::Node Node; |
427 | 428 |
typedef typename Parent::Arc Arc; |
428 | 429 |
|
429 | 430 |
void first(Node& i) const { |
430 | 431 |
Parent::first(i); |
431 | 432 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
432 | 433 |
} |
433 | 434 |
|
434 | 435 |
void first(Arc& i) const { |
435 | 436 |
Parent::first(i); |
436 | 437 |
while (i != INVALID && (!(*_arc_filter)[i] |
437 | 438 |
|| !(*_node_filter)[Parent::source(i)] |
438 | 439 |
|| !(*_node_filter)[Parent::target(i)])) |
439 | 440 |
Parent::next(i); |
440 | 441 |
} |
441 | 442 |
|
442 | 443 |
void firstIn(Arc& i, const Node& n) const { |
443 | 444 |
Parent::firstIn(i, n); |
444 | 445 |
while (i != INVALID && (!(*_arc_filter)[i] |
445 | 446 |
|| !(*_node_filter)[Parent::source(i)])) |
446 | 447 |
Parent::nextIn(i); |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
void firstOut(Arc& i, const Node& n) const { |
450 | 451 |
Parent::firstOut(i, n); |
451 | 452 |
while (i != INVALID && (!(*_arc_filter)[i] |
452 | 453 |
|| !(*_node_filter)[Parent::target(i)])) |
453 | 454 |
Parent::nextOut(i); |
454 | 455 |
} |
455 | 456 |
|
456 | 457 |
void next(Node& i) const { |
457 | 458 |
Parent::next(i); |
458 | 459 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
459 | 460 |
} |
460 | 461 |
|
461 | 462 |
void next(Arc& i) const { |
462 | 463 |
Parent::next(i); |
463 | 464 |
while (i != INVALID && (!(*_arc_filter)[i] |
464 | 465 |
|| !(*_node_filter)[Parent::source(i)] |
465 | 466 |
|| !(*_node_filter)[Parent::target(i)])) |
466 | 467 |
Parent::next(i); |
467 | 468 |
} |
468 | 469 |
|
469 | 470 |
void nextIn(Arc& i) const { |
470 | 471 |
Parent::nextIn(i); |
471 | 472 |
while (i != INVALID && (!(*_arc_filter)[i] |
472 | 473 |
|| !(*_node_filter)[Parent::source(i)])) |
473 | 474 |
Parent::nextIn(i); |
474 | 475 |
} |
475 | 476 |
|
476 | 477 |
void nextOut(Arc& i) const { |
477 | 478 |
Parent::nextOut(i); |
478 | 479 |
while (i != INVALID && (!(*_arc_filter)[i] |
479 | 480 |
|| !(*_node_filter)[Parent::target(i)])) |
480 | 481 |
Parent::nextOut(i); |
481 | 482 |
} |
482 | 483 |
|
483 | 484 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
484 | 485 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
485 | 486 |
|
486 | 487 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
487 | 488 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
488 | 489 |
|
489 | 490 |
typedef False NodeNumTag; |
490 | 491 |
typedef False ArcNumTag; |
491 | 492 |
|
492 | 493 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
493 | 494 |
Arc findArc(const Node& source, const Node& target, |
494 | 495 |
const Arc& prev = INVALID) const { |
495 | 496 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
496 | 497 |
return INVALID; |
497 | 498 |
} |
498 | 499 |
Arc arc = Parent::findArc(source, target, prev); |
499 | 500 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
500 | 501 |
arc = Parent::findArc(source, target, arc); |
501 | 502 |
} |
502 | 503 |
return arc; |
503 | 504 |
} |
504 | 505 |
|
505 | 506 |
public: |
506 | 507 |
|
507 | 508 |
template <typename V> |
508 | 509 |
class NodeMap |
509 | 510 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
510 | 511 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
511 | 512 |
public: |
512 | 513 |
typedef V Value; |
513 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
514 | 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
515 | 516 |
|
516 | 517 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
517 | 518 |
: Parent(adaptor) {} |
518 | 519 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
519 | 520 |
: Parent(adaptor, value) {} |
520 | 521 |
|
521 | 522 |
private: |
522 | 523 |
NodeMap& operator=(const NodeMap& cmap) { |
523 | 524 |
return operator=<NodeMap>(cmap); |
524 | 525 |
} |
525 | 526 |
|
526 | 527 |
template <typename CMap> |
527 | 528 |
NodeMap& operator=(const CMap& cmap) { |
528 | 529 |
Parent::operator=(cmap); |
529 | 530 |
return *this; |
530 | 531 |
} |
531 | 532 |
}; |
532 | 533 |
|
533 | 534 |
template <typename V> |
534 | 535 |
class ArcMap |
535 | 536 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
536 | 537 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
537 | 538 |
public: |
538 | 539 |
typedef V Value; |
539 | 540 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
540 | 541 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
541 | 542 |
|
542 | 543 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
543 | 544 |
: Parent(adaptor) {} |
544 | 545 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
545 | 546 |
: Parent(adaptor, value) {} |
546 | 547 |
|
547 | 548 |
private: |
548 | 549 |
ArcMap& operator=(const ArcMap& cmap) { |
549 | 550 |
return operator=<ArcMap>(cmap); |
550 | 551 |
} |
551 | 552 |
|
552 | 553 |
template <typename CMap> |
553 | 554 |
ArcMap& operator=(const CMap& cmap) { |
554 | 555 |
Parent::operator=(cmap); |
555 | 556 |
return *this; |
556 | 557 |
} |
557 | 558 |
}; |
558 | 559 |
|
559 | 560 |
}; |
560 | 561 |
|
561 | 562 |
template <typename DGR, typename NF, typename AF> |
562 | 563 |
class SubDigraphBase<DGR, NF, AF, false> |
563 | 564 |
: public DigraphAdaptorBase<DGR> { |
564 | 565 |
public: |
565 | 566 |
typedef DGR Digraph; |
566 | 567 |
typedef NF NodeFilterMap; |
567 | 568 |
typedef AF ArcFilterMap; |
568 | 569 |
|
569 | 570 |
typedef SubDigraphBase Adaptor; |
570 | 571 |
typedef DigraphAdaptorBase<Digraph> Parent; |
571 | 572 |
protected: |
572 | 573 |
NF* _node_filter; |
573 | 574 |
AF* _arc_filter; |
574 | 575 |
SubDigraphBase() |
575 | 576 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
576 | 577 |
|
577 | 578 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
578 | 579 |
Parent::initialize(digraph); |
579 | 580 |
_node_filter = &node_filter; |
580 | 581 |
_arc_filter = &arc_filter; |
581 | 582 |
} |
582 | 583 |
|
583 | 584 |
public: |
584 | 585 |
|
585 | 586 |
typedef typename Parent::Node Node; |
586 | 587 |
typedef typename Parent::Arc Arc; |
587 | 588 |
|
588 | 589 |
void first(Node& i) const { |
589 | 590 |
Parent::first(i); |
590 | 591 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
591 | 592 |
} |
592 | 593 |
|
593 | 594 |
void first(Arc& i) const { |
594 | 595 |
Parent::first(i); |
595 | 596 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
596 | 597 |
} |
597 | 598 |
|
598 | 599 |
void firstIn(Arc& i, const Node& n) const { |
599 | 600 |
Parent::firstIn(i, n); |
600 | 601 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
601 | 602 |
} |
602 | 603 |
|
603 | 604 |
void firstOut(Arc& i, const Node& n) const { |
604 | 605 |
Parent::firstOut(i, n); |
605 | 606 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
606 | 607 |
} |
607 | 608 |
|
608 | 609 |
void next(Node& i) const { |
609 | 610 |
Parent::next(i); |
610 | 611 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
611 | 612 |
} |
612 | 613 |
void next(Arc& i) const { |
613 | 614 |
Parent::next(i); |
614 | 615 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
615 | 616 |
} |
616 | 617 |
void nextIn(Arc& i) const { |
617 | 618 |
Parent::nextIn(i); |
618 | 619 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
619 | 620 |
} |
620 | 621 |
|
621 | 622 |
void nextOut(Arc& i) const { |
622 | 623 |
Parent::nextOut(i); |
623 | 624 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
624 | 625 |
} |
625 | 626 |
|
626 | 627 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
627 | 628 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
628 | 629 |
|
629 | 630 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
630 | 631 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
631 | 632 |
|
632 | 633 |
typedef False NodeNumTag; |
633 | 634 |
typedef False ArcNumTag; |
634 | 635 |
|
635 | 636 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
636 | 637 |
Arc findArc(const Node& source, const Node& target, |
637 | 638 |
const Arc& prev = INVALID) const { |
638 | 639 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
639 | 640 |
return INVALID; |
640 | 641 |
} |
641 | 642 |
Arc arc = Parent::findArc(source, target, prev); |
642 | 643 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
643 | 644 |
arc = Parent::findArc(source, target, arc); |
644 | 645 |
} |
645 | 646 |
return arc; |
646 | 647 |
} |
647 | 648 |
|
648 | 649 |
template <typename V> |
649 | 650 |
class NodeMap |
650 | 651 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
651 | 652 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
652 | 653 |
public: |
653 | 654 |
typedef V Value; |
654 | 655 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
655 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
656 | 657 |
|
657 | 658 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
658 | 659 |
: Parent(adaptor) {} |
659 | 660 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
660 | 661 |
: Parent(adaptor, value) {} |
661 | 662 |
|
662 | 663 |
private: |
663 | 664 |
NodeMap& operator=(const NodeMap& cmap) { |
664 | 665 |
return operator=<NodeMap>(cmap); |
665 | 666 |
} |
666 | 667 |
|
667 | 668 |
template <typename CMap> |
668 | 669 |
NodeMap& operator=(const CMap& cmap) { |
669 | 670 |
Parent::operator=(cmap); |
670 | 671 |
return *this; |
671 | 672 |
} |
672 | 673 |
}; |
673 | 674 |
|
674 | 675 |
template <typename V> |
675 | 676 |
class ArcMap |
676 | 677 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
677 | 678 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
678 | 679 |
public: |
679 | 680 |
typedef V Value; |
680 | 681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
681 | 682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
682 | 683 |
|
683 | 684 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
684 | 685 |
: Parent(adaptor) {} |
685 | 686 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
686 | 687 |
: Parent(adaptor, value) {} |
687 | 688 |
|
688 | 689 |
private: |
689 | 690 |
ArcMap& operator=(const ArcMap& cmap) { |
690 | 691 |
return operator=<ArcMap>(cmap); |
691 | 692 |
} |
692 | 693 |
|
693 | 694 |
template <typename CMap> |
694 | 695 |
ArcMap& operator=(const CMap& cmap) { |
695 | 696 |
Parent::operator=(cmap); |
696 | 697 |
return *this; |
697 | 698 |
} |
698 | 699 |
}; |
699 | 700 |
|
700 | 701 |
}; |
701 | 702 |
|
702 | 703 |
/// \ingroup graph_adaptors |
703 | 704 |
/// |
704 | 705 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
705 | 706 |
/// |
706 | 707 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
707 | 708 |
/// A \c bool node map and a \c bool arc map must be specified, which |
708 | 709 |
/// define the filters for nodes and arcs. |
709 | 710 |
/// Only the nodes and arcs with \c true filter value are |
710 | 711 |
/// shown in the subdigraph. The arcs that are incident to hidden |
711 | 712 |
/// nodes are also filtered out. |
712 | 713 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
713 | 714 |
/// |
714 | 715 |
/// The adapted digraph can also be modified through this adaptor |
715 | 716 |
/// by adding or removing nodes or arcs, unless the \c GR template |
716 | 717 |
/// parameter is set to be \c const. |
717 | 718 |
/// |
718 | 719 |
/// \tparam DGR The type of the adapted digraph. |
719 | 720 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
720 | 721 |
/// It can also be specified to be \c const. |
721 | 722 |
/// \tparam NF The type of the node filter map. |
722 | 723 |
/// It must be a \c bool (or convertible) node map of the |
723 | 724 |
/// adapted digraph. The default type is |
724 | 725 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
725 | 726 |
/// \tparam AF The type of the arc filter map. |
726 | 727 |
/// It must be \c bool (or convertible) arc map of the |
727 | 728 |
/// adapted digraph. The default type is |
728 | 729 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
729 | 730 |
/// |
730 | 731 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
731 | 732 |
/// digraph are convertible to each other. |
732 | 733 |
/// |
733 | 734 |
/// \see FilterNodes |
734 | 735 |
/// \see FilterArcs |
735 | 736 |
#ifdef DOXYGEN |
736 | 737 |
template<typename DGR, typename NF, typename AF> |
737 | 738 |
class SubDigraph { |
738 | 739 |
#else |
739 | 740 |
template<typename DGR, |
740 | 741 |
typename NF = typename DGR::template NodeMap<bool>, |
741 | 742 |
typename AF = typename DGR::template ArcMap<bool> > |
742 | 743 |
class SubDigraph : |
743 | 744 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > { |
744 | 745 |
#endif |
745 | 746 |
public: |
746 | 747 |
/// The type of the adapted digraph. |
747 | 748 |
typedef DGR Digraph; |
748 | 749 |
/// The type of the node filter map. |
749 | 750 |
typedef NF NodeFilterMap; |
750 | 751 |
/// The type of the arc filter map. |
751 | 752 |
typedef AF ArcFilterMap; |
752 | 753 |
|
753 | 754 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
754 | 755 |
Parent; |
755 | 756 |
|
756 | 757 |
typedef typename Parent::Node Node; |
757 | 758 |
typedef typename Parent::Arc Arc; |
758 | 759 |
|
759 | 760 |
protected: |
760 | 761 |
SubDigraph() { } |
761 | 762 |
public: |
762 | 763 |
|
763 | 764 |
/// \brief Constructor |
764 | 765 |
/// |
765 | 766 |
/// Creates a subdigraph for the given digraph with the |
766 | 767 |
/// given node and arc filter maps. |
767 | 768 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { |
768 | 769 |
Parent::initialize(digraph, node_filter, arc_filter); |
769 | 770 |
} |
770 | 771 |
|
771 | 772 |
/// \brief Sets the status of the given node |
772 | 773 |
/// |
773 | 774 |
/// This function sets the status of the given node. |
774 | 775 |
/// It is done by simply setting the assigned value of \c n |
775 | 776 |
/// to \c v in the node filter map. |
776 | 777 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
777 | 778 |
|
778 | 779 |
/// \brief Sets the status of the given arc |
779 | 780 |
/// |
780 | 781 |
/// This function sets the status of the given arc. |
781 | 782 |
/// It is done by simply setting the assigned value of \c a |
782 | 783 |
/// to \c v in the arc filter map. |
783 | 784 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
784 | 785 |
|
785 | 786 |
/// \brief Returns the status of the given node |
786 | 787 |
/// |
787 | 788 |
/// This function returns the status of the given node. |
788 | 789 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
789 | 790 |
bool status(const Node& n) const { return Parent::status(n); } |
790 | 791 |
|
791 | 792 |
/// \brief Returns the status of the given arc |
792 | 793 |
/// |
793 | 794 |
/// This function returns the status of the given arc. |
794 | 795 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
795 | 796 |
bool status(const Arc& a) const { return Parent::status(a); } |
796 | 797 |
|
797 | 798 |
/// \brief Disables the given node |
798 | 799 |
/// |
799 | 800 |
/// This function disables the given node in the subdigraph, |
800 | 801 |
/// so the iteration jumps over it. |
801 | 802 |
/// It is the same as \ref status() "status(n, false)". |
802 | 803 |
void disable(const Node& n) const { Parent::status(n, false); } |
803 | 804 |
|
804 | 805 |
/// \brief Disables the given arc |
805 | 806 |
/// |
806 | 807 |
/// This function disables the given arc in the subdigraph, |
807 | 808 |
/// so the iteration jumps over it. |
808 | 809 |
/// It is the same as \ref status() "status(a, false)". |
809 | 810 |
void disable(const Arc& a) const { Parent::status(a, false); } |
810 | 811 |
|
811 | 812 |
/// \brief Enables the given node |
812 | 813 |
/// |
813 | 814 |
/// This function enables the given node in the subdigraph. |
814 | 815 |
/// It is the same as \ref status() "status(n, true)". |
815 | 816 |
void enable(const Node& n) const { Parent::status(n, true); } |
816 | 817 |
|
817 | 818 |
/// \brief Enables the given arc |
818 | 819 |
/// |
819 | 820 |
/// This function enables the given arc in the subdigraph. |
820 | 821 |
/// It is the same as \ref status() "status(a, true)". |
821 | 822 |
void enable(const Arc& a) const { Parent::status(a, true); } |
822 | 823 |
|
823 | 824 |
}; |
824 | 825 |
|
825 | 826 |
/// \brief Returns a read-only SubDigraph adaptor |
826 | 827 |
/// |
827 | 828 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
828 | 829 |
/// \ingroup graph_adaptors |
829 | 830 |
/// \relates SubDigraph |
830 | 831 |
template<typename DGR, typename NF, typename AF> |
831 | 832 |
SubDigraph<const DGR, NF, AF> |
832 | 833 |
subDigraph(const DGR& digraph, |
833 | 834 |
NF& node_filter, AF& arc_filter) { |
834 | 835 |
return SubDigraph<const DGR, NF, AF> |
835 | 836 |
(digraph, node_filter, arc_filter); |
836 | 837 |
} |
837 | 838 |
|
838 | 839 |
template<typename DGR, typename NF, typename AF> |
839 | 840 |
SubDigraph<const DGR, const NF, AF> |
840 | 841 |
subDigraph(const DGR& digraph, |
841 | 842 |
const NF& node_filter, AF& arc_filter) { |
842 | 843 |
return SubDigraph<const DGR, const NF, AF> |
843 | 844 |
(digraph, node_filter, arc_filter); |
844 | 845 |
} |
845 | 846 |
|
846 | 847 |
template<typename DGR, typename NF, typename AF> |
847 | 848 |
SubDigraph<const DGR, NF, const AF> |
848 | 849 |
subDigraph(const DGR& digraph, |
849 | 850 |
NF& node_filter, const AF& arc_filter) { |
850 | 851 |
return SubDigraph<const DGR, NF, const AF> |
851 | 852 |
(digraph, node_filter, arc_filter); |
852 | 853 |
} |
853 | 854 |
|
854 | 855 |
template<typename DGR, typename NF, typename AF> |
855 | 856 |
SubDigraph<const DGR, const NF, const AF> |
856 | 857 |
subDigraph(const DGR& digraph, |
857 | 858 |
const NF& node_filter, const AF& arc_filter) { |
858 | 859 |
return SubDigraph<const DGR, const NF, const AF> |
859 | 860 |
(digraph, node_filter, arc_filter); |
860 | 861 |
} |
861 | 862 |
|
862 | 863 |
|
863 | 864 |
template <typename GR, typename NF, typename EF, bool ch = true> |
864 | 865 |
class SubGraphBase : public GraphAdaptorBase<GR> { |
865 | 866 |
public: |
866 | 867 |
typedef GR Graph; |
867 | 868 |
typedef NF NodeFilterMap; |
868 | 869 |
typedef EF EdgeFilterMap; |
869 | 870 |
|
870 | 871 |
typedef SubGraphBase Adaptor; |
871 | 872 |
typedef GraphAdaptorBase<GR> Parent; |
872 | 873 |
protected: |
873 | 874 |
|
874 | 875 |
NF* _node_filter; |
875 | 876 |
EF* _edge_filter; |
876 | 877 |
|
877 | 878 |
SubGraphBase() |
878 | 879 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
879 | 880 |
|
880 | 881 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
881 | 882 |
Parent::initialize(graph); |
882 | 883 |
_node_filter = &node_filter; |
883 | 884 |
_edge_filter = &edge_filter; |
884 | 885 |
} |
885 | 886 |
|
886 | 887 |
public: |
887 | 888 |
|
888 | 889 |
typedef typename Parent::Node Node; |
889 | 890 |
typedef typename Parent::Arc Arc; |
890 | 891 |
typedef typename Parent::Edge Edge; |
891 | 892 |
|
892 | 893 |
void first(Node& i) const { |
893 | 894 |
Parent::first(i); |
894 | 895 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
895 | 896 |
} |
896 | 897 |
|
897 | 898 |
void first(Arc& i) const { |
898 | 899 |
Parent::first(i); |
899 | 900 |
while (i!=INVALID && (!(*_edge_filter)[i] |
900 | 901 |
|| !(*_node_filter)[Parent::source(i)] |
901 | 902 |
|| !(*_node_filter)[Parent::target(i)])) |
902 | 903 |
Parent::next(i); |
903 | 904 |
} |
904 | 905 |
|
905 | 906 |
void first(Edge& i) const { |
906 | 907 |
Parent::first(i); |
907 | 908 |
while (i!=INVALID && (!(*_edge_filter)[i] |
908 | 909 |
|| !(*_node_filter)[Parent::u(i)] |
909 | 910 |
|| !(*_node_filter)[Parent::v(i)])) |
910 | 911 |
Parent::next(i); |
911 | 912 |
} |
912 | 913 |
|
913 | 914 |
void firstIn(Arc& i, const Node& n) const { |
914 | 915 |
Parent::firstIn(i, n); |
915 | 916 |
while (i!=INVALID && (!(*_edge_filter)[i] |
916 | 917 |
|| !(*_node_filter)[Parent::source(i)])) |
917 | 918 |
Parent::nextIn(i); |
918 | 919 |
} |
919 | 920 |
|
920 | 921 |
void firstOut(Arc& i, const Node& n) const { |
921 | 922 |
Parent::firstOut(i, n); |
922 | 923 |
while (i!=INVALID && (!(*_edge_filter)[i] |
923 | 924 |
|| !(*_node_filter)[Parent::target(i)])) |
924 | 925 |
Parent::nextOut(i); |
925 | 926 |
} |
926 | 927 |
|
927 | 928 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
928 | 929 |
Parent::firstInc(i, d, n); |
929 | 930 |
while (i!=INVALID && (!(*_edge_filter)[i] |
930 | 931 |
|| !(*_node_filter)[Parent::u(i)] |
931 | 932 |
|| !(*_node_filter)[Parent::v(i)])) |
932 | 933 |
Parent::nextInc(i, d); |
933 | 934 |
} |
934 | 935 |
|
935 | 936 |
void next(Node& i) const { |
936 | 937 |
Parent::next(i); |
937 | 938 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
938 | 939 |
} |
939 | 940 |
|
940 | 941 |
void next(Arc& i) const { |
941 | 942 |
Parent::next(i); |
942 | 943 |
while (i!=INVALID && (!(*_edge_filter)[i] |
943 | 944 |
|| !(*_node_filter)[Parent::source(i)] |
944 | 945 |
|| !(*_node_filter)[Parent::target(i)])) |
945 | 946 |
Parent::next(i); |
946 | 947 |
} |
947 | 948 |
|
948 | 949 |
void next(Edge& i) const { |
949 | 950 |
Parent::next(i); |
950 | 951 |
while (i!=INVALID && (!(*_edge_filter)[i] |
951 | 952 |
|| !(*_node_filter)[Parent::u(i)] |
952 | 953 |
|| !(*_node_filter)[Parent::v(i)])) |
953 | 954 |
Parent::next(i); |
954 | 955 |
} |
955 | 956 |
|
956 | 957 |
void nextIn(Arc& i) const { |
957 | 958 |
Parent::nextIn(i); |
958 | 959 |
while (i!=INVALID && (!(*_edge_filter)[i] |
959 | 960 |
|| !(*_node_filter)[Parent::source(i)])) |
960 | 961 |
Parent::nextIn(i); |
961 | 962 |
} |
962 | 963 |
|
963 | 964 |
void nextOut(Arc& i) const { |
964 | 965 |
Parent::nextOut(i); |
965 | 966 |
while (i!=INVALID && (!(*_edge_filter)[i] |
966 | 967 |
|| !(*_node_filter)[Parent::target(i)])) |
967 | 968 |
Parent::nextOut(i); |
968 | 969 |
} |
969 | 970 |
|
970 | 971 |
void nextInc(Edge& i, bool& d) const { |
971 | 972 |
Parent::nextInc(i, d); |
972 | 973 |
while (i!=INVALID && (!(*_edge_filter)[i] |
973 | 974 |
|| !(*_node_filter)[Parent::u(i)] |
974 | 975 |
|| !(*_node_filter)[Parent::v(i)])) |
975 | 976 |
Parent::nextInc(i, d); |
976 | 977 |
} |
977 | 978 |
|
978 | 979 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
979 | 980 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
980 | 981 |
|
981 | 982 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
982 | 983 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
983 | 984 |
|
984 | 985 |
typedef False NodeNumTag; |
985 | 986 |
typedef False ArcNumTag; |
986 | 987 |
typedef False EdgeNumTag; |
987 | 988 |
|
988 | 989 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
989 | 990 |
Arc findArc(const Node& u, const Node& v, |
990 | 991 |
const Arc& prev = INVALID) const { |
991 | 992 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
992 | 993 |
return INVALID; |
993 | 994 |
} |
994 | 995 |
Arc arc = Parent::findArc(u, v, prev); |
995 | 996 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
996 | 997 |
arc = Parent::findArc(u, v, arc); |
997 | 998 |
} |
998 | 999 |
return arc; |
999 | 1000 |
} |
1000 | 1001 |
|
1001 | 1002 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1002 | 1003 |
Edge findEdge(const Node& u, const Node& v, |
1003 | 1004 |
const Edge& prev = INVALID) const { |
1004 | 1005 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1005 | 1006 |
return INVALID; |
1006 | 1007 |
} |
1007 | 1008 |
Edge edge = Parent::findEdge(u, v, prev); |
1008 | 1009 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1009 | 1010 |
edge = Parent::findEdge(u, v, edge); |
1010 | 1011 |
} |
1011 | 1012 |
return edge; |
1012 | 1013 |
} |
1013 | 1014 |
|
1014 | 1015 |
template <typename V> |
1015 | 1016 |
class NodeMap |
1016 | 1017 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1017 | 1018 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1018 | 1019 |
public: |
1019 | 1020 |
typedef V Value; |
1020 | 1021 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1021 | 1022 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1022 | 1023 |
|
1023 | 1024 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1024 | 1025 |
: Parent(adaptor) {} |
1025 | 1026 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1026 | 1027 |
: Parent(adaptor, value) {} |
1027 | 1028 |
|
1028 | 1029 |
private: |
1029 | 1030 |
NodeMap& operator=(const NodeMap& cmap) { |
1030 | 1031 |
return operator=<NodeMap>(cmap); |
1031 | 1032 |
} |
1032 | 1033 |
|
1033 | 1034 |
template <typename CMap> |
1034 | 1035 |
NodeMap& operator=(const CMap& cmap) { |
1035 | 1036 |
Parent::operator=(cmap); |
1036 | 1037 |
return *this; |
1037 | 1038 |
} |
1038 | 1039 |
}; |
1039 | 1040 |
|
1040 | 1041 |
template <typename V> |
1041 | 1042 |
class ArcMap |
1042 | 1043 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1043 | 1044 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1044 | 1045 |
public: |
1045 | 1046 |
typedef V Value; |
1046 | 1047 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1047 | 1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1048 | 1049 |
|
1049 | 1050 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1050 | 1051 |
: Parent(adaptor) {} |
1051 | 1052 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1052 | 1053 |
: Parent(adaptor, value) {} |
1053 | 1054 |
|
1054 | 1055 |
private: |
1055 | 1056 |
ArcMap& operator=(const ArcMap& cmap) { |
1056 | 1057 |
return operator=<ArcMap>(cmap); |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
21 | 21 |
|
22 |
#include <lemon/core.h> |
|
22 | 23 |
#include <lemon/error.h> |
23 | 24 |
#include <lemon/bits/default_map.h> |
25 |
#include <lemon/bits/map_extender.h> |
|
24 | 26 |
|
25 | 27 |
///\ingroup digraphbits |
26 | 28 |
///\file |
27 | 29 |
///\brief Extenders for the arc set types |
28 | 30 |
namespace lemon { |
29 | 31 |
|
30 | 32 |
/// \ingroup digraphbits |
31 | 33 |
/// |
32 | 34 |
/// \brief Extender for the ArcSets |
33 | 35 |
template <typename Base> |
34 | 36 |
class ArcSetExtender : public Base { |
35 | 37 |
public: |
36 | 38 |
|
37 | 39 |
typedef Base Parent; |
38 | 40 |
typedef ArcSetExtender Digraph; |
39 | 41 |
|
40 | 42 |
// Base extensions |
41 | 43 |
|
42 | 44 |
typedef typename Parent::Node Node; |
43 | 45 |
typedef typename Parent::Arc Arc; |
44 | 46 |
|
45 | 47 |
int maxId(Node) const { |
46 | 48 |
return Parent::maxNodeId(); |
47 | 49 |
} |
48 | 50 |
|
49 | 51 |
int maxId(Arc) const { |
50 | 52 |
return Parent::maxArcId(); |
51 | 53 |
} |
52 | 54 |
|
53 | 55 |
Node fromId(int id, Node) const { |
54 | 56 |
return Parent::nodeFromId(id); |
55 | 57 |
} |
56 | 58 |
|
57 | 59 |
Arc fromId(int id, Arc) const { |
58 | 60 |
return Parent::arcFromId(id); |
59 | 61 |
} |
60 | 62 |
|
61 | 63 |
Node oppositeNode(const Node &n, const Arc &e) const { |
62 | 64 |
if (n == Parent::source(e)) |
63 | 65 |
return Parent::target(e); |
64 | 66 |
else if(n==Parent::target(e)) |
65 | 67 |
return Parent::source(e); |
66 | 68 |
else |
67 | 69 |
return INVALID; |
68 | 70 |
} |
69 | 71 |
|
70 | 72 |
|
71 | 73 |
// Alteration notifier extensions |
72 | 74 |
|
73 | 75 |
/// The arc observer registry. |
74 | 76 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
75 | 77 |
|
76 | 78 |
protected: |
77 | 79 |
|
78 | 80 |
mutable ArcNotifier arc_notifier; |
79 | 81 |
|
80 | 82 |
public: |
81 | 83 |
|
82 | 84 |
using Parent::notifier; |
83 | 85 |
|
84 | 86 |
/// \brief Gives back the arc alteration notifier. |
85 | 87 |
/// |
86 | 88 |
/// Gives back the arc alteration notifier. |
87 | 89 |
ArcNotifier& notifier(Arc) const { |
88 | 90 |
return arc_notifier; |
89 | 91 |
} |
90 | 92 |
|
91 | 93 |
// Iterable extensions |
92 | 94 |
|
93 | 95 |
class NodeIt : public Node { |
94 | 96 |
const Digraph* digraph; |
95 | 97 |
public: |
96 | 98 |
|
97 | 99 |
NodeIt() {} |
98 | 100 |
|
99 | 101 |
NodeIt(Invalid i) : Node(i) { } |
100 | 102 |
|
101 | 103 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
102 | 104 |
_graph.first(static_cast<Node&>(*this)); |
103 | 105 |
} |
104 | 106 |
|
105 | 107 |
NodeIt(const Digraph& _graph, const Node& node) |
106 | 108 |
: Node(node), digraph(&_graph) {} |
107 | 109 |
|
108 | 110 |
NodeIt& operator++() { |
109 | 111 |
digraph->next(*this); |
110 | 112 |
return *this; |
111 | 113 |
} |
112 | 114 |
|
113 | 115 |
}; |
114 | 116 |
|
115 | 117 |
|
116 | 118 |
class ArcIt : public Arc { |
117 | 119 |
const Digraph* digraph; |
118 | 120 |
public: |
119 | 121 |
|
120 | 122 |
ArcIt() { } |
121 | 123 |
|
122 | 124 |
ArcIt(Invalid i) : Arc(i) { } |
123 | 125 |
|
124 | 126 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
125 | 127 |
_graph.first(static_cast<Arc&>(*this)); |
126 | 128 |
} |
127 | 129 |
|
128 | 130 |
ArcIt(const Digraph& _graph, const Arc& e) : |
129 | 131 |
Arc(e), digraph(&_graph) { } |
130 | 132 |
|
131 | 133 |
ArcIt& operator++() { |
132 | 134 |
digraph->next(*this); |
133 | 135 |
return *this; |
134 | 136 |
} |
135 | 137 |
|
136 | 138 |
}; |
137 | 139 |
|
138 | 140 |
|
139 | 141 |
class OutArcIt : public Arc { |
140 | 142 |
const Digraph* digraph; |
141 | 143 |
public: |
142 | 144 |
|
143 | 145 |
OutArcIt() { } |
144 | 146 |
|
145 | 147 |
OutArcIt(Invalid i) : Arc(i) { } |
146 | 148 |
|
147 | 149 |
OutArcIt(const Digraph& _graph, const Node& node) |
148 | 150 |
: digraph(&_graph) { |
149 | 151 |
_graph.firstOut(*this, node); |
150 | 152 |
} |
151 | 153 |
|
152 | 154 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
153 | 155 |
: Arc(arc), digraph(&_graph) {} |
154 | 156 |
|
155 | 157 |
OutArcIt& operator++() { |
156 | 158 |
digraph->nextOut(*this); |
157 | 159 |
return *this; |
158 | 160 |
} |
159 | 161 |
|
160 | 162 |
}; |
161 | 163 |
|
162 | 164 |
|
163 | 165 |
class InArcIt : public Arc { |
164 | 166 |
const Digraph* digraph; |
165 | 167 |
public: |
166 | 168 |
|
167 | 169 |
InArcIt() { } |
168 | 170 |
|
169 | 171 |
InArcIt(Invalid i) : Arc(i) { } |
170 | 172 |
|
171 | 173 |
InArcIt(const Digraph& _graph, const Node& node) |
172 | 174 |
: digraph(&_graph) { |
173 | 175 |
_graph.firstIn(*this, node); |
174 | 176 |
} |
175 | 177 |
|
176 | 178 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
177 | 179 |
Arc(arc), digraph(&_graph) {} |
178 | 180 |
|
179 | 181 |
InArcIt& operator++() { |
180 | 182 |
digraph->nextIn(*this); |
181 | 183 |
return *this; |
182 | 184 |
} |
183 | 185 |
|
184 | 186 |
}; |
185 | 187 |
|
186 | 188 |
/// \brief Base node of the iterator |
187 | 189 |
/// |
188 | 190 |
/// Returns the base node (ie. the source in this case) of the iterator |
189 | 191 |
Node baseNode(const OutArcIt &e) const { |
190 | 192 |
return Parent::source(static_cast<const Arc&>(e)); |
191 | 193 |
} |
192 | 194 |
/// \brief Running node of the iterator |
193 | 195 |
/// |
194 | 196 |
/// Returns the running node (ie. the target in this case) of the |
195 | 197 |
/// iterator |
196 | 198 |
Node runningNode(const OutArcIt &e) const { |
197 | 199 |
return Parent::target(static_cast<const Arc&>(e)); |
198 | 200 |
} |
199 | 201 |
|
200 | 202 |
/// \brief Base node of the iterator |
201 | 203 |
/// |
202 | 204 |
/// Returns the base node (ie. the target in this case) of the iterator |
203 | 205 |
Node baseNode(const InArcIt &e) const { |
204 | 206 |
return Parent::target(static_cast<const Arc&>(e)); |
205 | 207 |
} |
206 | 208 |
/// \brief Running node of the iterator |
207 | 209 |
/// |
208 | 210 |
/// Returns the running node (ie. the source in this case) of the |
209 | 211 |
/// iterator |
210 | 212 |
Node runningNode(const InArcIt &e) const { |
211 | 213 |
return Parent::source(static_cast<const Arc&>(e)); |
212 | 214 |
} |
213 | 215 |
|
214 | 216 |
using Parent::first; |
215 | 217 |
|
216 | 218 |
// Mappable extension |
217 | 219 |
|
218 | 220 |
template <typename _Value> |
219 | 221 |
class ArcMap |
220 | 222 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
221 | 223 |
public: |
222 | 224 |
typedef ArcSetExtender Digraph; |
223 | 225 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
224 | 226 |
|
225 | 227 |
explicit ArcMap(const Digraph& _g) |
226 | 228 |
: Parent(_g) {} |
227 | 229 |
ArcMap(const Digraph& _g, const _Value& _v) |
228 | 230 |
: Parent(_g, _v) {} |
229 | 231 |
|
230 | 232 |
ArcMap& operator=(const ArcMap& cmap) { |
231 | 233 |
return operator=<ArcMap>(cmap); |
232 | 234 |
} |
233 | 235 |
|
234 | 236 |
template <typename CMap> |
235 | 237 |
ArcMap& operator=(const CMap& cmap) { |
236 | 238 |
Parent::operator=(cmap); |
237 | 239 |
return *this; |
238 | 240 |
} |
239 | 241 |
|
240 | 242 |
}; |
241 | 243 |
|
242 | 244 |
|
243 | 245 |
// Alteration extension |
244 | 246 |
|
245 | 247 |
Arc addArc(const Node& from, const Node& to) { |
246 | 248 |
Arc arc = Parent::addArc(from, to); |
247 | 249 |
notifier(Arc()).add(arc); |
248 | 250 |
return arc; |
249 | 251 |
} |
250 | 252 |
|
251 | 253 |
void clear() { |
252 | 254 |
notifier(Arc()).clear(); |
253 | 255 |
Parent::clear(); |
254 | 256 |
} |
255 | 257 |
|
256 | 258 |
void erase(const Arc& arc) { |
257 | 259 |
notifier(Arc()).erase(arc); |
258 | 260 |
Parent::erase(arc); |
259 | 261 |
} |
260 | 262 |
|
261 | 263 |
ArcSetExtender() { |
262 | 264 |
arc_notifier.setContainer(*this); |
263 | 265 |
} |
264 | 266 |
|
265 | 267 |
~ArcSetExtender() { |
266 | 268 |
arc_notifier.clear(); |
267 | 269 |
} |
268 | 270 |
|
269 | 271 |
}; |
270 | 272 |
|
271 | 273 |
|
272 | 274 |
/// \ingroup digraphbits |
273 | 275 |
/// |
274 | 276 |
/// \brief Extender for the EdgeSets |
275 | 277 |
template <typename Base> |
276 | 278 |
class EdgeSetExtender : public Base { |
277 | 279 |
|
278 | 280 |
public: |
279 | 281 |
|
280 | 282 |
typedef Base Parent; |
281 | 283 |
typedef EdgeSetExtender Digraph; |
282 | 284 |
|
283 | 285 |
typedef typename Parent::Node Node; |
284 | 286 |
typedef typename Parent::Arc Arc; |
285 | 287 |
typedef typename Parent::Edge Edge; |
286 | 288 |
|
287 | 289 |
|
288 | 290 |
int maxId(Node) const { |
289 | 291 |
return Parent::maxNodeId(); |
290 | 292 |
} |
291 | 293 |
|
292 | 294 |
int maxId(Arc) const { |
293 | 295 |
return Parent::maxArcId(); |
294 | 296 |
} |
295 | 297 |
|
296 | 298 |
int maxId(Edge) const { |
297 | 299 |
return Parent::maxEdgeId(); |
298 | 300 |
} |
299 | 301 |
|
300 | 302 |
Node fromId(int id, Node) const { |
301 | 303 |
return Parent::nodeFromId(id); |
302 | 304 |
} |
303 | 305 |
|
304 | 306 |
Arc fromId(int id, Arc) const { |
305 | 307 |
return Parent::arcFromId(id); |
306 | 308 |
} |
307 | 309 |
|
308 | 310 |
Edge fromId(int id, Edge) const { |
309 | 311 |
return Parent::edgeFromId(id); |
310 | 312 |
} |
311 | 313 |
|
312 | 314 |
Node oppositeNode(const Node &n, const Edge &e) const { |
313 | 315 |
if( n == Parent::u(e)) |
314 | 316 |
return Parent::v(e); |
315 | 317 |
else if( n == Parent::v(e)) |
316 | 318 |
return Parent::u(e); |
317 | 319 |
else |
318 | 320 |
return INVALID; |
319 | 321 |
} |
320 | 322 |
|
321 | 323 |
Arc oppositeArc(const Arc &e) const { |
322 | 324 |
return Parent::direct(e, !Parent::direction(e)); |
323 | 325 |
} |
324 | 326 |
|
325 | 327 |
using Parent::direct; |
326 | 328 |
Arc direct(const Edge &e, const Node &s) const { |
327 | 329 |
return Parent::direct(e, Parent::u(e) == s); |
328 | 330 |
} |
329 | 331 |
|
330 | 332 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
331 | 333 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
332 | 334 |
|
333 | 335 |
|
334 | 336 |
protected: |
335 | 337 |
|
336 | 338 |
mutable ArcNotifier arc_notifier; |
337 | 339 |
mutable EdgeNotifier edge_notifier; |
338 | 340 |
|
339 | 341 |
public: |
340 | 342 |
|
341 | 343 |
using Parent::notifier; |
342 | 344 |
|
343 | 345 |
ArcNotifier& notifier(Arc) const { |
344 | 346 |
return arc_notifier; |
345 | 347 |
} |
346 | 348 |
|
347 | 349 |
EdgeNotifier& notifier(Edge) const { |
348 | 350 |
return edge_notifier; |
349 | 351 |
} |
350 | 352 |
|
351 | 353 |
|
352 | 354 |
class NodeIt : public Node { |
353 | 355 |
const Digraph* digraph; |
354 | 356 |
public: |
355 | 357 |
|
356 | 358 |
NodeIt() {} |
357 | 359 |
|
358 | 360 |
NodeIt(Invalid i) : Node(i) { } |
359 | 361 |
|
360 | 362 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
361 | 363 |
_graph.first(static_cast<Node&>(*this)); |
362 | 364 |
} |
363 | 365 |
|
364 | 366 |
NodeIt(const Digraph& _graph, const Node& node) |
365 | 367 |
: Node(node), digraph(&_graph) {} |
366 | 368 |
|
367 | 369 |
NodeIt& operator++() { |
368 | 370 |
digraph->next(*this); |
369 | 371 |
return *this; |
370 | 372 |
} |
371 | 373 |
|
372 | 374 |
}; |
373 | 375 |
|
374 | 376 |
|
375 | 377 |
class ArcIt : public Arc { |
376 | 378 |
const Digraph* digraph; |
377 | 379 |
public: |
378 | 380 |
|
379 | 381 |
ArcIt() { } |
380 | 382 |
|
381 | 383 |
ArcIt(Invalid i) : Arc(i) { } |
382 | 384 |
|
383 | 385 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
384 | 386 |
_graph.first(static_cast<Arc&>(*this)); |
385 | 387 |
} |
386 | 388 |
|
387 | 389 |
ArcIt(const Digraph& _graph, const Arc& e) : |
388 | 390 |
Arc(e), digraph(&_graph) { } |
389 | 391 |
|
390 | 392 |
ArcIt& operator++() { |
391 | 393 |
digraph->next(*this); |
392 | 394 |
return *this; |
393 | 395 |
} |
394 | 396 |
|
395 | 397 |
}; |
396 | 398 |
|
397 | 399 |
|
398 | 400 |
class OutArcIt : public Arc { |
399 | 401 |
const Digraph* digraph; |
400 | 402 |
public: |
401 | 403 |
|
402 | 404 |
OutArcIt() { } |
403 | 405 |
|
404 | 406 |
OutArcIt(Invalid i) : Arc(i) { } |
405 | 407 |
|
406 | 408 |
OutArcIt(const Digraph& _graph, const Node& node) |
407 | 409 |
: digraph(&_graph) { |
408 | 410 |
_graph.firstOut(*this, node); |
409 | 411 |
} |
410 | 412 |
|
411 | 413 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
412 | 414 |
: Arc(arc), digraph(&_graph) {} |
413 | 415 |
|
414 | 416 |
OutArcIt& operator++() { |
415 | 417 |
digraph->nextOut(*this); |
416 | 418 |
return *this; |
417 | 419 |
} |
418 | 420 |
|
419 | 421 |
}; |
420 | 422 |
|
421 | 423 |
|
422 | 424 |
class InArcIt : public Arc { |
423 | 425 |
const Digraph* digraph; |
424 | 426 |
public: |
425 | 427 |
|
426 | 428 |
InArcIt() { } |
427 | 429 |
|
428 | 430 |
InArcIt(Invalid i) : Arc(i) { } |
429 | 431 |
|
430 | 432 |
InArcIt(const Digraph& _graph, const Node& node) |
431 | 433 |
: digraph(&_graph) { |
432 | 434 |
_graph.firstIn(*this, node); |
433 | 435 |
} |
434 | 436 |
|
435 | 437 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
436 | 438 |
Arc(arc), digraph(&_graph) {} |
437 | 439 |
|
438 | 440 |
InArcIt& operator++() { |
439 | 441 |
digraph->nextIn(*this); |
440 | 442 |
return *this; |
441 | 443 |
} |
442 | 444 |
|
443 | 445 |
}; |
444 | 446 |
|
445 | 447 |
|
446 | 448 |
class EdgeIt : public Parent::Edge { |
447 | 449 |
const Digraph* digraph; |
448 | 450 |
public: |
449 | 451 |
|
450 | 452 |
EdgeIt() { } |
451 | 453 |
|
452 | 454 |
EdgeIt(Invalid i) : Edge(i) { } |
453 | 455 |
|
454 | 456 |
explicit EdgeIt(const Digraph& _graph) : digraph(&_graph) { |
455 | 457 |
_graph.first(static_cast<Edge&>(*this)); |
456 | 458 |
} |
457 | 459 |
|
458 | 460 |
EdgeIt(const Digraph& _graph, const Edge& e) : |
459 | 461 |
Edge(e), digraph(&_graph) { } |
460 | 462 |
|
461 | 463 |
EdgeIt& operator++() { |
462 | 464 |
digraph->next(*this); |
463 | 465 |
return *this; |
464 | 466 |
} |
465 | 467 |
|
466 | 468 |
}; |
467 | 469 |
|
468 | 470 |
class IncEdgeIt : public Parent::Edge { |
469 | 471 |
friend class EdgeSetExtender; |
470 | 472 |
const Digraph* digraph; |
471 | 473 |
bool direction; |
472 | 474 |
public: |
473 | 475 |
|
474 | 476 |
IncEdgeIt() { } |
475 | 477 |
|
476 | 478 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
477 | 479 |
|
478 | 480 |
IncEdgeIt(const Digraph& _graph, const Node &n) : digraph(&_graph) { |
479 | 481 |
_graph.firstInc(*this, direction, n); |
480 | 482 |
} |
481 | 483 |
|
482 | 484 |
IncEdgeIt(const Digraph& _graph, const Edge &ue, const Node &n) |
483 | 485 |
: digraph(&_graph), Edge(ue) { |
484 | 486 |
direction = (_graph.source(ue) == n); |
485 | 487 |
} |
486 | 488 |
|
487 | 489 |
IncEdgeIt& operator++() { |
488 | 490 |
digraph->nextInc(*this, direction); |
489 | 491 |
return *this; |
490 | 492 |
} |
491 | 493 |
}; |
492 | 494 |
|
493 | 495 |
/// \brief Base node of the iterator |
494 | 496 |
/// |
495 | 497 |
/// Returns the base node (ie. the source in this case) of the iterator |
496 | 498 |
Node baseNode(const OutArcIt &e) const { |
497 | 499 |
return Parent::source(static_cast<const Arc&>(e)); |
498 | 500 |
} |
499 | 501 |
/// \brief Running node of the iterator |
500 | 502 |
/// |
501 | 503 |
/// Returns the running node (ie. the target in this case) of the |
502 | 504 |
/// iterator |
503 | 505 |
Node runningNode(const OutArcIt &e) const { |
504 | 506 |
return Parent::target(static_cast<const Arc&>(e)); |
505 | 507 |
} |
506 | 508 |
|
507 | 509 |
/// \brief Base node of the iterator |
508 | 510 |
/// |
509 | 511 |
/// Returns the base node (ie. the target in this case) of the iterator |
510 | 512 |
Node baseNode(const InArcIt &e) const { |
511 | 513 |
return Parent::target(static_cast<const Arc&>(e)); |
512 | 514 |
} |
513 | 515 |
/// \brief Running node of the iterator |
514 | 516 |
/// |
515 | 517 |
/// Returns the running node (ie. the source in this case) of the |
516 | 518 |
/// iterator |
517 | 519 |
Node runningNode(const InArcIt &e) const { |
518 | 520 |
return Parent::source(static_cast<const Arc&>(e)); |
519 | 521 |
} |
520 | 522 |
|
521 | 523 |
/// Base node of the iterator |
522 | 524 |
/// |
523 | 525 |
/// Returns the base node of the iterator |
524 | 526 |
Node baseNode(const IncEdgeIt &e) const { |
525 | 527 |
return e.direction ? u(e) : v(e); |
526 | 528 |
} |
527 | 529 |
/// Running node of the iterator |
528 | 530 |
/// |
529 | 531 |
/// Returns the running node of the iterator |
530 | 532 |
Node runningNode(const IncEdgeIt &e) const { |
531 | 533 |
return e.direction ? v(e) : u(e); |
532 | 534 |
} |
533 | 535 |
|
534 | 536 |
|
535 | 537 |
template <typename _Value> |
536 | 538 |
class ArcMap |
537 | 539 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
538 | 540 |
public: |
539 | 541 |
typedef EdgeSetExtender Digraph; |
540 | 542 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
541 | 543 |
|
542 | 544 |
ArcMap(const Digraph& _g) |
543 | 545 |
: Parent(_g) {} |
544 | 546 |
ArcMap(const Digraph& _g, const _Value& _v) |
545 | 547 |
: Parent(_g, _v) {} |
546 | 548 |
|
547 | 549 |
ArcMap& operator=(const ArcMap& cmap) { |
548 | 550 |
return operator=<ArcMap>(cmap); |
549 | 551 |
} |
550 | 552 |
|
551 | 553 |
template <typename CMap> |
552 | 554 |
ArcMap& operator=(const CMap& cmap) { |
553 | 555 |
Parent::operator=(cmap); |
554 | 556 |
return *this; |
555 | 557 |
} |
556 | 558 |
|
557 | 559 |
}; |
558 | 560 |
|
559 | 561 |
|
560 | 562 |
template <typename _Value> |
561 | 563 |
class EdgeMap |
562 | 564 |
: public MapExtender<DefaultMap<Digraph, Edge, _Value> > { |
563 | 565 |
public: |
564 | 566 |
typedef EdgeSetExtender Digraph; |
565 | 567 |
typedef MapExtender<DefaultMap<Digraph, Edge, _Value> > Parent; |
566 | 568 |
|
567 | 569 |
EdgeMap(const Digraph& _g) |
568 | 570 |
: Parent(_g) {} |
569 | 571 |
|
570 | 572 |
EdgeMap(const Digraph& _g, const _Value& _v) |
571 | 573 |
: Parent(_g, _v) {} |
572 | 574 |
|
573 | 575 |
EdgeMap& operator=(const EdgeMap& cmap) { |
574 | 576 |
return operator=<EdgeMap>(cmap); |
575 | 577 |
} |
576 | 578 |
|
577 | 579 |
template <typename CMap> |
578 | 580 |
EdgeMap& operator=(const CMap& cmap) { |
579 | 581 |
Parent::operator=(cmap); |
580 | 582 |
return *this; |
581 | 583 |
} |
582 | 584 |
|
583 | 585 |
}; |
584 | 586 |
|
585 | 587 |
|
586 | 588 |
// Alteration extension |
587 | 589 |
|
588 | 590 |
Edge addEdge(const Node& from, const Node& to) { |
589 | 591 |
Edge edge = Parent::addEdge(from, to); |
590 | 592 |
notifier(Edge()).add(edge); |
591 | 593 |
std::vector<Arc> arcs; |
592 | 594 |
arcs.push_back(Parent::direct(edge, true)); |
593 | 595 |
arcs.push_back(Parent::direct(edge, false)); |
594 | 596 |
notifier(Arc()).add(arcs); |
595 | 597 |
return edge; |
596 | 598 |
} |
597 | 599 |
|
598 | 600 |
void clear() { |
599 | 601 |
notifier(Arc()).clear(); |
600 | 602 |
notifier(Edge()).clear(); |
601 | 603 |
Parent::clear(); |
602 | 604 |
} |
603 | 605 |
|
604 | 606 |
void erase(const Edge& edge) { |
605 | 607 |
std::vector<Arc> arcs; |
606 | 608 |
arcs.push_back(Parent::direct(edge, true)); |
607 | 609 |
arcs.push_back(Parent::direct(edge, false)); |
608 | 610 |
notifier(Arc()).erase(arcs); |
609 | 611 |
notifier(Edge()).erase(edge); |
610 | 612 |
Parent::erase(edge); |
611 | 613 |
} |
612 | 614 |
|
613 | 615 |
|
614 | 616 |
EdgeSetExtender() { |
615 | 617 |
arc_notifier.setContainer(*this); |
616 | 618 |
edge_notifier.setContainer(*this); |
617 | 619 |
} |
618 | 620 |
|
619 | 621 |
~EdgeSetExtender() { |
620 | 622 |
edge_notifier.clear(); |
621 | 623 |
arc_notifier.clear(); |
622 | 624 |
} |
623 | 625 |
|
624 | 626 |
}; |
625 | 627 |
|
626 | 628 |
} |
627 | 629 |
|
628 | 630 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_PRED_MAP_PATH_H |
20 | 20 |
#define LEMON_BITS_PRED_MAP_PATH_H |
21 | 21 |
|
22 |
#include <lemon/core.h> |
|
23 |
#include <lemon/concept_check.h> |
|
24 |
|
|
22 | 25 |
namespace lemon { |
23 | 26 |
|
24 | 27 |
template <typename _Digraph, typename _PredMap> |
25 | 28 |
class PredMapPath { |
26 | 29 |
public: |
27 | 30 |
typedef True RevPathTag; |
28 | 31 |
|
29 | 32 |
typedef _Digraph Digraph; |
30 | 33 |
typedef typename Digraph::Arc Arc; |
31 | 34 |
typedef _PredMap PredMap; |
32 | 35 |
|
33 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
34 | 37 |
typename Digraph::Node _target) |
35 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {} |
36 | 39 |
|
37 | 40 |
int length() const { |
38 | 41 |
int len = 0; |
39 | 42 |
typename Digraph::Node node = target; |
40 | 43 |
typename Digraph::Arc arc; |
41 | 44 |
while ((arc = predMap[node]) != INVALID) { |
42 | 45 |
node = digraph.source(arc); |
43 | 46 |
++len; |
44 | 47 |
} |
45 | 48 |
return len; |
46 | 49 |
} |
47 | 50 |
|
48 | 51 |
bool empty() const { |
49 | 52 |
return predMap[target] != INVALID; |
50 | 53 |
} |
51 | 54 |
|
52 | 55 |
class RevArcIt { |
53 | 56 |
public: |
54 | 57 |
RevArcIt() {} |
55 | 58 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
56 | 59 |
RevArcIt(const PredMapPath& _path) |
57 | 60 |
: path(&_path), current(_path.target) { |
58 | 61 |
if (path->predMap[current] == INVALID) current = INVALID; |
59 | 62 |
} |
60 | 63 |
|
61 | 64 |
operator const typename Digraph::Arc() const { |
62 | 65 |
return path->predMap[current]; |
63 | 66 |
} |
64 | 67 |
|
65 | 68 |
RevArcIt& operator++() { |
66 | 69 |
current = path->digraph.source(path->predMap[current]); |
67 | 70 |
if (path->predMap[current] == INVALID) current = INVALID; |
68 | 71 |
return *this; |
69 | 72 |
} |
70 | 73 |
|
71 | 74 |
bool operator==(const RevArcIt& e) const { |
72 | 75 |
return current == e.current; |
73 | 76 |
} |
74 | 77 |
|
75 | 78 |
bool operator!=(const RevArcIt& e) const { |
76 | 79 |
return current != e.current; |
77 | 80 |
} |
78 | 81 |
|
79 | 82 |
bool operator<(const RevArcIt& e) const { |
80 | 83 |
return current < e.current; |
81 | 84 |
} |
82 | 85 |
|
83 | 86 |
private: |
84 | 87 |
const PredMapPath* path; |
85 | 88 |
typename Digraph::Node current; |
86 | 89 |
}; |
87 | 90 |
|
88 | 91 |
private: |
89 | 92 |
const Digraph& digraph; |
90 | 93 |
const PredMap& predMap; |
91 | 94 |
typename Digraph::Node target; |
92 | 95 |
}; |
93 | 96 |
|
94 | 97 |
|
95 | 98 |
template <typename _Digraph, typename _PredMatrixMap> |
96 | 99 |
class PredMatrixMapPath { |
97 | 100 |
public: |
98 | 101 |
typedef True RevPathTag; |
99 | 102 |
|
100 | 103 |
typedef _Digraph Digraph; |
101 | 104 |
typedef typename Digraph::Arc Arc; |
102 | 105 |
typedef _PredMatrixMap PredMatrixMap; |
103 | 106 |
|
104 | 107 |
PredMatrixMapPath(const Digraph& _digraph, |
105 | 108 |
const PredMatrixMap& _predMatrixMap, |
106 | 109 |
typename Digraph::Node _source, |
107 | 110 |
typename Digraph::Node _target) |
108 | 111 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
109 | 112 |
source(_source), target(_target) {} |
110 | 113 |
|
111 | 114 |
int length() const { |
112 | 115 |
int len = 0; |
113 | 116 |
typename Digraph::Node node = target; |
114 | 117 |
typename Digraph::Arc arc; |
115 | 118 |
while ((arc = predMatrixMap(source, node)) != INVALID) { |
116 | 119 |
node = digraph.source(arc); |
117 | 120 |
++len; |
118 | 121 |
} |
119 | 122 |
return len; |
120 | 123 |
} |
121 | 124 |
|
122 | 125 |
bool empty() const { |
123 | 126 |
return source != target; |
124 | 127 |
} |
125 | 128 |
|
126 | 129 |
class RevArcIt { |
127 | 130 |
public: |
128 | 131 |
RevArcIt() {} |
129 | 132 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
130 | 133 |
RevArcIt(const PredMatrixMapPath& _path) |
131 | 134 |
: path(&_path), current(_path.target) { |
132 | 135 |
if (path->predMatrixMap(path->source, current) == INVALID) |
133 | 136 |
current = INVALID; |
134 | 137 |
} |
135 | 138 |
|
136 | 139 |
operator const typename Digraph::Arc() const { |
137 | 140 |
return path->predMatrixMap(path->source, current); |
138 | 141 |
} |
139 | 142 |
|
140 | 143 |
RevArcIt& operator++() { |
141 | 144 |
current = |
142 | 145 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
143 | 146 |
if (path->predMatrixMap(path->source, current) == INVALID) |
144 | 147 |
current = INVALID; |
145 | 148 |
return *this; |
146 | 149 |
} |
147 | 150 |
|
148 | 151 |
bool operator==(const RevArcIt& e) const { |
149 | 152 |
return current == e.current; |
150 | 153 |
} |
151 | 154 |
|
152 | 155 |
bool operator!=(const RevArcIt& e) const { |
153 | 156 |
return current != e.current; |
154 | 157 |
} |
155 | 158 |
|
156 | 159 |
bool operator<(const RevArcIt& e) const { |
157 | 160 |
return current < e.current; |
158 | 161 |
} |
159 | 162 |
|
160 | 163 |
private: |
161 | 164 |
const PredMatrixMapPath* path; |
162 | 165 |
typename Digraph::Node current; |
163 | 166 |
}; |
164 | 167 |
|
165 | 168 |
private: |
166 | 169 |
const Digraph& digraph; |
167 | 170 |
const PredMatrixMap& predMatrixMap; |
168 | 171 |
typename Digraph::Node source; |
169 | 172 |
typename Digraph::Node target; |
170 | 173 |
}; |
171 | 174 |
|
172 | 175 |
} |
173 | 176 |
|
174 | 177 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
21 | 21 |
|
22 |
#include <vector> |
|
23 |
|
|
22 | 24 |
namespace lemon { |
23 | 25 |
|
24 | 26 |
namespace _solver_bits { |
25 | 27 |
|
26 | 28 |
class VarIndex { |
27 | 29 |
private: |
28 | 30 |
struct ItemT { |
29 | 31 |
int prev, next; |
30 | 32 |
int index; |
31 | 33 |
}; |
32 | 34 |
std::vector<ItemT> items; |
33 | 35 |
int first_item, last_item, first_free_item; |
34 | 36 |
|
35 | 37 |
std::vector<int> cross; |
36 | 38 |
|
37 | 39 |
public: |
38 | 40 |
|
39 | 41 |
VarIndex() |
40 | 42 |
: first_item(-1), last_item(-1), first_free_item(-1) { |
41 | 43 |
} |
42 | 44 |
|
43 | 45 |
void clear() { |
44 | 46 |
first_item = -1; |
45 | 47 |
first_free_item = -1; |
46 | 48 |
items.clear(); |
47 | 49 |
cross.clear(); |
48 | 50 |
} |
49 | 51 |
|
50 | 52 |
int addIndex(int idx) { |
51 | 53 |
int n; |
52 | 54 |
if (first_free_item == -1) { |
53 | 55 |
n = items.size(); |
54 | 56 |
items.push_back(ItemT()); |
55 | 57 |
} else { |
56 | 58 |
n = first_free_item; |
57 | 59 |
first_free_item = items[n].next; |
58 | 60 |
if (first_free_item != -1) { |
59 | 61 |
items[first_free_item].prev = -1; |
60 | 62 |
} |
61 | 63 |
} |
62 | 64 |
items[n].index = idx; |
63 | 65 |
if (static_cast<int>(cross.size()) <= idx) { |
64 | 66 |
cross.resize(idx + 1, -1); |
65 | 67 |
} |
66 | 68 |
cross[idx] = n; |
67 | 69 |
|
68 | 70 |
items[n].prev = last_item; |
69 | 71 |
items[n].next = -1; |
70 | 72 |
if (last_item != -1) { |
71 | 73 |
items[last_item].next = n; |
72 | 74 |
} else { |
73 | 75 |
first_item = n; |
74 | 76 |
} |
75 | 77 |
last_item = n; |
76 | 78 |
|
77 | 79 |
return n; |
78 | 80 |
} |
79 | 81 |
|
80 | 82 |
int addIndex(int idx, int n) { |
81 | 83 |
while (n >= static_cast<int>(items.size())) { |
82 | 84 |
items.push_back(ItemT()); |
83 | 85 |
items.back().prev = -1; |
84 | 86 |
items.back().next = first_free_item; |
85 | 87 |
if (first_free_item != -1) { |
86 | 88 |
items[first_free_item].prev = items.size() - 1; |
87 | 89 |
} |
88 | 90 |
first_free_item = items.size() - 1; |
89 | 91 |
} |
90 | 92 |
if (items[n].next != -1) { |
91 | 93 |
items[items[n].next].prev = items[n].prev; |
92 | 94 |
} |
93 | 95 |
if (items[n].prev != -1) { |
94 | 96 |
items[items[n].prev].next = items[n].next; |
95 | 97 |
} else { |
96 | 98 |
first_free_item = items[n].next; |
97 | 99 |
} |
98 | 100 |
|
99 | 101 |
items[n].index = idx; |
100 | 102 |
if (static_cast<int>(cross.size()) <= idx) { |
101 | 103 |
cross.resize(idx + 1, -1); |
102 | 104 |
} |
103 | 105 |
cross[idx] = n; |
104 | 106 |
|
105 | 107 |
items[n].prev = last_item; |
106 | 108 |
items[n].next = -1; |
107 | 109 |
if (last_item != -1) { |
108 | 110 |
items[last_item].next = n; |
109 | 111 |
} else { |
110 | 112 |
first_item = n; |
111 | 113 |
} |
112 | 114 |
last_item = n; |
113 | 115 |
|
114 | 116 |
return n; |
115 | 117 |
} |
116 | 118 |
|
117 | 119 |
void eraseIndex(int idx) { |
118 | 120 |
int n = cross[idx]; |
119 | 121 |
|
120 | 122 |
if (items[n].prev != -1) { |
121 | 123 |
items[items[n].prev].next = items[n].next; |
122 | 124 |
} else { |
123 | 125 |
first_item = items[n].next; |
124 | 126 |
} |
125 | 127 |
if (items[n].next != -1) { |
126 | 128 |
items[items[n].next].prev = items[n].prev; |
127 | 129 |
} else { |
128 | 130 |
last_item = items[n].prev; |
129 | 131 |
} |
130 | 132 |
|
131 | 133 |
if (first_free_item != -1) { |
132 | 134 |
items[first_free_item].prev = n; |
133 | 135 |
} |
134 | 136 |
items[n].next = first_free_item; |
135 | 137 |
items[n].prev = -1; |
136 | 138 |
first_free_item = n; |
137 | 139 |
|
138 | 140 |
while (!cross.empty() && cross.back() == -1) { |
139 | 141 |
cross.pop_back(); |
140 | 142 |
} |
141 | 143 |
} |
142 | 144 |
|
143 | 145 |
int maxIndex() const { |
144 | 146 |
return cross.size() - 1; |
145 | 147 |
} |
146 | 148 |
|
147 | 149 |
void shiftIndices(int idx) { |
148 | 150 |
for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) { |
149 | 151 |
cross[i - 1] = cross[i]; |
150 | 152 |
if (cross[i] != -1) { |
151 | 153 |
--items[cross[i]].index; |
152 | 154 |
} |
153 | 155 |
} |
154 | 156 |
cross.back() = -1; |
155 | 157 |
cross.pop_back(); |
156 | 158 |
while (!cross.empty() && cross.back() == -1) { |
157 | 159 |
cross.pop_back(); |
158 | 160 |
} |
159 | 161 |
} |
160 | 162 |
|
161 | 163 |
void relocateIndex(int idx, int jdx) { |
162 | 164 |
cross[idx] = cross[jdx]; |
163 | 165 |
items[cross[jdx]].index = idx; |
164 | 166 |
cross[jdx] = -1; |
165 | 167 |
|
166 | 168 |
while (!cross.empty() && cross.back() == -1) { |
167 | 169 |
cross.pop_back(); |
168 | 170 |
} |
169 | 171 |
} |
170 | 172 |
|
171 | 173 |
int operator[](int idx) const { |
172 | 174 |
return cross[idx]; |
173 | 175 |
} |
174 | 176 |
|
175 | 177 |
int operator()(int fdx) const { |
176 | 178 |
return items[fdx].index; |
177 | 179 |
} |
178 | 180 |
|
179 | 181 |
void firstItem(int& fdx) const { |
180 | 182 |
fdx = first_item; |
181 | 183 |
} |
182 | 184 |
|
183 | 185 |
void nextItem(int& fdx) const { |
184 | 186 |
fdx = items[fdx].next; |
185 | 187 |
} |
186 | 188 |
|
187 | 189 |
}; |
188 | 190 |
} |
189 | 191 |
} |
190 | 192 |
|
191 | 193 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPT_HEAP_H |
24 | 24 |
#define LEMON_CONCEPT_HEAP_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 |
#include <lemon/concept_check.h> |
|
27 | 28 |
|
28 | 29 |
namespace lemon { |
29 | 30 |
|
30 | 31 |
namespace concepts { |
31 | 32 |
|
32 | 33 |
/// \addtogroup concept |
33 | 34 |
/// @{ |
34 | 35 |
|
35 | 36 |
/// \brief The heap concept. |
36 | 37 |
/// |
37 | 38 |
/// Concept class describing the main interface of heaps. |
38 | 39 |
template <typename Priority, typename ItemIntMap> |
39 | 40 |
class Heap { |
40 | 41 |
public: |
41 | 42 |
|
42 | 43 |
/// Type of the items stored in the heap. |
43 | 44 |
typedef typename ItemIntMap::Key Item; |
44 | 45 |
|
45 | 46 |
/// Type of the priorities. |
46 | 47 |
typedef Priority Prio; |
47 | 48 |
|
48 | 49 |
/// \brief Type to represent the states of the items. |
49 | 50 |
/// |
50 | 51 |
/// Each item has a state associated to it. It can be "in heap", |
51 | 52 |
/// "pre heap" or "post heap". The later two are indifferent |
52 | 53 |
/// from the point of view of the heap, but may be useful for |
53 | 54 |
/// the user. |
54 | 55 |
/// |
55 | 56 |
/// The \c ItemIntMap must be initialized in such a way, that it |
56 | 57 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
57 | 58 |
enum State { |
58 | 59 |
IN_HEAP = 0, |
59 | 60 |
PRE_HEAP = -1, |
60 | 61 |
POST_HEAP = -2 |
61 | 62 |
}; |
62 | 63 |
|
63 | 64 |
/// \brief The constructor. |
64 | 65 |
/// |
65 | 66 |
/// The constructor. |
66 | 67 |
/// \param map A map that assigns \c int values to keys of type |
67 | 68 |
/// \c Item. It is used internally by the heap implementations to |
68 | 69 |
/// handle the cross references. The assigned value must be |
69 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
70 | 71 |
explicit Heap(ItemIntMap &map) {} |
71 | 72 |
|
72 | 73 |
/// \brief The number of items stored in the heap. |
73 | 74 |
/// |
74 | 75 |
/// Returns the number of items stored in the heap. |
75 | 76 |
int size() const { return 0; } |
76 | 77 |
|
77 | 78 |
/// \brief Checks if the heap is empty. |
78 | 79 |
/// |
79 | 80 |
/// Returns \c true if the heap is empty. |
80 | 81 |
bool empty() const { return false; } |
81 | 82 |
|
82 | 83 |
/// \brief Makes the heap empty. |
83 | 84 |
/// |
84 | 85 |
/// Makes the heap empty. |
85 | 86 |
void clear(); |
86 | 87 |
|
87 | 88 |
/// \brief Inserts an item into the heap with the given priority. |
88 | 89 |
/// |
89 | 90 |
/// Inserts the given item into the heap with the given priority. |
90 | 91 |
/// \param i The item to insert. |
91 | 92 |
/// \param p The priority of the item. |
92 | 93 |
void push(const Item &i, const Prio &p) {} |
93 | 94 |
|
94 | 95 |
/// \brief Returns the item having minimum priority. |
95 | 96 |
/// |
96 | 97 |
/// Returns the item having minimum priority. |
97 | 98 |
/// \pre The heap must be non-empty. |
98 | 99 |
Item top() const {} |
99 | 100 |
|
100 | 101 |
/// \brief The minimum priority. |
101 | 102 |
/// |
102 | 103 |
/// Returns the minimum priority. |
103 | 104 |
/// \pre The heap must be non-empty. |
104 | 105 |
Prio prio() const {} |
105 | 106 |
|
106 | 107 |
/// \brief Removes the item having minimum priority. |
107 | 108 |
/// |
108 | 109 |
/// Removes the item having minimum priority. |
109 | 110 |
/// \pre The heap must be non-empty. |
110 | 111 |
void pop() {} |
111 | 112 |
|
112 | 113 |
/// \brief Removes an item from the heap. |
113 | 114 |
/// |
114 | 115 |
/// Removes the given item from the heap if it is already stored. |
115 | 116 |
/// \param i The item to delete. |
116 | 117 |
void erase(const Item &i) {} |
117 | 118 |
|
118 | 119 |
/// \brief The priority of an item. |
119 | 120 |
/// |
120 | 121 |
/// Returns the priority of the given item. |
121 | 122 |
/// \pre \c i must be in the heap. |
122 | 123 |
/// \param i The item. |
123 | 124 |
Prio operator[](const Item &i) const {} |
124 | 125 |
|
125 | 126 |
/// \brief Sets the priority of an item or inserts it, if it is |
126 | 127 |
/// not stored in the heap. |
127 | 128 |
/// |
128 | 129 |
/// This method sets the priority of the given item if it is |
129 | 130 |
/// already stored in the heap. |
130 | 131 |
/// Otherwise it inserts the given item with the given priority. |
131 | 132 |
/// |
132 | 133 |
/// \param i The item. |
133 | 134 |
/// \param p The priority. |
134 | 135 |
void set(const Item &i, const Prio &p) {} |
135 | 136 |
|
136 | 137 |
/// \brief Decreases the priority of an item to the given value. |
137 | 138 |
/// |
138 | 139 |
/// Decreases the priority of an item to the given value. |
139 | 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
140 | 141 |
/// \param i The item. |
141 | 142 |
/// \param p The priority. |
142 | 143 |
void decrease(const Item &i, const Prio &p) {} |
143 | 144 |
|
144 | 145 |
/// \brief Increases the priority of an item to the given value. |
145 | 146 |
/// |
146 | 147 |
/// Increases the priority of an item to the given value. |
147 | 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
148 | 149 |
/// \param i The item. |
149 | 150 |
/// \param p The priority. |
150 | 151 |
void increase(const Item &i, const Prio &p) {} |
151 | 152 |
|
152 | 153 |
/// \brief Returns if an item is in, has already been in, or has |
153 | 154 |
/// never been in the heap. |
154 | 155 |
/// |
155 | 156 |
/// This method returns \c PRE_HEAP if the given item has never |
156 | 157 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
157 | 158 |
/// and \c POST_HEAP otherwise. |
158 | 159 |
/// In the latter case it is possible that the item will get back |
159 | 160 |
/// to the heap again. |
160 | 161 |
/// \param i The item. |
161 | 162 |
State state(const Item &i) const {} |
162 | 163 |
|
163 | 164 |
/// \brief Sets the state of an item in the heap. |
164 | 165 |
/// |
165 | 166 |
/// Sets the state of the given item in the heap. It can be used |
166 | 167 |
/// to manually clear the heap when it is important to achive the |
167 | 168 |
/// better time complexity. |
168 | 169 |
/// \param i The item. |
169 | 170 |
/// \param st The state. It should not be \c IN_HEAP. |
170 | 171 |
void state(const Item& i, State st) {} |
171 | 172 |
|
172 | 173 |
|
173 | 174 |
template <typename _Heap> |
174 | 175 |
struct Constraints { |
175 | 176 |
public: |
176 | 177 |
void constraints() { |
177 | 178 |
typedef typename _Heap::Item OwnItem; |
178 | 179 |
typedef typename _Heap::Prio OwnPrio; |
179 | 180 |
typedef typename _Heap::State OwnState; |
180 | 181 |
|
181 | 182 |
Item item; |
182 | 183 |
Prio prio; |
183 | 184 |
item=Item(); |
184 | 185 |
prio=Prio(); |
185 | 186 |
ignore_unused_variable_warning(item); |
186 | 187 |
ignore_unused_variable_warning(prio); |
187 | 188 |
|
188 | 189 |
OwnItem own_item; |
189 | 190 |
OwnPrio own_prio; |
190 | 191 |
OwnState own_state; |
191 | 192 |
own_item=Item(); |
192 | 193 |
own_prio=Prio(); |
193 | 194 |
ignore_unused_variable_warning(own_item); |
194 | 195 |
ignore_unused_variable_warning(own_prio); |
195 | 196 |
ignore_unused_variable_warning(own_state); |
196 | 197 |
|
197 | 198 |
_Heap heap1(map); |
198 | 199 |
_Heap heap2 = heap1; |
199 | 200 |
ignore_unused_variable_warning(heap1); |
200 | 201 |
ignore_unused_variable_warning(heap2); |
201 | 202 |
|
202 | 203 |
int s = heap.size(); |
203 | 204 |
ignore_unused_variable_warning(s); |
204 | 205 |
bool e = heap.empty(); |
205 | 206 |
ignore_unused_variable_warning(e); |
206 | 207 |
|
207 | 208 |
prio = heap.prio(); |
208 | 209 |
item = heap.top(); |
209 | 210 |
prio = heap[item]; |
210 | 211 |
own_prio = heap.prio(); |
211 | 212 |
own_item = heap.top(); |
212 | 213 |
own_prio = heap[own_item]; |
213 | 214 |
|
214 | 215 |
heap.push(item, prio); |
215 | 216 |
heap.push(own_item, own_prio); |
216 | 217 |
heap.pop(); |
217 | 218 |
|
218 | 219 |
heap.set(item, prio); |
219 | 220 |
heap.decrease(item, prio); |
220 | 221 |
heap.increase(item, prio); |
221 | 222 |
heap.set(own_item, own_prio); |
222 | 223 |
heap.decrease(own_item, own_prio); |
223 | 224 |
heap.increase(own_item, own_prio); |
224 | 225 |
|
225 | 226 |
heap.erase(item); |
226 | 227 |
heap.erase(own_item); |
227 | 228 |
heap.clear(); |
228 | 229 |
|
229 | 230 |
own_state = heap.state(own_item); |
230 | 231 |
heap.state(own_item, own_state); |
231 | 232 |
|
232 | 233 |
own_state = _Heap::PRE_HEAP; |
233 | 234 |
own_state = _Heap::IN_HEAP; |
234 | 235 |
own_state = _Heap::POST_HEAP; |
235 | 236 |
} |
236 | 237 |
|
237 | 238 |
_Heap& heap; |
238 | 239 |
ItemIntMap& map; |
239 | 240 |
}; |
240 | 241 |
}; |
241 | 242 |
|
242 | 243 |
/// @} |
243 | 244 |
} // namespace lemon |
244 | 245 |
} |
245 | 246 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ELEVATOR_H |
20 | 20 |
#define LEMON_ELEVATOR_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Elevator class |
25 | 25 |
/// |
26 | 26 |
///Elevator class implements an efficient data structure |
27 | 27 |
///for labeling items in push-relabel type algorithms. |
28 | 28 |
/// |
29 | 29 |
|
30 |
#include <lemon/core.h> |
|
30 | 31 |
#include <lemon/bits/traits.h> |
31 | 32 |
|
32 | 33 |
namespace lemon { |
33 | 34 |
|
34 | 35 |
///Class for handling "labels" in push-relabel type algorithms. |
35 | 36 |
|
36 | 37 |
///A class for handling "labels" in push-relabel type algorithms. |
37 | 38 |
/// |
38 | 39 |
///\ingroup auxdat |
39 | 40 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
40 | 41 |
///to the edges or nodes of a graph, manipulate and query them through |
41 | 42 |
///operations typically arising in "push-relabel" type algorithms. |
42 | 43 |
/// |
43 | 44 |
///Each item is either \em active or not, and you can also choose a |
44 | 45 |
///highest level active item. |
45 | 46 |
/// |
46 | 47 |
///\sa LinkedElevator |
47 | 48 |
/// |
48 | 49 |
///\param Graph Type of the underlying graph. |
49 | 50 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
50 | 51 |
///Graph::Arc, Graph::Edge). |
51 | 52 |
template<class Graph, class Item> |
52 | 53 |
class Elevator |
53 | 54 |
{ |
54 | 55 |
public: |
55 | 56 |
|
56 | 57 |
typedef Item Key; |
57 | 58 |
typedef int Value; |
58 | 59 |
|
59 | 60 |
private: |
60 | 61 |
|
61 | 62 |
typedef Item *Vit; |
62 | 63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
63 | 64 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
64 | 65 |
|
65 | 66 |
const Graph &_g; |
66 | 67 |
int _max_level; |
67 | 68 |
int _item_num; |
68 | 69 |
VitMap _where; |
69 | 70 |
IntMap _level; |
70 | 71 |
std::vector<Item> _items; |
71 | 72 |
std::vector<Vit> _first; |
72 | 73 |
std::vector<Vit> _last_active; |
73 | 74 |
|
74 | 75 |
int _highest_active; |
75 | 76 |
|
76 | 77 |
void copy(Item i, Vit p) |
77 | 78 |
{ |
78 | 79 |
_where.set(*p=i,p); |
79 | 80 |
} |
80 | 81 |
void copy(Vit s, Vit p) |
81 | 82 |
{ |
82 | 83 |
if(s!=p) |
83 | 84 |
{ |
84 | 85 |
Item i=*s; |
85 | 86 |
*p=i; |
86 | 87 |
_where.set(i,p); |
87 | 88 |
} |
88 | 89 |
} |
89 | 90 |
void swap(Vit i, Vit j) |
90 | 91 |
{ |
91 | 92 |
Item ti=*i; |
92 | 93 |
Vit ct = _where[ti]; |
93 | 94 |
_where.set(ti,_where[*i=*j]); |
94 | 95 |
_where.set(*j,ct); |
95 | 96 |
*j=ti; |
96 | 97 |
} |
97 | 98 |
|
98 | 99 |
public: |
99 | 100 |
|
100 | 101 |
///Constructor with given maximum level. |
101 | 102 |
|
102 | 103 |
///Constructor with given maximum level. |
103 | 104 |
/// |
104 | 105 |
///\param graph The underlying graph. |
105 | 106 |
///\param max_level The maximum allowed level. |
106 | 107 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
107 | 108 |
Elevator(const Graph &graph,int max_level) : |
108 | 109 |
_g(graph), |
109 | 110 |
_max_level(max_level), |
110 | 111 |
_item_num(_max_level), |
111 | 112 |
_where(graph), |
112 | 113 |
_level(graph,0), |
113 | 114 |
_items(_max_level), |
114 | 115 |
_first(_max_level+2), |
115 | 116 |
_last_active(_max_level+2), |
116 | 117 |
_highest_active(-1) {} |
117 | 118 |
///Constructor. |
118 | 119 |
|
119 | 120 |
///Constructor. |
120 | 121 |
/// |
121 | 122 |
///\param graph The underlying graph. |
122 | 123 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
123 | 124 |
///where \c max_level is equal to the number of labeled items in the graph. |
124 | 125 |
Elevator(const Graph &graph) : |
125 | 126 |
_g(graph), |
126 | 127 |
_max_level(countItems<Graph, Item>(graph)), |
127 | 128 |
_item_num(_max_level), |
128 | 129 |
_where(graph), |
129 | 130 |
_level(graph,0), |
130 | 131 |
_items(_max_level), |
131 | 132 |
_first(_max_level+2), |
132 | 133 |
_last_active(_max_level+2), |
133 | 134 |
_highest_active(-1) |
134 | 135 |
{ |
135 | 136 |
} |
136 | 137 |
|
137 | 138 |
///Activate item \c i. |
138 | 139 |
|
139 | 140 |
///Activate item \c i. |
140 | 141 |
///\pre Item \c i shouldn't be active before. |
141 | 142 |
void activate(Item i) |
142 | 143 |
{ |
143 | 144 |
const int l=_level[i]; |
144 | 145 |
swap(_where[i],++_last_active[l]); |
145 | 146 |
if(l>_highest_active) _highest_active=l; |
146 | 147 |
} |
147 | 148 |
|
148 | 149 |
///Deactivate item \c i. |
149 | 150 |
|
150 | 151 |
///Deactivate item \c i. |
151 | 152 |
///\pre Item \c i must be active before. |
152 | 153 |
void deactivate(Item i) |
153 | 154 |
{ |
154 | 155 |
swap(_where[i],_last_active[_level[i]]--); |
155 | 156 |
while(_highest_active>=0 && |
156 | 157 |
_last_active[_highest_active]<_first[_highest_active]) |
157 | 158 |
_highest_active--; |
158 | 159 |
} |
159 | 160 |
|
160 | 161 |
///Query whether item \c i is active |
161 | 162 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
162 | 163 |
|
163 | 164 |
///Return the level of item \c i. |
164 | 165 |
int operator[](Item i) const { return _level[i]; } |
165 | 166 |
|
166 | 167 |
///Return the number of items on level \c l. |
167 | 168 |
int onLevel(int l) const |
168 | 169 |
{ |
169 | 170 |
return _first[l+1]-_first[l]; |
170 | 171 |
} |
171 | 172 |
///Return true if level \c l is empty. |
172 | 173 |
bool emptyLevel(int l) const |
173 | 174 |
{ |
174 | 175 |
return _first[l+1]-_first[l]==0; |
175 | 176 |
} |
176 | 177 |
///Return the number of items above level \c l. |
177 | 178 |
int aboveLevel(int l) const |
178 | 179 |
{ |
179 | 180 |
return _first[_max_level+1]-_first[l+1]; |
180 | 181 |
} |
181 | 182 |
///Return the number of active items on level \c l. |
182 | 183 |
int activesOnLevel(int l) const |
183 | 184 |
{ |
184 | 185 |
return _last_active[l]-_first[l]+1; |
185 | 186 |
} |
186 | 187 |
///Return true if there is no active item on level \c l. |
187 | 188 |
bool activeFree(int l) const |
188 | 189 |
{ |
189 | 190 |
return _last_active[l]<_first[l]; |
190 | 191 |
} |
191 | 192 |
///Return the maximum allowed level. |
192 | 193 |
int maxLevel() const |
193 | 194 |
{ |
194 | 195 |
return _max_level; |
195 | 196 |
} |
196 | 197 |
|
197 | 198 |
///\name Highest Active Item |
198 | 199 |
///Functions for working with the highest level |
199 | 200 |
///active item. |
200 | 201 |
|
201 | 202 |
///@{ |
202 | 203 |
|
203 | 204 |
///Return a highest level active item. |
204 | 205 |
|
205 | 206 |
///Return a highest level active item or INVALID if there is no active |
206 | 207 |
///item. |
207 | 208 |
Item highestActive() const |
208 | 209 |
{ |
209 | 210 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
210 | 211 |
} |
211 | 212 |
|
212 | 213 |
///Return the highest active level. |
213 | 214 |
|
214 | 215 |
///Return the level of the highest active item or -1 if there is no active |
215 | 216 |
///item. |
216 | 217 |
int highestActiveLevel() const |
217 | 218 |
{ |
218 | 219 |
return _highest_active; |
219 | 220 |
} |
220 | 221 |
|
221 | 222 |
///Lift the highest active item by one. |
222 | 223 |
|
223 | 224 |
///Lift the item returned by highestActive() by one. |
224 | 225 |
/// |
225 | 226 |
void liftHighestActive() |
226 | 227 |
{ |
227 | 228 |
Item it = *_last_active[_highest_active]; |
228 | 229 |
_level.set(it,_level[it]+1); |
229 | 230 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
230 | 231 |
--_first[++_highest_active]; |
231 | 232 |
} |
232 | 233 |
|
233 | 234 |
///Lift the highest active item to the given level. |
234 | 235 |
|
235 | 236 |
///Lift the item returned by highestActive() to level \c new_level. |
236 | 237 |
/// |
237 | 238 |
///\warning \c new_level must be strictly higher |
238 | 239 |
///than the current level. |
239 | 240 |
/// |
240 | 241 |
void liftHighestActive(int new_level) |
241 | 242 |
{ |
242 | 243 |
const Item li = *_last_active[_highest_active]; |
243 | 244 |
|
244 | 245 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
245 | 246 |
for(int l=_highest_active+1;l<new_level;l++) |
246 | 247 |
{ |
247 | 248 |
copy(--_first[l+1],_first[l]); |
248 | 249 |
--_last_active[l]; |
249 | 250 |
} |
250 | 251 |
copy(li,_first[new_level]); |
251 | 252 |
_level.set(li,new_level); |
252 | 253 |
_highest_active=new_level; |
253 | 254 |
} |
254 | 255 |
|
255 | 256 |
///Lift the highest active item to the top level. |
256 | 257 |
|
257 | 258 |
///Lift the item returned by highestActive() to the top level and |
258 | 259 |
///deactivate it. |
259 | 260 |
void liftHighestActiveToTop() |
260 | 261 |
{ |
261 | 262 |
const Item li = *_last_active[_highest_active]; |
262 | 263 |
|
263 | 264 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
264 | 265 |
for(int l=_highest_active+1;l<_max_level;l++) |
265 | 266 |
{ |
266 | 267 |
copy(--_first[l+1],_first[l]); |
267 | 268 |
--_last_active[l]; |
268 | 269 |
} |
269 | 270 |
copy(li,_first[_max_level]); |
270 | 271 |
--_last_active[_max_level]; |
271 | 272 |
_level.set(li,_max_level); |
272 | 273 |
|
273 | 274 |
while(_highest_active>=0 && |
274 | 275 |
_last_active[_highest_active]<_first[_highest_active]) |
275 | 276 |
_highest_active--; |
276 | 277 |
} |
277 | 278 |
|
278 | 279 |
///@} |
279 | 280 |
|
280 | 281 |
///\name Active Item on Certain Level |
281 | 282 |
///Functions for working with the active items. |
282 | 283 |
|
283 | 284 |
///@{ |
284 | 285 |
|
285 | 286 |
///Return an active item on level \c l. |
286 | 287 |
|
287 | 288 |
///Return an active item on level \c l or \ref INVALID if there is no such |
288 | 289 |
///an item. (\c l must be from the range [0...\c max_level]. |
289 | 290 |
Item activeOn(int l) const |
290 | 291 |
{ |
291 | 292 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
292 | 293 |
} |
293 | 294 |
|
294 | 295 |
///Lift the active item returned by \c activeOn(level) by one. |
295 | 296 |
|
296 | 297 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
297 | 298 |
///by one. |
298 | 299 |
Item liftActiveOn(int level) |
299 | 300 |
{ |
300 | 301 |
Item it =*_last_active[level]; |
301 | 302 |
_level.set(it,_level[it]+1); |
302 | 303 |
swap(_last_active[level]--, --_first[level+1]); |
303 | 304 |
if (level+1>_highest_active) ++_highest_active; |
304 | 305 |
} |
305 | 306 |
|
306 | 307 |
///Lift the active item returned by \c activeOn(level) to the given level. |
307 | 308 |
|
308 | 309 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
309 | 310 |
///to the given level. |
310 | 311 |
void liftActiveOn(int level, int new_level) |
311 | 312 |
{ |
312 | 313 |
const Item ai = *_last_active[level]; |
313 | 314 |
|
314 | 315 |
copy(--_first[level+1], _last_active[level]--); |
315 | 316 |
for(int l=level+1;l<new_level;l++) |
316 | 317 |
{ |
317 | 318 |
copy(_last_active[l],_first[l]); |
318 | 319 |
copy(--_first[l+1], _last_active[l]--); |
319 | 320 |
} |
320 | 321 |
copy(ai,_first[new_level]); |
321 | 322 |
_level.set(ai,new_level); |
322 | 323 |
if (new_level>_highest_active) _highest_active=new_level; |
323 | 324 |
} |
324 | 325 |
|
325 | 326 |
///Lift the active item returned by \c activeOn(level) to the top level. |
326 | 327 |
|
327 | 328 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
328 | 329 |
///to the top level and deactivate it. |
329 | 330 |
void liftActiveToTop(int level) |
330 | 331 |
{ |
331 | 332 |
const Item ai = *_last_active[level]; |
332 | 333 |
|
333 | 334 |
copy(--_first[level+1],_last_active[level]--); |
334 | 335 |
for(int l=level+1;l<_max_level;l++) |
335 | 336 |
{ |
336 | 337 |
copy(_last_active[l],_first[l]); |
337 | 338 |
copy(--_first[l+1], _last_active[l]--); |
338 | 339 |
} |
339 | 340 |
copy(ai,_first[_max_level]); |
340 | 341 |
--_last_active[_max_level]; |
341 | 342 |
_level.set(ai,_max_level); |
342 | 343 |
|
343 | 344 |
if (_highest_active==level) { |
344 | 345 |
while(_highest_active>=0 && |
345 | 346 |
_last_active[_highest_active]<_first[_highest_active]) |
346 | 347 |
_highest_active--; |
347 | 348 |
} |
348 | 349 |
} |
349 | 350 |
|
350 | 351 |
///@} |
351 | 352 |
|
352 | 353 |
///Lift an active item to a higher level. |
353 | 354 |
|
354 | 355 |
///Lift an active item to a higher level. |
355 | 356 |
///\param i The item to be lifted. It must be active. |
356 | 357 |
///\param new_level The new level of \c i. It must be strictly higher |
357 | 358 |
///than the current level. |
358 | 359 |
/// |
359 | 360 |
void lift(Item i, int new_level) |
360 | 361 |
{ |
361 | 362 |
const int lo = _level[i]; |
362 | 363 |
const Vit w = _where[i]; |
363 | 364 |
|
364 | 365 |
copy(_last_active[lo],w); |
365 | 366 |
copy(--_first[lo+1],_last_active[lo]--); |
366 | 367 |
for(int l=lo+1;l<new_level;l++) |
367 | 368 |
{ |
368 | 369 |
copy(_last_active[l],_first[l]); |
369 | 370 |
copy(--_first[l+1],_last_active[l]--); |
370 | 371 |
} |
371 | 372 |
copy(i,_first[new_level]); |
372 | 373 |
_level.set(i,new_level); |
373 | 374 |
if(new_level>_highest_active) _highest_active=new_level; |
374 | 375 |
} |
375 | 376 |
|
376 | 377 |
///Move an inactive item to the top but one level (in a dirty way). |
377 | 378 |
|
378 | 379 |
///This function moves an inactive item from the top level to the top |
379 | 380 |
///but one level (in a dirty way). |
380 | 381 |
///\warning It makes the underlying datastructure corrupt, so use it |
381 | 382 |
///only if you really know what it is for. |
382 | 383 |
///\pre The item is on the top level. |
383 | 384 |
void dirtyTopButOne(Item i) { |
384 | 385 |
_level.set(i,_max_level - 1); |
385 | 386 |
} |
386 | 387 |
|
387 | 388 |
///Lift all items on and above the given level to the top level. |
388 | 389 |
|
389 | 390 |
///This function lifts all items on and above level \c l to the top |
390 | 391 |
///level and deactivates them. |
391 | 392 |
void liftToTop(int l) |
392 | 393 |
{ |
393 | 394 |
const Vit f=_first[l]; |
394 | 395 |
const Vit tl=_first[_max_level]; |
395 | 396 |
for(Vit i=f;i!=tl;++i) |
396 | 397 |
_level.set(*i,_max_level); |
397 | 398 |
for(int i=l;i<=_max_level;i++) |
398 | 399 |
{ |
399 | 400 |
_first[i]=f; |
400 | 401 |
_last_active[i]=f-1; |
401 | 402 |
} |
402 | 403 |
for(_highest_active=l-1; |
403 | 404 |
_highest_active>=0 && |
404 | 405 |
_last_active[_highest_active]<_first[_highest_active]; |
405 | 406 |
_highest_active--) ; |
406 | 407 |
} |
407 | 408 |
|
408 | 409 |
private: |
409 | 410 |
int _init_lev; |
410 | 411 |
Vit _init_num; |
411 | 412 |
|
412 | 413 |
public: |
413 | 414 |
|
414 | 415 |
///\name Initialization |
415 | 416 |
///Using these functions you can initialize the levels of the items. |
416 | 417 |
///\n |
417 | 418 |
///The initialization must be started with calling \c initStart(). |
418 | 419 |
///Then the items should be listed level by level starting with the |
419 | 420 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
420 | 421 |
///Finally \c initFinish() must be called. |
421 | 422 |
///The items not listed are put on the highest level. |
422 | 423 |
///@{ |
423 | 424 |
|
424 | 425 |
///Start the initialization process. |
425 | 426 |
void initStart() |
426 | 427 |
{ |
427 | 428 |
_init_lev=0; |
428 | 429 |
_init_num=&_items[0]; |
429 | 430 |
_first[0]=&_items[0]; |
430 | 431 |
_last_active[0]=&_items[0]-1; |
431 | 432 |
Vit n=&_items[0]; |
432 | 433 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
433 | 434 |
{ |
434 | 435 |
*n=i; |
435 | 436 |
_where.set(i,n); |
436 | 437 |
_level.set(i,_max_level); |
437 | 438 |
++n; |
438 | 439 |
} |
439 | 440 |
} |
440 | 441 |
|
441 | 442 |
///Add an item to the current level. |
442 | 443 |
void initAddItem(Item i) |
443 | 444 |
{ |
444 | 445 |
swap(_where[i],_init_num); |
445 | 446 |
_level.set(i,_init_lev); |
446 | 447 |
++_init_num; |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
///Start a new level. |
450 | 451 |
|
451 | 452 |
///Start a new level. |
452 | 453 |
///It shouldn't be used before the items on level 0 are listed. |
453 | 454 |
void initNewLevel() |
454 | 455 |
{ |
455 | 456 |
_init_lev++; |
456 | 457 |
_first[_init_lev]=_init_num; |
457 | 458 |
_last_active[_init_lev]=_init_num-1; |
458 | 459 |
} |
459 | 460 |
|
460 | 461 |
///Finalize the initialization process. |
461 | 462 |
void initFinish() |
462 | 463 |
{ |
463 | 464 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
464 | 465 |
{ |
465 | 466 |
_first[_init_lev]=_init_num; |
466 | 467 |
_last_active[_init_lev]=_init_num-1; |
467 | 468 |
} |
468 | 469 |
_first[_max_level+1]=&_items[0]+_item_num; |
469 | 470 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
470 | 471 |
_highest_active = -1; |
471 | 472 |
} |
472 | 473 |
|
473 | 474 |
///@} |
474 | 475 |
|
475 | 476 |
}; |
476 | 477 |
|
477 | 478 |
///Class for handling "labels" in push-relabel type algorithms. |
478 | 479 |
|
479 | 480 |
///A class for handling "labels" in push-relabel type algorithms. |
480 | 481 |
/// |
481 | 482 |
///\ingroup auxdat |
482 | 483 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
483 | 484 |
///to the edges or nodes of a graph, manipulate and query them through |
484 | 485 |
///operations typically arising in "push-relabel" type algorithms. |
485 | 486 |
/// |
486 | 487 |
///Each item is either \em active or not, and you can also choose a |
487 | 488 |
///highest level active item. |
488 | 489 |
/// |
489 | 490 |
///\sa Elevator |
490 | 491 |
/// |
491 | 492 |
///\param Graph Type of the underlying graph. |
492 | 493 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
493 | 494 |
///Graph::Arc, Graph::Edge). |
494 | 495 |
template <class Graph, class Item> |
495 | 496 |
class LinkedElevator { |
496 | 497 |
public: |
497 | 498 |
|
498 | 499 |
typedef Item Key; |
499 | 500 |
typedef int Value; |
500 | 501 |
|
501 | 502 |
private: |
502 | 503 |
|
503 | 504 |
typedef typename ItemSetTraits<Graph,Item>:: |
504 | 505 |
template Map<Item>::Type ItemMap; |
505 | 506 |
typedef typename ItemSetTraits<Graph,Item>:: |
506 | 507 |
template Map<int>::Type IntMap; |
507 | 508 |
typedef typename ItemSetTraits<Graph,Item>:: |
508 | 509 |
template Map<bool>::Type BoolMap; |
509 | 510 |
|
510 | 511 |
const Graph &_graph; |
511 | 512 |
int _max_level; |
512 | 513 |
int _item_num; |
513 | 514 |
std::vector<Item> _first, _last; |
514 | 515 |
ItemMap _prev, _next; |
515 | 516 |
int _highest_active; |
516 | 517 |
IntMap _level; |
517 | 518 |
BoolMap _active; |
518 | 519 |
|
519 | 520 |
public: |
520 | 521 |
///Constructor with given maximum level. |
521 | 522 |
|
522 | 523 |
///Constructor with given maximum level. |
523 | 524 |
/// |
524 | 525 |
///\param graph The underlying graph. |
525 | 526 |
///\param max_level The maximum allowed level. |
526 | 527 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
527 | 528 |
LinkedElevator(const Graph& graph, int max_level) |
528 | 529 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
529 | 530 |
_first(_max_level + 1), _last(_max_level + 1), |
530 | 531 |
_prev(graph), _next(graph), |
531 | 532 |
_highest_active(-1), _level(graph), _active(graph) {} |
532 | 533 |
|
533 | 534 |
///Constructor. |
534 | 535 |
|
535 | 536 |
///Constructor. |
536 | 537 |
/// |
537 | 538 |
///\param graph The underlying graph. |
538 | 539 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
539 | 540 |
///where \c max_level is equal to the number of labeled items in the graph. |
540 | 541 |
LinkedElevator(const Graph& graph) |
541 | 542 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
542 | 543 |
_item_num(_max_level), |
543 | 544 |
_first(_max_level + 1), _last(_max_level + 1), |
544 | 545 |
_prev(graph, INVALID), _next(graph, INVALID), |
545 | 546 |
_highest_active(-1), _level(graph), _active(graph) {} |
546 | 547 |
|
547 | 548 |
|
548 | 549 |
///Activate item \c i. |
549 | 550 |
|
550 | 551 |
///Activate item \c i. |
551 | 552 |
///\pre Item \c i shouldn't be active before. |
552 | 553 |
void activate(Item i) { |
553 | 554 |
_active.set(i, true); |
554 | 555 |
|
555 | 556 |
int level = _level[i]; |
556 | 557 |
if (level > _highest_active) { |
557 | 558 |
_highest_active = level; |
558 | 559 |
} |
559 | 560 |
|
560 | 561 |
if (_prev[i] == INVALID || _active[_prev[i]]) return; |
561 | 562 |
//unlace |
562 | 563 |
_next.set(_prev[i], _next[i]); |
563 | 564 |
if (_next[i] != INVALID) { |
564 | 565 |
_prev.set(_next[i], _prev[i]); |
565 | 566 |
} else { |
566 | 567 |
_last[level] = _prev[i]; |
567 | 568 |
} |
568 | 569 |
//lace |
569 | 570 |
_next.set(i, _first[level]); |
570 | 571 |
_prev.set(_first[level], i); |
571 | 572 |
_prev.set(i, INVALID); |
572 | 573 |
_first[level] = i; |
573 | 574 |
|
574 | 575 |
} |
575 | 576 |
|
576 | 577 |
///Deactivate item \c i. |
577 | 578 |
|
578 | 579 |
///Deactivate item \c i. |
579 | 580 |
///\pre Item \c i must be active before. |
580 | 581 |
void deactivate(Item i) { |
581 | 582 |
_active.set(i, false); |
582 | 583 |
int level = _level[i]; |
583 | 584 |
|
584 | 585 |
if (_next[i] == INVALID || !_active[_next[i]]) |
585 | 586 |
goto find_highest_level; |
586 | 587 |
|
587 | 588 |
//unlace |
588 | 589 |
_prev.set(_next[i], _prev[i]); |
589 | 590 |
if (_prev[i] != INVALID) { |
590 | 591 |
_next.set(_prev[i], _next[i]); |
591 | 592 |
} else { |
592 | 593 |
_first[_level[i]] = _next[i]; |
593 | 594 |
} |
594 | 595 |
//lace |
595 | 596 |
_prev.set(i, _last[level]); |
596 | 597 |
_next.set(_last[level], i); |
597 | 598 |
_next.set(i, INVALID); |
598 | 599 |
_last[level] = i; |
599 | 600 |
|
600 | 601 |
find_highest_level: |
601 | 602 |
if (level == _highest_active) { |
602 | 603 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
603 | 604 |
--_highest_active; |
604 | 605 |
} |
605 | 606 |
} |
606 | 607 |
|
607 | 608 |
///Query whether item \c i is active |
608 | 609 |
bool active(Item i) const { return _active[i]; } |
609 | 610 |
|
610 | 611 |
///Return the level of item \c i. |
611 | 612 |
int operator[](Item i) const { return _level[i]; } |
612 | 613 |
|
613 | 614 |
///Return the number of items on level \c l. |
614 | 615 |
int onLevel(int l) const { |
615 | 616 |
int num = 0; |
616 | 617 |
Item n = _first[l]; |
617 | 618 |
while (n != INVALID) { |
618 | 619 |
++num; |
619 | 620 |
n = _next[n]; |
620 | 621 |
} |
621 | 622 |
return num; |
622 | 623 |
} |
623 | 624 |
|
624 | 625 |
///Return true if the level is empty. |
625 | 626 |
bool emptyLevel(int l) const { |
626 | 627 |
return _first[l] == INVALID; |
627 | 628 |
} |
628 | 629 |
|
629 | 630 |
///Return the number of items above level \c l. |
630 | 631 |
int aboveLevel(int l) const { |
631 | 632 |
int num = 0; |
632 | 633 |
for (int level = l + 1; level < _max_level; ++level) |
633 | 634 |
num += onLevel(level); |
634 | 635 |
return num; |
635 | 636 |
} |
636 | 637 |
|
637 | 638 |
///Return the number of active items on level \c l. |
638 | 639 |
int activesOnLevel(int l) const { |
639 | 640 |
int num = 0; |
640 | 641 |
Item n = _first[l]; |
641 | 642 |
while (n != INVALID && _active[n]) { |
642 | 643 |
++num; |
643 | 644 |
n = _next[n]; |
644 | 645 |
} |
645 | 646 |
return num; |
646 | 647 |
} |
647 | 648 |
|
648 | 649 |
///Return true if there is no active item on level \c l. |
649 | 650 |
bool activeFree(int l) const { |
650 | 651 |
return _first[l] == INVALID || !_active[_first[l]]; |
651 | 652 |
} |
652 | 653 |
|
653 | 654 |
///Return the maximum allowed level. |
654 | 655 |
int maxLevel() const { |
655 | 656 |
return _max_level; |
656 | 657 |
} |
657 | 658 |
|
658 | 659 |
///\name Highest Active Item |
659 | 660 |
///Functions for working with the highest level |
660 | 661 |
///active item. |
661 | 662 |
|
662 | 663 |
///@{ |
663 | 664 |
|
664 | 665 |
///Return a highest level active item. |
665 | 666 |
|
666 | 667 |
///Return a highest level active item or INVALID if there is no active |
667 | 668 |
///item. |
668 | 669 |
Item highestActive() const { |
669 | 670 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
670 | 671 |
} |
671 | 672 |
|
672 | 673 |
///Return the highest active level. |
673 | 674 |
|
674 | 675 |
///Return the level of the highest active item or -1 if there is no active |
675 | 676 |
///item. |
676 | 677 |
int highestActiveLevel() const { |
677 | 678 |
return _highest_active; |
678 | 679 |
} |
679 | 680 |
|
680 | 681 |
///Lift the highest active item by one. |
681 | 682 |
|
682 | 683 |
///Lift the item returned by highestActive() by one. |
683 | 684 |
/// |
684 | 685 |
void liftHighestActive() { |
685 | 686 |
Item i = _first[_highest_active]; |
686 | 687 |
if (_next[i] != INVALID) { |
687 | 688 |
_prev.set(_next[i], INVALID); |
688 | 689 |
_first[_highest_active] = _next[i]; |
689 | 690 |
} else { |
690 | 691 |
_first[_highest_active] = INVALID; |
691 | 692 |
_last[_highest_active] = INVALID; |
692 | 693 |
} |
693 | 694 |
_level.set(i, ++_highest_active); |
694 | 695 |
if (_first[_highest_active] == INVALID) { |
695 | 696 |
_first[_highest_active] = i; |
696 | 697 |
_last[_highest_active] = i; |
697 | 698 |
_prev.set(i, INVALID); |
698 | 699 |
_next.set(i, INVALID); |
699 | 700 |
} else { |
700 | 701 |
_prev.set(_first[_highest_active], i); |
701 | 702 |
_next.set(i, _first[_highest_active]); |
702 | 703 |
_first[_highest_active] = i; |
703 | 704 |
} |
704 | 705 |
} |
705 | 706 |
|
706 | 707 |
///Lift the highest active item to the given level. |
707 | 708 |
|
708 | 709 |
///Lift the item returned by highestActive() to level \c new_level. |
709 | 710 |
/// |
710 | 711 |
///\warning \c new_level must be strictly higher |
711 | 712 |
///than the current level. |
712 | 713 |
/// |
713 | 714 |
void liftHighestActive(int new_level) { |
714 | 715 |
Item i = _first[_highest_active]; |
715 | 716 |
if (_next[i] != INVALID) { |
716 | 717 |
_prev.set(_next[i], INVALID); |
717 | 718 |
_first[_highest_active] = _next[i]; |
718 | 719 |
} else { |
719 | 720 |
_first[_highest_active] = INVALID; |
720 | 721 |
_last[_highest_active] = INVALID; |
721 | 722 |
} |
722 | 723 |
_level.set(i, _highest_active = new_level); |
723 | 724 |
if (_first[_highest_active] == INVALID) { |
724 | 725 |
_first[_highest_active] = _last[_highest_active] = i; |
725 | 726 |
_prev.set(i, INVALID); |
726 | 727 |
_next.set(i, INVALID); |
727 | 728 |
} else { |
728 | 729 |
_prev.set(_first[_highest_active], i); |
729 | 730 |
_next.set(i, _first[_highest_active]); |
730 | 731 |
_first[_highest_active] = i; |
731 | 732 |
} |
732 | 733 |
} |
733 | 734 |
|
734 | 735 |
///Lift the highest active item to the top level. |
735 | 736 |
|
736 | 737 |
///Lift the item returned by highestActive() to the top level and |
737 | 738 |
///deactivate it. |
738 | 739 |
void liftHighestActiveToTop() { |
739 | 740 |
Item i = _first[_highest_active]; |
740 | 741 |
_level.set(i, _max_level); |
741 | 742 |
if (_next[i] != INVALID) { |
742 | 743 |
_prev.set(_next[i], INVALID); |
743 | 744 |
_first[_highest_active] = _next[i]; |
744 | 745 |
} else { |
745 | 746 |
_first[_highest_active] = INVALID; |
746 | 747 |
_last[_highest_active] = INVALID; |
747 | 748 |
} |
748 | 749 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
749 | 750 |
--_highest_active; |
750 | 751 |
} |
751 | 752 |
|
752 | 753 |
///@} |
753 | 754 |
|
754 | 755 |
///\name Active Item on Certain Level |
755 | 756 |
///Functions for working with the active items. |
756 | 757 |
|
757 | 758 |
///@{ |
758 | 759 |
|
759 | 760 |
///Return an active item on level \c l. |
760 | 761 |
|
761 | 762 |
///Return an active item on level \c l or \ref INVALID if there is no such |
762 | 763 |
///an item. (\c l must be from the range [0...\c max_level]. |
763 | 764 |
Item activeOn(int l) const |
764 | 765 |
{ |
765 | 766 |
return _active[_first[l]] ? _first[l] : INVALID; |
766 | 767 |
} |
767 | 768 |
|
768 | 769 |
///Lift the active item returned by \c activeOn(l) by one. |
769 | 770 |
|
770 | 771 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
771 | 772 |
///by one. |
772 | 773 |
Item liftActiveOn(int l) |
773 | 774 |
{ |
774 | 775 |
Item i = _first[l]; |
775 | 776 |
if (_next[i] != INVALID) { |
776 | 777 |
_prev.set(_next[i], INVALID); |
777 | 778 |
_first[l] = _next[i]; |
778 | 779 |
} else { |
779 | 780 |
_first[l] = INVALID; |
780 | 781 |
_last[l] = INVALID; |
781 | 782 |
} |
782 | 783 |
_level.set(i, ++l); |
783 | 784 |
if (_first[l] == INVALID) { |
784 | 785 |
_first[l] = _last[l] = i; |
785 | 786 |
_prev.set(i, INVALID); |
786 | 787 |
_next.set(i, INVALID); |
787 | 788 |
} else { |
788 | 789 |
_prev.set(_first[l], i); |
789 | 790 |
_next.set(i, _first[l]); |
790 | 791 |
_first[l] = i; |
791 | 792 |
} |
792 | 793 |
if (_highest_active < l) { |
793 | 794 |
_highest_active = l; |
794 | 795 |
} |
795 | 796 |
} |
796 | 797 |
|
797 | 798 |
///Lift the active item returned by \c activeOn(l) to the given level. |
798 | 799 |
|
799 | 800 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
800 | 801 |
///to the given level. |
801 | 802 |
void liftActiveOn(int l, int new_level) |
802 | 803 |
{ |
803 | 804 |
Item i = _first[l]; |
804 | 805 |
if (_next[i] != INVALID) { |
805 | 806 |
_prev.set(_next[i], INVALID); |
806 | 807 |
_first[l] = _next[i]; |
807 | 808 |
} else { |
808 | 809 |
_first[l] = INVALID; |
809 | 810 |
_last[l] = INVALID; |
810 | 811 |
} |
811 | 812 |
_level.set(i, l = new_level); |
812 | 813 |
if (_first[l] == INVALID) { |
813 | 814 |
_first[l] = _last[l] = i; |
814 | 815 |
_prev.set(i, INVALID); |
815 | 816 |
_next.set(i, INVALID); |
816 | 817 |
} else { |
817 | 818 |
_prev.set(_first[l], i); |
818 | 819 |
_next.set(i, _first[l]); |
819 | 820 |
_first[l] = i; |
820 | 821 |
} |
821 | 822 |
if (_highest_active < l) { |
822 | 823 |
_highest_active = l; |
823 | 824 |
} |
824 | 825 |
} |
825 | 826 |
|
826 | 827 |
///Lift the active item returned by \c activeOn(l) to the top level. |
827 | 828 |
|
828 | 829 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
829 | 830 |
///to the top level and deactivate it. |
830 | 831 |
void liftActiveToTop(int l) |
831 | 832 |
{ |
832 | 833 |
Item i = _first[l]; |
833 | 834 |
if (_next[i] != INVALID) { |
834 | 835 |
_prev.set(_next[i], INVALID); |
835 | 836 |
_first[l] = _next[i]; |
836 | 837 |
} else { |
837 | 838 |
_first[l] = INVALID; |
838 | 839 |
_last[l] = INVALID; |
839 | 840 |
} |
840 | 841 |
_level.set(i, _max_level); |
841 | 842 |
if (l == _highest_active) { |
842 | 843 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
843 | 844 |
--_highest_active; |
844 | 845 |
} |
845 | 846 |
} |
846 | 847 |
|
847 | 848 |
///@} |
848 | 849 |
|
849 | 850 |
/// \brief Lift an active item to a higher level. |
850 | 851 |
/// |
851 | 852 |
/// Lift an active item to a higher level. |
852 | 853 |
/// \param i The item to be lifted. It must be active. |
853 | 854 |
/// \param new_level The new level of \c i. It must be strictly higher |
854 | 855 |
/// than the current level. |
855 | 856 |
/// |
856 | 857 |
void lift(Item i, int new_level) { |
857 | 858 |
if (_next[i] != INVALID) { |
858 | 859 |
_prev.set(_next[i], _prev[i]); |
859 | 860 |
} else { |
860 | 861 |
_last[new_level] = _prev[i]; |
861 | 862 |
} |
862 | 863 |
if (_prev[i] != INVALID) { |
863 | 864 |
_next.set(_prev[i], _next[i]); |
864 | 865 |
} else { |
865 | 866 |
_first[new_level] = _next[i]; |
866 | 867 |
} |
867 | 868 |
_level.set(i, new_level); |
868 | 869 |
if (_first[new_level] == INVALID) { |
869 | 870 |
_first[new_level] = _last[new_level] = i; |
870 | 871 |
_prev.set(i, INVALID); |
871 | 872 |
_next.set(i, INVALID); |
872 | 873 |
} else { |
873 | 874 |
_prev.set(_first[new_level], i); |
874 | 875 |
_next.set(i, _first[new_level]); |
875 | 876 |
_first[new_level] = i; |
876 | 877 |
} |
877 | 878 |
if (_highest_active < new_level) { |
878 | 879 |
_highest_active = new_level; |
879 | 880 |
} |
880 | 881 |
} |
881 | 882 |
|
882 | 883 |
///Move an inactive item to the top but one level (in a dirty way). |
883 | 884 |
|
884 | 885 |
///This function moves an inactive item from the top level to the top |
885 | 886 |
///but one level (in a dirty way). |
886 | 887 |
///\warning It makes the underlying datastructure corrupt, so use it |
887 | 888 |
///only if you really know what it is for. |
888 | 889 |
///\pre The item is on the top level. |
889 | 890 |
void dirtyTopButOne(Item i) { |
890 | 891 |
_level.set(i, _max_level - 1); |
891 | 892 |
} |
892 | 893 |
|
893 | 894 |
///Lift all items on and above the given level to the top level. |
894 | 895 |
|
895 | 896 |
///This function lifts all items on and above level \c l to the top |
896 | 897 |
///level and deactivates them. |
897 | 898 |
void liftToTop(int l) { |
898 | 899 |
for (int i = l + 1; _first[i] != INVALID; ++i) { |
899 | 900 |
Item n = _first[i]; |
900 | 901 |
while (n != INVALID) { |
901 | 902 |
_level.set(n, _max_level); |
902 | 903 |
n = _next[n]; |
903 | 904 |
} |
904 | 905 |
_first[i] = INVALID; |
905 | 906 |
_last[i] = INVALID; |
906 | 907 |
} |
907 | 908 |
if (_highest_active > l - 1) { |
908 | 909 |
_highest_active = l - 1; |
909 | 910 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
910 | 911 |
--_highest_active; |
911 | 912 |
} |
912 | 913 |
} |
913 | 914 |
|
914 | 915 |
private: |
915 | 916 |
|
916 | 917 |
int _init_level; |
917 | 918 |
|
918 | 919 |
public: |
919 | 920 |
|
920 | 921 |
///\name Initialization |
921 | 922 |
///Using these functions you can initialize the levels of the items. |
922 | 923 |
///\n |
923 | 924 |
///The initialization must be started with calling \c initStart(). |
924 | 925 |
///Then the items should be listed level by level starting with the |
925 | 926 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
926 | 927 |
///Finally \c initFinish() must be called. |
927 | 928 |
///The items not listed are put on the highest level. |
928 | 929 |
///@{ |
929 | 930 |
|
930 | 931 |
///Start the initialization process. |
931 | 932 |
void initStart() { |
932 | 933 |
|
933 | 934 |
for (int i = 0; i <= _max_level; ++i) { |
934 | 935 |
_first[i] = _last[i] = INVALID; |
935 | 936 |
} |
936 | 937 |
_init_level = 0; |
937 | 938 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
938 | 939 |
i != INVALID; ++i) { |
939 | 940 |
_level.set(i, _max_level); |
940 | 941 |
_active.set(i, false); |
941 | 942 |
} |
942 | 943 |
} |
943 | 944 |
|
944 | 945 |
///Add an item to the current level. |
945 | 946 |
void initAddItem(Item i) { |
946 | 947 |
_level.set(i, _init_level); |
947 | 948 |
if (_last[_init_level] == INVALID) { |
948 | 949 |
_first[_init_level] = i; |
949 | 950 |
_last[_init_level] = i; |
950 | 951 |
_prev.set(i, INVALID); |
951 | 952 |
_next.set(i, INVALID); |
952 | 953 |
} else { |
953 | 954 |
_prev.set(i, _last[_init_level]); |
954 | 955 |
_next.set(i, INVALID); |
955 | 956 |
_next.set(_last[_init_level], i); |
956 | 957 |
_last[_init_level] = i; |
957 | 958 |
} |
958 | 959 |
} |
959 | 960 |
|
960 | 961 |
///Start a new level. |
961 | 962 |
|
962 | 963 |
///Start a new level. |
963 | 964 |
///It shouldn't be used before the items on level 0 are listed. |
964 | 965 |
void initNewLevel() { |
965 | 966 |
++_init_level; |
966 | 967 |
} |
967 | 968 |
|
968 | 969 |
///Finalize the initialization process. |
969 | 970 |
void initFinish() { |
970 | 971 |
_highest_active = -1; |
971 | 972 |
} |
972 | 973 |
|
973 | 974 |
///@} |
974 | 975 |
|
975 | 976 |
}; |
976 | 977 |
|
977 | 978 |
|
978 | 979 |
} //END OF NAMESPACE LEMON |
979 | 980 |
|
980 | 981 |
#endif |
981 | 982 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/path.h> |
30 |
#include <lemon/list_graph.h> |
|
31 |
#include <lemon/maps.h> |
|
30 | 32 |
|
31 | 33 |
namespace lemon { |
32 | 34 |
|
33 | 35 |
/// \addtogroup shortest_path |
34 | 36 |
/// @{ |
35 | 37 |
|
36 | 38 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
37 | 39 |
/// having minimum total length. |
38 | 40 |
/// |
39 | 41 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
40 | 42 |
/// finding arc-disjoint paths having minimum total length (cost) |
41 | 43 |
/// from a given source node to a given target node in a digraph. |
42 | 44 |
/// |
43 | 45 |
/// In fact, this implementation is the specialization of the |
44 | 46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
45 | 47 |
/// |
46 | 48 |
/// \tparam Digraph The digraph type the algorithm runs on. |
47 | 49 |
/// The default value is \c ListDigraph. |
48 | 50 |
/// \tparam LengthMap The type of the length (cost) map. |
49 | 51 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
50 | 52 |
/// |
51 | 53 |
/// \warning Length values should be \e non-negative \e integers. |
52 | 54 |
/// |
53 | 55 |
/// \note For finding node-disjoint paths this algorithm can be used |
54 | 56 |
/// with \ref SplitNodes. |
55 | 57 |
#ifdef DOXYGEN |
56 | 58 |
template <typename Digraph, typename LengthMap> |
57 | 59 |
#else |
58 | 60 |
template < typename Digraph = ListDigraph, |
59 | 61 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
60 | 62 |
#endif |
61 | 63 |
class Suurballe |
62 | 64 |
{ |
63 | 65 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
64 | 66 |
|
65 | 67 |
typedef typename LengthMap::Value Length; |
66 | 68 |
typedef ConstMap<Arc, int> ConstArcMap; |
67 | 69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
68 | 70 |
|
69 | 71 |
public: |
70 | 72 |
|
71 | 73 |
/// The type of the flow map. |
72 | 74 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
73 | 75 |
/// The type of the potential map. |
74 | 76 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
75 | 77 |
/// The type of the path structures. |
76 | 78 |
typedef SimplePath<Digraph> Path; |
77 | 79 |
|
78 | 80 |
private: |
79 | 81 |
|
80 | 82 |
/// \brief Special implementation of the Dijkstra algorithm |
81 | 83 |
/// for finding shortest paths in the residual network. |
82 | 84 |
/// |
83 | 85 |
/// \ref ResidualDijkstra is a special implementation of the |
84 | 86 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
85 | 87 |
/// residual network of the digraph with respect to the reduced arc |
86 | 88 |
/// lengths and modifying the node potentials according to the |
87 | 89 |
/// distance of the nodes. |
88 | 90 |
class ResidualDijkstra |
89 | 91 |
{ |
90 | 92 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
91 | 93 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
92 | 94 |
|
93 | 95 |
private: |
94 | 96 |
|
95 | 97 |
// The digraph the algorithm runs on |
96 | 98 |
const Digraph &_graph; |
97 | 99 |
|
98 | 100 |
// The main maps |
99 | 101 |
const FlowMap &_flow; |
100 | 102 |
const LengthMap &_length; |
101 | 103 |
PotentialMap &_potential; |
102 | 104 |
|
103 | 105 |
// The distance map |
104 | 106 |
PotentialMap _dist; |
105 | 107 |
// The pred arc map |
106 | 108 |
PredMap &_pred; |
107 | 109 |
// The processed (i.e. permanently labeled) nodes |
108 | 110 |
std::vector<Node> _proc_nodes; |
109 | 111 |
|
110 | 112 |
Node _s; |
111 | 113 |
Node _t; |
112 | 114 |
|
113 | 115 |
public: |
114 | 116 |
|
115 | 117 |
/// Constructor. |
116 | 118 |
ResidualDijkstra( const Digraph &digraph, |
117 | 119 |
const FlowMap &flow, |
118 | 120 |
const LengthMap &length, |
119 | 121 |
PotentialMap &potential, |
120 | 122 |
PredMap &pred, |
121 | 123 |
Node s, Node t ) : |
122 | 124 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
123 | 125 |
_dist(digraph), _pred(pred), _s(s), _t(t) {} |
124 | 126 |
|
125 | 127 |
/// \brief Run the algorithm. It returns \c true if a path is found |
126 | 128 |
/// from the source node to the target node. |
127 | 129 |
bool run() { |
128 | 130 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
129 | 131 |
Heap heap(heap_cross_ref); |
130 | 132 |
heap.push(_s, 0); |
131 | 133 |
_pred[_s] = INVALID; |
132 | 134 |
_proc_nodes.clear(); |
133 | 135 |
|
134 | 136 |
// Process nodes |
135 | 137 |
while (!heap.empty() && heap.top() != _t) { |
136 | 138 |
Node u = heap.top(), v; |
137 | 139 |
Length d = heap.prio() + _potential[u], nd; |
138 | 140 |
_dist[u] = heap.prio(); |
139 | 141 |
heap.pop(); |
140 | 142 |
_proc_nodes.push_back(u); |
141 | 143 |
|
142 | 144 |
// Traverse outgoing arcs |
143 | 145 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
144 | 146 |
if (_flow[e] == 0) { |
145 | 147 |
v = _graph.target(e); |
146 | 148 |
switch(heap.state(v)) { |
147 | 149 |
case Heap::PRE_HEAP: |
148 | 150 |
heap.push(v, d + _length[e] - _potential[v]); |
149 | 151 |
_pred[v] = e; |
150 | 152 |
break; |
151 | 153 |
case Heap::IN_HEAP: |
152 | 154 |
nd = d + _length[e] - _potential[v]; |
153 | 155 |
if (nd < heap[v]) { |
154 | 156 |
heap.decrease(v, nd); |
155 | 157 |
_pred[v] = e; |
156 | 158 |
} |
157 | 159 |
break; |
158 | 160 |
case Heap::POST_HEAP: |
159 | 161 |
break; |
160 | 162 |
} |
161 | 163 |
} |
162 | 164 |
} |
163 | 165 |
|
164 | 166 |
// Traverse incoming arcs |
165 | 167 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
166 | 168 |
if (_flow[e] == 1) { |
167 | 169 |
v = _graph.source(e); |
168 | 170 |
switch(heap.state(v)) { |
169 | 171 |
case Heap::PRE_HEAP: |
170 | 172 |
heap.push(v, d - _length[e] - _potential[v]); |
171 | 173 |
_pred[v] = e; |
172 | 174 |
break; |
173 | 175 |
case Heap::IN_HEAP: |
174 | 176 |
nd = d - _length[e] - _potential[v]; |
175 | 177 |
if (nd < heap[v]) { |
176 | 178 |
heap.decrease(v, nd); |
177 | 179 |
_pred[v] = e; |
178 | 180 |
} |
179 | 181 |
break; |
180 | 182 |
case Heap::POST_HEAP: |
181 | 183 |
break; |
182 | 184 |
} |
183 | 185 |
} |
184 | 186 |
} |
185 | 187 |
} |
186 | 188 |
if (heap.empty()) return false; |
187 | 189 |
|
188 | 190 |
// Update potentials of processed nodes |
189 | 191 |
Length t_dist = heap.prio(); |
190 | 192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
191 | 193 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
192 | 194 |
return true; |
193 | 195 |
} |
194 | 196 |
|
195 | 197 |
}; //class ResidualDijkstra |
196 | 198 |
|
197 | 199 |
private: |
198 | 200 |
|
199 | 201 |
// The digraph the algorithm runs on |
200 | 202 |
const Digraph &_graph; |
201 | 203 |
// The length map |
202 | 204 |
const LengthMap &_length; |
203 | 205 |
|
204 | 206 |
// Arc map of the current flow |
205 | 207 |
FlowMap *_flow; |
206 | 208 |
bool _local_flow; |
207 | 209 |
// Node map of the current potentials |
208 | 210 |
PotentialMap *_potential; |
209 | 211 |
bool _local_potential; |
210 | 212 |
|
211 | 213 |
// The source node |
212 | 214 |
Node _source; |
213 | 215 |
// The target node |
214 | 216 |
Node _target; |
215 | 217 |
|
216 | 218 |
// Container to store the found paths |
217 | 219 |
std::vector< SimplePath<Digraph> > paths; |
218 | 220 |
int _path_num; |
219 | 221 |
|
220 | 222 |
// The pred arc map |
221 | 223 |
PredMap _pred; |
222 | 224 |
// Implementation of the Dijkstra algorithm for finding augmenting |
223 | 225 |
// shortest paths in the residual network |
224 | 226 |
ResidualDijkstra *_dijkstra; |
225 | 227 |
|
226 | 228 |
public: |
227 | 229 |
|
228 | 230 |
/// \brief Constructor. |
229 | 231 |
/// |
230 | 232 |
/// Constructor. |
231 | 233 |
/// |
232 | 234 |
/// \param digraph The digraph the algorithm runs on. |
233 | 235 |
/// \param length The length (cost) values of the arcs. |
234 | 236 |
/// \param s The source node. |
235 | 237 |
/// \param t The target node. |
236 | 238 |
Suurballe( const Digraph &digraph, |
237 | 239 |
const LengthMap &length, |
238 | 240 |
Node s, Node t ) : |
239 | 241 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
240 | 242 |
_potential(0), _local_potential(false), _source(s), _target(t), |
241 | 243 |
_pred(digraph) {} |
242 | 244 |
|
243 | 245 |
/// Destructor. |
244 | 246 |
~Suurballe() { |
245 | 247 |
if (_local_flow) delete _flow; |
246 | 248 |
if (_local_potential) delete _potential; |
247 | 249 |
delete _dijkstra; |
248 | 250 |
} |
249 | 251 |
|
250 | 252 |
/// \brief Set the flow map. |
251 | 253 |
/// |
252 | 254 |
/// This function sets the flow map. |
253 | 255 |
/// |
254 | 256 |
/// The found flow contains only 0 and 1 values. It is the union of |
255 | 257 |
/// the found arc-disjoint paths. |
256 | 258 |
/// |
257 | 259 |
/// \return \c (*this) |
258 | 260 |
Suurballe& flowMap(FlowMap &map) { |
259 | 261 |
if (_local_flow) { |
260 | 262 |
delete _flow; |
261 | 263 |
_local_flow = false; |
262 | 264 |
} |
263 | 265 |
_flow = ↦ |
264 | 266 |
return *this; |
265 | 267 |
} |
266 | 268 |
|
267 | 269 |
/// \brief Set the potential map. |
268 | 270 |
/// |
269 | 271 |
/// This function sets the potential map. |
270 | 272 |
/// |
271 | 273 |
/// The potentials provide the dual solution of the underlying |
272 | 274 |
/// minimum cost flow problem. |
273 | 275 |
/// |
274 | 276 |
/// \return \c (*this) |
275 | 277 |
Suurballe& potentialMap(PotentialMap &map) { |
276 | 278 |
if (_local_potential) { |
277 | 279 |
delete _potential; |
278 | 280 |
_local_potential = false; |
279 | 281 |
} |
280 | 282 |
_potential = ↦ |
281 | 283 |
return *this; |
282 | 284 |
} |
283 | 285 |
|
284 | 286 |
/// \name Execution control |
285 | 287 |
/// The simplest way to execute the algorithm is to call the run() |
286 | 288 |
/// function. |
287 | 289 |
/// \n |
288 | 290 |
/// If you only need the flow that is the union of the found |
289 | 291 |
/// arc-disjoint paths, you may call init() and findFlow(). |
290 | 292 |
|
291 | 293 |
/// @{ |
292 | 294 |
|
293 | 295 |
/// \brief Run the algorithm. |
294 | 296 |
/// |
295 | 297 |
/// This function runs the algorithm. |
296 | 298 |
/// |
297 | 299 |
/// \param k The number of paths to be found. |
298 | 300 |
/// |
299 | 301 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
300 | 302 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
301 | 303 |
/// arc-disjoint paths found. |
302 | 304 |
/// |
303 | 305 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
304 | 306 |
/// shortcut of the following code. |
305 | 307 |
/// \code |
306 | 308 |
/// s.init(); |
307 | 309 |
/// s.findFlow(k); |
308 | 310 |
/// s.findPaths(); |
309 | 311 |
/// \endcode |
310 | 312 |
int run(int k = 2) { |
311 | 313 |
init(); |
312 | 314 |
findFlow(k); |
313 | 315 |
findPaths(); |
314 | 316 |
return _path_num; |
315 | 317 |
} |
316 | 318 |
|
317 | 319 |
/// \brief Initialize the algorithm. |
318 | 320 |
/// |
319 | 321 |
/// This function initializes the algorithm. |
320 | 322 |
void init() { |
321 | 323 |
// Initialize maps |
322 | 324 |
if (!_flow) { |
323 | 325 |
_flow = new FlowMap(_graph); |
324 | 326 |
_local_flow = true; |
325 | 327 |
} |
326 | 328 |
if (!_potential) { |
327 | 329 |
_potential = new PotentialMap(_graph); |
328 | 330 |
_local_potential = true; |
329 | 331 |
} |
330 | 332 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
331 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
332 | 334 |
|
333 | 335 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
334 | 336 |
*_potential, _pred, |
335 | 337 |
_source, _target ); |
336 | 338 |
} |
337 | 339 |
|
338 | 340 |
/// \brief Execute the successive shortest path algorithm to find |
339 | 341 |
/// an optimal flow. |
340 | 342 |
/// |
341 | 343 |
/// This function executes the successive shortest path algorithm to |
342 | 344 |
/// find a minimum cost flow, which is the union of \c k or less |
343 | 345 |
/// arc-disjoint paths. |
344 | 346 |
/// |
345 | 347 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
346 | 348 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
347 | 349 |
/// arc-disjoint paths found. |
348 | 350 |
/// |
349 | 351 |
/// \pre \ref init() must be called before using this function. |
350 | 352 |
int findFlow(int k = 2) { |
351 | 353 |
// Find shortest paths |
352 | 354 |
_path_num = 0; |
353 | 355 |
while (_path_num < k) { |
354 | 356 |
// Run Dijkstra |
355 | 357 |
if (!_dijkstra->run()) break; |
356 | 358 |
++_path_num; |
357 | 359 |
|
358 | 360 |
// Set the flow along the found shortest path |
359 | 361 |
Node u = _target; |
360 | 362 |
Arc e; |
361 | 363 |
while ((e = _pred[u]) != INVALID) { |
362 | 364 |
if (u == _graph.target(e)) { |
363 | 365 |
(*_flow)[e] = 1; |
364 | 366 |
u = _graph.source(e); |
365 | 367 |
} else { |
366 | 368 |
(*_flow)[e] = 0; |
367 | 369 |
u = _graph.target(e); |
368 | 370 |
} |
369 | 371 |
} |
370 | 372 |
} |
371 | 373 |
return _path_num; |
372 | 374 |
} |
373 | 375 |
|
374 | 376 |
/// \brief Compute the paths from the flow. |
375 | 377 |
/// |
376 | 378 |
/// This function computes the paths from the flow. |
377 | 379 |
/// |
378 | 380 |
/// \pre \ref init() and \ref findFlow() must be called before using |
379 | 381 |
/// this function. |
380 | 382 |
void findPaths() { |
381 | 383 |
// Create the residual flow map (the union of the paths not found |
382 | 384 |
// so far) |
383 | 385 |
FlowMap res_flow(_graph); |
384 | 386 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
385 | 387 |
|
386 | 388 |
paths.clear(); |
387 | 389 |
paths.resize(_path_num); |
388 | 390 |
for (int i = 0; i < _path_num; ++i) { |
389 | 391 |
Node n = _source; |
390 | 392 |
while (n != _target) { |
391 | 393 |
OutArcIt e(_graph, n); |
392 | 394 |
for ( ; res_flow[e] == 0; ++e) ; |
393 | 395 |
n = _graph.target(e); |
394 | 396 |
paths[i].addBack(e); |
395 | 397 |
res_flow[e] = 0; |
396 | 398 |
} |
397 | 399 |
} |
398 | 400 |
} |
399 | 401 |
|
400 | 402 |
/// @} |
401 | 403 |
|
402 | 404 |
/// \name Query Functions |
403 | 405 |
/// The results of the algorithm can be obtained using these |
404 | 406 |
/// functions. |
405 | 407 |
/// \n The algorithm should be executed before using them. |
406 | 408 |
|
407 | 409 |
/// @{ |
408 | 410 |
|
409 | 411 |
/// \brief Return a const reference to the arc map storing the |
410 | 412 |
/// found flow. |
411 | 413 |
/// |
412 | 414 |
/// This function returns a const reference to the arc map storing |
413 | 415 |
/// the flow that is the union of the found arc-disjoint paths. |
414 | 416 |
/// |
415 | 417 |
/// \pre \ref run() or \ref findFlow() must be called before using |
416 | 418 |
/// this function. |
417 | 419 |
const FlowMap& flowMap() const { |
418 | 420 |
return *_flow; |
419 | 421 |
} |
420 | 422 |
|
421 | 423 |
/// \brief Return a const reference to the node map storing the |
422 | 424 |
/// found potentials (the dual solution). |
423 | 425 |
/// |
424 | 426 |
/// This function returns a const reference to the node map storing |
425 | 427 |
/// the found potentials that provide the dual solution of the |
426 | 428 |
/// underlying minimum cost flow problem. |
427 | 429 |
/// |
428 | 430 |
/// \pre \ref run() or \ref findFlow() must be called before using |
429 | 431 |
/// this function. |
430 | 432 |
const PotentialMap& potentialMap() const { |
431 | 433 |
return *_potential; |
432 | 434 |
} |
433 | 435 |
|
434 | 436 |
/// \brief Return the flow on the given arc. |
435 | 437 |
/// |
436 | 438 |
/// This function returns the flow on the given arc. |
437 | 439 |
/// It is \c 1 if the arc is involved in one of the found paths, |
438 | 440 |
/// otherwise it is \c 0. |
439 | 441 |
/// |
440 | 442 |
/// \pre \ref run() or \ref findFlow() must be called before using |
441 | 443 |
/// this function. |
442 | 444 |
int flow(const Arc& arc) const { |
443 | 445 |
return (*_flow)[arc]; |
444 | 446 |
} |
445 | 447 |
|
446 | 448 |
/// \brief Return the potential of the given node. |
447 | 449 |
/// |
448 | 450 |
/// This function returns the potential of the given node. |
449 | 451 |
/// |
450 | 452 |
/// \pre \ref run() or \ref findFlow() must be called before using |
451 | 453 |
/// this function. |
452 | 454 |
Length potential(const Node& node) const { |
453 | 455 |
return (*_potential)[node]; |
454 | 456 |
} |
455 | 457 |
|
456 | 458 |
/// \brief Return the total length (cost) of the found paths (flow). |
457 | 459 |
/// |
458 | 460 |
/// This function returns the total length (cost) of the found paths |
459 | 461 |
/// (flow). The complexity of the function is \f$ O(e) \f$. |
460 | 462 |
/// |
461 | 463 |
/// \pre \ref run() or \ref findFlow() must be called before using |
462 | 464 |
/// this function. |
463 | 465 |
Length totalLength() const { |
464 | 466 |
Length c = 0; |
465 | 467 |
for (ArcIt e(_graph); e != INVALID; ++e) |
466 | 468 |
c += (*_flow)[e] * _length[e]; |
467 | 469 |
return c; |
468 | 470 |
} |
469 | 471 |
|
470 | 472 |
/// \brief Return the number of the found paths. |
471 | 473 |
/// |
472 | 474 |
/// This function returns the number of the found paths. |
473 | 475 |
/// |
474 | 476 |
/// \pre \ref run() or \ref findFlow() must be called before using |
475 | 477 |
/// this function. |
476 | 478 |
int pathNum() const { |
477 | 479 |
return _path_num; |
478 | 480 |
} |
479 | 481 |
|
480 | 482 |
/// \brief Return a const reference to the specified path. |
481 | 483 |
/// |
482 | 484 |
/// This function returns a const reference to the specified path. |
483 | 485 |
/// |
484 | 486 |
/// \param i The function returns the \c i-th path. |
485 | 487 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
486 | 488 |
/// |
487 | 489 |
/// \pre \ref run() or \ref findPaths() must be called before using |
488 | 490 |
/// this function. |
489 | 491 |
Path path(int i) const { |
490 | 492 |
return paths[i]; |
491 | 493 |
} |
492 | 494 |
|
493 | 495 |
/// @} |
494 | 496 |
|
495 | 497 |
}; //class Suurballe |
496 | 498 |
|
497 | 499 |
///@} |
498 | 500 |
|
499 | 501 |
} //namespace lemon |
500 | 502 |
|
501 | 503 |
#endif //LEMON_SUURBALLE_H |
0 comments (0 inline)