0
7
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 |
#include <lemon/bits/map_extender.h> |
|
33 | 34 |
#include <lemon/tolerance.h> |
34 | 35 |
|
35 | 36 |
#include <algorithm> |
36 | 37 |
|
37 | 38 |
namespace lemon { |
38 | 39 |
|
39 | 40 |
#ifdef _MSC_VER |
40 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
41 | 42 |
#else |
42 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
43 | 44 |
#endif |
44 | 45 |
|
45 | 46 |
template<typename DGR> |
46 | 47 |
class DigraphAdaptorBase { |
47 | 48 |
public: |
48 | 49 |
typedef DGR Digraph; |
49 | 50 |
typedef DigraphAdaptorBase Adaptor; |
50 | 51 |
|
51 | 52 |
protected: |
52 | 53 |
DGR* _digraph; |
53 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
54 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
55 | 56 |
|
56 | 57 |
public: |
57 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
58 | 59 |
|
59 | 60 |
typedef typename DGR::Node Node; |
60 | 61 |
typedef typename DGR::Arc Arc; |
61 | 62 |
|
62 | 63 |
void first(Node& i) const { _digraph->first(i); } |
63 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
64 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
65 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
66 | 67 |
|
67 | 68 |
void next(Node& i) const { _digraph->next(i); } |
68 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
69 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
70 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
71 | 72 |
|
72 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
73 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
74 | 75 |
|
75 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
76 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
77 | 78 |
|
78 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
79 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
80 | 81 |
|
81 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
82 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
83 | 84 |
return _digraph->findArc(u, v, prev); |
84 | 85 |
} |
85 | 86 |
|
86 | 87 |
Node addNode() { return _digraph->addNode(); } |
87 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
88 | 89 |
|
89 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
90 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
91 | 92 |
|
92 | 93 |
void clear() { _digraph->clear(); } |
93 | 94 |
|
94 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
95 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
96 | 97 |
|
97 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
98 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
99 | 100 |
|
100 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
101 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
102 | 103 |
|
103 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
104 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
105 | 106 |
|
106 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
107 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
108 | 109 |
|
109 | 110 |
template <typename V> |
110 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
111 | 112 |
public: |
112 | 113 |
|
113 | 114 |
typedef typename DGR::template NodeMap<V> Parent; |
114 | 115 |
|
115 | 116 |
explicit NodeMap(const Adaptor& adaptor) |
116 | 117 |
: Parent(*adaptor._digraph) {} |
117 | 118 |
|
118 | 119 |
NodeMap(const Adaptor& adaptor, const V& value) |
119 | 120 |
: Parent(*adaptor._digraph, value) { } |
120 | 121 |
|
121 | 122 |
private: |
122 | 123 |
NodeMap& operator=(const NodeMap& cmap) { |
123 | 124 |
return operator=<NodeMap>(cmap); |
124 | 125 |
} |
125 | 126 |
|
126 | 127 |
template <typename CMap> |
127 | 128 |
NodeMap& operator=(const CMap& cmap) { |
128 | 129 |
Parent::operator=(cmap); |
129 | 130 |
return *this; |
130 | 131 |
} |
131 | 132 |
|
132 | 133 |
}; |
133 | 134 |
|
134 | 135 |
template <typename V> |
135 | 136 |
class ArcMap : public DGR::template ArcMap<V> { |
136 | 137 |
public: |
137 | 138 |
|
138 | 139 |
typedef typename DGR::template ArcMap<V> Parent; |
139 | 140 |
|
140 | 141 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
141 | 142 |
: Parent(*adaptor._digraph) {} |
142 | 143 |
|
143 | 144 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
144 | 145 |
: Parent(*adaptor._digraph, value) {} |
145 | 146 |
|
146 | 147 |
private: |
147 | 148 |
ArcMap& operator=(const ArcMap& cmap) { |
148 | 149 |
return operator=<ArcMap>(cmap); |
149 | 150 |
} |
150 | 151 |
|
151 | 152 |
template <typename CMap> |
152 | 153 |
ArcMap& operator=(const CMap& cmap) { |
153 | 154 |
Parent::operator=(cmap); |
154 | 155 |
return *this; |
155 | 156 |
} |
156 | 157 |
|
157 | 158 |
}; |
158 | 159 |
|
159 | 160 |
}; |
160 | 161 |
|
161 | 162 |
template<typename GR> |
162 | 163 |
class GraphAdaptorBase { |
163 | 164 |
public: |
164 | 165 |
typedef GR Graph; |
165 | 166 |
|
166 | 167 |
protected: |
167 | 168 |
GR* _graph; |
168 | 169 |
|
169 | 170 |
GraphAdaptorBase() : _graph(0) {} |
170 | 171 |
|
171 | 172 |
void initialize(GR& graph) { _graph = &graph; } |
172 | 173 |
|
173 | 174 |
public: |
174 | 175 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
175 | 176 |
|
176 | 177 |
typedef typename GR::Node Node; |
177 | 178 |
typedef typename GR::Arc Arc; |
178 | 179 |
typedef typename GR::Edge Edge; |
179 | 180 |
|
180 | 181 |
void first(Node& i) const { _graph->first(i); } |
181 | 182 |
void first(Arc& i) const { _graph->first(i); } |
182 | 183 |
void first(Edge& i) const { _graph->first(i); } |
183 | 184 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
184 | 185 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
185 | 186 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
186 | 187 |
_graph->firstInc(i, d, n); |
187 | 188 |
} |
188 | 189 |
|
189 | 190 |
void next(Node& i) const { _graph->next(i); } |
190 | 191 |
void next(Arc& i) const { _graph->next(i); } |
191 | 192 |
void next(Edge& i) const { _graph->next(i); } |
192 | 193 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
193 | 194 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
194 | 195 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
195 | 196 |
|
196 | 197 |
Node u(const Edge& e) const { return _graph->u(e); } |
197 | 198 |
Node v(const Edge& e) const { return _graph->v(e); } |
198 | 199 |
|
199 | 200 |
Node source(const Arc& a) const { return _graph->source(a); } |
200 | 201 |
Node target(const Arc& a) const { return _graph->target(a); } |
201 | 202 |
|
202 | 203 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
203 | 204 |
int nodeNum() const { return _graph->nodeNum(); } |
204 | 205 |
|
205 | 206 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
206 | 207 |
int arcNum() const { return _graph->arcNum(); } |
207 | 208 |
|
208 | 209 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
209 | 210 |
int edgeNum() const { return _graph->edgeNum(); } |
210 | 211 |
|
211 | 212 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
212 | 213 |
Arc findArc(const Node& u, const Node& v, |
213 | 214 |
const Arc& prev = INVALID) const { |
214 | 215 |
return _graph->findArc(u, v, prev); |
215 | 216 |
} |
216 | 217 |
|
217 | 218 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
218 | 219 |
Edge findEdge(const Node& u, const Node& v, |
219 | 220 |
const Edge& prev = INVALID) const { |
220 | 221 |
return _graph->findEdge(u, v, prev); |
221 | 222 |
} |
222 | 223 |
|
223 | 224 |
Node addNode() { return _graph->addNode(); } |
224 | 225 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } |
225 | 226 |
|
226 | 227 |
void erase(const Node& i) { _graph->erase(i); } |
227 | 228 |
void erase(const Edge& i) { _graph->erase(i); } |
228 | 229 |
|
229 | 230 |
void clear() { _graph->clear(); } |
230 | 231 |
|
231 | 232 |
bool direction(const Arc& a) const { return _graph->direction(a); } |
232 | 233 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } |
233 | 234 |
|
234 | 235 |
int id(const Node& v) const { return _graph->id(v); } |
235 | 236 |
int id(const Arc& a) const { return _graph->id(a); } |
236 | 237 |
int id(const Edge& e) const { return _graph->id(e); } |
237 | 238 |
|
238 | 239 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
239 | 240 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
240 | 241 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
241 | 242 |
|
242 | 243 |
int maxNodeId() const { return _graph->maxNodeId(); } |
243 | 244 |
int maxArcId() const { return _graph->maxArcId(); } |
244 | 245 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
245 | 246 |
|
246 | 247 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
247 | 248 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
248 | 249 |
|
249 | 250 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
250 | 251 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
251 | 252 |
|
252 | 253 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
253 | 254 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
254 | 255 |
|
255 | 256 |
template <typename V> |
256 | 257 |
class NodeMap : public GR::template NodeMap<V> { |
257 | 258 |
public: |
258 | 259 |
typedef typename GR::template NodeMap<V> Parent; |
259 | 260 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
260 | 261 |
: Parent(*adapter._graph) {} |
261 | 262 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
262 | 263 |
: Parent(*adapter._graph, value) {} |
263 | 264 |
|
264 | 265 |
private: |
265 | 266 |
NodeMap& operator=(const NodeMap& cmap) { |
266 | 267 |
return operator=<NodeMap>(cmap); |
267 | 268 |
} |
268 | 269 |
|
269 | 270 |
template <typename CMap> |
270 | 271 |
NodeMap& operator=(const CMap& cmap) { |
271 | 272 |
Parent::operator=(cmap); |
272 | 273 |
return *this; |
273 | 274 |
} |
274 | 275 |
|
275 | 276 |
}; |
276 | 277 |
|
277 | 278 |
template <typename V> |
278 | 279 |
class ArcMap : public GR::template ArcMap<V> { |
279 | 280 |
public: |
280 | 281 |
typedef typename GR::template ArcMap<V> Parent; |
281 | 282 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
282 | 283 |
: Parent(*adapter._graph) {} |
283 | 284 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
284 | 285 |
: Parent(*adapter._graph, value) {} |
285 | 286 |
|
286 | 287 |
private: |
287 | 288 |
ArcMap& operator=(const ArcMap& cmap) { |
288 | 289 |
return operator=<ArcMap>(cmap); |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
template <typename CMap> |
292 | 293 |
ArcMap& operator=(const CMap& cmap) { |
293 | 294 |
Parent::operator=(cmap); |
294 | 295 |
return *this; |
295 | 296 |
} |
296 | 297 |
}; |
297 | 298 |
|
298 | 299 |
template <typename V> |
299 | 300 |
class EdgeMap : public GR::template EdgeMap<V> { |
300 | 301 |
public: |
301 | 302 |
typedef typename GR::template EdgeMap<V> Parent; |
302 | 303 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
303 | 304 |
: Parent(*adapter._graph) {} |
304 | 305 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
305 | 306 |
: Parent(*adapter._graph, value) {} |
306 | 307 |
|
307 | 308 |
private: |
308 | 309 |
EdgeMap& operator=(const EdgeMap& cmap) { |
309 | 310 |
return operator=<EdgeMap>(cmap); |
310 | 311 |
} |
311 | 312 |
|
312 | 313 |
template <typename CMap> |
313 | 314 |
EdgeMap& operator=(const CMap& cmap) { |
314 | 315 |
Parent::operator=(cmap); |
315 | 316 |
return *this; |
316 | 317 |
} |
317 | 318 |
}; |
318 | 319 |
|
319 | 320 |
}; |
320 | 321 |
|
321 | 322 |
template <typename DGR> |
322 | 323 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> { |
323 | 324 |
public: |
324 | 325 |
typedef DGR Digraph; |
325 | 326 |
typedef DigraphAdaptorBase<DGR> Parent; |
326 | 327 |
protected: |
327 | 328 |
ReverseDigraphBase() : Parent() { } |
328 | 329 |
public: |
329 | 330 |
typedef typename Parent::Node Node; |
330 | 331 |
typedef typename Parent::Arc Arc; |
331 | 332 |
|
332 | 333 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
333 | 334 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
334 | 335 |
|
335 | 336 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
336 | 337 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
337 | 338 |
|
338 | 339 |
Node source(const Arc& a) const { return Parent::target(a); } |
339 | 340 |
Node target(const Arc& a) const { return Parent::source(a); } |
340 | 341 |
|
341 | 342 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
342 | 343 |
|
343 | 344 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
344 | 345 |
Arc findArc(const Node& u, const Node& v, |
345 | 346 |
const Arc& prev = INVALID) const { |
346 | 347 |
return Parent::findArc(v, u, prev); |
347 | 348 |
} |
348 | 349 |
|
349 | 350 |
}; |
350 | 351 |
|
351 | 352 |
/// \ingroup graph_adaptors |
352 | 353 |
/// |
353 | 354 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
354 | 355 |
/// a digraph. |
355 | 356 |
/// |
356 | 357 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
357 | 358 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
358 | 359 |
/// |
359 | 360 |
/// The adapted digraph can also be modified through this adaptor |
360 | 361 |
/// by adding or removing nodes or arcs, unless the \c GR template |
361 | 362 |
/// parameter is set to be \c const. |
362 | 363 |
/// |
363 | 364 |
/// \tparam DGR The type of the adapted digraph. |
364 | 365 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
365 | 366 |
/// It can also be specified to be \c const. |
366 | 367 |
/// |
367 | 368 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
368 | 369 |
/// digraph are convertible to each other. |
369 | 370 |
template<typename DGR> |
370 | 371 |
#ifdef DOXYGEN |
371 | 372 |
class ReverseDigraph { |
372 | 373 |
#else |
373 | 374 |
class ReverseDigraph : |
374 | 375 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > { |
375 | 376 |
#endif |
376 | 377 |
public: |
377 | 378 |
/// The type of the adapted digraph. |
378 | 379 |
typedef DGR Digraph; |
379 | 380 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
380 | 381 |
protected: |
381 | 382 |
ReverseDigraph() { } |
382 | 383 |
public: |
383 | 384 |
|
384 | 385 |
/// \brief Constructor |
385 | 386 |
/// |
386 | 387 |
/// Creates a reverse digraph adaptor for the given digraph. |
387 | 388 |
explicit ReverseDigraph(DGR& digraph) { |
388 | 389 |
Parent::initialize(digraph); |
389 | 390 |
} |
390 | 391 |
}; |
391 | 392 |
|
392 | 393 |
/// \brief Returns a read-only ReverseDigraph adaptor |
393 | 394 |
/// |
394 | 395 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
395 | 396 |
/// \ingroup graph_adaptors |
396 | 397 |
/// \relates ReverseDigraph |
397 | 398 |
template<typename DGR> |
398 | 399 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
399 | 400 |
return ReverseDigraph<const DGR>(digraph); |
400 | 401 |
} |
401 | 402 |
|
402 | 403 |
|
403 | 404 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
404 | 405 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
405 | 406 |
public: |
406 | 407 |
typedef DGR Digraph; |
407 | 408 |
typedef NF NodeFilterMap; |
408 | 409 |
typedef AF ArcFilterMap; |
409 | 410 |
|
410 | 411 |
typedef SubDigraphBase Adaptor; |
411 | 412 |
typedef DigraphAdaptorBase<DGR> Parent; |
412 | 413 |
protected: |
413 | 414 |
NF* _node_filter; |
414 | 415 |
AF* _arc_filter; |
415 | 416 |
SubDigraphBase() |
416 | 417 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
417 | 418 |
|
418 | 419 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
419 | 420 |
Parent::initialize(digraph); |
420 | 421 |
_node_filter = &node_filter; |
421 | 422 |
_arc_filter = &arc_filter; |
422 | 423 |
} |
423 | 424 |
|
424 | 425 |
public: |
425 | 426 |
|
426 | 427 |
typedef typename Parent::Node Node; |
427 | 428 |
typedef typename Parent::Arc Arc; |
428 | 429 |
|
429 | 430 |
void first(Node& i) const { |
430 | 431 |
Parent::first(i); |
431 | 432 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
432 | 433 |
} |
433 | 434 |
|
434 | 435 |
void first(Arc& i) const { |
435 | 436 |
Parent::first(i); |
436 | 437 |
while (i != INVALID && (!(*_arc_filter)[i] |
437 | 438 |
|| !(*_node_filter)[Parent::source(i)] |
438 | 439 |
|| !(*_node_filter)[Parent::target(i)])) |
439 | 440 |
Parent::next(i); |
440 | 441 |
} |
441 | 442 |
|
442 | 443 |
void firstIn(Arc& i, const Node& n) const { |
443 | 444 |
Parent::firstIn(i, n); |
444 | 445 |
while (i != INVALID && (!(*_arc_filter)[i] |
445 | 446 |
|| !(*_node_filter)[Parent::source(i)])) |
446 | 447 |
Parent::nextIn(i); |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
void firstOut(Arc& i, const Node& n) const { |
450 | 451 |
Parent::firstOut(i, n); |
451 | 452 |
while (i != INVALID && (!(*_arc_filter)[i] |
452 | 453 |
|| !(*_node_filter)[Parent::target(i)])) |
453 | 454 |
Parent::nextOut(i); |
454 | 455 |
} |
455 | 456 |
|
456 | 457 |
void next(Node& i) const { |
457 | 458 |
Parent::next(i); |
458 | 459 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
459 | 460 |
} |
460 | 461 |
|
461 | 462 |
void next(Arc& i) const { |
462 | 463 |
Parent::next(i); |
463 | 464 |
while (i != INVALID && (!(*_arc_filter)[i] |
464 | 465 |
|| !(*_node_filter)[Parent::source(i)] |
465 | 466 |
|| !(*_node_filter)[Parent::target(i)])) |
466 | 467 |
Parent::next(i); |
467 | 468 |
} |
468 | 469 |
|
469 | 470 |
void nextIn(Arc& i) const { |
470 | 471 |
Parent::nextIn(i); |
471 | 472 |
while (i != INVALID && (!(*_arc_filter)[i] |
472 | 473 |
|| !(*_node_filter)[Parent::source(i)])) |
473 | 474 |
Parent::nextIn(i); |
474 | 475 |
} |
475 | 476 |
|
476 | 477 |
void nextOut(Arc& i) const { |
477 | 478 |
Parent::nextOut(i); |
478 | 479 |
while (i != INVALID && (!(*_arc_filter)[i] |
479 | 480 |
|| !(*_node_filter)[Parent::target(i)])) |
480 | 481 |
Parent::nextOut(i); |
481 | 482 |
} |
482 | 483 |
|
483 | 484 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
484 | 485 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
485 | 486 |
|
486 | 487 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
487 | 488 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
488 | 489 |
|
489 | 490 |
typedef False NodeNumTag; |
490 | 491 |
typedef False ArcNumTag; |
491 | 492 |
|
492 | 493 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
493 | 494 |
Arc findArc(const Node& source, const Node& target, |
494 | 495 |
const Arc& prev = INVALID) const { |
495 | 496 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
496 | 497 |
return INVALID; |
497 | 498 |
} |
498 | 499 |
Arc arc = Parent::findArc(source, target, prev); |
499 | 500 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
500 | 501 |
arc = Parent::findArc(source, target, arc); |
501 | 502 |
} |
502 | 503 |
return arc; |
503 | 504 |
} |
504 | 505 |
|
505 | 506 |
public: |
506 | 507 |
|
507 | 508 |
template <typename V> |
508 | 509 |
class NodeMap |
509 | 510 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
510 | 511 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
511 | 512 |
public: |
512 | 513 |
typedef V Value; |
513 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
514 | 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
515 | 516 |
|
516 | 517 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
517 | 518 |
: Parent(adaptor) {} |
518 | 519 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
519 | 520 |
: Parent(adaptor, value) {} |
520 | 521 |
|
521 | 522 |
private: |
522 | 523 |
NodeMap& operator=(const NodeMap& cmap) { |
523 | 524 |
return operator=<NodeMap>(cmap); |
524 | 525 |
} |
525 | 526 |
|
526 | 527 |
template <typename CMap> |
527 | 528 |
NodeMap& operator=(const CMap& cmap) { |
528 | 529 |
Parent::operator=(cmap); |
529 | 530 |
return *this; |
530 | 531 |
} |
531 | 532 |
}; |
532 | 533 |
|
533 | 534 |
template <typename V> |
534 | 535 |
class ArcMap |
535 | 536 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
536 | 537 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
537 | 538 |
public: |
538 | 539 |
typedef V Value; |
539 | 540 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
540 | 541 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
541 | 542 |
|
542 | 543 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
543 | 544 |
: Parent(adaptor) {} |
544 | 545 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
545 | 546 |
: Parent(adaptor, value) {} |
546 | 547 |
|
547 | 548 |
private: |
548 | 549 |
ArcMap& operator=(const ArcMap& cmap) { |
549 | 550 |
return operator=<ArcMap>(cmap); |
550 | 551 |
} |
551 | 552 |
|
552 | 553 |
template <typename CMap> |
553 | 554 |
ArcMap& operator=(const CMap& cmap) { |
554 | 555 |
Parent::operator=(cmap); |
555 | 556 |
return *this; |
556 | 557 |
} |
557 | 558 |
}; |
558 | 559 |
|
559 | 560 |
}; |
560 | 561 |
|
561 | 562 |
template <typename DGR, typename NF, typename AF> |
562 | 563 |
class SubDigraphBase<DGR, NF, AF, false> |
563 | 564 |
: public DigraphAdaptorBase<DGR> { |
564 | 565 |
public: |
565 | 566 |
typedef DGR Digraph; |
566 | 567 |
typedef NF NodeFilterMap; |
567 | 568 |
typedef AF ArcFilterMap; |
568 | 569 |
|
569 | 570 |
typedef SubDigraphBase Adaptor; |
570 | 571 |
typedef DigraphAdaptorBase<Digraph> Parent; |
571 | 572 |
protected: |
572 | 573 |
NF* _node_filter; |
573 | 574 |
AF* _arc_filter; |
574 | 575 |
SubDigraphBase() |
575 | 576 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
576 | 577 |
|
577 | 578 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
578 | 579 |
Parent::initialize(digraph); |
579 | 580 |
_node_filter = &node_filter; |
580 | 581 |
_arc_filter = &arc_filter; |
581 | 582 |
} |
582 | 583 |
|
583 | 584 |
public: |
584 | 585 |
|
585 | 586 |
typedef typename Parent::Node Node; |
586 | 587 |
typedef typename Parent::Arc Arc; |
587 | 588 |
|
588 | 589 |
void first(Node& i) const { |
589 | 590 |
Parent::first(i); |
590 | 591 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
591 | 592 |
} |
592 | 593 |
|
593 | 594 |
void first(Arc& i) const { |
594 | 595 |
Parent::first(i); |
595 | 596 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
596 | 597 |
} |
597 | 598 |
|
598 | 599 |
void firstIn(Arc& i, const Node& n) const { |
599 | 600 |
Parent::firstIn(i, n); |
600 | 601 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
601 | 602 |
} |
602 | 603 |
|
603 | 604 |
void firstOut(Arc& i, const Node& n) const { |
604 | 605 |
Parent::firstOut(i, n); |
605 | 606 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
606 | 607 |
} |
607 | 608 |
|
608 | 609 |
void next(Node& i) const { |
609 | 610 |
Parent::next(i); |
610 | 611 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
611 | 612 |
} |
612 | 613 |
void next(Arc& i) const { |
613 | 614 |
Parent::next(i); |
614 | 615 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
615 | 616 |
} |
616 | 617 |
void nextIn(Arc& i) const { |
617 | 618 |
Parent::nextIn(i); |
618 | 619 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
619 | 620 |
} |
620 | 621 |
|
621 | 622 |
void nextOut(Arc& i) const { |
622 | 623 |
Parent::nextOut(i); |
623 | 624 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
624 | 625 |
} |
625 | 626 |
|
626 | 627 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
627 | 628 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
628 | 629 |
|
629 | 630 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
630 | 631 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
631 | 632 |
|
632 | 633 |
typedef False NodeNumTag; |
633 | 634 |
typedef False ArcNumTag; |
634 | 635 |
|
635 | 636 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
636 | 637 |
Arc findArc(const Node& source, const Node& target, |
637 | 638 |
const Arc& prev = INVALID) const { |
638 | 639 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
639 | 640 |
return INVALID; |
640 | 641 |
} |
641 | 642 |
Arc arc = Parent::findArc(source, target, prev); |
642 | 643 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
643 | 644 |
arc = Parent::findArc(source, target, arc); |
644 | 645 |
} |
645 | 646 |
return arc; |
646 | 647 |
} |
647 | 648 |
|
648 | 649 |
template <typename V> |
649 | 650 |
class NodeMap |
650 | 651 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
651 | 652 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
652 | 653 |
public: |
653 | 654 |
typedef V Value; |
654 | 655 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
655 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
656 | 657 |
|
657 | 658 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
658 | 659 |
: Parent(adaptor) {} |
659 | 660 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
660 | 661 |
: Parent(adaptor, value) {} |
661 | 662 |
|
662 | 663 |
private: |
663 | 664 |
NodeMap& operator=(const NodeMap& cmap) { |
664 | 665 |
return operator=<NodeMap>(cmap); |
665 | 666 |
} |
666 | 667 |
|
667 | 668 |
template <typename CMap> |
668 | 669 |
NodeMap& operator=(const CMap& cmap) { |
669 | 670 |
Parent::operator=(cmap); |
670 | 671 |
return *this; |
671 | 672 |
} |
672 | 673 |
}; |
673 | 674 |
|
674 | 675 |
template <typename V> |
675 | 676 |
class ArcMap |
676 | 677 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
677 | 678 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
678 | 679 |
public: |
679 | 680 |
typedef V Value; |
680 | 681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
681 | 682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
682 | 683 |
|
683 | 684 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
684 | 685 |
: Parent(adaptor) {} |
685 | 686 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
686 | 687 |
: Parent(adaptor, value) {} |
687 | 688 |
|
688 | 689 |
private: |
689 | 690 |
ArcMap& operator=(const ArcMap& cmap) { |
690 | 691 |
return operator=<ArcMap>(cmap); |
691 | 692 |
} |
692 | 693 |
|
693 | 694 |
template <typename CMap> |
694 | 695 |
ArcMap& operator=(const CMap& cmap) { |
695 | 696 |
Parent::operator=(cmap); |
696 | 697 |
return *this; |
697 | 698 |
} |
698 | 699 |
}; |
699 | 700 |
|
700 | 701 |
}; |
701 | 702 |
|
702 | 703 |
/// \ingroup graph_adaptors |
703 | 704 |
/// |
704 | 705 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
705 | 706 |
/// |
706 | 707 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
707 | 708 |
/// A \c bool node map and a \c bool arc map must be specified, which |
708 | 709 |
/// define the filters for nodes and arcs. |
709 | 710 |
/// Only the nodes and arcs with \c true filter value are |
710 | 711 |
/// shown in the subdigraph. The arcs that are incident to hidden |
711 | 712 |
/// nodes are also filtered out. |
712 | 713 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
713 | 714 |
/// |
714 | 715 |
/// The adapted digraph can also be modified through this adaptor |
715 | 716 |
/// by adding or removing nodes or arcs, unless the \c GR template |
716 | 717 |
/// parameter is set to be \c const. |
717 | 718 |
/// |
718 | 719 |
/// \tparam DGR The type of the adapted digraph. |
719 | 720 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
720 | 721 |
/// It can also be specified to be \c const. |
721 | 722 |
/// \tparam NF The type of the node filter map. |
722 | 723 |
/// It must be a \c bool (or convertible) node map of the |
723 | 724 |
/// adapted digraph. The default type is |
724 | 725 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
725 | 726 |
/// \tparam AF The type of the arc filter map. |
726 | 727 |
/// It must be \c bool (or convertible) arc map of the |
727 | 728 |
/// adapted digraph. The default type is |
728 | 729 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
729 | 730 |
/// |
730 | 731 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
731 | 732 |
/// digraph are convertible to each other. |
732 | 733 |
/// |
733 | 734 |
/// \see FilterNodes |
734 | 735 |
/// \see FilterArcs |
735 | 736 |
#ifdef DOXYGEN |
736 | 737 |
template<typename DGR, typename NF, typename AF> |
737 | 738 |
class SubDigraph { |
738 | 739 |
#else |
739 | 740 |
template<typename DGR, |
740 | 741 |
typename NF = typename DGR::template NodeMap<bool>, |
741 | 742 |
typename AF = typename DGR::template ArcMap<bool> > |
742 | 743 |
class SubDigraph : |
743 | 744 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > { |
744 | 745 |
#endif |
745 | 746 |
public: |
746 | 747 |
/// The type of the adapted digraph. |
747 | 748 |
typedef DGR Digraph; |
748 | 749 |
/// The type of the node filter map. |
749 | 750 |
typedef NF NodeFilterMap; |
750 | 751 |
/// The type of the arc filter map. |
751 | 752 |
typedef AF ArcFilterMap; |
752 | 753 |
|
753 | 754 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
754 | 755 |
Parent; |
755 | 756 |
|
756 | 757 |
typedef typename Parent::Node Node; |
757 | 758 |
typedef typename Parent::Arc Arc; |
758 | 759 |
|
759 | 760 |
protected: |
760 | 761 |
SubDigraph() { } |
761 | 762 |
public: |
762 | 763 |
|
763 | 764 |
/// \brief Constructor |
764 | 765 |
/// |
765 | 766 |
/// Creates a subdigraph for the given digraph with the |
766 | 767 |
/// given node and arc filter maps. |
767 | 768 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { |
768 | 769 |
Parent::initialize(digraph, node_filter, arc_filter); |
769 | 770 |
} |
770 | 771 |
|
771 | 772 |
/// \brief Sets the status of the given node |
772 | 773 |
/// |
773 | 774 |
/// This function sets the status of the given node. |
774 | 775 |
/// It is done by simply setting the assigned value of \c n |
775 | 776 |
/// to \c v in the node filter map. |
776 | 777 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
777 | 778 |
|
778 | 779 |
/// \brief Sets the status of the given arc |
779 | 780 |
/// |
780 | 781 |
/// This function sets the status of the given arc. |
781 | 782 |
/// It is done by simply setting the assigned value of \c a |
782 | 783 |
/// to \c v in the arc filter map. |
783 | 784 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
784 | 785 |
|
785 | 786 |
/// \brief Returns the status of the given node |
786 | 787 |
/// |
787 | 788 |
/// This function returns the status of the given node. |
788 | 789 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
789 | 790 |
bool status(const Node& n) const { return Parent::status(n); } |
790 | 791 |
|
791 | 792 |
/// \brief Returns the status of the given arc |
792 | 793 |
/// |
793 | 794 |
/// This function returns the status of the given arc. |
794 | 795 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
795 | 796 |
bool status(const Arc& a) const { return Parent::status(a); } |
796 | 797 |
|
797 | 798 |
/// \brief Disables the given node |
798 | 799 |
/// |
799 | 800 |
/// This function disables the given node in the subdigraph, |
800 | 801 |
/// so the iteration jumps over it. |
801 | 802 |
/// It is the same as \ref status() "status(n, false)". |
802 | 803 |
void disable(const Node& n) const { Parent::status(n, false); } |
803 | 804 |
|
804 | 805 |
/// \brief Disables the given arc |
805 | 806 |
/// |
806 | 807 |
/// This function disables the given arc in the subdigraph, |
807 | 808 |
/// so the iteration jumps over it. |
808 | 809 |
/// It is the same as \ref status() "status(a, false)". |
809 | 810 |
void disable(const Arc& a) const { Parent::status(a, false); } |
810 | 811 |
|
811 | 812 |
/// \brief Enables the given node |
812 | 813 |
/// |
813 | 814 |
/// This function enables the given node in the subdigraph. |
814 | 815 |
/// It is the same as \ref status() "status(n, true)". |
815 | 816 |
void enable(const Node& n) const { Parent::status(n, true); } |
816 | 817 |
|
817 | 818 |
/// \brief Enables the given arc |
818 | 819 |
/// |
819 | 820 |
/// This function enables the given arc in the subdigraph. |
820 | 821 |
/// It is the same as \ref status() "status(a, true)". |
821 | 822 |
void enable(const Arc& a) const { Parent::status(a, true); } |
822 | 823 |
|
823 | 824 |
}; |
824 | 825 |
|
825 | 826 |
/// \brief Returns a read-only SubDigraph adaptor |
826 | 827 |
/// |
827 | 828 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
828 | 829 |
/// \ingroup graph_adaptors |
829 | 830 |
/// \relates SubDigraph |
830 | 831 |
template<typename DGR, typename NF, typename AF> |
831 | 832 |
SubDigraph<const DGR, NF, AF> |
832 | 833 |
subDigraph(const DGR& digraph, |
833 | 834 |
NF& node_filter, AF& arc_filter) { |
834 | 835 |
return SubDigraph<const DGR, NF, AF> |
835 | 836 |
(digraph, node_filter, arc_filter); |
836 | 837 |
} |
837 | 838 |
|
838 | 839 |
template<typename DGR, typename NF, typename AF> |
839 | 840 |
SubDigraph<const DGR, const NF, AF> |
840 | 841 |
subDigraph(const DGR& digraph, |
841 | 842 |
const NF& node_filter, AF& arc_filter) { |
842 | 843 |
return SubDigraph<const DGR, const NF, AF> |
843 | 844 |
(digraph, node_filter, arc_filter); |
844 | 845 |
} |
845 | 846 |
|
846 | 847 |
template<typename DGR, typename NF, typename AF> |
847 | 848 |
SubDigraph<const DGR, NF, const AF> |
848 | 849 |
subDigraph(const DGR& digraph, |
849 | 850 |
NF& node_filter, const AF& arc_filter) { |
850 | 851 |
return SubDigraph<const DGR, NF, const AF> |
851 | 852 |
(digraph, node_filter, arc_filter); |
852 | 853 |
} |
853 | 854 |
|
854 | 855 |
template<typename DGR, typename NF, typename AF> |
855 | 856 |
SubDigraph<const DGR, const NF, const AF> |
856 | 857 |
subDigraph(const DGR& digraph, |
857 | 858 |
const NF& node_filter, const AF& arc_filter) { |
858 | 859 |
return SubDigraph<const DGR, const NF, const AF> |
859 | 860 |
(digraph, node_filter, arc_filter); |
860 | 861 |
} |
861 | 862 |
|
862 | 863 |
|
863 | 864 |
template <typename GR, typename NF, typename EF, bool ch = true> |
864 | 865 |
class SubGraphBase : public GraphAdaptorBase<GR> { |
865 | 866 |
public: |
866 | 867 |
typedef GR Graph; |
867 | 868 |
typedef NF NodeFilterMap; |
868 | 869 |
typedef EF EdgeFilterMap; |
869 | 870 |
|
870 | 871 |
typedef SubGraphBase Adaptor; |
871 | 872 |
typedef GraphAdaptorBase<GR> Parent; |
872 | 873 |
protected: |
873 | 874 |
|
874 | 875 |
NF* _node_filter; |
875 | 876 |
EF* _edge_filter; |
876 | 877 |
|
877 | 878 |
SubGraphBase() |
878 | 879 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
879 | 880 |
|
880 | 881 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
881 | 882 |
Parent::initialize(graph); |
882 | 883 |
_node_filter = &node_filter; |
883 | 884 |
_edge_filter = &edge_filter; |
884 | 885 |
} |
885 | 886 |
|
886 | 887 |
public: |
887 | 888 |
|
888 | 889 |
typedef typename Parent::Node Node; |
889 | 890 |
typedef typename Parent::Arc Arc; |
890 | 891 |
typedef typename Parent::Edge Edge; |
891 | 892 |
|
892 | 893 |
void first(Node& i) const { |
893 | 894 |
Parent::first(i); |
894 | 895 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
895 | 896 |
} |
896 | 897 |
|
897 | 898 |
void first(Arc& i) const { |
898 | 899 |
Parent::first(i); |
899 | 900 |
while (i!=INVALID && (!(*_edge_filter)[i] |
900 | 901 |
|| !(*_node_filter)[Parent::source(i)] |
901 | 902 |
|| !(*_node_filter)[Parent::target(i)])) |
902 | 903 |
Parent::next(i); |
903 | 904 |
} |
904 | 905 |
|
905 | 906 |
void first(Edge& i) const { |
906 | 907 |
Parent::first(i); |
907 | 908 |
while (i!=INVALID && (!(*_edge_filter)[i] |
908 | 909 |
|| !(*_node_filter)[Parent::u(i)] |
909 | 910 |
|| !(*_node_filter)[Parent::v(i)])) |
910 | 911 |
Parent::next(i); |
911 | 912 |
} |
912 | 913 |
|
913 | 914 |
void firstIn(Arc& i, const Node& n) const { |
914 | 915 |
Parent::firstIn(i, n); |
915 | 916 |
while (i!=INVALID && (!(*_edge_filter)[i] |
916 | 917 |
|| !(*_node_filter)[Parent::source(i)])) |
917 | 918 |
Parent::nextIn(i); |
918 | 919 |
} |
919 | 920 |
|
920 | 921 |
void firstOut(Arc& i, const Node& n) const { |
921 | 922 |
Parent::firstOut(i, n); |
922 | 923 |
while (i!=INVALID && (!(*_edge_filter)[i] |
923 | 924 |
|| !(*_node_filter)[Parent::target(i)])) |
924 | 925 |
Parent::nextOut(i); |
925 | 926 |
} |
926 | 927 |
|
927 | 928 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
928 | 929 |
Parent::firstInc(i, d, n); |
929 | 930 |
while (i!=INVALID && (!(*_edge_filter)[i] |
930 | 931 |
|| !(*_node_filter)[Parent::u(i)] |
931 | 932 |
|| !(*_node_filter)[Parent::v(i)])) |
932 | 933 |
Parent::nextInc(i, d); |
933 | 934 |
} |
934 | 935 |
|
935 | 936 |
void next(Node& i) const { |
936 | 937 |
Parent::next(i); |
937 | 938 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
938 | 939 |
} |
939 | 940 |
|
940 | 941 |
void next(Arc& i) const { |
941 | 942 |
Parent::next(i); |
942 | 943 |
while (i!=INVALID && (!(*_edge_filter)[i] |
943 | 944 |
|| !(*_node_filter)[Parent::source(i)] |
944 | 945 |
|| !(*_node_filter)[Parent::target(i)])) |
945 | 946 |
Parent::next(i); |
946 | 947 |
} |
947 | 948 |
|
948 | 949 |
void next(Edge& i) const { |
949 | 950 |
Parent::next(i); |
950 | 951 |
while (i!=INVALID && (!(*_edge_filter)[i] |
951 | 952 |
|| !(*_node_filter)[Parent::u(i)] |
952 | 953 |
|| !(*_node_filter)[Parent::v(i)])) |
953 | 954 |
Parent::next(i); |
954 | 955 |
} |
955 | 956 |
|
956 | 957 |
void nextIn(Arc& i) const { |
957 | 958 |
Parent::nextIn(i); |
958 | 959 |
while (i!=INVALID && (!(*_edge_filter)[i] |
959 | 960 |
|| !(*_node_filter)[Parent::source(i)])) |
960 | 961 |
Parent::nextIn(i); |
961 | 962 |
} |
962 | 963 |
|
963 | 964 |
void nextOut(Arc& i) const { |
964 | 965 |
Parent::nextOut(i); |
965 | 966 |
while (i!=INVALID && (!(*_edge_filter)[i] |
966 | 967 |
|| !(*_node_filter)[Parent::target(i)])) |
967 | 968 |
Parent::nextOut(i); |
968 | 969 |
} |
969 | 970 |
|
970 | 971 |
void nextInc(Edge& i, bool& d) const { |
971 | 972 |
Parent::nextInc(i, d); |
972 | 973 |
while (i!=INVALID && (!(*_edge_filter)[i] |
973 | 974 |
|| !(*_node_filter)[Parent::u(i)] |
974 | 975 |
|| !(*_node_filter)[Parent::v(i)])) |
975 | 976 |
Parent::nextInc(i, d); |
976 | 977 |
} |
977 | 978 |
|
978 | 979 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
979 | 980 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
980 | 981 |
|
981 | 982 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
982 | 983 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
983 | 984 |
|
984 | 985 |
typedef False NodeNumTag; |
985 | 986 |
typedef False ArcNumTag; |
986 | 987 |
typedef False EdgeNumTag; |
987 | 988 |
|
988 | 989 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
989 | 990 |
Arc findArc(const Node& u, const Node& v, |
990 | 991 |
const Arc& prev = INVALID) const { |
991 | 992 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
992 | 993 |
return INVALID; |
993 | 994 |
} |
994 | 995 |
Arc arc = Parent::findArc(u, v, prev); |
995 | 996 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
996 | 997 |
arc = Parent::findArc(u, v, arc); |
997 | 998 |
} |
998 | 999 |
return arc; |
999 | 1000 |
} |
1000 | 1001 |
|
1001 | 1002 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1002 | 1003 |
Edge findEdge(const Node& u, const Node& v, |
1003 | 1004 |
const Edge& prev = INVALID) const { |
1004 | 1005 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1005 | 1006 |
return INVALID; |
1006 | 1007 |
} |
1007 | 1008 |
Edge edge = Parent::findEdge(u, v, prev); |
1008 | 1009 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1009 | 1010 |
edge = Parent::findEdge(u, v, edge); |
1010 | 1011 |
} |
1011 | 1012 |
return edge; |
1012 | 1013 |
} |
1013 | 1014 |
|
1014 | 1015 |
template <typename V> |
1015 | 1016 |
class NodeMap |
1016 | 1017 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1017 | 1018 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1018 | 1019 |
public: |
1019 | 1020 |
typedef V Value; |
1020 | 1021 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1021 | 1022 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1022 | 1023 |
|
1023 | 1024 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1024 | 1025 |
: Parent(adaptor) {} |
1025 | 1026 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1026 | 1027 |
: Parent(adaptor, value) {} |
1027 | 1028 |
|
1028 | 1029 |
private: |
1029 | 1030 |
NodeMap& operator=(const NodeMap& cmap) { |
1030 | 1031 |
return operator=<NodeMap>(cmap); |
1031 | 1032 |
} |
1032 | 1033 |
|
1033 | 1034 |
template <typename CMap> |
1034 | 1035 |
NodeMap& operator=(const CMap& cmap) { |
1035 | 1036 |
Parent::operator=(cmap); |
1036 | 1037 |
return *this; |
1037 | 1038 |
} |
1038 | 1039 |
}; |
1039 | 1040 |
|
1040 | 1041 |
template <typename V> |
1041 | 1042 |
class ArcMap |
1042 | 1043 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1043 | 1044 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1044 | 1045 |
public: |
1045 | 1046 |
typedef V Value; |
1046 | 1047 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1047 | 1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1048 | 1049 |
|
1049 | 1050 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1050 | 1051 |
: Parent(adaptor) {} |
1051 | 1052 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1052 | 1053 |
: Parent(adaptor, value) {} |
1053 | 1054 |
|
1054 | 1055 |
private: |
1055 | 1056 |
ArcMap& operator=(const ArcMap& cmap) { |
1056 | 1057 |
return operator=<ArcMap>(cmap); |
1057 | 1058 |
} |
1058 | 1059 |
|
1059 | 1060 |
template <typename CMap> |
1060 | 1061 |
ArcMap& operator=(const CMap& cmap) { |
1061 | 1062 |
Parent::operator=(cmap); |
1062 | 1063 |
return *this; |
1063 | 1064 |
} |
1064 | 1065 |
}; |
1065 | 1066 |
|
1066 | 1067 |
template <typename V> |
1067 | 1068 |
class EdgeMap |
1068 | 1069 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1069 | 1070 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1070 | 1071 |
public: |
1071 | 1072 |
typedef V Value; |
1072 | 1073 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1073 | 1074 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1074 | 1075 |
|
1075 | 1076 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1076 | 1077 |
: Parent(adaptor) {} |
1077 | 1078 |
|
1078 | 1079 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1079 | 1080 |
: Parent(adaptor, value) {} |
1080 | 1081 |
|
1081 | 1082 |
private: |
1082 | 1083 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1083 | 1084 |
return operator=<EdgeMap>(cmap); |
1084 | 1085 |
} |
1085 | 1086 |
|
1086 | 1087 |
template <typename CMap> |
1087 | 1088 |
EdgeMap& operator=(const CMap& cmap) { |
1088 | 1089 |
Parent::operator=(cmap); |
1089 | 1090 |
return *this; |
1090 | 1091 |
} |
1091 | 1092 |
}; |
1092 | 1093 |
|
1093 | 1094 |
}; |
1094 | 1095 |
|
1095 | 1096 |
template <typename GR, typename NF, typename EF> |
1096 | 1097 |
class SubGraphBase<GR, NF, EF, false> |
1097 | 1098 |
: public GraphAdaptorBase<GR> { |
1098 | 1099 |
public: |
1099 | 1100 |
typedef GR Graph; |
1100 | 1101 |
typedef NF NodeFilterMap; |
1101 | 1102 |
typedef EF EdgeFilterMap; |
1102 | 1103 |
|
1103 | 1104 |
typedef SubGraphBase Adaptor; |
1104 | 1105 |
typedef GraphAdaptorBase<GR> Parent; |
1105 | 1106 |
protected: |
1106 | 1107 |
NF* _node_filter; |
1107 | 1108 |
EF* _edge_filter; |
1108 | 1109 |
SubGraphBase() |
1109 | 1110 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
1110 | 1111 |
|
1111 | 1112 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1112 | 1113 |
Parent::initialize(graph); |
1113 | 1114 |
_node_filter = &node_filter; |
1114 | 1115 |
_edge_filter = &edge_filter; |
1115 | 1116 |
} |
1116 | 1117 |
|
1117 | 1118 |
public: |
1118 | 1119 |
|
1119 | 1120 |
typedef typename Parent::Node Node; |
1120 | 1121 |
typedef typename Parent::Arc Arc; |
1121 | 1122 |
typedef typename Parent::Edge Edge; |
1122 | 1123 |
|
1123 | 1124 |
void first(Node& i) const { |
1124 | 1125 |
Parent::first(i); |
1125 | 1126 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1126 | 1127 |
} |
1127 | 1128 |
|
1128 | 1129 |
void first(Arc& i) const { |
1129 | 1130 |
Parent::first(i); |
1130 | 1131 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1131 | 1132 |
} |
1132 | 1133 |
|
1133 | 1134 |
void first(Edge& i) const { |
1134 | 1135 |
Parent::first(i); |
1135 | 1136 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1136 | 1137 |
} |
1137 | 1138 |
|
1138 | 1139 |
void firstIn(Arc& i, const Node& n) const { |
1139 | 1140 |
Parent::firstIn(i, n); |
1140 | 1141 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1141 | 1142 |
} |
1142 | 1143 |
|
1143 | 1144 |
void firstOut(Arc& i, const Node& n) const { |
1144 | 1145 |
Parent::firstOut(i, n); |
1145 | 1146 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1146 | 1147 |
} |
1147 | 1148 |
|
1148 | 1149 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
1149 | 1150 |
Parent::firstInc(i, d, n); |
1150 | 1151 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1151 | 1152 |
} |
1152 | 1153 |
|
1153 | 1154 |
void next(Node& i) const { |
1154 | 1155 |
Parent::next(i); |
1155 | 1156 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1156 | 1157 |
} |
1157 | 1158 |
void next(Arc& i) const { |
1158 | 1159 |
Parent::next(i); |
1159 | 1160 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1160 | 1161 |
} |
1161 | 1162 |
void next(Edge& i) const { |
1162 | 1163 |
Parent::next(i); |
1163 | 1164 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1164 | 1165 |
} |
1165 | 1166 |
void nextIn(Arc& i) const { |
1166 | 1167 |
Parent::nextIn(i); |
1167 | 1168 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1168 | 1169 |
} |
1169 | 1170 |
|
1170 | 1171 |
void nextOut(Arc& i) const { |
1171 | 1172 |
Parent::nextOut(i); |
1172 | 1173 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1173 | 1174 |
} |
1174 | 1175 |
void nextInc(Edge& i, bool& d) const { |
1175 | 1176 |
Parent::nextInc(i, d); |
1176 | 1177 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1177 | 1178 |
} |
1178 | 1179 |
|
1179 | 1180 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
1180 | 1181 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
1181 | 1182 |
|
1182 | 1183 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
1183 | 1184 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
1184 | 1185 |
|
1185 | 1186 |
typedef False NodeNumTag; |
1186 | 1187 |
typedef False ArcNumTag; |
1187 | 1188 |
typedef False EdgeNumTag; |
1188 | 1189 |
|
1189 | 1190 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
1190 | 1191 |
Arc findArc(const Node& u, const Node& v, |
1191 | 1192 |
const Arc& prev = INVALID) const { |
1192 | 1193 |
Arc arc = Parent::findArc(u, v, prev); |
1193 | 1194 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1194 | 1195 |
arc = Parent::findArc(u, v, arc); |
1195 | 1196 |
} |
1196 | 1197 |
return arc; |
1197 | 1198 |
} |
1198 | 1199 |
|
1199 | 1200 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1200 | 1201 |
Edge findEdge(const Node& u, const Node& v, |
1201 | 1202 |
const Edge& prev = INVALID) const { |
1202 | 1203 |
Edge edge = Parent::findEdge(u, v, prev); |
1203 | 1204 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1204 | 1205 |
edge = Parent::findEdge(u, v, edge); |
1205 | 1206 |
} |
1206 | 1207 |
return edge; |
1207 | 1208 |
} |
1208 | 1209 |
|
1209 | 1210 |
template <typename V> |
1210 | 1211 |
class NodeMap |
1211 | 1212 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1212 | 1213 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1213 | 1214 |
public: |
1214 | 1215 |
typedef V Value; |
1215 | 1216 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1216 | 1217 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1217 | 1218 |
|
1218 | 1219 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1219 | 1220 |
: Parent(adaptor) {} |
1220 | 1221 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1221 | 1222 |
: Parent(adaptor, value) {} |
1222 | 1223 |
|
1223 | 1224 |
private: |
1224 | 1225 |
NodeMap& operator=(const NodeMap& cmap) { |
1225 | 1226 |
return operator=<NodeMap>(cmap); |
1226 | 1227 |
} |
1227 | 1228 |
|
1228 | 1229 |
template <typename CMap> |
1229 | 1230 |
NodeMap& operator=(const CMap& cmap) { |
1230 | 1231 |
Parent::operator=(cmap); |
1231 | 1232 |
return *this; |
1232 | 1233 |
} |
1233 | 1234 |
}; |
1234 | 1235 |
|
1235 | 1236 |
template <typename V> |
1236 | 1237 |
class ArcMap |
1237 | 1238 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1238 | 1239 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1239 | 1240 |
public: |
1240 | 1241 |
typedef V Value; |
1241 | 1242 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1242 | 1243 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1243 | 1244 |
|
1244 | 1245 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1245 | 1246 |
: Parent(adaptor) {} |
1246 | 1247 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1247 | 1248 |
: Parent(adaptor, value) {} |
1248 | 1249 |
|
1249 | 1250 |
private: |
1250 | 1251 |
ArcMap& operator=(const ArcMap& cmap) { |
1251 | 1252 |
return operator=<ArcMap>(cmap); |
1252 | 1253 |
} |
1253 | 1254 |
|
1254 | 1255 |
template <typename CMap> |
1255 | 1256 |
ArcMap& operator=(const CMap& cmap) { |
1256 | 1257 |
Parent::operator=(cmap); |
1257 | 1258 |
return *this; |
1258 | 1259 |
} |
1259 | 1260 |
}; |
1260 | 1261 |
|
1261 | 1262 |
template <typename V> |
1262 | 1263 |
class EdgeMap |
1263 | 1264 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1264 | 1265 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1265 | 1266 |
public: |
1266 | 1267 |
typedef V Value; |
1267 | 1268 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1268 | 1269 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1269 | 1270 |
|
1270 | 1271 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1271 | 1272 |
: Parent(adaptor) {} |
1272 | 1273 |
|
1273 | 1274 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1274 | 1275 |
: Parent(adaptor, value) {} |
1275 | 1276 |
|
1276 | 1277 |
private: |
1277 | 1278 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1278 | 1279 |
return operator=<EdgeMap>(cmap); |
1279 | 1280 |
} |
1280 | 1281 |
|
1281 | 1282 |
template <typename CMap> |
1282 | 1283 |
EdgeMap& operator=(const CMap& cmap) { |
1283 | 1284 |
Parent::operator=(cmap); |
1284 | 1285 |
return *this; |
1285 | 1286 |
} |
1286 | 1287 |
}; |
1287 | 1288 |
|
1288 | 1289 |
}; |
1289 | 1290 |
|
1290 | 1291 |
/// \ingroup graph_adaptors |
1291 | 1292 |
/// |
1292 | 1293 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
1293 | 1294 |
/// graph. |
1294 | 1295 |
/// |
1295 | 1296 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
1296 | 1297 |
/// A \c bool node map and a \c bool edge map must be specified, which |
1297 | 1298 |
/// define the filters for nodes and edges. |
1298 | 1299 |
/// Only the nodes and edges with \c true filter value are |
1299 | 1300 |
/// shown in the subgraph. The edges that are incident to hidden |
1300 | 1301 |
/// nodes are also filtered out. |
1301 | 1302 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
1302 | 1303 |
/// |
1303 | 1304 |
/// The adapted graph can also be modified through this adaptor |
1304 | 1305 |
/// by adding or removing nodes or edges, unless the \c GR template |
1305 | 1306 |
/// parameter is set to be \c const. |
1306 | 1307 |
/// |
1307 | 1308 |
/// \tparam GR The type of the adapted graph. |
1308 | 1309 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1309 | 1310 |
/// It can also be specified to be \c const. |
1310 | 1311 |
/// \tparam NF The type of the node filter map. |
1311 | 1312 |
/// It must be a \c bool (or convertible) node map of the |
1312 | 1313 |
/// adapted graph. The default type is |
1313 | 1314 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1314 | 1315 |
/// \tparam EF The type of the edge filter map. |
1315 | 1316 |
/// It must be a \c bool (or convertible) edge map of the |
1316 | 1317 |
/// adapted graph. The default type is |
1317 | 1318 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1318 | 1319 |
/// |
1319 | 1320 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1320 | 1321 |
/// adapted graph are convertible to each other. |
1321 | 1322 |
/// |
1322 | 1323 |
/// \see FilterNodes |
1323 | 1324 |
/// \see FilterEdges |
1324 | 1325 |
#ifdef DOXYGEN |
1325 | 1326 |
template<typename GR, typename NF, typename EF> |
1326 | 1327 |
class SubGraph { |
1327 | 1328 |
#else |
1328 | 1329 |
template<typename GR, |
1329 | 1330 |
typename NF = typename GR::template NodeMap<bool>, |
1330 | 1331 |
typename EF = typename GR::template EdgeMap<bool> > |
1331 | 1332 |
class SubGraph : |
1332 | 1333 |
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > { |
1333 | 1334 |
#endif |
1334 | 1335 |
public: |
1335 | 1336 |
/// The type of the adapted graph. |
1336 | 1337 |
typedef GR Graph; |
1337 | 1338 |
/// The type of the node filter map. |
1338 | 1339 |
typedef NF NodeFilterMap; |
1339 | 1340 |
/// The type of the edge filter map. |
1340 | 1341 |
typedef EF EdgeFilterMap; |
1341 | 1342 |
|
1342 | 1343 |
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > |
1343 | 1344 |
Parent; |
1344 | 1345 |
|
1345 | 1346 |
typedef typename Parent::Node Node; |
1346 | 1347 |
typedef typename Parent::Edge Edge; |
1347 | 1348 |
|
1348 | 1349 |
protected: |
1349 | 1350 |
SubGraph() { } |
1350 | 1351 |
public: |
1351 | 1352 |
|
1352 | 1353 |
/// \brief Constructor |
1353 | 1354 |
/// |
1354 | 1355 |
/// Creates a subgraph for the given graph with the given node |
1355 | 1356 |
/// and edge filter maps. |
1356 | 1357 |
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) { |
1357 | 1358 |
initialize(graph, node_filter, edge_filter); |
1358 | 1359 |
} |
1359 | 1360 |
|
1360 | 1361 |
/// \brief Sets the status of the given node |
1361 | 1362 |
/// |
1362 | 1363 |
/// This function sets the status of the given node. |
1363 | 1364 |
/// It is done by simply setting the assigned value of \c n |
1364 | 1365 |
/// to \c v in the node filter map. |
1365 | 1366 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1366 | 1367 |
|
1367 | 1368 |
/// \brief Sets the status of the given edge |
1368 | 1369 |
/// |
1369 | 1370 |
/// This function sets the status of the given edge. |
1370 | 1371 |
/// It is done by simply setting the assigned value of \c e |
1371 | 1372 |
/// to \c v in the edge filter map. |
1372 | 1373 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1373 | 1374 |
|
1374 | 1375 |
/// \brief Returns the status of the given node |
1375 | 1376 |
/// |
1376 | 1377 |
/// This function returns the status of the given node. |
1377 | 1378 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1378 | 1379 |
bool status(const Node& n) const { return Parent::status(n); } |
1379 | 1380 |
|
1380 | 1381 |
/// \brief Returns the status of the given edge |
1381 | 1382 |
/// |
1382 | 1383 |
/// This function returns the status of the given edge. |
1383 | 1384 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1384 | 1385 |
bool status(const Edge& e) const { return Parent::status(e); } |
1385 | 1386 |
|
1386 | 1387 |
/// \brief Disables the given node |
1387 | 1388 |
/// |
1388 | 1389 |
/// This function disables the given node in the subdigraph, |
1389 | 1390 |
/// so the iteration jumps over it. |
1390 | 1391 |
/// It is the same as \ref status() "status(n, false)". |
1391 | 1392 |
void disable(const Node& n) const { Parent::status(n, false); } |
1392 | 1393 |
|
1393 | 1394 |
/// \brief Disables the given edge |
1394 | 1395 |
/// |
1395 | 1396 |
/// This function disables the given edge in the subgraph, |
1396 | 1397 |
/// so the iteration jumps over it. |
1397 | 1398 |
/// It is the same as \ref status() "status(e, false)". |
1398 | 1399 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1399 | 1400 |
|
1400 | 1401 |
/// \brief Enables the given node |
1401 | 1402 |
/// |
1402 | 1403 |
/// This function enables the given node in the subdigraph. |
1403 | 1404 |
/// It is the same as \ref status() "status(n, true)". |
1404 | 1405 |
void enable(const Node& n) const { Parent::status(n, true); } |
1405 | 1406 |
|
1406 | 1407 |
/// \brief Enables the given edge |
1407 | 1408 |
/// |
1408 | 1409 |
/// This function enables the given edge in the subgraph. |
1409 | 1410 |
/// It is the same as \ref status() "status(e, true)". |
1410 | 1411 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1411 | 1412 |
|
1412 | 1413 |
}; |
1413 | 1414 |
|
1414 | 1415 |
/// \brief Returns a read-only SubGraph adaptor |
1415 | 1416 |
/// |
1416 | 1417 |
/// This function just returns a read-only \ref SubGraph adaptor. |
1417 | 1418 |
/// \ingroup graph_adaptors |
1418 | 1419 |
/// \relates SubGraph |
1419 | 1420 |
template<typename GR, typename NF, typename EF> |
1420 | 1421 |
SubGraph<const GR, NF, EF> |
1421 | 1422 |
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) { |
1422 | 1423 |
return SubGraph<const GR, NF, EF> |
1423 | 1424 |
(graph, node_filter, edge_filter); |
1424 | 1425 |
} |
1425 | 1426 |
|
1426 | 1427 |
template<typename GR, typename NF, typename EF> |
1427 | 1428 |
SubGraph<const GR, const NF, EF> |
1428 | 1429 |
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) { |
1429 | 1430 |
return SubGraph<const GR, const NF, EF> |
1430 | 1431 |
(graph, node_filter, edge_filter); |
1431 | 1432 |
} |
1432 | 1433 |
|
1433 | 1434 |
template<typename GR, typename NF, typename EF> |
1434 | 1435 |
SubGraph<const GR, NF, const EF> |
1435 | 1436 |
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) { |
1436 | 1437 |
return SubGraph<const GR, NF, const EF> |
1437 | 1438 |
(graph, node_filter, edge_filter); |
1438 | 1439 |
} |
1439 | 1440 |
|
1440 | 1441 |
template<typename GR, typename NF, typename EF> |
1441 | 1442 |
SubGraph<const GR, const NF, const EF> |
1442 | 1443 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) { |
1443 | 1444 |
return SubGraph<const GR, const NF, const EF> |
1444 | 1445 |
(graph, node_filter, edge_filter); |
1445 | 1446 |
} |
1446 | 1447 |
|
1447 | 1448 |
|
1448 | 1449 |
/// \ingroup graph_adaptors |
1449 | 1450 |
/// |
1450 | 1451 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
1451 | 1452 |
/// |
1452 | 1453 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
1453 | 1454 |
/// graph. A \c bool node map must be specified, which defines the filter |
1454 | 1455 |
/// for the nodes. Only the nodes with \c true filter value and the |
1455 | 1456 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
1456 | 1457 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
1457 | 1458 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
1458 | 1459 |
/// depending on the \c GR template parameter. |
1459 | 1460 |
/// |
1460 | 1461 |
/// The adapted (di)graph can also be modified through this adaptor |
1461 | 1462 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1462 | 1463 |
/// parameter is set to be \c const. |
1463 | 1464 |
/// |
1464 | 1465 |
/// \tparam GR The type of the adapted digraph or graph. |
1465 | 1466 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1466 | 1467 |
/// or the \ref concepts::Graph "Graph" concept. |
1467 | 1468 |
/// It can also be specified to be \c const. |
1468 | 1469 |
/// \tparam NF The type of the node filter map. |
1469 | 1470 |
/// It must be a \c bool (or convertible) node map of the |
1470 | 1471 |
/// adapted (di)graph. The default type is |
1471 | 1472 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1472 | 1473 |
/// |
1473 | 1474 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
1474 | 1475 |
/// adapted (di)graph are convertible to each other. |
1475 | 1476 |
#ifdef DOXYGEN |
1476 | 1477 |
template<typename GR, typename NF> |
1477 | 1478 |
class FilterNodes { |
1478 | 1479 |
#else |
1479 | 1480 |
template<typename GR, |
1480 | 1481 |
typename NF = typename GR::template NodeMap<bool>, |
1481 | 1482 |
typename Enable = void> |
1482 | 1483 |
class FilterNodes : |
1483 | 1484 |
public DigraphAdaptorExtender< |
1484 | 1485 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1485 | 1486 |
true> > { |
1486 | 1487 |
#endif |
1487 | 1488 |
public: |
1488 | 1489 |
|
1489 | 1490 |
typedef GR Digraph; |
1490 | 1491 |
typedef NF NodeFilterMap; |
1491 | 1492 |
|
1492 | 1493 |
typedef DigraphAdaptorExtender< |
1493 | 1494 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1494 | 1495 |
true> > Parent; |
1495 | 1496 |
|
1496 | 1497 |
typedef typename Parent::Node Node; |
1497 | 1498 |
|
1498 | 1499 |
protected: |
1499 | 1500 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1500 | 1501 |
|
1501 | 1502 |
FilterNodes() : const_true_map() {} |
1502 | 1503 |
|
1503 | 1504 |
public: |
1504 | 1505 |
|
1505 | 1506 |
/// \brief Constructor |
1506 | 1507 |
/// |
1507 | 1508 |
/// Creates a subgraph for the given digraph or graph with the |
1508 | 1509 |
/// given node filter map. |
1509 | 1510 |
FilterNodes(GR& graph, NF& node_filter) |
1510 | 1511 |
: Parent(), const_true_map() |
1511 | 1512 |
{ |
1512 | 1513 |
Parent::initialize(graph, node_filter, const_true_map); |
1513 | 1514 |
} |
1514 | 1515 |
|
1515 | 1516 |
/// \brief Sets the status of the given node |
1516 | 1517 |
/// |
1517 | 1518 |
/// This function sets the status of the given node. |
1518 | 1519 |
/// It is done by simply setting the assigned value of \c n |
1519 | 1520 |
/// to \c v in the node filter map. |
1520 | 1521 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1521 | 1522 |
|
1522 | 1523 |
/// \brief Returns the status of the given node |
1523 | 1524 |
/// |
1524 | 1525 |
/// This function returns the status of the given node. |
1525 | 1526 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1526 | 1527 |
bool status(const Node& n) const { return Parent::status(n); } |
1527 | 1528 |
|
1528 | 1529 |
/// \brief Disables the given node |
1529 | 1530 |
/// |
1530 | 1531 |
/// This function disables the given node, so the iteration |
1531 | 1532 |
/// jumps over it. |
1532 | 1533 |
/// It is the same as \ref status() "status(n, false)". |
1533 | 1534 |
void disable(const Node& n) const { Parent::status(n, false); } |
1534 | 1535 |
|
1535 | 1536 |
/// \brief Enables the given node |
1536 | 1537 |
/// |
1537 | 1538 |
/// This function enables the given node. |
1538 | 1539 |
/// It is the same as \ref status() "status(n, true)". |
1539 | 1540 |
void enable(const Node& n) const { Parent::status(n, true); } |
1540 | 1541 |
|
1541 | 1542 |
}; |
1542 | 1543 |
|
1543 | 1544 |
template<typename GR, typename NF> |
1544 | 1545 |
class FilterNodes<GR, NF, |
1545 | 1546 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1546 | 1547 |
public GraphAdaptorExtender< |
1547 | 1548 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1548 | 1549 |
true> > { |
1549 | 1550 |
|
1550 | 1551 |
public: |
1551 | 1552 |
typedef GR Graph; |
1552 | 1553 |
typedef NF NodeFilterMap; |
1553 | 1554 |
typedef GraphAdaptorExtender< |
1554 | 1555 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1555 | 1556 |
true> > Parent; |
1556 | 1557 |
|
1557 | 1558 |
typedef typename Parent::Node Node; |
1558 | 1559 |
protected: |
1559 | 1560 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1560 | 1561 |
|
1561 | 1562 |
FilterNodes() : const_true_map() {} |
1562 | 1563 |
|
1563 | 1564 |
public: |
1564 | 1565 |
|
1565 | 1566 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
1566 | 1567 |
Parent(), const_true_map() { |
1567 | 1568 |
Parent::initialize(graph, node_filter, const_true_map); |
1568 | 1569 |
} |
1569 | 1570 |
|
1570 | 1571 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1571 | 1572 |
bool status(const Node& n) const { return Parent::status(n); } |
1572 | 1573 |
void disable(const Node& n) const { Parent::status(n, false); } |
1573 | 1574 |
void enable(const Node& n) const { Parent::status(n, true); } |
1574 | 1575 |
|
1575 | 1576 |
}; |
1576 | 1577 |
|
1577 | 1578 |
|
1578 | 1579 |
/// \brief Returns a read-only FilterNodes adaptor |
1579 | 1580 |
/// |
1580 | 1581 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
1581 | 1582 |
/// \ingroup graph_adaptors |
1582 | 1583 |
/// \relates FilterNodes |
1583 | 1584 |
template<typename GR, typename NF> |
1584 | 1585 |
FilterNodes<const GR, NF> |
1585 | 1586 |
filterNodes(const GR& graph, NF& node_filter) { |
1586 | 1587 |
return FilterNodes<const GR, NF>(graph, node_filter); |
1587 | 1588 |
} |
1588 | 1589 |
|
1589 | 1590 |
template<typename GR, typename NF> |
1590 | 1591 |
FilterNodes<const GR, const NF> |
1591 | 1592 |
filterNodes(const GR& graph, const NF& node_filter) { |
1592 | 1593 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
1593 | 1594 |
} |
1594 | 1595 |
|
1595 | 1596 |
/// \ingroup graph_adaptors |
1596 | 1597 |
/// |
1597 | 1598 |
/// \brief Adaptor class for hiding arcs in a digraph. |
1598 | 1599 |
/// |
1599 | 1600 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
1600 | 1601 |
/// A \c bool arc map must be specified, which defines the filter for |
1601 | 1602 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
1602 | 1603 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
1603 | 1604 |
/// "Digraph" concept. |
1604 | 1605 |
/// |
1605 | 1606 |
/// The adapted digraph can also be modified through this adaptor |
1606 | 1607 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1607 | 1608 |
/// parameter is set to be \c const. |
1608 | 1609 |
/// |
1609 | 1610 |
/// \tparam DGR The type of the adapted digraph. |
1610 | 1611 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1611 | 1612 |
/// It can also be specified to be \c const. |
1612 | 1613 |
/// \tparam AF The type of the arc filter map. |
1613 | 1614 |
/// It must be a \c bool (or convertible) arc map of the |
1614 | 1615 |
/// adapted digraph. The default type is |
1615 | 1616 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
1616 | 1617 |
/// |
1617 | 1618 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
1618 | 1619 |
/// digraph are convertible to each other. |
1619 | 1620 |
#ifdef DOXYGEN |
1620 | 1621 |
template<typename DGR, |
1621 | 1622 |
typename AF> |
1622 | 1623 |
class FilterArcs { |
1623 | 1624 |
#else |
1624 | 1625 |
template<typename DGR, |
1625 | 1626 |
typename AF = typename DGR::template ArcMap<bool> > |
1626 | 1627 |
class FilterArcs : |
1627 | 1628 |
public DigraphAdaptorExtender< |
1628 | 1629 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1629 | 1630 |
AF, false> > { |
1630 | 1631 |
#endif |
1631 | 1632 |
public: |
1632 | 1633 |
/// The type of the adapted digraph. |
1633 | 1634 |
typedef DGR Digraph; |
1634 | 1635 |
/// The type of the arc filter map. |
1635 | 1636 |
typedef AF ArcFilterMap; |
1636 | 1637 |
|
1637 | 1638 |
typedef DigraphAdaptorExtender< |
1638 | 1639 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1639 | 1640 |
AF, false> > Parent; |
1640 | 1641 |
|
1641 | 1642 |
typedef typename Parent::Arc Arc; |
1642 | 1643 |
|
1643 | 1644 |
protected: |
1644 | 1645 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
1645 | 1646 |
|
1646 | 1647 |
FilterArcs() : const_true_map() {} |
1647 | 1648 |
|
1648 | 1649 |
public: |
1649 | 1650 |
|
1650 | 1651 |
/// \brief Constructor |
1651 | 1652 |
/// |
1652 | 1653 |
/// Creates a subdigraph for the given digraph with the given arc |
1653 | 1654 |
/// filter map. |
1654 | 1655 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
1655 | 1656 |
: Parent(), const_true_map() { |
1656 | 1657 |
Parent::initialize(digraph, const_true_map, arc_filter); |
1657 | 1658 |
} |
1658 | 1659 |
|
1659 | 1660 |
/// \brief Sets the status of the given arc |
1660 | 1661 |
/// |
1661 | 1662 |
/// This function sets the status of the given arc. |
1662 | 1663 |
/// It is done by simply setting the assigned value of \c a |
1663 | 1664 |
/// to \c v in the arc filter map. |
1664 | 1665 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
1665 | 1666 |
|
1666 | 1667 |
/// \brief Returns the status of the given arc |
1667 | 1668 |
/// |
1668 | 1669 |
/// This function returns the status of the given arc. |
1669 | 1670 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
1670 | 1671 |
bool status(const Arc& a) const { return Parent::status(a); } |
1671 | 1672 |
|
1672 | 1673 |
/// \brief Disables the given arc |
1673 | 1674 |
/// |
1674 | 1675 |
/// This function disables the given arc in the subdigraph, |
1675 | 1676 |
/// so the iteration jumps over it. |
1676 | 1677 |
/// It is the same as \ref status() "status(a, false)". |
1677 | 1678 |
void disable(const Arc& a) const { Parent::status(a, false); } |
1678 | 1679 |
|
1679 | 1680 |
/// \brief Enables the given arc |
1680 | 1681 |
/// |
1681 | 1682 |
/// This function enables the given arc in the subdigraph. |
1682 | 1683 |
/// It is the same as \ref status() "status(a, true)". |
1683 | 1684 |
void enable(const Arc& a) const { Parent::status(a, true); } |
1684 | 1685 |
|
1685 | 1686 |
}; |
1686 | 1687 |
|
1687 | 1688 |
/// \brief Returns a read-only FilterArcs adaptor |
1688 | 1689 |
/// |
1689 | 1690 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
1690 | 1691 |
/// \ingroup graph_adaptors |
1691 | 1692 |
/// \relates FilterArcs |
1692 | 1693 |
template<typename DGR, typename AF> |
1693 | 1694 |
FilterArcs<const DGR, AF> |
1694 | 1695 |
filterArcs(const DGR& digraph, AF& arc_filter) { |
1695 | 1696 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
1696 | 1697 |
} |
1697 | 1698 |
|
1698 | 1699 |
template<typename DGR, typename AF> |
1699 | 1700 |
FilterArcs<const DGR, const AF> |
1700 | 1701 |
filterArcs(const DGR& digraph, const AF& arc_filter) { |
1701 | 1702 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
1702 | 1703 |
} |
1703 | 1704 |
|
1704 | 1705 |
/// \ingroup graph_adaptors |
1705 | 1706 |
/// |
1706 | 1707 |
/// \brief Adaptor class for hiding edges in a graph. |
1707 | 1708 |
/// |
1708 | 1709 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
1709 | 1710 |
/// A \c bool edge map must be specified, which defines the filter for |
1710 | 1711 |
/// the edges. Only the edges with \c true filter value are shown in the |
1711 | 1712 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
1712 | 1713 |
/// "Graph" concept. |
1713 | 1714 |
/// |
1714 | 1715 |
/// The adapted graph can also be modified through this adaptor |
1715 | 1716 |
/// by adding or removing nodes or edges, unless the \c GR template |
1716 | 1717 |
/// parameter is set to be \c const. |
1717 | 1718 |
/// |
1718 | 1719 |
/// \tparam GR The type of the adapted graph. |
1719 | 1720 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1720 | 1721 |
/// It can also be specified to be \c const. |
1721 | 1722 |
/// \tparam EF The type of the edge filter map. |
1722 | 1723 |
/// It must be a \c bool (or convertible) edge map of the |
1723 | 1724 |
/// adapted graph. The default type is |
1724 | 1725 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1725 | 1726 |
/// |
1726 | 1727 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1727 | 1728 |
/// adapted graph are convertible to each other. |
1728 | 1729 |
#ifdef DOXYGEN |
1729 | 1730 |
template<typename GR, |
1730 | 1731 |
typename EF> |
1731 | 1732 |
class FilterEdges { |
1732 | 1733 |
#else |
1733 | 1734 |
template<typename GR, |
1734 | 1735 |
typename EF = typename GR::template EdgeMap<bool> > |
1735 | 1736 |
class FilterEdges : |
1736 | 1737 |
public GraphAdaptorExtender< |
1737 | 1738 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
1738 | 1739 |
EF, false> > { |
1739 | 1740 |
#endif |
1740 | 1741 |
public: |
1741 | 1742 |
/// The type of the adapted graph. |
1742 | 1743 |
typedef GR Graph; |
1743 | 1744 |
/// The type of the edge filter map. |
1744 | 1745 |
typedef EF EdgeFilterMap; |
1745 | 1746 |
|
1746 | 1747 |
typedef GraphAdaptorExtender< |
1747 | 1748 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
1748 | 1749 |
EF, false> > Parent; |
1749 | 1750 |
|
1750 | 1751 |
typedef typename Parent::Edge Edge; |
1751 | 1752 |
|
1752 | 1753 |
protected: |
1753 | 1754 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1754 | 1755 |
|
1755 | 1756 |
FilterEdges() : const_true_map(true) { |
1756 | 1757 |
Parent::setNodeFilterMap(const_true_map); |
1757 | 1758 |
} |
1758 | 1759 |
|
1759 | 1760 |
public: |
1760 | 1761 |
|
1761 | 1762 |
/// \brief Constructor |
1762 | 1763 |
/// |
1763 | 1764 |
/// Creates a subgraph for the given graph with the given edge |
1764 | 1765 |
/// filter map. |
1765 | 1766 |
FilterEdges(GR& graph, EF& edge_filter) |
1766 | 1767 |
: Parent(), const_true_map() { |
1767 | 1768 |
Parent::initialize(graph, const_true_map, edge_filter); |
1768 | 1769 |
} |
1769 | 1770 |
|
1770 | 1771 |
/// \brief Sets the status of the given edge |
1771 | 1772 |
/// |
1772 | 1773 |
/// This function sets the status of the given edge. |
1773 | 1774 |
/// It is done by simply setting the assigned value of \c e |
1774 | 1775 |
/// to \c v in the edge filter map. |
1775 | 1776 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1776 | 1777 |
|
1777 | 1778 |
/// \brief Returns the status of the given edge |
1778 | 1779 |
/// |
1779 | 1780 |
/// This function returns the status of the given edge. |
1780 | 1781 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1781 | 1782 |
bool status(const Edge& e) const { return Parent::status(e); } |
1782 | 1783 |
|
1783 | 1784 |
/// \brief Disables the given edge |
1784 | 1785 |
/// |
1785 | 1786 |
/// This function disables the given edge in the subgraph, |
1786 | 1787 |
/// so the iteration jumps over it. |
1787 | 1788 |
/// It is the same as \ref status() "status(e, false)". |
1788 | 1789 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1789 | 1790 |
|
1790 | 1791 |
/// \brief Enables the given edge |
1791 | 1792 |
/// |
1792 | 1793 |
/// This function enables the given edge in the subgraph. |
1793 | 1794 |
/// It is the same as \ref status() "status(e, true)". |
1794 | 1795 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1795 | 1796 |
|
1796 | 1797 |
}; |
1797 | 1798 |
|
1798 | 1799 |
/// \brief Returns a read-only FilterEdges adaptor |
1799 | 1800 |
/// |
1800 | 1801 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
1801 | 1802 |
/// \ingroup graph_adaptors |
1802 | 1803 |
/// \relates FilterEdges |
1803 | 1804 |
template<typename GR, typename EF> |
1804 | 1805 |
FilterEdges<const GR, EF> |
1805 | 1806 |
filterEdges(const GR& graph, EF& edge_filter) { |
1806 | 1807 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1807 | 1808 |
} |
1808 | 1809 |
|
1809 | 1810 |
template<typename GR, typename EF> |
1810 | 1811 |
FilterEdges<const GR, const EF> |
1811 | 1812 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1812 | 1813 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1813 | 1814 |
} |
1814 | 1815 |
|
1815 | 1816 |
|
1816 | 1817 |
template <typename DGR> |
1817 | 1818 |
class UndirectorBase { |
1818 | 1819 |
public: |
1819 | 1820 |
typedef DGR Digraph; |
1820 | 1821 |
typedef UndirectorBase Adaptor; |
1821 | 1822 |
|
1822 | 1823 |
typedef True UndirectedTag; |
1823 | 1824 |
|
1824 | 1825 |
typedef typename Digraph::Arc Edge; |
1825 | 1826 |
typedef typename Digraph::Node Node; |
1826 | 1827 |
|
1827 | 1828 |
class Arc : public Edge { |
1828 | 1829 |
friend class UndirectorBase; |
1829 | 1830 |
protected: |
1830 | 1831 |
bool _forward; |
1831 | 1832 |
|
1832 | 1833 |
Arc(const Edge& edge, bool forward) : |
1833 | 1834 |
Edge(edge), _forward(forward) {} |
1834 | 1835 |
|
1835 | 1836 |
public: |
1836 | 1837 |
Arc() {} |
1837 | 1838 |
|
1838 | 1839 |
Arc(Invalid) : Edge(INVALID), _forward(true) {} |
1839 | 1840 |
|
1840 | 1841 |
bool operator==(const Arc &other) const { |
1841 | 1842 |
return _forward == other._forward && |
1842 | 1843 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
1843 | 1844 |
} |
1844 | 1845 |
bool operator!=(const Arc &other) const { |
1845 | 1846 |
return _forward != other._forward || |
1846 | 1847 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
1847 | 1848 |
} |
1848 | 1849 |
bool operator<(const Arc &other) const { |
1849 | 1850 |
return _forward < other._forward || |
1850 | 1851 |
(_forward == other._forward && |
1851 | 1852 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
1852 | 1853 |
} |
1853 | 1854 |
}; |
1854 | 1855 |
|
1855 | 1856 |
void first(Node& n) const { |
1856 | 1857 |
_digraph->first(n); |
1857 | 1858 |
} |
1858 | 1859 |
|
1859 | 1860 |
void next(Node& n) const { |
1860 | 1861 |
_digraph->next(n); |
1861 | 1862 |
} |
1862 | 1863 |
|
1863 | 1864 |
void first(Arc& a) const { |
1864 | 1865 |
_digraph->first(a); |
1865 | 1866 |
a._forward = true; |
1866 | 1867 |
} |
1867 | 1868 |
|
1868 | 1869 |
void next(Arc& a) const { |
1869 | 1870 |
if (a._forward) { |
1870 | 1871 |
a._forward = false; |
1871 | 1872 |
} else { |
1872 | 1873 |
_digraph->next(a); |
1873 | 1874 |
a._forward = true; |
1874 | 1875 |
} |
1875 | 1876 |
} |
1876 | 1877 |
|
1877 | 1878 |
void first(Edge& e) const { |
1878 | 1879 |
_digraph->first(e); |
1879 | 1880 |
} |
1880 | 1881 |
|
1881 | 1882 |
void next(Edge& e) const { |
1882 | 1883 |
_digraph->next(e); |
1883 | 1884 |
} |
1884 | 1885 |
|
1885 | 1886 |
void firstOut(Arc& a, const Node& n) const { |
1886 | 1887 |
_digraph->firstIn(a, n); |
1887 | 1888 |
if( static_cast<const Edge&>(a) != INVALID ) { |
1888 | 1889 |
a._forward = false; |
1889 | 1890 |
} else { |
1890 | 1891 |
_digraph->firstOut(a, n); |
1891 | 1892 |
a._forward = true; |
1892 | 1893 |
} |
1893 | 1894 |
} |
1894 | 1895 |
void nextOut(Arc &a) const { |
1895 | 1896 |
if (!a._forward) { |
1896 | 1897 |
Node n = _digraph->target(a); |
1897 | 1898 |
_digraph->nextIn(a); |
1898 | 1899 |
if (static_cast<const Edge&>(a) == INVALID ) { |
1899 | 1900 |
_digraph->firstOut(a, n); |
1900 | 1901 |
a._forward = true; |
1901 | 1902 |
} |
1902 | 1903 |
} |
1903 | 1904 |
else { |
1904 | 1905 |
_digraph->nextOut(a); |
1905 | 1906 |
} |
1906 | 1907 |
} |
1907 | 1908 |
|
1908 | 1909 |
void firstIn(Arc &a, const Node &n) const { |
1909 | 1910 |
_digraph->firstOut(a, n); |
1910 | 1911 |
if (static_cast<const Edge&>(a) != INVALID ) { |
1911 | 1912 |
a._forward = false; |
1912 | 1913 |
} else { |
1913 | 1914 |
_digraph->firstIn(a, n); |
1914 | 1915 |
a._forward = true; |
1915 | 1916 |
} |
1916 | 1917 |
} |
1917 | 1918 |
void nextIn(Arc &a) const { |
1918 | 1919 |
if (!a._forward) { |
1919 | 1920 |
Node n = _digraph->source(a); |
1920 | 1921 |
_digraph->nextOut(a); |
1921 | 1922 |
if( static_cast<const Edge&>(a) == INVALID ) { |
1922 | 1923 |
_digraph->firstIn(a, n); |
1923 | 1924 |
a._forward = true; |
1924 | 1925 |
} |
1925 | 1926 |
} |
1926 | 1927 |
else { |
1927 | 1928 |
_digraph->nextIn(a); |
1928 | 1929 |
} |
1929 | 1930 |
} |
1930 | 1931 |
|
1931 | 1932 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1932 | 1933 |
d = true; |
1933 | 1934 |
_digraph->firstOut(e, n); |
1934 | 1935 |
if (e != INVALID) return; |
1935 | 1936 |
d = false; |
1936 | 1937 |
_digraph->firstIn(e, n); |
1937 | 1938 |
} |
1938 | 1939 |
|
1939 | 1940 |
void nextInc(Edge &e, bool &d) const { |
1940 | 1941 |
if (d) { |
1941 | 1942 |
Node s = _digraph->source(e); |
1942 | 1943 |
_digraph->nextOut(e); |
1943 | 1944 |
if (e != INVALID) return; |
1944 | 1945 |
d = false; |
1945 | 1946 |
_digraph->firstIn(e, s); |
1946 | 1947 |
} else { |
1947 | 1948 |
_digraph->nextIn(e); |
1948 | 1949 |
} |
1949 | 1950 |
} |
1950 | 1951 |
|
1951 | 1952 |
Node u(const Edge& e) const { |
1952 | 1953 |
return _digraph->source(e); |
1953 | 1954 |
} |
1954 | 1955 |
|
1955 | 1956 |
Node v(const Edge& e) const { |
1956 | 1957 |
return _digraph->target(e); |
1957 | 1958 |
} |
1958 | 1959 |
|
1959 | 1960 |
Node source(const Arc &a) const { |
1960 | 1961 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
1961 | 1962 |
} |
1962 | 1963 |
|
1963 | 1964 |
Node target(const Arc &a) const { |
1964 | 1965 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
1965 | 1966 |
} |
1966 | 1967 |
|
1967 | 1968 |
static Arc direct(const Edge &e, bool d) { |
1968 | 1969 |
return Arc(e, d); |
1969 | 1970 |
} |
1970 | 1971 |
Arc direct(const Edge &e, const Node& n) const { |
1971 | 1972 |
return Arc(e, _digraph->source(e) == n); |
1972 | 1973 |
} |
1973 | 1974 |
|
1974 | 1975 |
static bool direction(const Arc &a) { return a._forward; } |
1975 | 1976 |
|
1976 | 1977 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
1977 | 1978 |
Arc arcFromId(int ix) const { |
1978 | 1979 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
1979 | 1980 |
} |
1980 | 1981 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
1981 | 1982 |
|
1982 | 1983 |
int id(const Node &n) const { return _digraph->id(n); } |
1983 | 1984 |
int id(const Arc &a) const { |
1984 | 1985 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
1985 | 1986 |
} |
1986 | 1987 |
int id(const Edge &e) const { return _digraph->id(e); } |
1987 | 1988 |
|
1988 | 1989 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
1989 | 1990 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
1990 | 1991 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
1991 | 1992 |
|
1992 | 1993 |
Node addNode() { return _digraph->addNode(); } |
1993 | 1994 |
Edge addEdge(const Node& u, const Node& v) { |
1994 | 1995 |
return _digraph->addArc(u, v); |
1995 | 1996 |
} |
1996 | 1997 |
|
1997 | 1998 |
void erase(const Node& i) { _digraph->erase(i); } |
1998 | 1999 |
void erase(const Edge& i) { _digraph->erase(i); } |
1999 | 2000 |
|
2000 | 2001 |
void clear() { _digraph->clear(); } |
2001 | 2002 |
|
2002 | 2003 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
2003 | 2004 |
int nodeNum() const { return _digraph->nodeNum(); } |
2004 | 2005 |
|
2005 | 2006 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
2006 | 2007 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
2007 | 2008 |
|
2008 | 2009 |
typedef ArcNumTag EdgeNumTag; |
2009 | 2010 |
int edgeNum() const { return _digraph->arcNum(); } |
2010 | 2011 |
|
2011 | 2012 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
2012 | 2013 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
2013 | 2014 |
if (p == INVALID) { |
2014 | 2015 |
Edge arc = _digraph->findArc(s, t); |
2015 | 2016 |
if (arc != INVALID) return direct(arc, true); |
2016 | 2017 |
arc = _digraph->findArc(t, s); |
2017 | 2018 |
if (arc != INVALID) return direct(arc, false); |
2018 | 2019 |
} else if (direction(p)) { |
2019 | 2020 |
Edge arc = _digraph->findArc(s, t, p); |
2020 | 2021 |
if (arc != INVALID) return direct(arc, true); |
2021 | 2022 |
arc = _digraph->findArc(t, s); |
2022 | 2023 |
if (arc != INVALID) return direct(arc, false); |
2023 | 2024 |
} else { |
2024 | 2025 |
Edge arc = _digraph->findArc(t, s, p); |
2025 | 2026 |
if (arc != INVALID) return direct(arc, false); |
2026 | 2027 |
} |
2027 | 2028 |
return INVALID; |
2028 | 2029 |
} |
2029 | 2030 |
|
2030 | 2031 |
typedef FindArcTag FindEdgeTag; |
2031 | 2032 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
2032 | 2033 |
if (s != t) { |
2033 | 2034 |
if (p == INVALID) { |
2034 | 2035 |
Edge arc = _digraph->findArc(s, t); |
2035 | 2036 |
if (arc != INVALID) return arc; |
2036 | 2037 |
arc = _digraph->findArc(t, s); |
2037 | 2038 |
if (arc != INVALID) return arc; |
2038 | 2039 |
} else if (_digraph->source(p) == s) { |
2039 | 2040 |
Edge arc = _digraph->findArc(s, t, p); |
2040 | 2041 |
if (arc != INVALID) return arc; |
2041 | 2042 |
arc = _digraph->findArc(t, s); |
2042 | 2043 |
if (arc != INVALID) return arc; |
2043 | 2044 |
} else { |
2044 | 2045 |
Edge arc = _digraph->findArc(t, s, p); |
2045 | 2046 |
if (arc != INVALID) return arc; |
2046 | 2047 |
} |
2047 | 2048 |
} else { |
2048 | 2049 |
return _digraph->findArc(s, t, p); |
2049 | 2050 |
} |
2050 | 2051 |
return INVALID; |
2051 | 2052 |
} |
2052 | 2053 |
|
2053 | 2054 |
private: |
2054 | 2055 |
|
2055 | 2056 |
template <typename V> |
2056 | 2057 |
class ArcMapBase { |
2057 | 2058 |
private: |
2058 | 2059 |
|
2059 | 2060 |
typedef typename DGR::template ArcMap<V> MapImpl; |
2060 | 2061 |
|
2061 | 2062 |
public: |
2062 | 2063 |
|
2063 | 2064 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
2064 | 2065 |
|
2065 | 2066 |
typedef V Value; |
2066 | 2067 |
typedef Arc Key; |
2067 | 2068 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2068 | 2069 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2069 | 2070 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2070 | 2071 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2071 | 2072 |
|
2072 | 2073 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2073 | 2074 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2074 | 2075 |
|
2075 | 2076 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2076 | 2077 |
: _forward(*adaptor._digraph, value), |
2077 | 2078 |
_backward(*adaptor._digraph, value) {} |
2078 | 2079 |
|
2079 | 2080 |
void set(const Arc& a, const V& value) { |
2080 | 2081 |
if (direction(a)) { |
2081 | 2082 |
_forward.set(a, value); |
2082 | 2083 |
} else { |
2083 | 2084 |
_backward.set(a, value); |
2084 | 2085 |
} |
2085 | 2086 |
} |
2086 | 2087 |
|
2087 | 2088 |
ConstReturnValue operator[](const Arc& a) const { |
2088 | 2089 |
if (direction(a)) { |
2089 | 2090 |
return _forward[a]; |
2090 | 2091 |
} else { |
2091 | 2092 |
return _backward[a]; |
2092 | 2093 |
} |
2093 | 2094 |
} |
2094 | 2095 |
|
2095 | 2096 |
ReturnValue operator[](const Arc& a) { |
2096 | 2097 |
if (direction(a)) { |
2097 | 2098 |
return _forward[a]; |
2098 | 2099 |
} else { |
2099 | 2100 |
return _backward[a]; |
2100 | 2101 |
} |
2101 | 2102 |
} |
2102 | 2103 |
|
2103 | 2104 |
protected: |
2104 | 2105 |
|
2105 | 2106 |
MapImpl _forward, _backward; |
2106 | 2107 |
|
2107 | 2108 |
}; |
2108 | 2109 |
|
2109 | 2110 |
public: |
2110 | 2111 |
|
2111 | 2112 |
template <typename V> |
2112 | 2113 |
class NodeMap : public DGR::template NodeMap<V> { |
2113 | 2114 |
public: |
2114 | 2115 |
|
2115 | 2116 |
typedef V Value; |
2116 | 2117 |
typedef typename DGR::template NodeMap<Value> Parent; |
2117 | 2118 |
|
2118 | 2119 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
2119 | 2120 |
: Parent(*adaptor._digraph) {} |
2120 | 2121 |
|
2121 | 2122 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2122 | 2123 |
: Parent(*adaptor._digraph, value) { } |
2123 | 2124 |
|
2124 | 2125 |
private: |
2125 | 2126 |
NodeMap& operator=(const NodeMap& cmap) { |
2126 | 2127 |
return operator=<NodeMap>(cmap); |
2127 | 2128 |
} |
2128 | 2129 |
|
2129 | 2130 |
template <typename CMap> |
2130 | 2131 |
NodeMap& operator=(const CMap& cmap) { |
2131 | 2132 |
Parent::operator=(cmap); |
2132 | 2133 |
return *this; |
2133 | 2134 |
} |
2134 | 2135 |
|
2135 | 2136 |
}; |
2136 | 2137 |
|
2137 | 2138 |
template <typename V> |
2138 | 2139 |
class ArcMap |
2139 | 2140 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > |
2140 | 2141 |
{ |
2141 | 2142 |
public: |
2142 | 2143 |
typedef V Value; |
2143 | 2144 |
typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent; |
2144 | 2145 |
|
2145 | 2146 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
2146 | 2147 |
: Parent(adaptor) {} |
2147 | 2148 |
|
2148 | 2149 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2149 | 2150 |
: Parent(adaptor, value) {} |
2150 | 2151 |
|
2151 | 2152 |
private: |
2152 | 2153 |
ArcMap& operator=(const ArcMap& cmap) { |
2153 | 2154 |
return operator=<ArcMap>(cmap); |
2154 | 2155 |
} |
2155 | 2156 |
|
2156 | 2157 |
template <typename CMap> |
2157 | 2158 |
ArcMap& operator=(const CMap& cmap) { |
2158 | 2159 |
Parent::operator=(cmap); |
2159 | 2160 |
return *this; |
2160 | 2161 |
} |
2161 | 2162 |
}; |
2162 | 2163 |
|
2163 | 2164 |
template <typename V> |
2164 | 2165 |
class EdgeMap : public Digraph::template ArcMap<V> { |
2165 | 2166 |
public: |
2166 | 2167 |
|
2167 | 2168 |
typedef V Value; |
2168 | 2169 |
typedef typename Digraph::template ArcMap<V> Parent; |
2169 | 2170 |
|
2170 | 2171 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
2171 | 2172 |
: Parent(*adaptor._digraph) {} |
2172 | 2173 |
|
2173 | 2174 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2174 | 2175 |
: Parent(*adaptor._digraph, value) {} |
2175 | 2176 |
|
2176 | 2177 |
private: |
2177 | 2178 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2178 | 2179 |
return operator=<EdgeMap>(cmap); |
2179 | 2180 |
} |
2180 | 2181 |
|
2181 | 2182 |
template <typename CMap> |
2182 | 2183 |
EdgeMap& operator=(const CMap& cmap) { |
2183 | 2184 |
Parent::operator=(cmap); |
2184 | 2185 |
return *this; |
2185 | 2186 |
} |
2186 | 2187 |
|
2187 | 2188 |
}; |
2188 | 2189 |
|
2189 | 2190 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2190 | 2191 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2191 | 2192 |
|
2192 | 2193 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2193 | 2194 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2194 | 2195 |
|
2195 | 2196 |
protected: |
2196 | 2197 |
|
2197 | 2198 |
UndirectorBase() : _digraph(0) {} |
2198 | 2199 |
|
2199 | 2200 |
DGR* _digraph; |
2200 | 2201 |
|
2201 | 2202 |
void initialize(DGR& digraph) { |
2202 | 2203 |
_digraph = &digraph; |
2203 | 2204 |
} |
2204 | 2205 |
|
2205 | 2206 |
}; |
2206 | 2207 |
|
2207 | 2208 |
/// \ingroup graph_adaptors |
2208 | 2209 |
/// |
2209 | 2210 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
2210 | 2211 |
/// |
2211 | 2212 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
2212 | 2213 |
/// graph. All arcs of the underlying digraph are showed in the |
2213 | 2214 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
2214 | 2215 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2215 | 2216 |
/// |
2216 | 2217 |
/// The adapted digraph can also be modified through this adaptor |
2217 | 2218 |
/// by adding or removing nodes or edges, unless the \c GR template |
2218 | 2219 |
/// parameter is set to be \c const. |
2219 | 2220 |
/// |
2220 | 2221 |
/// \tparam DGR The type of the adapted digraph. |
2221 | 2222 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2222 | 2223 |
/// It can also be specified to be \c const. |
2223 | 2224 |
/// |
2224 | 2225 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2225 | 2226 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
2226 | 2227 |
/// and the \c Arc type of the adapted digraph are also convertible to |
2227 | 2228 |
/// each other. |
2228 | 2229 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
2229 | 2230 |
/// of the adapted digraph.) |
2230 | 2231 |
template<typename DGR> |
2231 | 2232 |
#ifdef DOXYGEN |
2232 | 2233 |
class Undirector { |
2233 | 2234 |
#else |
2234 | 2235 |
class Undirector : |
2235 | 2236 |
public GraphAdaptorExtender<UndirectorBase<DGR> > { |
2236 | 2237 |
#endif |
2237 | 2238 |
public: |
2238 | 2239 |
/// The type of the adapted digraph. |
2239 | 2240 |
typedef DGR Digraph; |
2240 | 2241 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
2241 | 2242 |
protected: |
2242 | 2243 |
Undirector() { } |
2243 | 2244 |
public: |
2244 | 2245 |
|
2245 | 2246 |
/// \brief Constructor |
2246 | 2247 |
/// |
2247 | 2248 |
/// Creates an undirected graph from the given digraph. |
2248 | 2249 |
Undirector(DGR& digraph) { |
2249 | 2250 |
initialize(digraph); |
2250 | 2251 |
} |
2251 | 2252 |
|
2252 | 2253 |
/// \brief Arc map combined from two original arc maps |
2253 | 2254 |
/// |
2254 | 2255 |
/// This map adaptor class adapts two arc maps of the underlying |
2255 | 2256 |
/// digraph to get an arc map of the undirected graph. |
2256 | 2257 |
/// Its value type is inherited from the first arc map type |
2257 | 2258 |
/// (\c %ForwardMap). |
2258 | 2259 |
template <typename ForwardMap, typename BackwardMap> |
2259 | 2260 |
class CombinedArcMap { |
2260 | 2261 |
public: |
2261 | 2262 |
|
2262 | 2263 |
/// The key type of the map |
2263 | 2264 |
typedef typename Parent::Arc Key; |
2264 | 2265 |
/// The value type of the map |
2265 | 2266 |
typedef typename ForwardMap::Value Value; |
2266 | 2267 |
|
2267 | 2268 |
typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag; |
2268 | 2269 |
|
2269 | 2270 |
typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue; |
2270 | 2271 |
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue; |
2271 | 2272 |
typedef typename MapTraits<ForwardMap>::ReturnValue Reference; |
2272 | 2273 |
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference; |
2273 | 2274 |
|
2274 | 2275 |
/// Constructor |
2275 | 2276 |
CombinedArcMap(ForwardMap& forward, BackwardMap& backward) |
2276 | 2277 |
: _forward(&forward), _backward(&backward) {} |
2277 | 2278 |
|
2278 | 2279 |
/// Sets the value associated with the given key. |
2279 | 2280 |
void set(const Key& e, const Value& a) { |
2280 | 2281 |
if (Parent::direction(e)) { |
2281 | 2282 |
_forward->set(e, a); |
2282 | 2283 |
} else { |
2283 | 2284 |
_backward->set(e, a); |
2284 | 2285 |
} |
2285 | 2286 |
} |
2286 | 2287 |
|
2287 | 2288 |
/// Returns the value associated with the given key. |
2288 | 2289 |
ConstReturnValue operator[](const Key& e) const { |
2289 | 2290 |
if (Parent::direction(e)) { |
2290 | 2291 |
return (*_forward)[e]; |
2291 | 2292 |
} else { |
2292 | 2293 |
return (*_backward)[e]; |
2293 | 2294 |
} |
2294 | 2295 |
} |
2295 | 2296 |
|
2296 | 2297 |
/// Returns a reference to the value associated with the given key. |
2297 | 2298 |
ReturnValue operator[](const Key& e) { |
2298 | 2299 |
if (Parent::direction(e)) { |
2299 | 2300 |
return (*_forward)[e]; |
2300 | 2301 |
} else { |
2301 | 2302 |
return (*_backward)[e]; |
2302 | 2303 |
} |
2303 | 2304 |
} |
2304 | 2305 |
|
2305 | 2306 |
protected: |
2306 | 2307 |
|
2307 | 2308 |
ForwardMap* _forward; |
2308 | 2309 |
BackwardMap* _backward; |
2309 | 2310 |
|
2310 | 2311 |
}; |
2311 | 2312 |
|
2312 | 2313 |
/// \brief Returns a combined arc map |
2313 | 2314 |
/// |
2314 | 2315 |
/// This function just returns a combined arc map. |
2315 | 2316 |
template <typename ForwardMap, typename BackwardMap> |
2316 | 2317 |
static CombinedArcMap<ForwardMap, BackwardMap> |
2317 | 2318 |
combinedArcMap(ForwardMap& forward, BackwardMap& backward) { |
2318 | 2319 |
return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward); |
2319 | 2320 |
} |
2320 | 2321 |
|
2321 | 2322 |
template <typename ForwardMap, typename BackwardMap> |
2322 | 2323 |
static CombinedArcMap<const ForwardMap, BackwardMap> |
2323 | 2324 |
combinedArcMap(const ForwardMap& forward, BackwardMap& backward) { |
2324 | 2325 |
return CombinedArcMap<const ForwardMap, |
2325 | 2326 |
BackwardMap>(forward, backward); |
2326 | 2327 |
} |
2327 | 2328 |
|
2328 | 2329 |
template <typename ForwardMap, typename BackwardMap> |
2329 | 2330 |
static CombinedArcMap<ForwardMap, const BackwardMap> |
2330 | 2331 |
combinedArcMap(ForwardMap& forward, const BackwardMap& backward) { |
2331 | 2332 |
return CombinedArcMap<ForwardMap, |
2332 | 2333 |
const BackwardMap>(forward, backward); |
2333 | 2334 |
} |
2334 | 2335 |
|
2335 | 2336 |
template <typename ForwardMap, typename BackwardMap> |
2336 | 2337 |
static CombinedArcMap<const ForwardMap, const BackwardMap> |
2337 | 2338 |
combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) { |
2338 | 2339 |
return CombinedArcMap<const ForwardMap, |
2339 | 2340 |
const BackwardMap>(forward, backward); |
2340 | 2341 |
} |
2341 | 2342 |
|
2342 | 2343 |
}; |
2343 | 2344 |
|
2344 | 2345 |
/// \brief Returns a read-only Undirector adaptor |
2345 | 2346 |
/// |
2346 | 2347 |
/// This function just returns a read-only \ref Undirector adaptor. |
2347 | 2348 |
/// \ingroup graph_adaptors |
2348 | 2349 |
/// \relates Undirector |
2349 | 2350 |
template<typename DGR> |
2350 | 2351 |
Undirector<const DGR> undirector(const DGR& digraph) { |
2351 | 2352 |
return Undirector<const DGR>(digraph); |
2352 | 2353 |
} |
2353 | 2354 |
|
2354 | 2355 |
|
2355 | 2356 |
template <typename GR, typename DM> |
2356 | 2357 |
class OrienterBase { |
2357 | 2358 |
public: |
2358 | 2359 |
|
2359 | 2360 |
typedef GR Graph; |
2360 | 2361 |
typedef DM DirectionMap; |
2361 | 2362 |
|
2362 | 2363 |
typedef typename GR::Node Node; |
2363 | 2364 |
typedef typename GR::Edge Arc; |
2364 | 2365 |
|
2365 | 2366 |
void reverseArc(const Arc& arc) { |
2366 | 2367 |
_direction->set(arc, !(*_direction)[arc]); |
2367 | 2368 |
} |
2368 | 2369 |
|
2369 | 2370 |
void first(Node& i) const { _graph->first(i); } |
2370 | 2371 |
void first(Arc& i) const { _graph->first(i); } |
2371 | 2372 |
void firstIn(Arc& i, const Node& n) const { |
2372 | 2373 |
bool d = true; |
2373 | 2374 |
_graph->firstInc(i, d, n); |
2374 | 2375 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2375 | 2376 |
} |
2376 | 2377 |
void firstOut(Arc& i, const Node& n ) const { |
2377 | 2378 |
bool d = true; |
2378 | 2379 |
_graph->firstInc(i, d, n); |
2379 | 2380 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2380 | 2381 |
} |
2381 | 2382 |
|
2382 | 2383 |
void next(Node& i) const { _graph->next(i); } |
2383 | 2384 |
void next(Arc& i) const { _graph->next(i); } |
2384 | 2385 |
void nextIn(Arc& i) const { |
2385 | 2386 |
bool d = !(*_direction)[i]; |
2386 | 2387 |
_graph->nextInc(i, d); |
2387 | 2388 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2388 | 2389 |
} |
2389 | 2390 |
void nextOut(Arc& i) const { |
2390 | 2391 |
bool d = (*_direction)[i]; |
2391 | 2392 |
_graph->nextInc(i, d); |
2392 | 2393 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2393 | 2394 |
} |
2394 | 2395 |
|
2395 | 2396 |
Node source(const Arc& e) const { |
2396 | 2397 |
return (*_direction)[e] ? _graph->u(e) : _graph->v(e); |
2397 | 2398 |
} |
2398 | 2399 |
Node target(const Arc& e) const { |
2399 | 2400 |
return (*_direction)[e] ? _graph->v(e) : _graph->u(e); |
2400 | 2401 |
} |
2401 | 2402 |
|
2402 | 2403 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
2403 | 2404 |
int nodeNum() const { return _graph->nodeNum(); } |
2404 | 2405 |
|
2405 | 2406 |
typedef EdgeNumTagIndicator<Graph> ArcNumTag; |
2406 | 2407 |
int arcNum() const { return _graph->edgeNum(); } |
2407 | 2408 |
|
2408 | 2409 |
typedef FindEdgeTagIndicator<Graph> FindArcTag; |
2409 | 2410 |
Arc findArc(const Node& u, const Node& v, |
2410 | 2411 |
const Arc& prev = INVALID) const { |
2411 | 2412 |
Arc arc = _graph->findEdge(u, v, prev); |
2412 | 2413 |
while (arc != INVALID && source(arc) != u) { |
2413 | 2414 |
arc = _graph->findEdge(u, v, arc); |
2414 | 2415 |
} |
2415 | 2416 |
return arc; |
2416 | 2417 |
} |
2417 | 2418 |
|
2418 | 2419 |
Node addNode() { |
2419 | 2420 |
return Node(_graph->addNode()); |
2420 | 2421 |
} |
2421 | 2422 |
|
2422 | 2423 |
Arc addArc(const Node& u, const Node& v) { |
2423 | 2424 |
Arc arc = _graph->addEdge(u, v); |
2424 | 2425 |
_direction->set(arc, _graph->u(arc) == u); |
2425 | 2426 |
return arc; |
2426 | 2427 |
} |
2427 | 2428 |
|
2428 | 2429 |
void erase(const Node& i) { _graph->erase(i); } |
2429 | 2430 |
void erase(const Arc& i) { _graph->erase(i); } |
2430 | 2431 |
|
2431 | 2432 |
void clear() { _graph->clear(); } |
2432 | 2433 |
|
2433 | 2434 |
int id(const Node& v) const { return _graph->id(v); } |
2434 | 2435 |
int id(const Arc& e) const { return _graph->id(e); } |
2435 | 2436 |
|
2436 | 2437 |
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } |
2437 | 2438 |
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } |
2438 | 2439 |
|
2439 | 2440 |
int maxNodeId() const { return _graph->maxNodeId(); } |
2440 | 2441 |
int maxArcId() const { return _graph->maxEdgeId(); } |
2441 | 2442 |
|
2442 | 2443 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
2443 | 2444 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
2444 | 2445 |
|
2445 | 2446 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
2446 | 2447 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
2447 | 2448 |
|
2448 | 2449 |
template <typename V> |
2449 | 2450 |
class NodeMap : public GR::template NodeMap<V> { |
2450 | 2451 |
public: |
2451 | 2452 |
|
2452 | 2453 |
typedef typename GR::template NodeMap<V> Parent; |
2453 | 2454 |
|
2454 | 2455 |
explicit NodeMap(const OrienterBase<GR, DM>& adapter) |
2455 | 2456 |
: Parent(*adapter._graph) {} |
2456 | 2457 |
|
2457 | 2458 |
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2458 | 2459 |
: Parent(*adapter._graph, value) {} |
2459 | 2460 |
|
2460 | 2461 |
private: |
2461 | 2462 |
NodeMap& operator=(const NodeMap& cmap) { |
2462 | 2463 |
return operator=<NodeMap>(cmap); |
2463 | 2464 |
} |
2464 | 2465 |
|
2465 | 2466 |
template <typename CMap> |
2466 | 2467 |
NodeMap& operator=(const CMap& cmap) { |
2467 | 2468 |
Parent::operator=(cmap); |
2468 | 2469 |
return *this; |
2469 | 2470 |
} |
2470 | 2471 |
|
2471 | 2472 |
}; |
2472 | 2473 |
|
2473 | 2474 |
template <typename V> |
2474 | 2475 |
class ArcMap : public GR::template EdgeMap<V> { |
2475 | 2476 |
public: |
2476 | 2477 |
|
2477 | 2478 |
typedef typename Graph::template EdgeMap<V> Parent; |
2478 | 2479 |
|
2479 | 2480 |
explicit ArcMap(const OrienterBase<GR, DM>& adapter) |
2480 | 2481 |
: Parent(*adapter._graph) { } |
2481 | 2482 |
|
2482 | 2483 |
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2483 | 2484 |
: Parent(*adapter._graph, value) { } |
2484 | 2485 |
|
2485 | 2486 |
private: |
2486 | 2487 |
ArcMap& operator=(const ArcMap& cmap) { |
2487 | 2488 |
return operator=<ArcMap>(cmap); |
2488 | 2489 |
} |
2489 | 2490 |
|
2490 | 2491 |
template <typename CMap> |
2491 | 2492 |
ArcMap& operator=(const CMap& cmap) { |
2492 | 2493 |
Parent::operator=(cmap); |
2493 | 2494 |
return *this; |
2494 | 2495 |
} |
2495 | 2496 |
}; |
2496 | 2497 |
|
2497 | 2498 |
|
2498 | 2499 |
|
2499 | 2500 |
protected: |
2500 | 2501 |
Graph* _graph; |
2501 | 2502 |
DM* _direction; |
2502 | 2503 |
|
2503 | 2504 |
void initialize(GR& graph, DM& direction) { |
2504 | 2505 |
_graph = &graph; |
2505 | 2506 |
_direction = &direction; |
2506 | 2507 |
} |
2507 | 2508 |
|
2508 | 2509 |
}; |
2509 | 2510 |
|
2510 | 2511 |
/// \ingroup graph_adaptors |
2511 | 2512 |
/// |
2512 | 2513 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
2513 | 2514 |
/// |
2514 | 2515 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
2515 | 2516 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
2516 | 2517 |
/// specified, which define the direction of the arcs in the adaptor. |
2517 | 2518 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
2518 | 2519 |
/// of the adaptor. |
2519 | 2520 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2520 | 2521 |
/// |
2521 | 2522 |
/// The adapted graph can also be modified through this adaptor |
2522 | 2523 |
/// by adding or removing nodes or arcs, unless the \c GR template |
2523 | 2524 |
/// parameter is set to be \c const. |
2524 | 2525 |
/// |
2525 | 2526 |
/// \tparam GR The type of the adapted graph. |
2526 | 2527 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
2527 | 2528 |
/// It can also be specified to be \c const. |
2528 | 2529 |
/// \tparam DM The type of the direction map. |
2529 | 2530 |
/// It must be a \c bool (or convertible) edge map of the |
2530 | 2531 |
/// adapted graph. The default type is |
2531 | 2532 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
2532 | 2533 |
/// |
2533 | 2534 |
/// \note The \c Node type of this adaptor and the adapted graph are |
2534 | 2535 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2535 | 2536 |
/// and the \c Edge type of the adapted graph are also convertible to |
2536 | 2537 |
/// each other. |
2537 | 2538 |
#ifdef DOXYGEN |
2538 | 2539 |
template<typename GR, |
2539 | 2540 |
typename DM> |
2540 | 2541 |
class Orienter { |
2541 | 2542 |
#else |
2542 | 2543 |
template<typename GR, |
2543 | 2544 |
typename DM = typename GR::template EdgeMap<bool> > |
2544 | 2545 |
class Orienter : |
2545 | 2546 |
public DigraphAdaptorExtender<OrienterBase<GR, DM> > { |
2546 | 2547 |
#endif |
2547 | 2548 |
public: |
2548 | 2549 |
|
2549 | 2550 |
/// The type of the adapted graph. |
2550 | 2551 |
typedef GR Graph; |
2551 | 2552 |
/// The type of the direction edge map. |
2552 | 2553 |
typedef DM DirectionMap; |
2553 | 2554 |
|
2554 | 2555 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
2555 | 2556 |
typedef typename Parent::Arc Arc; |
2556 | 2557 |
protected: |
2557 | 2558 |
Orienter() { } |
2558 | 2559 |
public: |
2559 | 2560 |
|
2560 | 2561 |
/// \brief Constructor |
2561 | 2562 |
/// |
2562 | 2563 |
/// Constructor of the adaptor. |
2563 | 2564 |
Orienter(GR& graph, DM& direction) { |
2564 | 2565 |
Parent::initialize(graph, direction); |
2565 | 2566 |
} |
2566 | 2567 |
|
2567 | 2568 |
/// \brief Reverses the given arc |
2568 | 2569 |
/// |
2569 | 2570 |
/// This function reverses the given arc. |
2570 | 2571 |
/// It is done by simply negate the assigned value of \c a |
2571 | 2572 |
/// in the direction map. |
2572 | 2573 |
void reverseArc(const Arc& a) { |
2573 | 2574 |
Parent::reverseArc(a); |
2574 | 2575 |
} |
2575 | 2576 |
}; |
2576 | 2577 |
|
2577 | 2578 |
/// \brief Returns a read-only Orienter adaptor |
2578 | 2579 |
/// |
2579 | 2580 |
/// This function just returns a read-only \ref Orienter adaptor. |
2580 | 2581 |
/// \ingroup graph_adaptors |
2581 | 2582 |
/// \relates Orienter |
2582 | 2583 |
template<typename GR, typename DM> |
2583 | 2584 |
Orienter<const GR, DM> |
2584 | 2585 |
orienter(const GR& graph, DM& direction) { |
2585 | 2586 |
return Orienter<const GR, DM>(graph, direction); |
2586 | 2587 |
} |
2587 | 2588 |
|
2588 | 2589 |
template<typename GR, typename DM> |
2589 | 2590 |
Orienter<const GR, const DM> |
2590 | 2591 |
orienter(const GR& graph, const DM& direction) { |
2591 | 2592 |
return Orienter<const GR, const DM>(graph, direction); |
2592 | 2593 |
} |
2593 | 2594 |
|
2594 | 2595 |
namespace _adaptor_bits { |
2595 | 2596 |
|
2596 | 2597 |
template <typename DGR, typename CM, typename FM, typename TL> |
2597 | 2598 |
class ResForwardFilter { |
2598 | 2599 |
public: |
2599 | 2600 |
|
2600 | 2601 |
typedef typename DGR::Arc Key; |
2601 | 2602 |
typedef bool Value; |
2602 | 2603 |
|
2603 | 2604 |
private: |
2604 | 2605 |
|
2605 | 2606 |
const CM* _capacity; |
2606 | 2607 |
const FM* _flow; |
2607 | 2608 |
TL _tolerance; |
2608 | 2609 |
|
2609 | 2610 |
public: |
2610 | 2611 |
|
2611 | 2612 |
ResForwardFilter(const CM& capacity, const FM& flow, |
2612 | 2613 |
const TL& tolerance = TL()) |
2613 | 2614 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2614 | 2615 |
|
2615 | 2616 |
bool operator[](const typename DGR::Arc& a) const { |
2616 | 2617 |
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); |
2617 | 2618 |
} |
2618 | 2619 |
}; |
2619 | 2620 |
|
2620 | 2621 |
template<typename DGR,typename CM, typename FM, typename TL> |
2621 | 2622 |
class ResBackwardFilter { |
2622 | 2623 |
public: |
2623 | 2624 |
|
2624 | 2625 |
typedef typename DGR::Arc Key; |
2625 | 2626 |
typedef bool Value; |
2626 | 2627 |
|
2627 | 2628 |
private: |
2628 | 2629 |
|
2629 | 2630 |
const CM* _capacity; |
2630 | 2631 |
const FM* _flow; |
2631 | 2632 |
TL _tolerance; |
2632 | 2633 |
|
2633 | 2634 |
public: |
2634 | 2635 |
|
2635 | 2636 |
ResBackwardFilter(const CM& capacity, const FM& flow, |
2636 | 2637 |
const TL& tolerance = TL()) |
2637 | 2638 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2638 | 2639 |
|
2639 | 2640 |
bool operator[](const typename DGR::Arc& a) const { |
2640 | 2641 |
return _tolerance.positive((*_flow)[a]); |
2641 | 2642 |
} |
2642 | 2643 |
}; |
2643 | 2644 |
|
2644 | 2645 |
} |
2645 | 2646 |
|
2646 | 2647 |
/// \ingroup graph_adaptors |
2647 | 2648 |
/// |
2648 | 2649 |
/// \brief Adaptor class for composing the residual digraph for directed |
2649 | 2650 |
/// flow and circulation problems. |
2650 | 2651 |
/// |
2651 | 2652 |
/// ResidualDigraph can be used for composing the \e residual digraph |
2652 | 2653 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
2653 | 2654 |
/// be a directed graph and let \f$ F \f$ be a number type. |
2654 | 2655 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
2655 | 2656 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
2656 | 2657 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$, |
2657 | 2658 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and |
2658 | 2659 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so |
2659 | 2660 |
/// called residual digraph. |
2660 | 2661 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, |
2661 | 2662 |
/// multiplicities are counted, i.e. the adaptor has exactly |
2662 | 2663 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel |
2663 | 2664 |
/// arcs). |
2664 | 2665 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2665 | 2666 |
/// |
2666 | 2667 |
/// \tparam DGR The type of the adapted digraph. |
2667 | 2668 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2668 | 2669 |
/// It is implicitly \c const. |
2669 | 2670 |
/// \tparam CM The type of the capacity map. |
2670 | 2671 |
/// It must be an arc map of some numerical type, which defines |
2671 | 2672 |
/// the capacities in the flow problem. It is implicitly \c const. |
2672 | 2673 |
/// The default type is |
2673 | 2674 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
2674 | 2675 |
/// \tparam FM The type of the flow map. |
2675 | 2676 |
/// It must be an arc map of some numerical type, which defines |
2676 | 2677 |
/// the flow values in the flow problem. The default type is \c CM. |
2677 | 2678 |
/// \tparam TL The tolerance type for handling inexact computation. |
2678 | 2679 |
/// The default tolerance type depends on the value type of the |
2679 | 2680 |
/// capacity map. |
2680 | 2681 |
/// |
2681 | 2682 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
2682 | 2683 |
/// adaptors. |
2683 | 2684 |
/// |
2684 | 2685 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2685 | 2686 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2686 | 2687 |
/// is convertible to the \c Arc type of the adapted digraph. |
2687 | 2688 |
#ifdef DOXYGEN |
2688 | 2689 |
template<typename DGR, typename CM, typename FM, typename TL> |
2689 | 2690 |
class ResidualDigraph |
2690 | 2691 |
#else |
2691 | 2692 |
template<typename DGR, |
2692 | 2693 |
typename CM = typename DGR::template ArcMap<int>, |
2693 | 2694 |
typename FM = CM, |
2694 | 2695 |
typename TL = Tolerance<typename CM::Value> > |
2695 | 2696 |
class ResidualDigraph |
2696 | 2697 |
: public SubDigraph< |
2697 | 2698 |
Undirector<const DGR>, |
2698 | 2699 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2699 | 2700 |
typename Undirector<const DGR>::template CombinedArcMap< |
2700 | 2701 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2701 | 2702 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2702 | 2703 |
#endif |
2703 | 2704 |
{ |
2704 | 2705 |
public: |
2705 | 2706 |
|
2706 | 2707 |
/// The type of the underlying digraph. |
2707 | 2708 |
typedef DGR Digraph; |
2708 | 2709 |
/// The type of the capacity map. |
2709 | 2710 |
typedef CM CapacityMap; |
2710 | 2711 |
/// The type of the flow map. |
2711 | 2712 |
typedef FM FlowMap; |
2712 | 2713 |
/// The tolerance type. |
2713 | 2714 |
typedef TL Tolerance; |
2714 | 2715 |
|
2715 | 2716 |
typedef typename CapacityMap::Value Value; |
2716 | 2717 |
typedef ResidualDigraph Adaptor; |
2717 | 2718 |
|
2718 | 2719 |
protected: |
2719 | 2720 |
|
2720 | 2721 |
typedef Undirector<const Digraph> Undirected; |
2721 | 2722 |
|
2722 | 2723 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
2723 | 2724 |
|
2724 | 2725 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
2725 | 2726 |
FM, TL> ForwardFilter; |
2726 | 2727 |
|
2727 | 2728 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
2728 | 2729 |
FM, TL> BackwardFilter; |
2729 | 2730 |
|
2730 | 2731 |
typedef typename Undirected:: |
2731 | 2732 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
2732 | 2733 |
|
2733 | 2734 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
2734 | 2735 |
|
2735 | 2736 |
const CapacityMap* _capacity; |
2736 | 2737 |
FlowMap* _flow; |
2737 | 2738 |
|
2738 | 2739 |
Undirected _graph; |
2739 | 2740 |
NodeFilter _node_filter; |
2740 | 2741 |
ForwardFilter _forward_filter; |
2741 | 2742 |
BackwardFilter _backward_filter; |
2742 | 2743 |
ArcFilter _arc_filter; |
2743 | 2744 |
|
2744 | 2745 |
public: |
2745 | 2746 |
|
2746 | 2747 |
/// \brief Constructor |
2747 | 2748 |
/// |
2748 | 2749 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2749 | 2750 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2750 | 2751 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2751 | 2752 |
FM& flow, const TL& tolerance = Tolerance()) |
2752 | 2753 |
: Parent(), _capacity(&capacity), _flow(&flow), |
2753 | 2754 |
_graph(digraph), _node_filter(), |
2754 | 2755 |
_forward_filter(capacity, flow, tolerance), |
2755 | 2756 |
_backward_filter(capacity, flow, tolerance), |
2756 | 2757 |
_arc_filter(_forward_filter, _backward_filter) |
2757 | 2758 |
{ |
2758 | 2759 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2759 | 2760 |
} |
2760 | 2761 |
|
2761 | 2762 |
typedef typename Parent::Arc Arc; |
2762 | 2763 |
|
2763 | 2764 |
/// \brief Returns the residual capacity of the given arc. |
2764 | 2765 |
/// |
2765 | 2766 |
/// Returns the residual capacity of the given arc. |
2766 | 2767 |
Value residualCapacity(const Arc& a) const { |
2767 | 2768 |
if (Undirected::direction(a)) { |
2768 | 2769 |
return (*_capacity)[a] - (*_flow)[a]; |
2769 | 2770 |
} else { |
2770 | 2771 |
return (*_flow)[a]; |
2771 | 2772 |
} |
2772 | 2773 |
} |
2773 | 2774 |
|
2774 | 2775 |
/// \brief Augments on the given arc in the residual digraph. |
2775 | 2776 |
/// |
2776 | 2777 |
/// Augments on the given arc in the residual digraph. It increases |
2777 | 2778 |
/// or decreases the flow value on the original arc according to the |
2778 | 2779 |
/// direction of the residual arc. |
2779 | 2780 |
void augment(const Arc& a, const Value& v) const { |
2780 | 2781 |
if (Undirected::direction(a)) { |
2781 | 2782 |
_flow->set(a, (*_flow)[a] + v); |
2782 | 2783 |
} else { |
2783 | 2784 |
_flow->set(a, (*_flow)[a] - v); |
2784 | 2785 |
} |
2785 | 2786 |
} |
2786 | 2787 |
|
2787 | 2788 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
2788 | 2789 |
/// |
2789 | 2790 |
/// Returns \c true if the given residual arc has the same orientation |
2790 | 2791 |
/// as the original arc, i.e. it is a so called forward arc. |
2791 | 2792 |
static bool forward(const Arc& a) { |
2792 | 2793 |
return Undirected::direction(a); |
2793 | 2794 |
} |
2794 | 2795 |
|
2795 | 2796 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
2796 | 2797 |
/// |
2797 | 2798 |
/// Returns \c true if the given residual arc has the opposite orientation |
2798 | 2799 |
/// than the original arc, i.e. it is a so called backward arc. |
2799 | 2800 |
static bool backward(const Arc& a) { |
2800 | 2801 |
return !Undirected::direction(a); |
2801 | 2802 |
} |
2802 | 2803 |
|
2803 | 2804 |
/// \brief Returns the forward oriented residual arc. |
2804 | 2805 |
/// |
2805 | 2806 |
/// Returns the forward oriented residual arc related to the given |
2806 | 2807 |
/// arc of the underlying digraph. |
2807 | 2808 |
static Arc forward(const typename Digraph::Arc& a) { |
2808 | 2809 |
return Undirected::direct(a, true); |
2809 | 2810 |
} |
2810 | 2811 |
|
2811 | 2812 |
/// \brief Returns the backward oriented residual arc. |
2812 | 2813 |
/// |
2813 | 2814 |
/// Returns the backward oriented residual arc related to the given |
2814 | 2815 |
/// arc of the underlying digraph. |
2815 | 2816 |
static Arc backward(const typename Digraph::Arc& a) { |
2816 | 2817 |
return Undirected::direct(a, false); |
2817 | 2818 |
} |
2818 | 2819 |
|
2819 | 2820 |
/// \brief Residual capacity map. |
2820 | 2821 |
/// |
2821 | 2822 |
/// This map adaptor class can be used for obtaining the residual |
2822 | 2823 |
/// capacities as an arc map of the residual digraph. |
2823 | 2824 |
/// Its value type is inherited from the capacity map. |
2824 | 2825 |
class ResidualCapacity { |
2825 | 2826 |
protected: |
2826 | 2827 |
const Adaptor* _adaptor; |
2827 | 2828 |
public: |
2828 | 2829 |
/// The key type of the map |
2829 | 2830 |
typedef Arc Key; |
2830 | 2831 |
/// The value type of the map |
2831 | 2832 |
typedef typename CapacityMap::Value Value; |
2832 | 2833 |
|
2833 | 2834 |
/// Constructor |
2834 | 2835 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
2835 | 2836 |
: _adaptor(&adaptor) {} |
2836 | 2837 |
|
2837 | 2838 |
/// Returns the value associated with the given residual arc |
2838 | 2839 |
Value operator[](const Arc& a) const { |
2839 | 2840 |
return _adaptor->residualCapacity(a); |
2840 | 2841 |
} |
2841 | 2842 |
|
2842 | 2843 |
}; |
2843 | 2844 |
|
2844 | 2845 |
/// \brief Returns a residual capacity map |
2845 | 2846 |
/// |
2846 | 2847 |
/// This function just returns a residual capacity map. |
2847 | 2848 |
ResidualCapacity residualCapacity() const { |
2848 | 2849 |
return ResidualCapacity(*this); |
2849 | 2850 |
} |
2850 | 2851 |
|
2851 | 2852 |
}; |
2852 | 2853 |
|
2853 | 2854 |
/// \brief Returns a (read-only) Residual adaptor |
2854 | 2855 |
/// |
2855 | 2856 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
2856 | 2857 |
/// \ingroup graph_adaptors |
2857 | 2858 |
/// \relates ResidualDigraph |
2858 | 2859 |
template<typename DGR, typename CM, typename FM> |
2859 | 2860 |
ResidualDigraph<DGR, CM, FM> |
2860 | 2861 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { |
2861 | 2862 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
2862 | 2863 |
} |
2863 | 2864 |
|
2864 | 2865 |
|
2865 | 2866 |
template <typename DGR> |
2866 | 2867 |
class SplitNodesBase { |
2867 | 2868 |
public: |
2868 | 2869 |
|
2869 | 2870 |
typedef DGR Digraph; |
2870 | 2871 |
typedef DigraphAdaptorBase<const DGR> Parent; |
2871 | 2872 |
typedef SplitNodesBase Adaptor; |
2872 | 2873 |
|
2873 | 2874 |
typedef typename DGR::Node DigraphNode; |
2874 | 2875 |
typedef typename DGR::Arc DigraphArc; |
2875 | 2876 |
|
2876 | 2877 |
class Node; |
2877 | 2878 |
class Arc; |
2878 | 2879 |
|
2879 | 2880 |
private: |
2880 | 2881 |
|
2881 | 2882 |
template <typename T> class NodeMapBase; |
2882 | 2883 |
template <typename T> class ArcMapBase; |
2883 | 2884 |
|
2884 | 2885 |
public: |
2885 | 2886 |
|
2886 | 2887 |
class Node : public DigraphNode { |
2887 | 2888 |
friend class SplitNodesBase; |
2888 | 2889 |
template <typename T> friend class NodeMapBase; |
2889 | 2890 |
private: |
2890 | 2891 |
|
2891 | 2892 |
bool _in; |
2892 | 2893 |
Node(DigraphNode node, bool in) |
2893 | 2894 |
: DigraphNode(node), _in(in) {} |
2894 | 2895 |
|
2895 | 2896 |
public: |
2896 | 2897 |
|
2897 | 2898 |
Node() {} |
2898 | 2899 |
Node(Invalid) : DigraphNode(INVALID), _in(true) {} |
2899 | 2900 |
|
2900 | 2901 |
bool operator==(const Node& node) const { |
2901 | 2902 |
return DigraphNode::operator==(node) && _in == node._in; |
2902 | 2903 |
} |
2903 | 2904 |
|
2904 | 2905 |
bool operator!=(const Node& node) const { |
2905 | 2906 |
return !(*this == node); |
2906 | 2907 |
} |
2907 | 2908 |
|
2908 | 2909 |
bool operator<(const Node& node) const { |
2909 | 2910 |
return DigraphNode::operator<(node) || |
2910 | 2911 |
(DigraphNode::operator==(node) && _in < node._in); |
2911 | 2912 |
} |
2912 | 2913 |
}; |
2913 | 2914 |
|
2914 | 2915 |
class Arc { |
2915 | 2916 |
friend class SplitNodesBase; |
2916 | 2917 |
template <typename T> friend class ArcMapBase; |
2917 | 2918 |
private: |
2918 | 2919 |
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl; |
2919 | 2920 |
|
2920 | 2921 |
explicit Arc(const DigraphArc& arc) : _item(arc) {} |
2921 | 2922 |
explicit Arc(const DigraphNode& node) : _item(node) {} |
2922 | 2923 |
|
2923 | 2924 |
ArcImpl _item; |
2924 | 2925 |
|
2925 | 2926 |
public: |
2926 | 2927 |
Arc() {} |
2927 | 2928 |
Arc(Invalid) : _item(DigraphArc(INVALID)) {} |
2928 | 2929 |
|
2929 | 2930 |
bool operator==(const Arc& arc) const { |
2930 | 2931 |
if (_item.firstState()) { |
2931 | 2932 |
if (arc._item.firstState()) { |
2932 | 2933 |
return _item.first() == arc._item.first(); |
2933 | 2934 |
} |
2934 | 2935 |
} else { |
2935 | 2936 |
if (arc._item.secondState()) { |
2936 | 2937 |
return _item.second() == arc._item.second(); |
2937 | 2938 |
} |
2938 | 2939 |
} |
2939 | 2940 |
return false; |
2940 | 2941 |
} |
2941 | 2942 |
|
2942 | 2943 |
bool operator!=(const Arc& arc) const { |
2943 | 2944 |
return !(*this == arc); |
2944 | 2945 |
} |
2945 | 2946 |
|
2946 | 2947 |
bool operator<(const Arc& arc) const { |
2947 | 2948 |
if (_item.firstState()) { |
2948 | 2949 |
if (arc._item.firstState()) { |
2949 | 2950 |
return _item.first() < arc._item.first(); |
2950 | 2951 |
} |
2951 | 2952 |
return false; |
2952 | 2953 |
} else { |
2953 | 2954 |
if (arc._item.secondState()) { |
2954 | 2955 |
return _item.second() < arc._item.second(); |
2955 | 2956 |
} |
2956 | 2957 |
return true; |
2957 | 2958 |
} |
2958 | 2959 |
} |
2959 | 2960 |
|
2960 | 2961 |
operator DigraphArc() const { return _item.first(); } |
2961 | 2962 |
operator DigraphNode() const { return _item.second(); } |
2962 | 2963 |
|
2963 | 2964 |
}; |
2964 | 2965 |
|
2965 | 2966 |
void first(Node& n) const { |
2966 | 2967 |
_digraph->first(n); |
2967 | 2968 |
n._in = true; |
2968 | 2969 |
} |
2969 | 2970 |
|
2970 | 2971 |
void next(Node& n) const { |
2971 | 2972 |
if (n._in) { |
2972 | 2973 |
n._in = false; |
2973 | 2974 |
} else { |
2974 | 2975 |
n._in = true; |
2975 | 2976 |
_digraph->next(n); |
2976 | 2977 |
} |
2977 | 2978 |
} |
2978 | 2979 |
|
2979 | 2980 |
void first(Arc& e) const { |
2980 | 2981 |
e._item.setSecond(); |
2981 | 2982 |
_digraph->first(e._item.second()); |
2982 | 2983 |
if (e._item.second() == INVALID) { |
2983 | 2984 |
e._item.setFirst(); |
2984 | 2985 |
_digraph->first(e._item.first()); |
2985 | 2986 |
} |
2986 | 2987 |
} |
2987 | 2988 |
|
2988 | 2989 |
void next(Arc& e) const { |
2989 | 2990 |
if (e._item.secondState()) { |
2990 | 2991 |
_digraph->next(e._item.second()); |
2991 | 2992 |
if (e._item.second() == INVALID) { |
2992 | 2993 |
e._item.setFirst(); |
2993 | 2994 |
_digraph->first(e._item.first()); |
2994 | 2995 |
} |
2995 | 2996 |
} else { |
2996 | 2997 |
_digraph->next(e._item.first()); |
2997 | 2998 |
} |
2998 | 2999 |
} |
2999 | 3000 |
|
3000 | 3001 |
void firstOut(Arc& e, const Node& n) const { |
3001 | 3002 |
if (n._in) { |
3002 | 3003 |
e._item.setSecond(n); |
3003 | 3004 |
} else { |
3004 | 3005 |
e._item.setFirst(); |
3005 | 3006 |
_digraph->firstOut(e._item.first(), n); |
3006 | 3007 |
} |
3007 | 3008 |
} |
3008 | 3009 |
|
3009 | 3010 |
void nextOut(Arc& e) const { |
3010 | 3011 |
if (!e._item.firstState()) { |
3011 | 3012 |
e._item.setFirst(INVALID); |
3012 | 3013 |
} else { |
3013 | 3014 |
_digraph->nextOut(e._item.first()); |
3014 | 3015 |
} |
3015 | 3016 |
} |
3016 | 3017 |
|
3017 | 3018 |
void firstIn(Arc& e, const Node& n) const { |
3018 | 3019 |
if (!n._in) { |
3019 | 3020 |
e._item.setSecond(n); |
3020 | 3021 |
} else { |
3021 | 3022 |
e._item.setFirst(); |
3022 | 3023 |
_digraph->firstIn(e._item.first(), n); |
3023 | 3024 |
} |
3024 | 3025 |
} |
3025 | 3026 |
|
3026 | 3027 |
void nextIn(Arc& e) const { |
3027 | 3028 |
if (!e._item.firstState()) { |
3028 | 3029 |
e._item.setFirst(INVALID); |
3029 | 3030 |
} else { |
3030 | 3031 |
_digraph->nextIn(e._item.first()); |
3031 | 3032 |
} |
3032 | 3033 |
} |
3033 | 3034 |
|
3034 | 3035 |
Node source(const Arc& e) const { |
3035 | 3036 |
if (e._item.firstState()) { |
3036 | 3037 |
return Node(_digraph->source(e._item.first()), false); |
3037 | 3038 |
} else { |
3038 | 3039 |
return Node(e._item.second(), true); |
3039 | 3040 |
} |
3040 | 3041 |
} |
3041 | 3042 |
|
3042 | 3043 |
Node target(const Arc& e) const { |
3043 | 3044 |
if (e._item.firstState()) { |
3044 | 3045 |
return Node(_digraph->target(e._item.first()), true); |
3045 | 3046 |
} else { |
3046 | 3047 |
return Node(e._item.second(), false); |
3047 | 3048 |
} |
3048 | 3049 |
} |
3049 | 3050 |
|
3050 | 3051 |
int id(const Node& n) const { |
3051 | 3052 |
return (_digraph->id(n) << 1) | (n._in ? 0 : 1); |
3052 | 3053 |
} |
3053 | 3054 |
Node nodeFromId(int ix) const { |
3054 | 3055 |
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); |
3055 | 3056 |
} |
3056 | 3057 |
int maxNodeId() const { |
3057 | 3058 |
return 2 * _digraph->maxNodeId() + 1; |
3058 | 3059 |
} |
3059 | 3060 |
|
3060 | 3061 |
int id(const Arc& e) const { |
3061 | 3062 |
if (e._item.firstState()) { |
3062 | 3063 |
return _digraph->id(e._item.first()) << 1; |
3063 | 3064 |
} else { |
3064 | 3065 |
return (_digraph->id(e._item.second()) << 1) | 1; |
3065 | 3066 |
} |
3066 | 3067 |
} |
3067 | 3068 |
Arc arcFromId(int ix) const { |
3068 | 3069 |
if ((ix & 1) == 0) { |
3069 | 3070 |
return Arc(_digraph->arcFromId(ix >> 1)); |
3070 | 3071 |
} else { |
3071 | 3072 |
return Arc(_digraph->nodeFromId(ix >> 1)); |
3072 | 3073 |
} |
3073 | 3074 |
} |
3074 | 3075 |
int maxArcId() const { |
3075 | 3076 |
return std::max(_digraph->maxNodeId() << 1, |
3076 | 3077 |
(_digraph->maxArcId() << 1) | 1); |
3077 | 3078 |
} |
3078 | 3079 |
|
3079 | 3080 |
static bool inNode(const Node& n) { |
3080 | 3081 |
return n._in; |
3081 | 3082 |
} |
3082 | 3083 |
|
3083 | 3084 |
static bool outNode(const Node& n) { |
3084 | 3085 |
return !n._in; |
3085 | 3086 |
} |
3086 | 3087 |
|
3087 | 3088 |
static bool origArc(const Arc& e) { |
3088 | 3089 |
return e._item.firstState(); |
3089 | 3090 |
} |
3090 | 3091 |
|
3091 | 3092 |
static bool bindArc(const Arc& e) { |
3092 | 3093 |
return e._item.secondState(); |
3093 | 3094 |
} |
3094 | 3095 |
|
3095 | 3096 |
static Node inNode(const DigraphNode& n) { |
3096 | 3097 |
return Node(n, true); |
3097 | 3098 |
} |
3098 | 3099 |
|
3099 | 3100 |
static Node outNode(const DigraphNode& n) { |
3100 | 3101 |
return Node(n, false); |
3101 | 3102 |
} |
3102 | 3103 |
|
3103 | 3104 |
static Arc arc(const DigraphNode& n) { |
3104 | 3105 |
return Arc(n); |
3105 | 3106 |
} |
3106 | 3107 |
|
3107 | 3108 |
static Arc arc(const DigraphArc& e) { |
3108 | 3109 |
return Arc(e); |
3109 | 3110 |
} |
3110 | 3111 |
|
3111 | 3112 |
typedef True NodeNumTag; |
3112 | 3113 |
int nodeNum() const { |
3113 | 3114 |
return 2 * countNodes(*_digraph); |
3114 | 3115 |
} |
3115 | 3116 |
|
3116 | 3117 |
typedef True ArcNumTag; |
3117 | 3118 |
int arcNum() const { |
3118 | 3119 |
return countArcs(*_digraph) + countNodes(*_digraph); |
3119 | 3120 |
} |
3120 | 3121 |
|
3121 | 3122 |
typedef True FindArcTag; |
3122 | 3123 |
Arc findArc(const Node& u, const Node& v, |
3123 | 3124 |
const Arc& prev = INVALID) const { |
3124 | 3125 |
if (inNode(u) && outNode(v)) { |
3125 | 3126 |
if (static_cast<const DigraphNode&>(u) == |
3126 | 3127 |
static_cast<const DigraphNode&>(v) && prev == INVALID) { |
3127 | 3128 |
return Arc(u); |
3128 | 3129 |
} |
3129 | 3130 |
} |
3130 | 3131 |
else if (outNode(u) && inNode(v)) { |
3131 | 3132 |
return Arc(::lemon::findArc(*_digraph, u, v, prev)); |
3132 | 3133 |
} |
3133 | 3134 |
return INVALID; |
3134 | 3135 |
} |
3135 | 3136 |
|
3136 | 3137 |
private: |
3137 | 3138 |
|
3138 | 3139 |
template <typename V> |
3139 | 3140 |
class NodeMapBase |
3140 | 3141 |
: public MapTraits<typename Parent::template NodeMap<V> > { |
3141 | 3142 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3142 | 3143 |
public: |
3143 | 3144 |
typedef Node Key; |
3144 | 3145 |
typedef V Value; |
3145 | 3146 |
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag; |
3146 | 3147 |
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue; |
3147 | 3148 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue; |
3148 | 3149 |
typedef typename MapTraits<NodeImpl>::ReturnValue Reference; |
3149 | 3150 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference; |
3150 | 3151 |
|
3151 | 3152 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor) |
3152 | 3153 |
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} |
3153 | 3154 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3154 | 3155 |
: _in_map(*adaptor._digraph, value), |
3155 | 3156 |
_out_map(*adaptor._digraph, value) {} |
3156 | 3157 |
|
3157 | 3158 |
void set(const Node& key, const V& val) { |
3158 | 3159 |
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); } |
3159 | 3160 |
else {_out_map.set(key, val); } |
3160 | 3161 |
} |
3161 | 3162 |
|
3162 | 3163 |
ReturnValue operator[](const Node& key) { |
3163 | 3164 |
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; } |
3164 | 3165 |
else { return _out_map[key]; } |
3165 | 3166 |
} |
3166 | 3167 |
|
3167 | 3168 |
ConstReturnValue operator[](const Node& key) const { |
3168 | 3169 |
if (Adaptor::inNode(key)) { return _in_map[key]; } |
3169 | 3170 |
else { return _out_map[key]; } |
3170 | 3171 |
} |
3171 | 3172 |
|
3172 | 3173 |
private: |
3173 | 3174 |
NodeImpl _in_map, _out_map; |
3174 | 3175 |
}; |
3175 | 3176 |
|
3176 | 3177 |
template <typename V> |
3177 | 3178 |
class ArcMapBase |
3178 | 3179 |
: public MapTraits<typename Parent::template ArcMap<V> > { |
3179 | 3180 |
typedef typename Parent::template ArcMap<V> ArcImpl; |
3180 | 3181 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3181 | 3182 |
public: |
3182 | 3183 |
typedef Arc Key; |
3183 | 3184 |
typedef V Value; |
3184 | 3185 |
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag; |
3185 | 3186 |
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue; |
3186 | 3187 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue; |
3187 | 3188 |
typedef typename MapTraits<ArcImpl>::ReturnValue Reference; |
3188 | 3189 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference; |
3189 | 3190 |
|
3190 | 3191 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor) |
3191 | 3192 |
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} |
3192 | 3193 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3193 | 3194 |
: _arc_map(*adaptor._digraph, value), |
3194 | 3195 |
_node_map(*adaptor._digraph, value) {} |
3195 | 3196 |
|
3196 | 3197 |
void set(const Arc& key, const V& val) { |
3197 | 3198 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3198 | 3199 |
_arc_map.set(static_cast<const DigraphArc&>(key), val); |
3199 | 3200 |
} else { |
3200 | 3201 |
_node_map.set(static_cast<const DigraphNode&>(key), val); |
3201 | 3202 |
} |
3202 | 3203 |
} |
3203 | 3204 |
|
3204 | 3205 |
ReturnValue operator[](const Arc& key) { |
3205 | 3206 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3206 | 3207 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3207 | 3208 |
} else { |
3208 | 3209 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3209 | 3210 |
} |
3210 | 3211 |
} |
3211 | 3212 |
|
3212 | 3213 |
ConstReturnValue operator[](const Arc& key) const { |
3213 | 3214 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3214 | 3215 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3215 | 3216 |
} else { |
3216 | 3217 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3217 | 3218 |
} |
3218 | 3219 |
} |
3219 | 3220 |
|
3220 | 3221 |
private: |
3221 | 3222 |
ArcImpl _arc_map; |
3222 | 3223 |
NodeImpl _node_map; |
3223 | 3224 |
}; |
3224 | 3225 |
|
3225 | 3226 |
public: |
3226 | 3227 |
|
3227 | 3228 |
template <typename V> |
3228 | 3229 |
class NodeMap |
3229 | 3230 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > |
3230 | 3231 |
{ |
3231 | 3232 |
public: |
3232 | 3233 |
typedef V Value; |
3233 | 3234 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent; |
3234 | 3235 |
|
3235 | 3236 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
3236 | 3237 |
: Parent(adaptor) {} |
3237 | 3238 |
|
3238 | 3239 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3239 | 3240 |
: Parent(adaptor, value) {} |
3240 | 3241 |
|
3241 | 3242 |
private: |
3242 | 3243 |
NodeMap& operator=(const NodeMap& cmap) { |
3243 | 3244 |
return operator=<NodeMap>(cmap); |
3244 | 3245 |
} |
3245 | 3246 |
|
3246 | 3247 |
template <typename CMap> |
3247 | 3248 |
NodeMap& operator=(const CMap& cmap) { |
3248 | 3249 |
Parent::operator=(cmap); |
3249 | 3250 |
return *this; |
3250 | 3251 |
} |
3251 | 3252 |
}; |
3252 | 3253 |
|
3253 | 3254 |
template <typename V> |
3254 | 3255 |
class ArcMap |
3255 | 3256 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > |
3256 | 3257 |
{ |
3257 | 3258 |
public: |
3258 | 3259 |
typedef V Value; |
3259 | 3260 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent; |
3260 | 3261 |
|
3261 | 3262 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
3262 | 3263 |
: Parent(adaptor) {} |
3263 | 3264 |
|
3264 | 3265 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3265 | 3266 |
: Parent(adaptor, value) {} |
3266 | 3267 |
|
3267 | 3268 |
private: |
3268 | 3269 |
ArcMap& operator=(const ArcMap& cmap) { |
3269 | 3270 |
return operator=<ArcMap>(cmap); |
3270 | 3271 |
} |
3271 | 3272 |
|
3272 | 3273 |
template <typename CMap> |
3273 | 3274 |
ArcMap& operator=(const CMap& cmap) { |
3274 | 3275 |
Parent::operator=(cmap); |
3275 | 3276 |
return *this; |
3276 | 3277 |
} |
3277 | 3278 |
}; |
3278 | 3279 |
|
3279 | 3280 |
protected: |
3280 | 3281 |
|
3281 | 3282 |
SplitNodesBase() : _digraph(0) {} |
3282 | 3283 |
|
3283 | 3284 |
DGR* _digraph; |
3284 | 3285 |
|
3285 | 3286 |
void initialize(Digraph& digraph) { |
3286 | 3287 |
_digraph = &digraph; |
3287 | 3288 |
} |
3288 | 3289 |
|
3289 | 3290 |
}; |
3290 | 3291 |
|
3291 | 3292 |
/// \ingroup graph_adaptors |
3292 | 3293 |
/// |
3293 | 3294 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
3294 | 3295 |
/// |
3295 | 3296 |
/// SplitNodes adaptor can be used for splitting each node into an |
3296 | 3297 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
3297 | 3298 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
3298 | 3299 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$. |
3299 | 3300 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
3300 | 3301 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the |
3301 | 3302 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$. |
3302 | 3303 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$ |
3303 | 3304 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph. |
3304 | 3305 |
/// |
3305 | 3306 |
/// The aim of this class is running an algorithm with respect to node |
3306 | 3307 |
/// costs or capacities if the algorithm considers only arc costs or |
3307 | 3308 |
/// capacities directly. |
3308 | 3309 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
3309 | 3310 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
3310 | 3311 |
/// in the adaptor. |
3311 | 3312 |
/// |
3312 | 3313 |
/// \tparam DGR The type of the adapted digraph. |
3313 | 3314 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
3314 | 3315 |
/// It is implicitly \c const. |
3315 | 3316 |
/// |
3316 | 3317 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
3317 | 3318 |
/// type of the adapted digraph. |
3318 | 3319 |
template <typename DGR> |
3319 | 3320 |
#ifdef DOXYGEN |
3320 | 3321 |
class SplitNodes { |
3321 | 3322 |
#else |
3322 | 3323 |
class SplitNodes |
3323 | 3324 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > { |
3324 | 3325 |
#endif |
3325 | 3326 |
public: |
3326 | 3327 |
typedef DGR Digraph; |
3327 | 3328 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
3328 | 3329 |
|
3329 | 3330 |
typedef typename DGR::Node DigraphNode; |
3330 | 3331 |
typedef typename DGR::Arc DigraphArc; |
3331 | 3332 |
|
3332 | 3333 |
typedef typename Parent::Node Node; |
3333 | 3334 |
typedef typename Parent::Arc Arc; |
3334 | 3335 |
|
3335 | 3336 |
/// \brief Constructor |
3336 | 3337 |
/// |
3337 | 3338 |
/// Constructor of the adaptor. |
3338 | 3339 |
SplitNodes(const DGR& g) { |
3339 | 3340 |
Parent::initialize(g); |
3340 | 3341 |
} |
3341 | 3342 |
|
3342 | 3343 |
/// \brief Returns \c true if the given node is an in-node. |
3343 | 3344 |
/// |
3344 | 3345 |
/// Returns \c true if the given node is an in-node. |
3345 | 3346 |
static bool inNode(const Node& n) { |
3346 | 3347 |
return Parent::inNode(n); |
3347 | 3348 |
} |
3348 | 3349 |
|
3349 | 3350 |
/// \brief Returns \c true if the given node is an out-node. |
3350 | 3351 |
/// |
3351 | 3352 |
/// Returns \c true if the given node is an out-node. |
3352 | 3353 |
static bool outNode(const Node& n) { |
3353 | 3354 |
return Parent::outNode(n); |
3354 | 3355 |
} |
3355 | 3356 |
|
3356 | 3357 |
/// \brief Returns \c true if the given arc is an original arc. |
3357 | 3358 |
/// |
3358 | 3359 |
/// Returns \c true if the given arc is one of the arcs in the |
3359 | 3360 |
/// original digraph. |
3360 | 3361 |
static bool origArc(const Arc& a) { |
3361 | 3362 |
return Parent::origArc(a); |
3362 | 3363 |
} |
3363 | 3364 |
|
3364 | 3365 |
/// \brief Returns \c true if the given arc is a bind arc. |
3365 | 3366 |
/// |
3366 | 3367 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
3367 | 3368 |
/// an in-node and an out-node. |
3368 | 3369 |
static bool bindArc(const Arc& a) { |
3369 | 3370 |
return Parent::bindArc(a); |
3370 | 3371 |
} |
3371 | 3372 |
|
3372 | 3373 |
/// \brief Returns the in-node created from the given original node. |
3373 | 3374 |
/// |
3374 | 3375 |
/// Returns the in-node created from the given original node. |
3375 | 3376 |
static Node inNode(const DigraphNode& n) { |
3376 | 3377 |
return Parent::inNode(n); |
3377 | 3378 |
} |
3378 | 3379 |
|
3379 | 3380 |
/// \brief Returns the out-node created from the given original node. |
3380 | 3381 |
/// |
3381 | 3382 |
/// Returns the out-node created from the given original node. |
3382 | 3383 |
static Node outNode(const DigraphNode& n) { |
3383 | 3384 |
return Parent::outNode(n); |
3384 | 3385 |
} |
3385 | 3386 |
|
3386 | 3387 |
/// \brief Returns the bind arc that corresponds to the given |
3387 | 3388 |
/// original node. |
3388 | 3389 |
/// |
3389 | 3390 |
/// Returns the bind arc in the adaptor that corresponds to the given |
3390 | 3391 |
/// original node, i.e. the arc connecting the in-node and out-node |
3391 | 3392 |
/// of \c n. |
3392 | 3393 |
static Arc arc(const DigraphNode& n) { |
3393 | 3394 |
return Parent::arc(n); |
3394 | 3395 |
} |
3395 | 3396 |
|
3396 | 3397 |
/// \brief Returns the arc that corresponds to the given original arc. |
3397 | 3398 |
/// |
3398 | 3399 |
/// Returns the arc in the adaptor that corresponds to the given |
3399 | 3400 |
/// original arc. |
3400 | 3401 |
static Arc arc(const DigraphArc& a) { |
3401 | 3402 |
return Parent::arc(a); |
3402 | 3403 |
} |
3403 | 3404 |
|
3404 | 3405 |
/// \brief Node map combined from two original node maps |
3405 | 3406 |
/// |
3406 | 3407 |
/// This map adaptor class adapts two node maps of the original digraph |
3407 | 3408 |
/// to get a node map of the split digraph. |
3408 | 3409 |
/// Its value type is inherited from the first node map type |
3409 | 3410 |
/// (\c InNodeMap). |
3410 | 3411 |
template <typename InNodeMap, typename OutNodeMap> |
3411 | 3412 |
class CombinedNodeMap { |
3412 | 3413 |
public: |
3413 | 3414 |
|
3414 | 3415 |
/// The key type of the map |
3415 | 3416 |
typedef Node Key; |
3416 | 3417 |
/// The value type of the map |
3417 | 3418 |
typedef typename InNodeMap::Value Value; |
3418 | 3419 |
|
3419 | 3420 |
typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag; |
3420 | 3421 |
typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue; |
3421 | 3422 |
typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue; |
3422 | 3423 |
typedef typename MapTraits<InNodeMap>::ReturnValue Reference; |
3423 | 3424 |
typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReference; |
3424 | 3425 |
|
3425 | 3426 |
/// Constructor |
3426 | 3427 |
CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) |
3427 | 3428 |
: _in_map(in_map), _out_map(out_map) {} |
3428 | 3429 |
|
3429 | 3430 |
/// Returns the value associated with the given key. |
3430 | 3431 |
Value operator[](const Key& key) const { |
3431 | 3432 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3432 | 3433 |
return _in_map[key]; |
3433 | 3434 |
} else { |
3434 | 3435 |
return _out_map[key]; |
3435 | 3436 |
} |
3436 | 3437 |
} |
3437 | 3438 |
|
3438 | 3439 |
/// Returns a reference to the value associated with the given key. |
3439 | 3440 |
Value& operator[](const Key& key) { |
3440 | 3441 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3441 | 3442 |
return _in_map[key]; |
3442 | 3443 |
} else { |
3443 | 3444 |
return _out_map[key]; |
3444 | 3445 |
} |
3445 | 3446 |
} |
3446 | 3447 |
|
3447 | 3448 |
/// Sets the value associated with the given key. |
3448 | 3449 |
void set(const Key& key, const Value& value) { |
3449 | 3450 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3450 | 3451 |
_in_map.set(key, value); |
3451 | 3452 |
} else { |
3452 | 3453 |
_out_map.set(key, value); |
3453 | 3454 |
} |
3454 | 3455 |
} |
3455 | 3456 |
|
3456 | 3457 |
private: |
3457 | 3458 |
|
3458 | 3459 |
InNodeMap& _in_map; |
3459 | 3460 |
OutNodeMap& _out_map; |
3460 | 3461 |
|
3461 | 3462 |
}; |
3462 | 3463 |
|
3463 | 3464 |
|
3464 | 3465 |
/// \brief Returns a combined node map |
3465 | 3466 |
/// |
3466 | 3467 |
/// This function just returns a combined node map. |
3467 | 3468 |
template <typename InNodeMap, typename OutNodeMap> |
3468 | 3469 |
static CombinedNodeMap<InNodeMap, OutNodeMap> |
3469 | 3470 |
combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { |
3470 | 3471 |
return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map); |
3471 | 3472 |
} |
3472 | 3473 |
|
3473 | 3474 |
template <typename InNodeMap, typename OutNodeMap> |
3474 | 3475 |
static CombinedNodeMap<const InNodeMap, OutNodeMap> |
3475 | 3476 |
combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { |
3476 | 3477 |
return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map); |
3477 | 3478 |
} |
3478 | 3479 |
|
3479 | 3480 |
template <typename InNodeMap, typename OutNodeMap> |
3480 | 3481 |
static CombinedNodeMap<InNodeMap, const OutNodeMap> |
3481 | 3482 |
combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { |
3482 | 3483 |
return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map); |
3483 | 3484 |
} |
3484 | 3485 |
|
3485 | 3486 |
template <typename InNodeMap, typename OutNodeMap> |
3486 | 3487 |
static CombinedNodeMap<const InNodeMap, const OutNodeMap> |
3487 | 3488 |
combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { |
3488 | 3489 |
return CombinedNodeMap<const InNodeMap, |
3489 | 3490 |
const OutNodeMap>(in_map, out_map); |
3490 | 3491 |
} |
3491 | 3492 |
|
3492 | 3493 |
/// \brief Arc map combined from an arc map and a node map of the |
3493 | 3494 |
/// original digraph. |
3494 | 3495 |
/// |
3495 | 3496 |
/// This map adaptor class adapts an arc map and a node map of the |
3496 | 3497 |
/// original digraph to get an arc map of the split digraph. |
3497 | 3498 |
/// Its value type is inherited from the original arc map type |
3498 | 3499 |
/// (\c ArcMap). |
3499 | 3500 |
template <typename ArcMap, typename NodeMap> |
3500 | 3501 |
class CombinedArcMap { |
3501 | 3502 |
public: |
3502 | 3503 |
|
3503 | 3504 |
/// The key type of the map |
3504 | 3505 |
typedef Arc Key; |
3505 | 3506 |
/// The value type of the map |
3506 | 3507 |
typedef typename ArcMap::Value Value; |
3507 | 3508 |
|
3508 | 3509 |
typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag; |
3509 | 3510 |
typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue; |
3510 | 3511 |
typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue; |
3511 | 3512 |
typedef typename MapTraits<ArcMap>::ReturnValue Reference; |
3512 | 3513 |
typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference; |
3513 | 3514 |
|
3514 | 3515 |
/// Constructor |
3515 | 3516 |
CombinedArcMap(ArcMap& arc_map, NodeMap& node_map) |
3516 | 3517 |
: _arc_map(arc_map), _node_map(node_map) {} |
3517 | 3518 |
|
3518 | 3519 |
/// Returns the value associated with the given key. |
3519 | 3520 |
Value operator[](const Key& arc) const { |
3520 | 3521 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3521 | 3522 |
return _arc_map[arc]; |
3522 | 3523 |
} else { |
3523 | 3524 |
return _node_map[arc]; |
3524 | 3525 |
} |
3525 | 3526 |
} |
3526 | 3527 |
|
3527 | 3528 |
/// Returns a reference to the value associated with the given key. |
3528 | 3529 |
Value& operator[](const Key& arc) { |
3529 | 3530 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3530 | 3531 |
return _arc_map[arc]; |
3531 | 3532 |
} else { |
3532 | 3533 |
return _node_map[arc]; |
3533 | 3534 |
} |
3534 | 3535 |
} |
3535 | 3536 |
|
3536 | 3537 |
/// Sets the value associated with the given key. |
3537 | 3538 |
void set(const Arc& arc, const Value& val) { |
3538 | 3539 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3539 | 3540 |
_arc_map.set(arc, val); |
3540 | 3541 |
} else { |
3541 | 3542 |
_node_map.set(arc, val); |
3542 | 3543 |
} |
3543 | 3544 |
} |
3544 | 3545 |
|
3545 | 3546 |
private: |
3546 | 3547 |
ArcMap& _arc_map; |
3547 | 3548 |
NodeMap& _node_map; |
3548 | 3549 |
}; |
3549 | 3550 |
|
3550 | 3551 |
/// \brief Returns a combined arc map |
3551 | 3552 |
/// |
3552 | 3553 |
/// This function just returns a combined arc map. |
3553 | 3554 |
template <typename ArcMap, typename NodeMap> |
3554 | 3555 |
static CombinedArcMap<ArcMap, NodeMap> |
3555 | 3556 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) { |
3556 | 3557 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
3557 | 3558 |
} |
3558 | 3559 |
|
3559 | 3560 |
template <typename ArcMap, typename NodeMap> |
3560 | 3561 |
static CombinedArcMap<const ArcMap, NodeMap> |
3561 | 3562 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) { |
3562 | 3563 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
3563 | 3564 |
} |
3564 | 3565 |
|
3565 | 3566 |
template <typename ArcMap, typename NodeMap> |
3566 | 3567 |
static CombinedArcMap<ArcMap, const NodeMap> |
3567 | 3568 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) { |
3568 | 3569 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
3569 | 3570 |
} |
3570 | 3571 |
|
3571 | 3572 |
template <typename ArcMap, typename NodeMap> |
3572 | 3573 |
static CombinedArcMap<const ArcMap, const NodeMap> |
3573 | 3574 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) { |
3574 | 3575 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
3575 | 3576 |
} |
3576 | 3577 |
|
3577 | 3578 |
}; |
3578 | 3579 |
|
3579 | 3580 |
/// \brief Returns a (read-only) SplitNodes adaptor |
3580 | 3581 |
/// |
3581 | 3582 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
3582 | 3583 |
/// \ingroup graph_adaptors |
3583 | 3584 |
/// \relates SplitNodes |
3584 | 3585 |
template<typename DGR> |
3585 | 3586 |
SplitNodes<DGR> |
3586 | 3587 |
splitNodes(const DGR& digraph) { |
3587 | 3588 |
return SplitNodes<DGR>(digraph); |
3588 | 3589 |
} |
3589 | 3590 |
|
3590 | 3591 |
#undef LEMON_SCOPE_FIX |
3591 | 3592 |
|
3592 | 3593 |
} //namespace lemon |
3593 | 3594 |
|
3594 | 3595 |
#endif //LEMON_ADAPTORS_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
21 | 21 |
|
22 |
#include <lemon/core.h> |
|
22 | 23 |
#include <lemon/error.h> |
23 | 24 |
#include <lemon/bits/default_map.h> |
25 |
#include <lemon/bits/map_extender.h> |
|
24 | 26 |
|
25 | 27 |
///\ingroup digraphbits |
26 | 28 |
///\file |
27 | 29 |
///\brief Extenders for the arc set types |
28 | 30 |
namespace lemon { |
29 | 31 |
|
30 | 32 |
/// \ingroup digraphbits |
31 | 33 |
/// |
32 | 34 |
/// \brief Extender for the ArcSets |
33 | 35 |
template <typename Base> |
34 | 36 |
class ArcSetExtender : public Base { |
35 | 37 |
public: |
36 | 38 |
|
37 | 39 |
typedef Base Parent; |
38 | 40 |
typedef ArcSetExtender Digraph; |
39 | 41 |
|
40 | 42 |
// Base extensions |
41 | 43 |
|
42 | 44 |
typedef typename Parent::Node Node; |
43 | 45 |
typedef typename Parent::Arc Arc; |
44 | 46 |
|
45 | 47 |
int maxId(Node) const { |
46 | 48 |
return Parent::maxNodeId(); |
47 | 49 |
} |
48 | 50 |
|
49 | 51 |
int maxId(Arc) const { |
50 | 52 |
return Parent::maxArcId(); |
51 | 53 |
} |
52 | 54 |
|
53 | 55 |
Node fromId(int id, Node) const { |
54 | 56 |
return Parent::nodeFromId(id); |
55 | 57 |
} |
56 | 58 |
|
57 | 59 |
Arc fromId(int id, Arc) const { |
58 | 60 |
return Parent::arcFromId(id); |
59 | 61 |
} |
60 | 62 |
|
61 | 63 |
Node oppositeNode(const Node &n, const Arc &e) const { |
62 | 64 |
if (n == Parent::source(e)) |
63 | 65 |
return Parent::target(e); |
64 | 66 |
else if(n==Parent::target(e)) |
65 | 67 |
return Parent::source(e); |
66 | 68 |
else |
67 | 69 |
return INVALID; |
68 | 70 |
} |
69 | 71 |
|
70 | 72 |
|
71 | 73 |
// Alteration notifier extensions |
72 | 74 |
|
73 | 75 |
/// The arc observer registry. |
74 | 76 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
75 | 77 |
|
76 | 78 |
protected: |
77 | 79 |
|
78 | 80 |
mutable ArcNotifier arc_notifier; |
79 | 81 |
|
80 | 82 |
public: |
81 | 83 |
|
82 | 84 |
using Parent::notifier; |
83 | 85 |
|
84 | 86 |
/// \brief Gives back the arc alteration notifier. |
85 | 87 |
/// |
86 | 88 |
/// Gives back the arc alteration notifier. |
87 | 89 |
ArcNotifier& notifier(Arc) const { |
88 | 90 |
return arc_notifier; |
89 | 91 |
} |
90 | 92 |
|
91 | 93 |
// Iterable extensions |
92 | 94 |
|
93 | 95 |
class NodeIt : public Node { |
94 | 96 |
const Digraph* digraph; |
95 | 97 |
public: |
96 | 98 |
|
97 | 99 |
NodeIt() {} |
98 | 100 |
|
99 | 101 |
NodeIt(Invalid i) : Node(i) { } |
100 | 102 |
|
101 | 103 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
102 | 104 |
_graph.first(static_cast<Node&>(*this)); |
103 | 105 |
} |
104 | 106 |
|
105 | 107 |
NodeIt(const Digraph& _graph, const Node& node) |
106 | 108 |
: Node(node), digraph(&_graph) {} |
107 | 109 |
|
108 | 110 |
NodeIt& operator++() { |
109 | 111 |
digraph->next(*this); |
110 | 112 |
return *this; |
111 | 113 |
} |
112 | 114 |
|
113 | 115 |
}; |
114 | 116 |
|
115 | 117 |
|
116 | 118 |
class ArcIt : public Arc { |
117 | 119 |
const Digraph* digraph; |
118 | 120 |
public: |
119 | 121 |
|
120 | 122 |
ArcIt() { } |
121 | 123 |
|
122 | 124 |
ArcIt(Invalid i) : Arc(i) { } |
123 | 125 |
|
124 | 126 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
125 | 127 |
_graph.first(static_cast<Arc&>(*this)); |
126 | 128 |
} |
127 | 129 |
|
128 | 130 |
ArcIt(const Digraph& _graph, const Arc& e) : |
129 | 131 |
Arc(e), digraph(&_graph) { } |
130 | 132 |
|
131 | 133 |
ArcIt& operator++() { |
132 | 134 |
digraph->next(*this); |
133 | 135 |
return *this; |
134 | 136 |
} |
135 | 137 |
|
136 | 138 |
}; |
137 | 139 |
|
138 | 140 |
|
139 | 141 |
class OutArcIt : public Arc { |
140 | 142 |
const Digraph* digraph; |
141 | 143 |
public: |
142 | 144 |
|
143 | 145 |
OutArcIt() { } |
144 | 146 |
|
145 | 147 |
OutArcIt(Invalid i) : Arc(i) { } |
146 | 148 |
|
147 | 149 |
OutArcIt(const Digraph& _graph, const Node& node) |
148 | 150 |
: digraph(&_graph) { |
149 | 151 |
_graph.firstOut(*this, node); |
150 | 152 |
} |
151 | 153 |
|
152 | 154 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
153 | 155 |
: Arc(arc), digraph(&_graph) {} |
154 | 156 |
|
155 | 157 |
OutArcIt& operator++() { |
156 | 158 |
digraph->nextOut(*this); |
157 | 159 |
return *this; |
158 | 160 |
} |
159 | 161 |
|
160 | 162 |
}; |
161 | 163 |
|
162 | 164 |
|
163 | 165 |
class InArcIt : public Arc { |
164 | 166 |
const Digraph* digraph; |
165 | 167 |
public: |
166 | 168 |
|
167 | 169 |
InArcIt() { } |
168 | 170 |
|
169 | 171 |
InArcIt(Invalid i) : Arc(i) { } |
170 | 172 |
|
171 | 173 |
InArcIt(const Digraph& _graph, const Node& node) |
172 | 174 |
: digraph(&_graph) { |
173 | 175 |
_graph.firstIn(*this, node); |
174 | 176 |
} |
175 | 177 |
|
176 | 178 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
177 | 179 |
Arc(arc), digraph(&_graph) {} |
178 | 180 |
|
179 | 181 |
InArcIt& operator++() { |
180 | 182 |
digraph->nextIn(*this); |
181 | 183 |
return *this; |
182 | 184 |
} |
183 | 185 |
|
184 | 186 |
}; |
185 | 187 |
|
186 | 188 |
/// \brief Base node of the iterator |
187 | 189 |
/// |
188 | 190 |
/// Returns the base node (ie. the source in this case) of the iterator |
189 | 191 |
Node baseNode(const OutArcIt &e) const { |
190 | 192 |
return Parent::source(static_cast<const Arc&>(e)); |
191 | 193 |
} |
192 | 194 |
/// \brief Running node of the iterator |
193 | 195 |
/// |
194 | 196 |
/// Returns the running node (ie. the target in this case) of the |
195 | 197 |
/// iterator |
196 | 198 |
Node runningNode(const OutArcIt &e) const { |
197 | 199 |
return Parent::target(static_cast<const Arc&>(e)); |
198 | 200 |
} |
199 | 201 |
|
200 | 202 |
/// \brief Base node of the iterator |
201 | 203 |
/// |
202 | 204 |
/// Returns the base node (ie. the target in this case) of the iterator |
203 | 205 |
Node baseNode(const InArcIt &e) const { |
204 | 206 |
return Parent::target(static_cast<const Arc&>(e)); |
205 | 207 |
} |
206 | 208 |
/// \brief Running node of the iterator |
207 | 209 |
/// |
208 | 210 |
/// Returns the running node (ie. the source in this case) of the |
209 | 211 |
/// iterator |
210 | 212 |
Node runningNode(const InArcIt &e) const { |
211 | 213 |
return Parent::source(static_cast<const Arc&>(e)); |
212 | 214 |
} |
213 | 215 |
|
214 | 216 |
using Parent::first; |
215 | 217 |
|
216 | 218 |
// Mappable extension |
217 | 219 |
|
218 | 220 |
template <typename _Value> |
219 | 221 |
class ArcMap |
220 | 222 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
221 | 223 |
public: |
222 | 224 |
typedef ArcSetExtender Digraph; |
223 | 225 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
224 | 226 |
|
225 | 227 |
explicit ArcMap(const Digraph& _g) |
226 | 228 |
: Parent(_g) {} |
227 | 229 |
ArcMap(const Digraph& _g, const _Value& _v) |
228 | 230 |
: Parent(_g, _v) {} |
229 | 231 |
|
230 | 232 |
ArcMap& operator=(const ArcMap& cmap) { |
231 | 233 |
return operator=<ArcMap>(cmap); |
232 | 234 |
} |
233 | 235 |
|
234 | 236 |
template <typename CMap> |
235 | 237 |
ArcMap& operator=(const CMap& cmap) { |
236 | 238 |
Parent::operator=(cmap); |
237 | 239 |
return *this; |
238 | 240 |
} |
239 | 241 |
|
240 | 242 |
}; |
241 | 243 |
|
242 | 244 |
|
243 | 245 |
// Alteration extension |
244 | 246 |
|
245 | 247 |
Arc addArc(const Node& from, const Node& to) { |
246 | 248 |
Arc arc = Parent::addArc(from, to); |
247 | 249 |
notifier(Arc()).add(arc); |
248 | 250 |
return arc; |
249 | 251 |
} |
250 | 252 |
|
251 | 253 |
void clear() { |
252 | 254 |
notifier(Arc()).clear(); |
253 | 255 |
Parent::clear(); |
254 | 256 |
} |
255 | 257 |
|
256 | 258 |
void erase(const Arc& arc) { |
257 | 259 |
notifier(Arc()).erase(arc); |
258 | 260 |
Parent::erase(arc); |
259 | 261 |
} |
260 | 262 |
|
261 | 263 |
ArcSetExtender() { |
262 | 264 |
arc_notifier.setContainer(*this); |
263 | 265 |
} |
264 | 266 |
|
265 | 267 |
~ArcSetExtender() { |
266 | 268 |
arc_notifier.clear(); |
267 | 269 |
} |
268 | 270 |
|
269 | 271 |
}; |
270 | 272 |
|
271 | 273 |
|
272 | 274 |
/// \ingroup digraphbits |
273 | 275 |
/// |
274 | 276 |
/// \brief Extender for the EdgeSets |
275 | 277 |
template <typename Base> |
276 | 278 |
class EdgeSetExtender : public Base { |
277 | 279 |
|
278 | 280 |
public: |
279 | 281 |
|
280 | 282 |
typedef Base Parent; |
281 | 283 |
typedef EdgeSetExtender Digraph; |
282 | 284 |
|
283 | 285 |
typedef typename Parent::Node Node; |
284 | 286 |
typedef typename Parent::Arc Arc; |
285 | 287 |
typedef typename Parent::Edge Edge; |
286 | 288 |
|
287 | 289 |
|
288 | 290 |
int maxId(Node) const { |
289 | 291 |
return Parent::maxNodeId(); |
290 | 292 |
} |
291 | 293 |
|
292 | 294 |
int maxId(Arc) const { |
293 | 295 |
return Parent::maxArcId(); |
294 | 296 |
} |
295 | 297 |
|
296 | 298 |
int maxId(Edge) const { |
297 | 299 |
return Parent::maxEdgeId(); |
298 | 300 |
} |
299 | 301 |
|
300 | 302 |
Node fromId(int id, Node) const { |
301 | 303 |
return Parent::nodeFromId(id); |
302 | 304 |
} |
303 | 305 |
|
304 | 306 |
Arc fromId(int id, Arc) const { |
305 | 307 |
return Parent::arcFromId(id); |
306 | 308 |
} |
307 | 309 |
|
308 | 310 |
Edge fromId(int id, Edge) const { |
309 | 311 |
return Parent::edgeFromId(id); |
310 | 312 |
} |
311 | 313 |
|
312 | 314 |
Node oppositeNode(const Node &n, const Edge &e) const { |
313 | 315 |
if( n == Parent::u(e)) |
314 | 316 |
return Parent::v(e); |
315 | 317 |
else if( n == Parent::v(e)) |
316 | 318 |
return Parent::u(e); |
317 | 319 |
else |
318 | 320 |
return INVALID; |
319 | 321 |
} |
320 | 322 |
|
321 | 323 |
Arc oppositeArc(const Arc &e) const { |
322 | 324 |
return Parent::direct(e, !Parent::direction(e)); |
323 | 325 |
} |
324 | 326 |
|
325 | 327 |
using Parent::direct; |
326 | 328 |
Arc direct(const Edge &e, const Node &s) const { |
327 | 329 |
return Parent::direct(e, Parent::u(e) == s); |
328 | 330 |
} |
329 | 331 |
|
330 | 332 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
331 | 333 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
332 | 334 |
|
333 | 335 |
|
334 | 336 |
protected: |
335 | 337 |
|
336 | 338 |
mutable ArcNotifier arc_notifier; |
337 | 339 |
mutable EdgeNotifier edge_notifier; |
338 | 340 |
|
339 | 341 |
public: |
340 | 342 |
|
341 | 343 |
using Parent::notifier; |
342 | 344 |
|
343 | 345 |
ArcNotifier& notifier(Arc) const { |
344 | 346 |
return arc_notifier; |
345 | 347 |
} |
346 | 348 |
|
347 | 349 |
EdgeNotifier& notifier(Edge) const { |
348 | 350 |
return edge_notifier; |
349 | 351 |
} |
350 | 352 |
|
351 | 353 |
|
352 | 354 |
class NodeIt : public Node { |
353 | 355 |
const Digraph* digraph; |
354 | 356 |
public: |
355 | 357 |
|
356 | 358 |
NodeIt() {} |
357 | 359 |
|
358 | 360 |
NodeIt(Invalid i) : Node(i) { } |
359 | 361 |
|
360 | 362 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
361 | 363 |
_graph.first(static_cast<Node&>(*this)); |
362 | 364 |
} |
363 | 365 |
|
364 | 366 |
NodeIt(const Digraph& _graph, const Node& node) |
365 | 367 |
: Node(node), digraph(&_graph) {} |
366 | 368 |
|
367 | 369 |
NodeIt& operator++() { |
368 | 370 |
digraph->next(*this); |
369 | 371 |
return *this; |
370 | 372 |
} |
371 | 373 |
|
372 | 374 |
}; |
373 | 375 |
|
374 | 376 |
|
375 | 377 |
class ArcIt : public Arc { |
376 | 378 |
const Digraph* digraph; |
377 | 379 |
public: |
378 | 380 |
|
379 | 381 |
ArcIt() { } |
380 | 382 |
|
381 | 383 |
ArcIt(Invalid i) : Arc(i) { } |
382 | 384 |
|
383 | 385 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
384 | 386 |
_graph.first(static_cast<Arc&>(*this)); |
385 | 387 |
} |
386 | 388 |
|
387 | 389 |
ArcIt(const Digraph& _graph, const Arc& e) : |
388 | 390 |
Arc(e), digraph(&_graph) { } |
389 | 391 |
|
390 | 392 |
ArcIt& operator++() { |
391 | 393 |
digraph->next(*this); |
392 | 394 |
return *this; |
393 | 395 |
} |
394 | 396 |
|
395 | 397 |
}; |
396 | 398 |
|
397 | 399 |
|
398 | 400 |
class OutArcIt : public Arc { |
399 | 401 |
const Digraph* digraph; |
400 | 402 |
public: |
401 | 403 |
|
402 | 404 |
OutArcIt() { } |
403 | 405 |
|
404 | 406 |
OutArcIt(Invalid i) : Arc(i) { } |
405 | 407 |
|
406 | 408 |
OutArcIt(const Digraph& _graph, const Node& node) |
407 | 409 |
: digraph(&_graph) { |
408 | 410 |
_graph.firstOut(*this, node); |
409 | 411 |
} |
410 | 412 |
|
411 | 413 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
412 | 414 |
: Arc(arc), digraph(&_graph) {} |
413 | 415 |
|
414 | 416 |
OutArcIt& operator++() { |
415 | 417 |
digraph->nextOut(*this); |
416 | 418 |
return *this; |
417 | 419 |
} |
418 | 420 |
|
419 | 421 |
}; |
420 | 422 |
|
421 | 423 |
|
422 | 424 |
class InArcIt : public Arc { |
423 | 425 |
const Digraph* digraph; |
424 | 426 |
public: |
425 | 427 |
|
426 | 428 |
InArcIt() { } |
427 | 429 |
|
428 | 430 |
InArcIt(Invalid i) : Arc(i) { } |
429 | 431 |
|
430 | 432 |
InArcIt(const Digraph& _graph, const Node& node) |
431 | 433 |
: digraph(&_graph) { |
432 | 434 |
_graph.firstIn(*this, node); |
433 | 435 |
} |
434 | 436 |
|
435 | 437 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
436 | 438 |
Arc(arc), digraph(&_graph) {} |
437 | 439 |
|
438 | 440 |
InArcIt& operator++() { |
439 | 441 |
digraph->nextIn(*this); |
440 | 442 |
return *this; |
441 | 443 |
} |
442 | 444 |
|
443 | 445 |
}; |
444 | 446 |
|
445 | 447 |
|
446 | 448 |
class EdgeIt : public Parent::Edge { |
447 | 449 |
const Digraph* digraph; |
448 | 450 |
public: |
449 | 451 |
|
450 | 452 |
EdgeIt() { } |
451 | 453 |
|
452 | 454 |
EdgeIt(Invalid i) : Edge(i) { } |
453 | 455 |
|
454 | 456 |
explicit EdgeIt(const Digraph& _graph) : digraph(&_graph) { |
455 | 457 |
_graph.first(static_cast<Edge&>(*this)); |
456 | 458 |
} |
457 | 459 |
|
458 | 460 |
EdgeIt(const Digraph& _graph, const Edge& e) : |
459 | 461 |
Edge(e), digraph(&_graph) { } |
460 | 462 |
|
461 | 463 |
EdgeIt& operator++() { |
462 | 464 |
digraph->next(*this); |
463 | 465 |
return *this; |
464 | 466 |
} |
465 | 467 |
|
466 | 468 |
}; |
467 | 469 |
|
468 | 470 |
class IncEdgeIt : public Parent::Edge { |
469 | 471 |
friend class EdgeSetExtender; |
470 | 472 |
const Digraph* digraph; |
471 | 473 |
bool direction; |
472 | 474 |
public: |
473 | 475 |
|
474 | 476 |
IncEdgeIt() { } |
475 | 477 |
|
476 | 478 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
477 | 479 |
|
478 | 480 |
IncEdgeIt(const Digraph& _graph, const Node &n) : digraph(&_graph) { |
479 | 481 |
_graph.firstInc(*this, direction, n); |
480 | 482 |
} |
481 | 483 |
|
482 | 484 |
IncEdgeIt(const Digraph& _graph, const Edge &ue, const Node &n) |
483 | 485 |
: digraph(&_graph), Edge(ue) { |
484 | 486 |
direction = (_graph.source(ue) == n); |
485 | 487 |
} |
486 | 488 |
|
487 | 489 |
IncEdgeIt& operator++() { |
488 | 490 |
digraph->nextInc(*this, direction); |
489 | 491 |
return *this; |
490 | 492 |
} |
491 | 493 |
}; |
492 | 494 |
|
493 | 495 |
/// \brief Base node of the iterator |
494 | 496 |
/// |
495 | 497 |
/// Returns the base node (ie. the source in this case) of the iterator |
496 | 498 |
Node baseNode(const OutArcIt &e) const { |
497 | 499 |
return Parent::source(static_cast<const Arc&>(e)); |
498 | 500 |
} |
499 | 501 |
/// \brief Running node of the iterator |
500 | 502 |
/// |
501 | 503 |
/// Returns the running node (ie. the target in this case) of the |
502 | 504 |
/// iterator |
503 | 505 |
Node runningNode(const OutArcIt &e) const { |
504 | 506 |
return Parent::target(static_cast<const Arc&>(e)); |
505 | 507 |
} |
506 | 508 |
|
507 | 509 |
/// \brief Base node of the iterator |
508 | 510 |
/// |
509 | 511 |
/// Returns the base node (ie. the target in this case) of the iterator |
510 | 512 |
Node baseNode(const InArcIt &e) const { |
511 | 513 |
return Parent::target(static_cast<const Arc&>(e)); |
512 | 514 |
} |
513 | 515 |
/// \brief Running node of the iterator |
514 | 516 |
/// |
515 | 517 |
/// Returns the running node (ie. the source in this case) of the |
516 | 518 |
/// iterator |
517 | 519 |
Node runningNode(const InArcIt &e) const { |
518 | 520 |
return Parent::source(static_cast<const Arc&>(e)); |
519 | 521 |
} |
520 | 522 |
|
521 | 523 |
/// Base node of the iterator |
522 | 524 |
/// |
523 | 525 |
/// Returns the base node of the iterator |
524 | 526 |
Node baseNode(const IncEdgeIt &e) const { |
525 | 527 |
return e.direction ? u(e) : v(e); |
526 | 528 |
} |
527 | 529 |
/// Running node of the iterator |
528 | 530 |
/// |
529 | 531 |
/// Returns the running node of the iterator |
530 | 532 |
Node runningNode(const IncEdgeIt &e) const { |
531 | 533 |
return e.direction ? v(e) : u(e); |
532 | 534 |
} |
533 | 535 |
|
534 | 536 |
|
535 | 537 |
template <typename _Value> |
536 | 538 |
class ArcMap |
537 | 539 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
538 | 540 |
public: |
539 | 541 |
typedef EdgeSetExtender Digraph; |
540 | 542 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
541 | 543 |
|
542 | 544 |
ArcMap(const Digraph& _g) |
543 | 545 |
: Parent(_g) {} |
544 | 546 |
ArcMap(const Digraph& _g, const _Value& _v) |
545 | 547 |
: Parent(_g, _v) {} |
546 | 548 |
|
547 | 549 |
ArcMap& operator=(const ArcMap& cmap) { |
548 | 550 |
return operator=<ArcMap>(cmap); |
549 | 551 |
} |
550 | 552 |
|
551 | 553 |
template <typename CMap> |
552 | 554 |
ArcMap& operator=(const CMap& cmap) { |
553 | 555 |
Parent::operator=(cmap); |
554 | 556 |
return *this; |
555 | 557 |
} |
556 | 558 |
|
557 | 559 |
}; |
558 | 560 |
|
559 | 561 |
|
560 | 562 |
template <typename _Value> |
561 | 563 |
class EdgeMap |
562 | 564 |
: public MapExtender<DefaultMap<Digraph, Edge, _Value> > { |
563 | 565 |
public: |
564 | 566 |
typedef EdgeSetExtender Digraph; |
565 | 567 |
typedef MapExtender<DefaultMap<Digraph, Edge, _Value> > Parent; |
566 | 568 |
|
567 | 569 |
EdgeMap(const Digraph& _g) |
568 | 570 |
: Parent(_g) {} |
569 | 571 |
|
570 | 572 |
EdgeMap(const Digraph& _g, const _Value& _v) |
571 | 573 |
: Parent(_g, _v) {} |
572 | 574 |
|
573 | 575 |
EdgeMap& operator=(const EdgeMap& cmap) { |
574 | 576 |
return operator=<EdgeMap>(cmap); |
575 | 577 |
} |
576 | 578 |
|
577 | 579 |
template <typename CMap> |
578 | 580 |
EdgeMap& operator=(const CMap& cmap) { |
579 | 581 |
Parent::operator=(cmap); |
580 | 582 |
return *this; |
581 | 583 |
} |
582 | 584 |
|
583 | 585 |
}; |
584 | 586 |
|
585 | 587 |
|
586 | 588 |
// Alteration extension |
587 | 589 |
|
588 | 590 |
Edge addEdge(const Node& from, const Node& to) { |
589 | 591 |
Edge edge = Parent::addEdge(from, to); |
590 | 592 |
notifier(Edge()).add(edge); |
591 | 593 |
std::vector<Arc> arcs; |
592 | 594 |
arcs.push_back(Parent::direct(edge, true)); |
593 | 595 |
arcs.push_back(Parent::direct(edge, false)); |
594 | 596 |
notifier(Arc()).add(arcs); |
595 | 597 |
return edge; |
596 | 598 |
} |
597 | 599 |
|
598 | 600 |
void clear() { |
599 | 601 |
notifier(Arc()).clear(); |
600 | 602 |
notifier(Edge()).clear(); |
601 | 603 |
Parent::clear(); |
602 | 604 |
} |
603 | 605 |
|
604 | 606 |
void erase(const Edge& edge) { |
605 | 607 |
std::vector<Arc> arcs; |
606 | 608 |
arcs.push_back(Parent::direct(edge, true)); |
607 | 609 |
arcs.push_back(Parent::direct(edge, false)); |
608 | 610 |
notifier(Arc()).erase(arcs); |
609 | 611 |
notifier(Edge()).erase(edge); |
610 | 612 |
Parent::erase(edge); |
611 | 613 |
} |
612 | 614 |
|
613 | 615 |
|
614 | 616 |
EdgeSetExtender() { |
615 | 617 |
arc_notifier.setContainer(*this); |
616 | 618 |
edge_notifier.setContainer(*this); |
617 | 619 |
} |
618 | 620 |
|
619 | 621 |
~EdgeSetExtender() { |
620 | 622 |
edge_notifier.clear(); |
621 | 623 |
arc_notifier.clear(); |
622 | 624 |
} |
623 | 625 |
|
624 | 626 |
}; |
625 | 627 |
|
626 | 628 |
} |
627 | 629 |
|
628 | 630 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_PRED_MAP_PATH_H |
20 | 20 |
#define LEMON_BITS_PRED_MAP_PATH_H |
21 | 21 |
|
22 |
#include <lemon/core.h> |
|
23 |
#include <lemon/concept_check.h> |
|
24 |
|
|
22 | 25 |
namespace lemon { |
23 | 26 |
|
24 | 27 |
template <typename _Digraph, typename _PredMap> |
25 | 28 |
class PredMapPath { |
26 | 29 |
public: |
27 | 30 |
typedef True RevPathTag; |
28 | 31 |
|
29 | 32 |
typedef _Digraph Digraph; |
30 | 33 |
typedef typename Digraph::Arc Arc; |
31 | 34 |
typedef _PredMap PredMap; |
32 | 35 |
|
33 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
34 | 37 |
typename Digraph::Node _target) |
35 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {} |
36 | 39 |
|
37 | 40 |
int length() const { |
38 | 41 |
int len = 0; |
39 | 42 |
typename Digraph::Node node = target; |
40 | 43 |
typename Digraph::Arc arc; |
41 | 44 |
while ((arc = predMap[node]) != INVALID) { |
42 | 45 |
node = digraph.source(arc); |
43 | 46 |
++len; |
44 | 47 |
} |
45 | 48 |
return len; |
46 | 49 |
} |
47 | 50 |
|
48 | 51 |
bool empty() const { |
49 | 52 |
return predMap[target] != INVALID; |
50 | 53 |
} |
51 | 54 |
|
52 | 55 |
class RevArcIt { |
53 | 56 |
public: |
54 | 57 |
RevArcIt() {} |
55 | 58 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
56 | 59 |
RevArcIt(const PredMapPath& _path) |
57 | 60 |
: path(&_path), current(_path.target) { |
58 | 61 |
if (path->predMap[current] == INVALID) current = INVALID; |
59 | 62 |
} |
60 | 63 |
|
61 | 64 |
operator const typename Digraph::Arc() const { |
62 | 65 |
return path->predMap[current]; |
63 | 66 |
} |
64 | 67 |
|
65 | 68 |
RevArcIt& operator++() { |
66 | 69 |
current = path->digraph.source(path->predMap[current]); |
67 | 70 |
if (path->predMap[current] == INVALID) current = INVALID; |
68 | 71 |
return *this; |
69 | 72 |
} |
70 | 73 |
|
71 | 74 |
bool operator==(const RevArcIt& e) const { |
72 | 75 |
return current == e.current; |
73 | 76 |
} |
74 | 77 |
|
75 | 78 |
bool operator!=(const RevArcIt& e) const { |
76 | 79 |
return current != e.current; |
77 | 80 |
} |
78 | 81 |
|
79 | 82 |
bool operator<(const RevArcIt& e) const { |
80 | 83 |
return current < e.current; |
81 | 84 |
} |
82 | 85 |
|
83 | 86 |
private: |
84 | 87 |
const PredMapPath* path; |
85 | 88 |
typename Digraph::Node current; |
86 | 89 |
}; |
87 | 90 |
|
88 | 91 |
private: |
89 | 92 |
const Digraph& digraph; |
90 | 93 |
const PredMap& predMap; |
91 | 94 |
typename Digraph::Node target; |
92 | 95 |
}; |
93 | 96 |
|
94 | 97 |
|
95 | 98 |
template <typename _Digraph, typename _PredMatrixMap> |
96 | 99 |
class PredMatrixMapPath { |
97 | 100 |
public: |
98 | 101 |
typedef True RevPathTag; |
99 | 102 |
|
100 | 103 |
typedef _Digraph Digraph; |
101 | 104 |
typedef typename Digraph::Arc Arc; |
102 | 105 |
typedef _PredMatrixMap PredMatrixMap; |
103 | 106 |
|
104 | 107 |
PredMatrixMapPath(const Digraph& _digraph, |
105 | 108 |
const PredMatrixMap& _predMatrixMap, |
106 | 109 |
typename Digraph::Node _source, |
107 | 110 |
typename Digraph::Node _target) |
108 | 111 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
109 | 112 |
source(_source), target(_target) {} |
110 | 113 |
|
111 | 114 |
int length() const { |
112 | 115 |
int len = 0; |
113 | 116 |
typename Digraph::Node node = target; |
114 | 117 |
typename Digraph::Arc arc; |
115 | 118 |
while ((arc = predMatrixMap(source, node)) != INVALID) { |
116 | 119 |
node = digraph.source(arc); |
117 | 120 |
++len; |
118 | 121 |
} |
119 | 122 |
return len; |
120 | 123 |
} |
121 | 124 |
|
122 | 125 |
bool empty() const { |
123 | 126 |
return source != target; |
124 | 127 |
} |
125 | 128 |
|
126 | 129 |
class RevArcIt { |
127 | 130 |
public: |
128 | 131 |
RevArcIt() {} |
129 | 132 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
130 | 133 |
RevArcIt(const PredMatrixMapPath& _path) |
131 | 134 |
: path(&_path), current(_path.target) { |
132 | 135 |
if (path->predMatrixMap(path->source, current) == INVALID) |
133 | 136 |
current = INVALID; |
134 | 137 |
} |
135 | 138 |
|
136 | 139 |
operator const typename Digraph::Arc() const { |
137 | 140 |
return path->predMatrixMap(path->source, current); |
138 | 141 |
} |
139 | 142 |
|
140 | 143 |
RevArcIt& operator++() { |
141 | 144 |
current = |
142 | 145 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
143 | 146 |
if (path->predMatrixMap(path->source, current) == INVALID) |
144 | 147 |
current = INVALID; |
145 | 148 |
return *this; |
146 | 149 |
} |
147 | 150 |
|
148 | 151 |
bool operator==(const RevArcIt& e) const { |
149 | 152 |
return current == e.current; |
150 | 153 |
} |
151 | 154 |
|
152 | 155 |
bool operator!=(const RevArcIt& e) const { |
153 | 156 |
return current != e.current; |
154 | 157 |
} |
155 | 158 |
|
156 | 159 |
bool operator<(const RevArcIt& e) const { |
157 | 160 |
return current < e.current; |
158 | 161 |
} |
159 | 162 |
|
160 | 163 |
private: |
161 | 164 |
const PredMatrixMapPath* path; |
162 | 165 |
typename Digraph::Node current; |
163 | 166 |
}; |
164 | 167 |
|
165 | 168 |
private: |
166 | 169 |
const Digraph& digraph; |
167 | 170 |
const PredMatrixMap& predMatrixMap; |
168 | 171 |
typename Digraph::Node source; |
169 | 172 |
typename Digraph::Node target; |
170 | 173 |
}; |
171 | 174 |
|
172 | 175 |
} |
173 | 176 |
|
174 | 177 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
21 | 21 |
|
22 |
#include <vector> |
|
23 |
|
|
22 | 24 |
namespace lemon { |
23 | 25 |
|
24 | 26 |
namespace _solver_bits { |
25 | 27 |
|
26 | 28 |
class VarIndex { |
27 | 29 |
private: |
28 | 30 |
struct ItemT { |
29 | 31 |
int prev, next; |
30 | 32 |
int index; |
31 | 33 |
}; |
32 | 34 |
std::vector<ItemT> items; |
33 | 35 |
int first_item, last_item, first_free_item; |
34 | 36 |
|
35 | 37 |
std::vector<int> cross; |
36 | 38 |
|
37 | 39 |
public: |
38 | 40 |
|
39 | 41 |
VarIndex() |
40 | 42 |
: first_item(-1), last_item(-1), first_free_item(-1) { |
41 | 43 |
} |
42 | 44 |
|
43 | 45 |
void clear() { |
44 | 46 |
first_item = -1; |
45 | 47 |
first_free_item = -1; |
46 | 48 |
items.clear(); |
47 | 49 |
cross.clear(); |
48 | 50 |
} |
49 | 51 |
|
50 | 52 |
int addIndex(int idx) { |
51 | 53 |
int n; |
52 | 54 |
if (first_free_item == -1) { |
53 | 55 |
n = items.size(); |
54 | 56 |
items.push_back(ItemT()); |
55 | 57 |
} else { |
56 | 58 |
n = first_free_item; |
57 | 59 |
first_free_item = items[n].next; |
58 | 60 |
if (first_free_item != -1) { |
59 | 61 |
items[first_free_item].prev = -1; |
60 | 62 |
} |
61 | 63 |
} |
62 | 64 |
items[n].index = idx; |
63 | 65 |
if (static_cast<int>(cross.size()) <= idx) { |
64 | 66 |
cross.resize(idx + 1, -1); |
65 | 67 |
} |
66 | 68 |
cross[idx] = n; |
67 | 69 |
|
68 | 70 |
items[n].prev = last_item; |
69 | 71 |
items[n].next = -1; |
70 | 72 |
if (last_item != -1) { |
71 | 73 |
items[last_item].next = n; |
72 | 74 |
} else { |
73 | 75 |
first_item = n; |
74 | 76 |
} |
75 | 77 |
last_item = n; |
76 | 78 |
|
77 | 79 |
return n; |
78 | 80 |
} |
79 | 81 |
|
80 | 82 |
int addIndex(int idx, int n) { |
81 | 83 |
while (n >= static_cast<int>(items.size())) { |
82 | 84 |
items.push_back(ItemT()); |
83 | 85 |
items.back().prev = -1; |
84 | 86 |
items.back().next = first_free_item; |
85 | 87 |
if (first_free_item != -1) { |
86 | 88 |
items[first_free_item].prev = items.size() - 1; |
87 | 89 |
} |
88 | 90 |
first_free_item = items.size() - 1; |
89 | 91 |
} |
90 | 92 |
if (items[n].next != -1) { |
91 | 93 |
items[items[n].next].prev = items[n].prev; |
92 | 94 |
} |
93 | 95 |
if (items[n].prev != -1) { |
94 | 96 |
items[items[n].prev].next = items[n].next; |
95 | 97 |
} else { |
96 | 98 |
first_free_item = items[n].next; |
97 | 99 |
} |
98 | 100 |
|
99 | 101 |
items[n].index = idx; |
100 | 102 |
if (static_cast<int>(cross.size()) <= idx) { |
101 | 103 |
cross.resize(idx + 1, -1); |
102 | 104 |
} |
103 | 105 |
cross[idx] = n; |
104 | 106 |
|
105 | 107 |
items[n].prev = last_item; |
106 | 108 |
items[n].next = -1; |
107 | 109 |
if (last_item != -1) { |
108 | 110 |
items[last_item].next = n; |
109 | 111 |
} else { |
110 | 112 |
first_item = n; |
111 | 113 |
} |
112 | 114 |
last_item = n; |
113 | 115 |
|
114 | 116 |
return n; |
115 | 117 |
} |
116 | 118 |
|
117 | 119 |
void eraseIndex(int idx) { |
118 | 120 |
int n = cross[idx]; |
119 | 121 |
|
120 | 122 |
if (items[n].prev != -1) { |
121 | 123 |
items[items[n].prev].next = items[n].next; |
122 | 124 |
} else { |
123 | 125 |
first_item = items[n].next; |
124 | 126 |
} |
125 | 127 |
if (items[n].next != -1) { |
126 | 128 |
items[items[n].next].prev = items[n].prev; |
127 | 129 |
} else { |
128 | 130 |
last_item = items[n].prev; |
129 | 131 |
} |
130 | 132 |
|
131 | 133 |
if (first_free_item != -1) { |
132 | 134 |
items[first_free_item].prev = n; |
133 | 135 |
} |
134 | 136 |
items[n].next = first_free_item; |
135 | 137 |
items[n].prev = -1; |
136 | 138 |
first_free_item = n; |
137 | 139 |
|
138 | 140 |
while (!cross.empty() && cross.back() == -1) { |
139 | 141 |
cross.pop_back(); |
140 | 142 |
} |
141 | 143 |
} |
142 | 144 |
|
143 | 145 |
int maxIndex() const { |
144 | 146 |
return cross.size() - 1; |
145 | 147 |
} |
146 | 148 |
|
147 | 149 |
void shiftIndices(int idx) { |
148 | 150 |
for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) { |
149 | 151 |
cross[i - 1] = cross[i]; |
150 | 152 |
if (cross[i] != -1) { |
151 | 153 |
--items[cross[i]].index; |
152 | 154 |
} |
153 | 155 |
} |
154 | 156 |
cross.back() = -1; |
155 | 157 |
cross.pop_back(); |
156 | 158 |
while (!cross.empty() && cross.back() == -1) { |
157 | 159 |
cross.pop_back(); |
158 | 160 |
} |
159 | 161 |
} |
160 | 162 |
|
161 | 163 |
void relocateIndex(int idx, int jdx) { |
162 | 164 |
cross[idx] = cross[jdx]; |
163 | 165 |
items[cross[jdx]].index = idx; |
164 | 166 |
cross[jdx] = -1; |
165 | 167 |
|
166 | 168 |
while (!cross.empty() && cross.back() == -1) { |
167 | 169 |
cross.pop_back(); |
168 | 170 |
} |
169 | 171 |
} |
170 | 172 |
|
171 | 173 |
int operator[](int idx) const { |
172 | 174 |
return cross[idx]; |
173 | 175 |
} |
174 | 176 |
|
175 | 177 |
int operator()(int fdx) const { |
176 | 178 |
return items[fdx].index; |
177 | 179 |
} |
178 | 180 |
|
179 | 181 |
void firstItem(int& fdx) const { |
180 | 182 |
fdx = first_item; |
181 | 183 |
} |
182 | 184 |
|
183 | 185 |
void nextItem(int& fdx) const { |
184 | 186 |
fdx = items[fdx].next; |
185 | 187 |
} |
186 | 188 |
|
187 | 189 |
}; |
188 | 190 |
} |
189 | 191 |
} |
190 | 192 |
|
191 | 193 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPT_HEAP_H |
24 | 24 |
#define LEMON_CONCEPT_HEAP_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 |
#include <lemon/concept_check.h> |
|
27 | 28 |
|
28 | 29 |
namespace lemon { |
29 | 30 |
|
30 | 31 |
namespace concepts { |
31 | 32 |
|
32 | 33 |
/// \addtogroup concept |
33 | 34 |
/// @{ |
34 | 35 |
|
35 | 36 |
/// \brief The heap concept. |
36 | 37 |
/// |
37 | 38 |
/// Concept class describing the main interface of heaps. |
38 | 39 |
template <typename Priority, typename ItemIntMap> |
39 | 40 |
class Heap { |
40 | 41 |
public: |
41 | 42 |
|
42 | 43 |
/// Type of the items stored in the heap. |
43 | 44 |
typedef typename ItemIntMap::Key Item; |
44 | 45 |
|
45 | 46 |
/// Type of the priorities. |
46 | 47 |
typedef Priority Prio; |
47 | 48 |
|
48 | 49 |
/// \brief Type to represent the states of the items. |
49 | 50 |
/// |
50 | 51 |
/// Each item has a state associated to it. It can be "in heap", |
51 | 52 |
/// "pre heap" or "post heap". The later two are indifferent |
52 | 53 |
/// from the point of view of the heap, but may be useful for |
53 | 54 |
/// the user. |
54 | 55 |
/// |
55 | 56 |
/// The \c ItemIntMap must be initialized in such a way, that it |
56 | 57 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
57 | 58 |
enum State { |
58 | 59 |
IN_HEAP = 0, |
59 | 60 |
PRE_HEAP = -1, |
60 | 61 |
POST_HEAP = -2 |
61 | 62 |
}; |
62 | 63 |
|
63 | 64 |
/// \brief The constructor. |
64 | 65 |
/// |
65 | 66 |
/// The constructor. |
66 | 67 |
/// \param map A map that assigns \c int values to keys of type |
67 | 68 |
/// \c Item. It is used internally by the heap implementations to |
68 | 69 |
/// handle the cross references. The assigned value must be |
69 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
70 | 71 |
explicit Heap(ItemIntMap &map) {} |
71 | 72 |
|
72 | 73 |
/// \brief The number of items stored in the heap. |
73 | 74 |
/// |
74 | 75 |
/// Returns the number of items stored in the heap. |
75 | 76 |
int size() const { return 0; } |
76 | 77 |
|
77 | 78 |
/// \brief Checks if the heap is empty. |
78 | 79 |
/// |
79 | 80 |
/// Returns \c true if the heap is empty. |
80 | 81 |
bool empty() const { return false; } |
81 | 82 |
|
82 | 83 |
/// \brief Makes the heap empty. |
83 | 84 |
/// |
84 | 85 |
/// Makes the heap empty. |
85 | 86 |
void clear(); |
86 | 87 |
|
87 | 88 |
/// \brief Inserts an item into the heap with the given priority. |
88 | 89 |
/// |
89 | 90 |
/// Inserts the given item into the heap with the given priority. |
90 | 91 |
/// \param i The item to insert. |
91 | 92 |
/// \param p The priority of the item. |
92 | 93 |
void push(const Item &i, const Prio &p) {} |
93 | 94 |
|
94 | 95 |
/// \brief Returns the item having minimum priority. |
95 | 96 |
/// |
96 | 97 |
/// Returns the item having minimum priority. |
97 | 98 |
/// \pre The heap must be non-empty. |
98 | 99 |
Item top() const {} |
99 | 100 |
|
100 | 101 |
/// \brief The minimum priority. |
101 | 102 |
/// |
102 | 103 |
/// Returns the minimum priority. |
103 | 104 |
/// \pre The heap must be non-empty. |
104 | 105 |
Prio prio() const {} |
105 | 106 |
|
106 | 107 |
/// \brief Removes the item having minimum priority. |
107 | 108 |
/// |
108 | 109 |
/// Removes the item having minimum priority. |
109 | 110 |
/// \pre The heap must be non-empty. |
110 | 111 |
void pop() {} |
111 | 112 |
|
112 | 113 |
/// \brief Removes an item from the heap. |
113 | 114 |
/// |
114 | 115 |
/// Removes the given item from the heap if it is already stored. |
115 | 116 |
/// \param i The item to delete. |
116 | 117 |
void erase(const Item &i) {} |
117 | 118 |
|
118 | 119 |
/// \brief The priority of an item. |
119 | 120 |
/// |
120 | 121 |
/// Returns the priority of the given item. |
121 | 122 |
/// \pre \c i must be in the heap. |
122 | 123 |
/// \param i The item. |
123 | 124 |
Prio operator[](const Item &i) const {} |
124 | 125 |
|
125 | 126 |
/// \brief Sets the priority of an item or inserts it, if it is |
126 | 127 |
/// not stored in the heap. |
127 | 128 |
/// |
128 | 129 |
/// This method sets the priority of the given item if it is |
129 | 130 |
/// already stored in the heap. |
130 | 131 |
/// Otherwise it inserts the given item with the given priority. |
131 | 132 |
/// |
132 | 133 |
/// \param i The item. |
133 | 134 |
/// \param p The priority. |
134 | 135 |
void set(const Item &i, const Prio &p) {} |
135 | 136 |
|
136 | 137 |
/// \brief Decreases the priority of an item to the given value. |
137 | 138 |
/// |
138 | 139 |
/// Decreases the priority of an item to the given value. |
139 | 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
140 | 141 |
/// \param i The item. |
141 | 142 |
/// \param p The priority. |
142 | 143 |
void decrease(const Item &i, const Prio &p) {} |
143 | 144 |
|
144 | 145 |
/// \brief Increases the priority of an item to the given value. |
145 | 146 |
/// |
146 | 147 |
/// Increases the priority of an item to the given value. |
147 | 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
148 | 149 |
/// \param i The item. |
149 | 150 |
/// \param p The priority. |
150 | 151 |
void increase(const Item &i, const Prio &p) {} |
151 | 152 |
|
152 | 153 |
/// \brief Returns if an item is in, has already been in, or has |
153 | 154 |
/// never been in the heap. |
154 | 155 |
/// |
155 | 156 |
/// This method returns \c PRE_HEAP if the given item has never |
156 | 157 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
157 | 158 |
/// and \c POST_HEAP otherwise. |
158 | 159 |
/// In the latter case it is possible that the item will get back |
159 | 160 |
/// to the heap again. |
160 | 161 |
/// \param i The item. |
161 | 162 |
State state(const Item &i) const {} |
162 | 163 |
|
163 | 164 |
/// \brief Sets the state of an item in the heap. |
164 | 165 |
/// |
165 | 166 |
/// Sets the state of the given item in the heap. It can be used |
166 | 167 |
/// to manually clear the heap when it is important to achive the |
167 | 168 |
/// better time complexity. |
168 | 169 |
/// \param i The item. |
169 | 170 |
/// \param st The state. It should not be \c IN_HEAP. |
170 | 171 |
void state(const Item& i, State st) {} |
171 | 172 |
|
172 | 173 |
|
173 | 174 |
template <typename _Heap> |
174 | 175 |
struct Constraints { |
175 | 176 |
public: |
176 | 177 |
void constraints() { |
177 | 178 |
typedef typename _Heap::Item OwnItem; |
178 | 179 |
typedef typename _Heap::Prio OwnPrio; |
179 | 180 |
typedef typename _Heap::State OwnState; |
180 | 181 |
|
181 | 182 |
Item item; |
182 | 183 |
Prio prio; |
183 | 184 |
item=Item(); |
184 | 185 |
prio=Prio(); |
185 | 186 |
ignore_unused_variable_warning(item); |
186 | 187 |
ignore_unused_variable_warning(prio); |
187 | 188 |
|
188 | 189 |
OwnItem own_item; |
189 | 190 |
OwnPrio own_prio; |
190 | 191 |
OwnState own_state; |
191 | 192 |
own_item=Item(); |
192 | 193 |
own_prio=Prio(); |
193 | 194 |
ignore_unused_variable_warning(own_item); |
194 | 195 |
ignore_unused_variable_warning(own_prio); |
195 | 196 |
ignore_unused_variable_warning(own_state); |
196 | 197 |
|
197 | 198 |
_Heap heap1(map); |
198 | 199 |
_Heap heap2 = heap1; |
199 | 200 |
ignore_unused_variable_warning(heap1); |
200 | 201 |
ignore_unused_variable_warning(heap2); |
201 | 202 |
|
202 | 203 |
int s = heap.size(); |
203 | 204 |
ignore_unused_variable_warning(s); |
204 | 205 |
bool e = heap.empty(); |
205 | 206 |
ignore_unused_variable_warning(e); |
206 | 207 |
|
207 | 208 |
prio = heap.prio(); |
208 | 209 |
item = heap.top(); |
209 | 210 |
prio = heap[item]; |
210 | 211 |
own_prio = heap.prio(); |
211 | 212 |
own_item = heap.top(); |
212 | 213 |
own_prio = heap[own_item]; |
213 | 214 |
|
214 | 215 |
heap.push(item, prio); |
215 | 216 |
heap.push(own_item, own_prio); |
216 | 217 |
heap.pop(); |
217 | 218 |
|
218 | 219 |
heap.set(item, prio); |
219 | 220 |
heap.decrease(item, prio); |
220 | 221 |
heap.increase(item, prio); |
221 | 222 |
heap.set(own_item, own_prio); |
222 | 223 |
heap.decrease(own_item, own_prio); |
223 | 224 |
heap.increase(own_item, own_prio); |
224 | 225 |
|
225 | 226 |
heap.erase(item); |
226 | 227 |
heap.erase(own_item); |
227 | 228 |
heap.clear(); |
228 | 229 |
|
229 | 230 |
own_state = heap.state(own_item); |
230 | 231 |
heap.state(own_item, own_state); |
231 | 232 |
|
232 | 233 |
own_state = _Heap::PRE_HEAP; |
233 | 234 |
own_state = _Heap::IN_HEAP; |
234 | 235 |
own_state = _Heap::POST_HEAP; |
235 | 236 |
} |
236 | 237 |
|
237 | 238 |
_Heap& heap; |
238 | 239 |
ItemIntMap& map; |
239 | 240 |
}; |
240 | 241 |
}; |
241 | 242 |
|
242 | 243 |
/// @} |
243 | 244 |
} // namespace lemon |
244 | 245 |
} |
245 | 246 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ELEVATOR_H |
20 | 20 |
#define LEMON_ELEVATOR_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Elevator class |
25 | 25 |
/// |
26 | 26 |
///Elevator class implements an efficient data structure |
27 | 27 |
///for labeling items in push-relabel type algorithms. |
28 | 28 |
/// |
29 | 29 |
|
30 |
#include <lemon/core.h> |
|
30 | 31 |
#include <lemon/bits/traits.h> |
31 | 32 |
|
32 | 33 |
namespace lemon { |
33 | 34 |
|
34 | 35 |
///Class for handling "labels" in push-relabel type algorithms. |
35 | 36 |
|
36 | 37 |
///A class for handling "labels" in push-relabel type algorithms. |
37 | 38 |
/// |
38 | 39 |
///\ingroup auxdat |
39 | 40 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
40 | 41 |
///to the edges or nodes of a graph, manipulate and query them through |
41 | 42 |
///operations typically arising in "push-relabel" type algorithms. |
42 | 43 |
/// |
43 | 44 |
///Each item is either \em active or not, and you can also choose a |
44 | 45 |
///highest level active item. |
45 | 46 |
/// |
46 | 47 |
///\sa LinkedElevator |
47 | 48 |
/// |
48 | 49 |
///\param Graph Type of the underlying graph. |
49 | 50 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
50 | 51 |
///Graph::Arc, Graph::Edge). |
51 | 52 |
template<class Graph, class Item> |
52 | 53 |
class Elevator |
53 | 54 |
{ |
54 | 55 |
public: |
55 | 56 |
|
56 | 57 |
typedef Item Key; |
57 | 58 |
typedef int Value; |
58 | 59 |
|
59 | 60 |
private: |
60 | 61 |
|
61 | 62 |
typedef Item *Vit; |
62 | 63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
63 | 64 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
64 | 65 |
|
65 | 66 |
const Graph &_g; |
66 | 67 |
int _max_level; |
67 | 68 |
int _item_num; |
68 | 69 |
VitMap _where; |
69 | 70 |
IntMap _level; |
70 | 71 |
std::vector<Item> _items; |
71 | 72 |
std::vector<Vit> _first; |
72 | 73 |
std::vector<Vit> _last_active; |
73 | 74 |
|
74 | 75 |
int _highest_active; |
75 | 76 |
|
76 | 77 |
void copy(Item i, Vit p) |
77 | 78 |
{ |
78 | 79 |
_where.set(*p=i,p); |
79 | 80 |
} |
80 | 81 |
void copy(Vit s, Vit p) |
81 | 82 |
{ |
82 | 83 |
if(s!=p) |
83 | 84 |
{ |
84 | 85 |
Item i=*s; |
85 | 86 |
*p=i; |
86 | 87 |
_where.set(i,p); |
87 | 88 |
} |
88 | 89 |
} |
89 | 90 |
void swap(Vit i, Vit j) |
90 | 91 |
{ |
91 | 92 |
Item ti=*i; |
92 | 93 |
Vit ct = _where[ti]; |
93 | 94 |
_where.set(ti,_where[*i=*j]); |
94 | 95 |
_where.set(*j,ct); |
95 | 96 |
*j=ti; |
96 | 97 |
} |
97 | 98 |
|
98 | 99 |
public: |
99 | 100 |
|
100 | 101 |
///Constructor with given maximum level. |
101 | 102 |
|
102 | 103 |
///Constructor with given maximum level. |
103 | 104 |
/// |
104 | 105 |
///\param graph The underlying graph. |
105 | 106 |
///\param max_level The maximum allowed level. |
106 | 107 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
107 | 108 |
Elevator(const Graph &graph,int max_level) : |
108 | 109 |
_g(graph), |
109 | 110 |
_max_level(max_level), |
110 | 111 |
_item_num(_max_level), |
111 | 112 |
_where(graph), |
112 | 113 |
_level(graph,0), |
113 | 114 |
_items(_max_level), |
114 | 115 |
_first(_max_level+2), |
115 | 116 |
_last_active(_max_level+2), |
116 | 117 |
_highest_active(-1) {} |
117 | 118 |
///Constructor. |
118 | 119 |
|
119 | 120 |
///Constructor. |
120 | 121 |
/// |
121 | 122 |
///\param graph The underlying graph. |
122 | 123 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
123 | 124 |
///where \c max_level is equal to the number of labeled items in the graph. |
124 | 125 |
Elevator(const Graph &graph) : |
125 | 126 |
_g(graph), |
126 | 127 |
_max_level(countItems<Graph, Item>(graph)), |
127 | 128 |
_item_num(_max_level), |
128 | 129 |
_where(graph), |
129 | 130 |
_level(graph,0), |
130 | 131 |
_items(_max_level), |
131 | 132 |
_first(_max_level+2), |
132 | 133 |
_last_active(_max_level+2), |
133 | 134 |
_highest_active(-1) |
134 | 135 |
{ |
135 | 136 |
} |
136 | 137 |
|
137 | 138 |
///Activate item \c i. |
138 | 139 |
|
139 | 140 |
///Activate item \c i. |
140 | 141 |
///\pre Item \c i shouldn't be active before. |
141 | 142 |
void activate(Item i) |
142 | 143 |
{ |
143 | 144 |
const int l=_level[i]; |
144 | 145 |
swap(_where[i],++_last_active[l]); |
145 | 146 |
if(l>_highest_active) _highest_active=l; |
146 | 147 |
} |
147 | 148 |
|
148 | 149 |
///Deactivate item \c i. |
149 | 150 |
|
150 | 151 |
///Deactivate item \c i. |
151 | 152 |
///\pre Item \c i must be active before. |
152 | 153 |
void deactivate(Item i) |
153 | 154 |
{ |
154 | 155 |
swap(_where[i],_last_active[_level[i]]--); |
155 | 156 |
while(_highest_active>=0 && |
156 | 157 |
_last_active[_highest_active]<_first[_highest_active]) |
157 | 158 |
_highest_active--; |
158 | 159 |
} |
159 | 160 |
|
160 | 161 |
///Query whether item \c i is active |
161 | 162 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
162 | 163 |
|
163 | 164 |
///Return the level of item \c i. |
164 | 165 |
int operator[](Item i) const { return _level[i]; } |
165 | 166 |
|
166 | 167 |
///Return the number of items on level \c l. |
167 | 168 |
int onLevel(int l) const |
168 | 169 |
{ |
169 | 170 |
return _first[l+1]-_first[l]; |
170 | 171 |
} |
171 | 172 |
///Return true if level \c l is empty. |
172 | 173 |
bool emptyLevel(int l) const |
173 | 174 |
{ |
174 | 175 |
return _first[l+1]-_first[l]==0; |
175 | 176 |
} |
176 | 177 |
///Return the number of items above level \c l. |
177 | 178 |
int aboveLevel(int l) const |
178 | 179 |
{ |
179 | 180 |
return _first[_max_level+1]-_first[l+1]; |
180 | 181 |
} |
181 | 182 |
///Return the number of active items on level \c l. |
182 | 183 |
int activesOnLevel(int l) const |
183 | 184 |
{ |
184 | 185 |
return _last_active[l]-_first[l]+1; |
185 | 186 |
} |
186 | 187 |
///Return true if there is no active item on level \c l. |
187 | 188 |
bool activeFree(int l) const |
188 | 189 |
{ |
189 | 190 |
return _last_active[l]<_first[l]; |
190 | 191 |
} |
191 | 192 |
///Return the maximum allowed level. |
192 | 193 |
int maxLevel() const |
193 | 194 |
{ |
194 | 195 |
return _max_level; |
195 | 196 |
} |
196 | 197 |
|
197 | 198 |
///\name Highest Active Item |
198 | 199 |
///Functions for working with the highest level |
199 | 200 |
///active item. |
200 | 201 |
|
201 | 202 |
///@{ |
202 | 203 |
|
203 | 204 |
///Return a highest level active item. |
204 | 205 |
|
205 | 206 |
///Return a highest level active item or INVALID if there is no active |
206 | 207 |
///item. |
207 | 208 |
Item highestActive() const |
208 | 209 |
{ |
209 | 210 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
210 | 211 |
} |
211 | 212 |
|
212 | 213 |
///Return the highest active level. |
213 | 214 |
|
214 | 215 |
///Return the level of the highest active item or -1 if there is no active |
215 | 216 |
///item. |
216 | 217 |
int highestActiveLevel() const |
217 | 218 |
{ |
218 | 219 |
return _highest_active; |
219 | 220 |
} |
220 | 221 |
|
221 | 222 |
///Lift the highest active item by one. |
222 | 223 |
|
223 | 224 |
///Lift the item returned by highestActive() by one. |
224 | 225 |
/// |
225 | 226 |
void liftHighestActive() |
226 | 227 |
{ |
227 | 228 |
Item it = *_last_active[_highest_active]; |
228 | 229 |
_level.set(it,_level[it]+1); |
229 | 230 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
230 | 231 |
--_first[++_highest_active]; |
231 | 232 |
} |
232 | 233 |
|
233 | 234 |
///Lift the highest active item to the given level. |
234 | 235 |
|
235 | 236 |
///Lift the item returned by highestActive() to level \c new_level. |
236 | 237 |
/// |
237 | 238 |
///\warning \c new_level must be strictly higher |
238 | 239 |
///than the current level. |
239 | 240 |
/// |
240 | 241 |
void liftHighestActive(int new_level) |
241 | 242 |
{ |
242 | 243 |
const Item li = *_last_active[_highest_active]; |
243 | 244 |
|
244 | 245 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
245 | 246 |
for(int l=_highest_active+1;l<new_level;l++) |
246 | 247 |
{ |
247 | 248 |
copy(--_first[l+1],_first[l]); |
248 | 249 |
--_last_active[l]; |
249 | 250 |
} |
250 | 251 |
copy(li,_first[new_level]); |
251 | 252 |
_level.set(li,new_level); |
252 | 253 |
_highest_active=new_level; |
253 | 254 |
} |
254 | 255 |
|
255 | 256 |
///Lift the highest active item to the top level. |
256 | 257 |
|
257 | 258 |
///Lift the item returned by highestActive() to the top level and |
258 | 259 |
///deactivate it. |
259 | 260 |
void liftHighestActiveToTop() |
260 | 261 |
{ |
261 | 262 |
const Item li = *_last_active[_highest_active]; |
262 | 263 |
|
263 | 264 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
264 | 265 |
for(int l=_highest_active+1;l<_max_level;l++) |
265 | 266 |
{ |
266 | 267 |
copy(--_first[l+1],_first[l]); |
267 | 268 |
--_last_active[l]; |
268 | 269 |
} |
269 | 270 |
copy(li,_first[_max_level]); |
270 | 271 |
--_last_active[_max_level]; |
271 | 272 |
_level.set(li,_max_level); |
272 | 273 |
|
273 | 274 |
while(_highest_active>=0 && |
274 | 275 |
_last_active[_highest_active]<_first[_highest_active]) |
275 | 276 |
_highest_active--; |
276 | 277 |
} |
277 | 278 |
|
278 | 279 |
///@} |
279 | 280 |
|
280 | 281 |
///\name Active Item on Certain Level |
281 | 282 |
///Functions for working with the active items. |
282 | 283 |
|
283 | 284 |
///@{ |
284 | 285 |
|
285 | 286 |
///Return an active item on level \c l. |
286 | 287 |
|
287 | 288 |
///Return an active item on level \c l or \ref INVALID if there is no such |
288 | 289 |
///an item. (\c l must be from the range [0...\c max_level]. |
289 | 290 |
Item activeOn(int l) const |
290 | 291 |
{ |
291 | 292 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
292 | 293 |
} |
293 | 294 |
|
294 | 295 |
///Lift the active item returned by \c activeOn(level) by one. |
295 | 296 |
|
296 | 297 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
297 | 298 |
///by one. |
298 | 299 |
Item liftActiveOn(int level) |
299 | 300 |
{ |
300 | 301 |
Item it =*_last_active[level]; |
301 | 302 |
_level.set(it,_level[it]+1); |
302 | 303 |
swap(_last_active[level]--, --_first[level+1]); |
303 | 304 |
if (level+1>_highest_active) ++_highest_active; |
304 | 305 |
} |
305 | 306 |
|
306 | 307 |
///Lift the active item returned by \c activeOn(level) to the given level. |
307 | 308 |
|
308 | 309 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
309 | 310 |
///to the given level. |
310 | 311 |
void liftActiveOn(int level, int new_level) |
311 | 312 |
{ |
312 | 313 |
const Item ai = *_last_active[level]; |
313 | 314 |
|
314 | 315 |
copy(--_first[level+1], _last_active[level]--); |
315 | 316 |
for(int l=level+1;l<new_level;l++) |
316 | 317 |
{ |
317 | 318 |
copy(_last_active[l],_first[l]); |
318 | 319 |
copy(--_first[l+1], _last_active[l]--); |
319 | 320 |
} |
320 | 321 |
copy(ai,_first[new_level]); |
321 | 322 |
_level.set(ai,new_level); |
322 | 323 |
if (new_level>_highest_active) _highest_active=new_level; |
323 | 324 |
} |
324 | 325 |
|
325 | 326 |
///Lift the active item returned by \c activeOn(level) to the top level. |
326 | 327 |
|
327 | 328 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
328 | 329 |
///to the top level and deactivate it. |
329 | 330 |
void liftActiveToTop(int level) |
330 | 331 |
{ |
331 | 332 |
const Item ai = *_last_active[level]; |
332 | 333 |
|
333 | 334 |
copy(--_first[level+1],_last_active[level]--); |
334 | 335 |
for(int l=level+1;l<_max_level;l++) |
335 | 336 |
{ |
336 | 337 |
copy(_last_active[l],_first[l]); |
337 | 338 |
copy(--_first[l+1], _last_active[l]--); |
338 | 339 |
} |
339 | 340 |
copy(ai,_first[_max_level]); |
340 | 341 |
--_last_active[_max_level]; |
341 | 342 |
_level.set(ai,_max_level); |
342 | 343 |
|
343 | 344 |
if (_highest_active==level) { |
344 | 345 |
while(_highest_active>=0 && |
345 | 346 |
_last_active[_highest_active]<_first[_highest_active]) |
346 | 347 |
_highest_active--; |
347 | 348 |
} |
348 | 349 |
} |
349 | 350 |
|
350 | 351 |
///@} |
351 | 352 |
|
352 | 353 |
///Lift an active item to a higher level. |
353 | 354 |
|
354 | 355 |
///Lift an active item to a higher level. |
355 | 356 |
///\param i The item to be lifted. It must be active. |
356 | 357 |
///\param new_level The new level of \c i. It must be strictly higher |
357 | 358 |
///than the current level. |
358 | 359 |
/// |
359 | 360 |
void lift(Item i, int new_level) |
360 | 361 |
{ |
361 | 362 |
const int lo = _level[i]; |
362 | 363 |
const Vit w = _where[i]; |
363 | 364 |
|
364 | 365 |
copy(_last_active[lo],w); |
365 | 366 |
copy(--_first[lo+1],_last_active[lo]--); |
366 | 367 |
for(int l=lo+1;l<new_level;l++) |
367 | 368 |
{ |
368 | 369 |
copy(_last_active[l],_first[l]); |
369 | 370 |
copy(--_first[l+1],_last_active[l]--); |
370 | 371 |
} |
371 | 372 |
copy(i,_first[new_level]); |
372 | 373 |
_level.set(i,new_level); |
373 | 374 |
if(new_level>_highest_active) _highest_active=new_level; |
374 | 375 |
} |
375 | 376 |
|
376 | 377 |
///Move an inactive item to the top but one level (in a dirty way). |
377 | 378 |
|
378 | 379 |
///This function moves an inactive item from the top level to the top |
379 | 380 |
///but one level (in a dirty way). |
380 | 381 |
///\warning It makes the underlying datastructure corrupt, so use it |
381 | 382 |
///only if you really know what it is for. |
382 | 383 |
///\pre The item is on the top level. |
383 | 384 |
void dirtyTopButOne(Item i) { |
384 | 385 |
_level.set(i,_max_level - 1); |
385 | 386 |
} |
386 | 387 |
|
387 | 388 |
///Lift all items on and above the given level to the top level. |
388 | 389 |
|
389 | 390 |
///This function lifts all items on and above level \c l to the top |
390 | 391 |
///level and deactivates them. |
391 | 392 |
void liftToTop(int l) |
392 | 393 |
{ |
393 | 394 |
const Vit f=_first[l]; |
394 | 395 |
const Vit tl=_first[_max_level]; |
395 | 396 |
for(Vit i=f;i!=tl;++i) |
396 | 397 |
_level.set(*i,_max_level); |
397 | 398 |
for(int i=l;i<=_max_level;i++) |
398 | 399 |
{ |
399 | 400 |
_first[i]=f; |
400 | 401 |
_last_active[i]=f-1; |
401 | 402 |
} |
402 | 403 |
for(_highest_active=l-1; |
403 | 404 |
_highest_active>=0 && |
404 | 405 |
_last_active[_highest_active]<_first[_highest_active]; |
405 | 406 |
_highest_active--) ; |
406 | 407 |
} |
407 | 408 |
|
408 | 409 |
private: |
409 | 410 |
int _init_lev; |
410 | 411 |
Vit _init_num; |
411 | 412 |
|
412 | 413 |
public: |
413 | 414 |
|
414 | 415 |
///\name Initialization |
415 | 416 |
///Using these functions you can initialize the levels of the items. |
416 | 417 |
///\n |
417 | 418 |
///The initialization must be started with calling \c initStart(). |
418 | 419 |
///Then the items should be listed level by level starting with the |
419 | 420 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
420 | 421 |
///Finally \c initFinish() must be called. |
421 | 422 |
///The items not listed are put on the highest level. |
422 | 423 |
///@{ |
423 | 424 |
|
424 | 425 |
///Start the initialization process. |
425 | 426 |
void initStart() |
426 | 427 |
{ |
427 | 428 |
_init_lev=0; |
428 | 429 |
_init_num=&_items[0]; |
429 | 430 |
_first[0]=&_items[0]; |
430 | 431 |
_last_active[0]=&_items[0]-1; |
431 | 432 |
Vit n=&_items[0]; |
432 | 433 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
433 | 434 |
{ |
434 | 435 |
*n=i; |
435 | 436 |
_where.set(i,n); |
436 | 437 |
_level.set(i,_max_level); |
437 | 438 |
++n; |
438 | 439 |
} |
439 | 440 |
} |
440 | 441 |
|
441 | 442 |
///Add an item to the current level. |
442 | 443 |
void initAddItem(Item i) |
443 | 444 |
{ |
444 | 445 |
swap(_where[i],_init_num); |
445 | 446 |
_level.set(i,_init_lev); |
446 | 447 |
++_init_num; |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
///Start a new level. |
450 | 451 |
|
451 | 452 |
///Start a new level. |
452 | 453 |
///It shouldn't be used before the items on level 0 are listed. |
453 | 454 |
void initNewLevel() |
454 | 455 |
{ |
455 | 456 |
_init_lev++; |
456 | 457 |
_first[_init_lev]=_init_num; |
457 | 458 |
_last_active[_init_lev]=_init_num-1; |
458 | 459 |
} |
459 | 460 |
|
460 | 461 |
///Finalize the initialization process. |
461 | 462 |
void initFinish() |
462 | 463 |
{ |
463 | 464 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
464 | 465 |
{ |
465 | 466 |
_first[_init_lev]=_init_num; |
466 | 467 |
_last_active[_init_lev]=_init_num-1; |
467 | 468 |
} |
468 | 469 |
_first[_max_level+1]=&_items[0]+_item_num; |
469 | 470 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
470 | 471 |
_highest_active = -1; |
471 | 472 |
} |
472 | 473 |
|
473 | 474 |
///@} |
474 | 475 |
|
475 | 476 |
}; |
476 | 477 |
|
477 | 478 |
///Class for handling "labels" in push-relabel type algorithms. |
478 | 479 |
|
479 | 480 |
///A class for handling "labels" in push-relabel type algorithms. |
480 | 481 |
/// |
481 | 482 |
///\ingroup auxdat |
482 | 483 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
483 | 484 |
///to the edges or nodes of a graph, manipulate and query them through |
484 | 485 |
///operations typically arising in "push-relabel" type algorithms. |
485 | 486 |
/// |
486 | 487 |
///Each item is either \em active or not, and you can also choose a |
487 | 488 |
///highest level active item. |
488 | 489 |
/// |
489 | 490 |
///\sa Elevator |
490 | 491 |
/// |
491 | 492 |
///\param Graph Type of the underlying graph. |
492 | 493 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
493 | 494 |
///Graph::Arc, Graph::Edge). |
494 | 495 |
template <class Graph, class Item> |
495 | 496 |
class LinkedElevator { |
496 | 497 |
public: |
497 | 498 |
|
498 | 499 |
typedef Item Key; |
499 | 500 |
typedef int Value; |
500 | 501 |
|
501 | 502 |
private: |
502 | 503 |
|
503 | 504 |
typedef typename ItemSetTraits<Graph,Item>:: |
504 | 505 |
template Map<Item>::Type ItemMap; |
505 | 506 |
typedef typename ItemSetTraits<Graph,Item>:: |
506 | 507 |
template Map<int>::Type IntMap; |
507 | 508 |
typedef typename ItemSetTraits<Graph,Item>:: |
508 | 509 |
template Map<bool>::Type BoolMap; |
509 | 510 |
|
510 | 511 |
const Graph &_graph; |
511 | 512 |
int _max_level; |
512 | 513 |
int _item_num; |
513 | 514 |
std::vector<Item> _first, _last; |
514 | 515 |
ItemMap _prev, _next; |
515 | 516 |
int _highest_active; |
516 | 517 |
IntMap _level; |
517 | 518 |
BoolMap _active; |
518 | 519 |
|
519 | 520 |
public: |
520 | 521 |
///Constructor with given maximum level. |
521 | 522 |
|
522 | 523 |
///Constructor with given maximum level. |
523 | 524 |
/// |
524 | 525 |
///\param graph The underlying graph. |
525 | 526 |
///\param max_level The maximum allowed level. |
526 | 527 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
527 | 528 |
LinkedElevator(const Graph& graph, int max_level) |
528 | 529 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
529 | 530 |
_first(_max_level + 1), _last(_max_level + 1), |
530 | 531 |
_prev(graph), _next(graph), |
531 | 532 |
_highest_active(-1), _level(graph), _active(graph) {} |
532 | 533 |
|
533 | 534 |
///Constructor. |
534 | 535 |
|
535 | 536 |
///Constructor. |
536 | 537 |
/// |
537 | 538 |
///\param graph The underlying graph. |
538 | 539 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
539 | 540 |
///where \c max_level is equal to the number of labeled items in the graph. |
540 | 541 |
LinkedElevator(const Graph& graph) |
541 | 542 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
542 | 543 |
_item_num(_max_level), |
543 | 544 |
_first(_max_level + 1), _last(_max_level + 1), |
544 | 545 |
_prev(graph, INVALID), _next(graph, INVALID), |
545 | 546 |
_highest_active(-1), _level(graph), _active(graph) {} |
546 | 547 |
|
547 | 548 |
|
548 | 549 |
///Activate item \c i. |
549 | 550 |
|
550 | 551 |
///Activate item \c i. |
551 | 552 |
///\pre Item \c i shouldn't be active before. |
552 | 553 |
void activate(Item i) { |
553 | 554 |
_active.set(i, true); |
554 | 555 |
|
555 | 556 |
int level = _level[i]; |
556 | 557 |
if (level > _highest_active) { |
557 | 558 |
_highest_active = level; |
558 | 559 |
} |
559 | 560 |
|
560 | 561 |
if (_prev[i] == INVALID || _active[_prev[i]]) return; |
561 | 562 |
//unlace |
562 | 563 |
_next.set(_prev[i], _next[i]); |
563 | 564 |
if (_next[i] != INVALID) { |
564 | 565 |
_prev.set(_next[i], _prev[i]); |
565 | 566 |
} else { |
566 | 567 |
_last[level] = _prev[i]; |
567 | 568 |
} |
568 | 569 |
//lace |
569 | 570 |
_next.set(i, _first[level]); |
570 | 571 |
_prev.set(_first[level], i); |
571 | 572 |
_prev.set(i, INVALID); |
572 | 573 |
_first[level] = i; |
573 | 574 |
|
574 | 575 |
} |
575 | 576 |
|
576 | 577 |
///Deactivate item \c i. |
577 | 578 |
|
578 | 579 |
///Deactivate item \c i. |
579 | 580 |
///\pre Item \c i must be active before. |
580 | 581 |
void deactivate(Item i) { |
581 | 582 |
_active.set(i, false); |
582 | 583 |
int level = _level[i]; |
583 | 584 |
|
584 | 585 |
if (_next[i] == INVALID || !_active[_next[i]]) |
585 | 586 |
goto find_highest_level; |
586 | 587 |
|
587 | 588 |
//unlace |
588 | 589 |
_prev.set(_next[i], _prev[i]); |
589 | 590 |
if (_prev[i] != INVALID) { |
590 | 591 |
_next.set(_prev[i], _next[i]); |
591 | 592 |
} else { |
592 | 593 |
_first[_level[i]] = _next[i]; |
593 | 594 |
} |
594 | 595 |
//lace |
595 | 596 |
_prev.set(i, _last[level]); |
596 | 597 |
_next.set(_last[level], i); |
597 | 598 |
_next.set(i, INVALID); |
598 | 599 |
_last[level] = i; |
599 | 600 |
|
600 | 601 |
find_highest_level: |
601 | 602 |
if (level == _highest_active) { |
602 | 603 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
603 | 604 |
--_highest_active; |
604 | 605 |
} |
605 | 606 |
} |
606 | 607 |
|
607 | 608 |
///Query whether item \c i is active |
608 | 609 |
bool active(Item i) const { return _active[i]; } |
609 | 610 |
|
610 | 611 |
///Return the level of item \c i. |
611 | 612 |
int operator[](Item i) const { return _level[i]; } |
612 | 613 |
|
613 | 614 |
///Return the number of items on level \c l. |
614 | 615 |
int onLevel(int l) const { |
615 | 616 |
int num = 0; |
616 | 617 |
Item n = _first[l]; |
617 | 618 |
while (n != INVALID) { |
618 | 619 |
++num; |
619 | 620 |
n = _next[n]; |
620 | 621 |
} |
621 | 622 |
return num; |
622 | 623 |
} |
623 | 624 |
|
624 | 625 |
///Return true if the level is empty. |
625 | 626 |
bool emptyLevel(int l) const { |
626 | 627 |
return _first[l] == INVALID; |
627 | 628 |
} |
628 | 629 |
|
629 | 630 |
///Return the number of items above level \c l. |
630 | 631 |
int aboveLevel(int l) const { |
631 | 632 |
int num = 0; |
632 | 633 |
for (int level = l + 1; level < _max_level; ++level) |
633 | 634 |
num += onLevel(level); |
634 | 635 |
return num; |
635 | 636 |
} |
636 | 637 |
|
637 | 638 |
///Return the number of active items on level \c l. |
638 | 639 |
int activesOnLevel(int l) const { |
639 | 640 |
int num = 0; |
640 | 641 |
Item n = _first[l]; |
641 | 642 |
while (n != INVALID && _active[n]) { |
642 | 643 |
++num; |
643 | 644 |
n = _next[n]; |
644 | 645 |
} |
645 | 646 |
return num; |
646 | 647 |
} |
647 | 648 |
|
648 | 649 |
///Return true if there is no active item on level \c l. |
649 | 650 |
bool activeFree(int l) const { |
650 | 651 |
return _first[l] == INVALID || !_active[_first[l]]; |
651 | 652 |
} |
652 | 653 |
|
653 | 654 |
///Return the maximum allowed level. |
654 | 655 |
int maxLevel() const { |
655 | 656 |
return _max_level; |
656 | 657 |
} |
657 | 658 |
|
658 | 659 |
///\name Highest Active Item |
659 | 660 |
///Functions for working with the highest level |
660 | 661 |
///active item. |
661 | 662 |
|
662 | 663 |
///@{ |
663 | 664 |
|
664 | 665 |
///Return a highest level active item. |
665 | 666 |
|
666 | 667 |
///Return a highest level active item or INVALID if there is no active |
667 | 668 |
///item. |
668 | 669 |
Item highestActive() const { |
669 | 670 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
670 | 671 |
} |
671 | 672 |
|
672 | 673 |
///Return the highest active level. |
673 | 674 |
|
674 | 675 |
///Return the level of the highest active item or -1 if there is no active |
675 | 676 |
///item. |
676 | 677 |
int highestActiveLevel() const { |
677 | 678 |
return _highest_active; |
678 | 679 |
} |
679 | 680 |
|
680 | 681 |
///Lift the highest active item by one. |
681 | 682 |
|
682 | 683 |
///Lift the item returned by highestActive() by one. |
683 | 684 |
/// |
684 | 685 |
void liftHighestActive() { |
685 | 686 |
Item i = _first[_highest_active]; |
686 | 687 |
if (_next[i] != INVALID) { |
687 | 688 |
_prev.set(_next[i], INVALID); |
688 | 689 |
_first[_highest_active] = _next[i]; |
689 | 690 |
} else { |
690 | 691 |
_first[_highest_active] = INVALID; |
691 | 692 |
_last[_highest_active] = INVALID; |
692 | 693 |
} |
693 | 694 |
_level.set(i, ++_highest_active); |
694 | 695 |
if (_first[_highest_active] == INVALID) { |
695 | 696 |
_first[_highest_active] = i; |
696 | 697 |
_last[_highest_active] = i; |
697 | 698 |
_prev.set(i, INVALID); |
698 | 699 |
_next.set(i, INVALID); |
699 | 700 |
} else { |
700 | 701 |
_prev.set(_first[_highest_active], i); |
701 | 702 |
_next.set(i, _first[_highest_active]); |
702 | 703 |
_first[_highest_active] = i; |
703 | 704 |
} |
704 | 705 |
} |
705 | 706 |
|
706 | 707 |
///Lift the highest active item to the given level. |
707 | 708 |
|
708 | 709 |
///Lift the item returned by highestActive() to level \c new_level. |
709 | 710 |
/// |
710 | 711 |
///\warning \c new_level must be strictly higher |
711 | 712 |
///than the current level. |
712 | 713 |
/// |
713 | 714 |
void liftHighestActive(int new_level) { |
714 | 715 |
Item i = _first[_highest_active]; |
715 | 716 |
if (_next[i] != INVALID) { |
716 | 717 |
_prev.set(_next[i], INVALID); |
717 | 718 |
_first[_highest_active] = _next[i]; |
718 | 719 |
} else { |
719 | 720 |
_first[_highest_active] = INVALID; |
720 | 721 |
_last[_highest_active] = INVALID; |
721 | 722 |
} |
722 | 723 |
_level.set(i, _highest_active = new_level); |
723 | 724 |
if (_first[_highest_active] == INVALID) { |
724 | 725 |
_first[_highest_active] = _last[_highest_active] = i; |
725 | 726 |
_prev.set(i, INVALID); |
726 | 727 |
_next.set(i, INVALID); |
727 | 728 |
} else { |
728 | 729 |
_prev.set(_first[_highest_active], i); |
729 | 730 |
_next.set(i, _first[_highest_active]); |
730 | 731 |
_first[_highest_active] = i; |
731 | 732 |
} |
732 | 733 |
} |
733 | 734 |
|
734 | 735 |
///Lift the highest active item to the top level. |
735 | 736 |
|
736 | 737 |
///Lift the item returned by highestActive() to the top level and |
737 | 738 |
///deactivate it. |
738 | 739 |
void liftHighestActiveToTop() { |
739 | 740 |
Item i = _first[_highest_active]; |
740 | 741 |
_level.set(i, _max_level); |
741 | 742 |
if (_next[i] != INVALID) { |
742 | 743 |
_prev.set(_next[i], INVALID); |
743 | 744 |
_first[_highest_active] = _next[i]; |
744 | 745 |
} else { |
745 | 746 |
_first[_highest_active] = INVALID; |
746 | 747 |
_last[_highest_active] = INVALID; |
747 | 748 |
} |
748 | 749 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
749 | 750 |
--_highest_active; |
750 | 751 |
} |
751 | 752 |
|
752 | 753 |
///@} |
753 | 754 |
|
754 | 755 |
///\name Active Item on Certain Level |
755 | 756 |
///Functions for working with the active items. |
756 | 757 |
|
757 | 758 |
///@{ |
758 | 759 |
|
759 | 760 |
///Return an active item on level \c l. |
760 | 761 |
|
761 | 762 |
///Return an active item on level \c l or \ref INVALID if there is no such |
762 | 763 |
///an item. (\c l must be from the range [0...\c max_level]. |
763 | 764 |
Item activeOn(int l) const |
764 | 765 |
{ |
765 | 766 |
return _active[_first[l]] ? _first[l] : INVALID; |
766 | 767 |
} |
767 | 768 |
|
768 | 769 |
///Lift the active item returned by \c activeOn(l) by one. |
769 | 770 |
|
770 | 771 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
771 | 772 |
///by one. |
772 | 773 |
Item liftActiveOn(int l) |
773 | 774 |
{ |
774 | 775 |
Item i = _first[l]; |
775 | 776 |
if (_next[i] != INVALID) { |
776 | 777 |
_prev.set(_next[i], INVALID); |
777 | 778 |
_first[l] = _next[i]; |
778 | 779 |
} else { |
779 | 780 |
_first[l] = INVALID; |
780 | 781 |
_last[l] = INVALID; |
781 | 782 |
} |
782 | 783 |
_level.set(i, ++l); |
783 | 784 |
if (_first[l] == INVALID) { |
784 | 785 |
_first[l] = _last[l] = i; |
785 | 786 |
_prev.set(i, INVALID); |
786 | 787 |
_next.set(i, INVALID); |
787 | 788 |
} else { |
788 | 789 |
_prev.set(_first[l], i); |
789 | 790 |
_next.set(i, _first[l]); |
790 | 791 |
_first[l] = i; |
791 | 792 |
} |
792 | 793 |
if (_highest_active < l) { |
793 | 794 |
_highest_active = l; |
794 | 795 |
} |
795 | 796 |
} |
796 | 797 |
|
797 | 798 |
///Lift the active item returned by \c activeOn(l) to the given level. |
798 | 799 |
|
799 | 800 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
800 | 801 |
///to the given level. |
801 | 802 |
void liftActiveOn(int l, int new_level) |
802 | 803 |
{ |
803 | 804 |
Item i = _first[l]; |
804 | 805 |
if (_next[i] != INVALID) { |
805 | 806 |
_prev.set(_next[i], INVALID); |
806 | 807 |
_first[l] = _next[i]; |
807 | 808 |
} else { |
808 | 809 |
_first[l] = INVALID; |
809 | 810 |
_last[l] = INVALID; |
810 | 811 |
} |
811 | 812 |
_level.set(i, l = new_level); |
812 | 813 |
if (_first[l] == INVALID) { |
813 | 814 |
_first[l] = _last[l] = i; |
814 | 815 |
_prev.set(i, INVALID); |
815 | 816 |
_next.set(i, INVALID); |
816 | 817 |
} else { |
817 | 818 |
_prev.set(_first[l], i); |
818 | 819 |
_next.set(i, _first[l]); |
819 | 820 |
_first[l] = i; |
820 | 821 |
} |
821 | 822 |
if (_highest_active < l) { |
822 | 823 |
_highest_active = l; |
823 | 824 |
} |
824 | 825 |
} |
825 | 826 |
|
826 | 827 |
///Lift the active item returned by \c activeOn(l) to the top level. |
827 | 828 |
|
828 | 829 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
829 | 830 |
///to the top level and deactivate it. |
830 | 831 |
void liftActiveToTop(int l) |
831 | 832 |
{ |
832 | 833 |
Item i = _first[l]; |
833 | 834 |
if (_next[i] != INVALID) { |
834 | 835 |
_prev.set(_next[i], INVALID); |
835 | 836 |
_first[l] = _next[i]; |
836 | 837 |
} else { |
837 | 838 |
_first[l] = INVALID; |
838 | 839 |
_last[l] = INVALID; |
839 | 840 |
} |
840 | 841 |
_level.set(i, _max_level); |
841 | 842 |
if (l == _highest_active) { |
842 | 843 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
843 | 844 |
--_highest_active; |
844 | 845 |
} |
845 | 846 |
} |
846 | 847 |
|
847 | 848 |
///@} |
848 | 849 |
|
849 | 850 |
/// \brief Lift an active item to a higher level. |
850 | 851 |
/// |
851 | 852 |
/// Lift an active item to a higher level. |
852 | 853 |
/// \param i The item to be lifted. It must be active. |
853 | 854 |
/// \param new_level The new level of \c i. It must be strictly higher |
854 | 855 |
/// than the current level. |
855 | 856 |
/// |
856 | 857 |
void lift(Item i, int new_level) { |
857 | 858 |
if (_next[i] != INVALID) { |
858 | 859 |
_prev.set(_next[i], _prev[i]); |
859 | 860 |
} else { |
860 | 861 |
_last[new_level] = _prev[i]; |
861 | 862 |
} |
862 | 863 |
if (_prev[i] != INVALID) { |
863 | 864 |
_next.set(_prev[i], _next[i]); |
864 | 865 |
} else { |
865 | 866 |
_first[new_level] = _next[i]; |
866 | 867 |
} |
867 | 868 |
_level.set(i, new_level); |
868 | 869 |
if (_first[new_level] == INVALID) { |
869 | 870 |
_first[new_level] = _last[new_level] = i; |
870 | 871 |
_prev.set(i, INVALID); |
871 | 872 |
_next.set(i, INVALID); |
872 | 873 |
} else { |
873 | 874 |
_prev.set(_first[new_level], i); |
874 | 875 |
_next.set(i, _first[new_level]); |
875 | 876 |
_first[new_level] = i; |
876 | 877 |
} |
877 | 878 |
if (_highest_active < new_level) { |
878 | 879 |
_highest_active = new_level; |
879 | 880 |
} |
880 | 881 |
} |
881 | 882 |
|
882 | 883 |
///Move an inactive item to the top but one level (in a dirty way). |
883 | 884 |
|
884 | 885 |
///This function moves an inactive item from the top level to the top |
885 | 886 |
///but one level (in a dirty way). |
886 | 887 |
///\warning It makes the underlying datastructure corrupt, so use it |
887 | 888 |
///only if you really know what it is for. |
888 | 889 |
///\pre The item is on the top level. |
889 | 890 |
void dirtyTopButOne(Item i) { |
890 | 891 |
_level.set(i, _max_level - 1); |
891 | 892 |
} |
892 | 893 |
|
893 | 894 |
///Lift all items on and above the given level to the top level. |
894 | 895 |
|
895 | 896 |
///This function lifts all items on and above level \c l to the top |
896 | 897 |
///level and deactivates them. |
897 | 898 |
void liftToTop(int l) { |
898 | 899 |
for (int i = l + 1; _first[i] != INVALID; ++i) { |
899 | 900 |
Item n = _first[i]; |
900 | 901 |
while (n != INVALID) { |
901 | 902 |
_level.set(n, _max_level); |
902 | 903 |
n = _next[n]; |
903 | 904 |
} |
904 | 905 |
_first[i] = INVALID; |
905 | 906 |
_last[i] = INVALID; |
906 | 907 |
} |
907 | 908 |
if (_highest_active > l - 1) { |
908 | 909 |
_highest_active = l - 1; |
909 | 910 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
910 | 911 |
--_highest_active; |
911 | 912 |
} |
912 | 913 |
} |
913 | 914 |
|
914 | 915 |
private: |
915 | 916 |
|
916 | 917 |
int _init_level; |
917 | 918 |
|
918 | 919 |
public: |
919 | 920 |
|
920 | 921 |
///\name Initialization |
921 | 922 |
///Using these functions you can initialize the levels of the items. |
922 | 923 |
///\n |
923 | 924 |
///The initialization must be started with calling \c initStart(). |
924 | 925 |
///Then the items should be listed level by level starting with the |
925 | 926 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
926 | 927 |
///Finally \c initFinish() must be called. |
927 | 928 |
///The items not listed are put on the highest level. |
928 | 929 |
///@{ |
929 | 930 |
|
930 | 931 |
///Start the initialization process. |
931 | 932 |
void initStart() { |
932 | 933 |
|
933 | 934 |
for (int i = 0; i <= _max_level; ++i) { |
934 | 935 |
_first[i] = _last[i] = INVALID; |
935 | 936 |
} |
936 | 937 |
_init_level = 0; |
937 | 938 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
938 | 939 |
i != INVALID; ++i) { |
939 | 940 |
_level.set(i, _max_level); |
940 | 941 |
_active.set(i, false); |
941 | 942 |
} |
942 | 943 |
} |
943 | 944 |
|
944 | 945 |
///Add an item to the current level. |
945 | 946 |
void initAddItem(Item i) { |
946 | 947 |
_level.set(i, _init_level); |
947 | 948 |
if (_last[_init_level] == INVALID) { |
948 | 949 |
_first[_init_level] = i; |
949 | 950 |
_last[_init_level] = i; |
950 | 951 |
_prev.set(i, INVALID); |
951 | 952 |
_next.set(i, INVALID); |
952 | 953 |
} else { |
953 | 954 |
_prev.set(i, _last[_init_level]); |
954 | 955 |
_next.set(i, INVALID); |
955 | 956 |
_next.set(_last[_init_level], i); |
956 | 957 |
_last[_init_level] = i; |
957 | 958 |
} |
958 | 959 |
} |
959 | 960 |
|
960 | 961 |
///Start a new level. |
961 | 962 |
|
962 | 963 |
///Start a new level. |
963 | 964 |
///It shouldn't be used before the items on level 0 are listed. |
964 | 965 |
void initNewLevel() { |
965 | 966 |
++_init_level; |
966 | 967 |
} |
967 | 968 |
|
968 | 969 |
///Finalize the initialization process. |
969 | 970 |
void initFinish() { |
970 | 971 |
_highest_active = -1; |
971 | 972 |
} |
972 | 973 |
|
973 | 974 |
///@} |
974 | 975 |
|
975 | 976 |
}; |
976 | 977 |
|
977 | 978 |
|
978 | 979 |
} //END OF NAMESPACE LEMON |
979 | 980 |
|
980 | 981 |
#endif |
981 | 982 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/path.h> |
30 |
#include <lemon/list_graph.h> |
|
31 |
#include <lemon/maps.h> |
|
30 | 32 |
|
31 | 33 |
namespace lemon { |
32 | 34 |
|
33 | 35 |
/// \addtogroup shortest_path |
34 | 36 |
/// @{ |
35 | 37 |
|
36 | 38 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
37 | 39 |
/// having minimum total length. |
38 | 40 |
/// |
39 | 41 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
40 | 42 |
/// finding arc-disjoint paths having minimum total length (cost) |
41 | 43 |
/// from a given source node to a given target node in a digraph. |
42 | 44 |
/// |
43 | 45 |
/// In fact, this implementation is the specialization of the |
44 | 46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
45 | 47 |
/// |
46 | 48 |
/// \tparam Digraph The digraph type the algorithm runs on. |
47 | 49 |
/// The default value is \c ListDigraph. |
48 | 50 |
/// \tparam LengthMap The type of the length (cost) map. |
49 | 51 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
50 | 52 |
/// |
51 | 53 |
/// \warning Length values should be \e non-negative \e integers. |
52 | 54 |
/// |
53 | 55 |
/// \note For finding node-disjoint paths this algorithm can be used |
54 | 56 |
/// with \ref SplitNodes. |
55 | 57 |
#ifdef DOXYGEN |
56 | 58 |
template <typename Digraph, typename LengthMap> |
57 | 59 |
#else |
58 | 60 |
template < typename Digraph = ListDigraph, |
59 | 61 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
60 | 62 |
#endif |
61 | 63 |
class Suurballe |
62 | 64 |
{ |
63 | 65 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
64 | 66 |
|
65 | 67 |
typedef typename LengthMap::Value Length; |
66 | 68 |
typedef ConstMap<Arc, int> ConstArcMap; |
67 | 69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
68 | 70 |
|
69 | 71 |
public: |
70 | 72 |
|
71 | 73 |
/// The type of the flow map. |
72 | 74 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
73 | 75 |
/// The type of the potential map. |
74 | 76 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
75 | 77 |
/// The type of the path structures. |
76 | 78 |
typedef SimplePath<Digraph> Path; |
77 | 79 |
|
78 | 80 |
private: |
79 | 81 |
|
80 | 82 |
/// \brief Special implementation of the Dijkstra algorithm |
81 | 83 |
/// for finding shortest paths in the residual network. |
82 | 84 |
/// |
83 | 85 |
/// \ref ResidualDijkstra is a special implementation of the |
84 | 86 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
85 | 87 |
/// residual network of the digraph with respect to the reduced arc |
86 | 88 |
/// lengths and modifying the node potentials according to the |
87 | 89 |
/// distance of the nodes. |
88 | 90 |
class ResidualDijkstra |
89 | 91 |
{ |
90 | 92 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
91 | 93 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
92 | 94 |
|
93 | 95 |
private: |
94 | 96 |
|
95 | 97 |
// The digraph the algorithm runs on |
96 | 98 |
const Digraph &_graph; |
97 | 99 |
|
98 | 100 |
// The main maps |
99 | 101 |
const FlowMap &_flow; |
100 | 102 |
const LengthMap &_length; |
101 | 103 |
PotentialMap &_potential; |
102 | 104 |
|
103 | 105 |
// The distance map |
104 | 106 |
PotentialMap _dist; |
105 | 107 |
// The pred arc map |
106 | 108 |
PredMap &_pred; |
107 | 109 |
// The processed (i.e. permanently labeled) nodes |
108 | 110 |
std::vector<Node> _proc_nodes; |
109 | 111 |
|
110 | 112 |
Node _s; |
111 | 113 |
Node _t; |
112 | 114 |
|
113 | 115 |
public: |
114 | 116 |
|
115 | 117 |
/// Constructor. |
116 | 118 |
ResidualDijkstra( const Digraph &digraph, |
117 | 119 |
const FlowMap &flow, |
118 | 120 |
const LengthMap &length, |
119 | 121 |
PotentialMap &potential, |
120 | 122 |
PredMap &pred, |
121 | 123 |
Node s, Node t ) : |
122 | 124 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
123 | 125 |
_dist(digraph), _pred(pred), _s(s), _t(t) {} |
124 | 126 |
|
125 | 127 |
/// \brief Run the algorithm. It returns \c true if a path is found |
126 | 128 |
/// from the source node to the target node. |
127 | 129 |
bool run() { |
128 | 130 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
129 | 131 |
Heap heap(heap_cross_ref); |
130 | 132 |
heap.push(_s, 0); |
131 | 133 |
_pred[_s] = INVALID; |
132 | 134 |
_proc_nodes.clear(); |
133 | 135 |
|
134 | 136 |
// Process nodes |
135 | 137 |
while (!heap.empty() && heap.top() != _t) { |
136 | 138 |
Node u = heap.top(), v; |
137 | 139 |
Length d = heap.prio() + _potential[u], nd; |
138 | 140 |
_dist[u] = heap.prio(); |
139 | 141 |
heap.pop(); |
140 | 142 |
_proc_nodes.push_back(u); |
141 | 143 |
|
142 | 144 |
// Traverse outgoing arcs |
143 | 145 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
144 | 146 |
if (_flow[e] == 0) { |
145 | 147 |
v = _graph.target(e); |
146 | 148 |
switch(heap.state(v)) { |
147 | 149 |
case Heap::PRE_HEAP: |
148 | 150 |
heap.push(v, d + _length[e] - _potential[v]); |
149 | 151 |
_pred[v] = e; |
150 | 152 |
break; |
151 | 153 |
case Heap::IN_HEAP: |
152 | 154 |
nd = d + _length[e] - _potential[v]; |
153 | 155 |
if (nd < heap[v]) { |
154 | 156 |
heap.decrease(v, nd); |
155 | 157 |
_pred[v] = e; |
156 | 158 |
} |
157 | 159 |
break; |
158 | 160 |
case Heap::POST_HEAP: |
159 | 161 |
break; |
160 | 162 |
} |
161 | 163 |
} |
162 | 164 |
} |
163 | 165 |
|
164 | 166 |
// Traverse incoming arcs |
165 | 167 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
166 | 168 |
if (_flow[e] == 1) { |
167 | 169 |
v = _graph.source(e); |
168 | 170 |
switch(heap.state(v)) { |
169 | 171 |
case Heap::PRE_HEAP: |
170 | 172 |
heap.push(v, d - _length[e] - _potential[v]); |
171 | 173 |
_pred[v] = e; |
172 | 174 |
break; |
173 | 175 |
case Heap::IN_HEAP: |
174 | 176 |
nd = d - _length[e] - _potential[v]; |
175 | 177 |
if (nd < heap[v]) { |
176 | 178 |
heap.decrease(v, nd); |
177 | 179 |
_pred[v] = e; |
178 | 180 |
} |
179 | 181 |
break; |
180 | 182 |
case Heap::POST_HEAP: |
181 | 183 |
break; |
182 | 184 |
} |
183 | 185 |
} |
184 | 186 |
} |
185 | 187 |
} |
186 | 188 |
if (heap.empty()) return false; |
187 | 189 |
|
188 | 190 |
// Update potentials of processed nodes |
189 | 191 |
Length t_dist = heap.prio(); |
190 | 192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
191 | 193 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
192 | 194 |
return true; |
193 | 195 |
} |
194 | 196 |
|
195 | 197 |
}; //class ResidualDijkstra |
196 | 198 |
|
197 | 199 |
private: |
198 | 200 |
|
199 | 201 |
// The digraph the algorithm runs on |
200 | 202 |
const Digraph &_graph; |
201 | 203 |
// The length map |
202 | 204 |
const LengthMap &_length; |
203 | 205 |
|
204 | 206 |
// Arc map of the current flow |
205 | 207 |
FlowMap *_flow; |
206 | 208 |
bool _local_flow; |
207 | 209 |
// Node map of the current potentials |
208 | 210 |
PotentialMap *_potential; |
209 | 211 |
bool _local_potential; |
210 | 212 |
|
211 | 213 |
// The source node |
212 | 214 |
Node _source; |
213 | 215 |
// The target node |
214 | 216 |
Node _target; |
215 | 217 |
|
216 | 218 |
// Container to store the found paths |
217 | 219 |
std::vector< SimplePath<Digraph> > paths; |
218 | 220 |
int _path_num; |
219 | 221 |
|
220 | 222 |
// The pred arc map |
221 | 223 |
PredMap _pred; |
222 | 224 |
// Implementation of the Dijkstra algorithm for finding augmenting |
223 | 225 |
// shortest paths in the residual network |
224 | 226 |
ResidualDijkstra *_dijkstra; |
225 | 227 |
|
226 | 228 |
public: |
227 | 229 |
|
228 | 230 |
/// \brief Constructor. |
229 | 231 |
/// |
230 | 232 |
/// Constructor. |
231 | 233 |
/// |
232 | 234 |
/// \param digraph The digraph the algorithm runs on. |
233 | 235 |
/// \param length The length (cost) values of the arcs. |
234 | 236 |
/// \param s The source node. |
235 | 237 |
/// \param t The target node. |
236 | 238 |
Suurballe( const Digraph &digraph, |
237 | 239 |
const LengthMap &length, |
238 | 240 |
Node s, Node t ) : |
239 | 241 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
240 | 242 |
_potential(0), _local_potential(false), _source(s), _target(t), |
241 | 243 |
_pred(digraph) {} |
242 | 244 |
|
243 | 245 |
/// Destructor. |
244 | 246 |
~Suurballe() { |
245 | 247 |
if (_local_flow) delete _flow; |
246 | 248 |
if (_local_potential) delete _potential; |
247 | 249 |
delete _dijkstra; |
248 | 250 |
} |
249 | 251 |
|
250 | 252 |
/// \brief Set the flow map. |
251 | 253 |
/// |
252 | 254 |
/// This function sets the flow map. |
253 | 255 |
/// |
254 | 256 |
/// The found flow contains only 0 and 1 values. It is the union of |
255 | 257 |
/// the found arc-disjoint paths. |
256 | 258 |
/// |
257 | 259 |
/// \return \c (*this) |
258 | 260 |
Suurballe& flowMap(FlowMap &map) { |
259 | 261 |
if (_local_flow) { |
260 | 262 |
delete _flow; |
261 | 263 |
_local_flow = false; |
262 | 264 |
} |
263 | 265 |
_flow = ↦ |
264 | 266 |
return *this; |
265 | 267 |
} |
266 | 268 |
|
267 | 269 |
/// \brief Set the potential map. |
268 | 270 |
/// |
269 | 271 |
/// This function sets the potential map. |
270 | 272 |
/// |
271 | 273 |
/// The potentials provide the dual solution of the underlying |
272 | 274 |
/// minimum cost flow problem. |
273 | 275 |
/// |
274 | 276 |
/// \return \c (*this) |
275 | 277 |
Suurballe& potentialMap(PotentialMap &map) { |
276 | 278 |
if (_local_potential) { |
277 | 279 |
delete _potential; |
278 | 280 |
_local_potential = false; |
279 | 281 |
} |
280 | 282 |
_potential = ↦ |
281 | 283 |
return *this; |
282 | 284 |
} |
283 | 285 |
|
284 | 286 |
/// \name Execution control |
285 | 287 |
/// The simplest way to execute the algorithm is to call the run() |
286 | 288 |
/// function. |
287 | 289 |
/// \n |
288 | 290 |
/// If you only need the flow that is the union of the found |
289 | 291 |
/// arc-disjoint paths, you may call init() and findFlow(). |
290 | 292 |
|
291 | 293 |
/// @{ |
292 | 294 |
|
293 | 295 |
/// \brief Run the algorithm. |
294 | 296 |
/// |
295 | 297 |
/// This function runs the algorithm. |
296 | 298 |
/// |
297 | 299 |
/// \param k The number of paths to be found. |
298 | 300 |
/// |
299 | 301 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
300 | 302 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
301 | 303 |
/// arc-disjoint paths found. |
302 | 304 |
/// |
303 | 305 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
304 | 306 |
/// shortcut of the following code. |
305 | 307 |
/// \code |
306 | 308 |
/// s.init(); |
307 | 309 |
/// s.findFlow(k); |
308 | 310 |
/// s.findPaths(); |
309 | 311 |
/// \endcode |
310 | 312 |
int run(int k = 2) { |
311 | 313 |
init(); |
312 | 314 |
findFlow(k); |
313 | 315 |
findPaths(); |
314 | 316 |
return _path_num; |
315 | 317 |
} |
316 | 318 |
|
317 | 319 |
/// \brief Initialize the algorithm. |
318 | 320 |
/// |
319 | 321 |
/// This function initializes the algorithm. |
320 | 322 |
void init() { |
321 | 323 |
// Initialize maps |
322 | 324 |
if (!_flow) { |
323 | 325 |
_flow = new FlowMap(_graph); |
324 | 326 |
_local_flow = true; |
325 | 327 |
} |
326 | 328 |
if (!_potential) { |
327 | 329 |
_potential = new PotentialMap(_graph); |
328 | 330 |
_local_potential = true; |
329 | 331 |
} |
330 | 332 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
331 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
332 | 334 |
|
333 | 335 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
334 | 336 |
*_potential, _pred, |
335 | 337 |
_source, _target ); |
336 | 338 |
} |
337 | 339 |
|
338 | 340 |
/// \brief Execute the successive shortest path algorithm to find |
339 | 341 |
/// an optimal flow. |
340 | 342 |
/// |
341 | 343 |
/// This function executes the successive shortest path algorithm to |
342 | 344 |
/// find a minimum cost flow, which is the union of \c k or less |
343 | 345 |
/// arc-disjoint paths. |
344 | 346 |
/// |
345 | 347 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
346 | 348 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
347 | 349 |
/// arc-disjoint paths found. |
348 | 350 |
/// |
349 | 351 |
/// \pre \ref init() must be called before using this function. |
350 | 352 |
int findFlow(int k = 2) { |
351 | 353 |
// Find shortest paths |
352 | 354 |
_path_num = 0; |
353 | 355 |
while (_path_num < k) { |
354 | 356 |
// Run Dijkstra |
355 | 357 |
if (!_dijkstra->run()) break; |
356 | 358 |
++_path_num; |
357 | 359 |
|
358 | 360 |
// Set the flow along the found shortest path |
359 | 361 |
Node u = _target; |
360 | 362 |
Arc e; |
361 | 363 |
while ((e = _pred[u]) != INVALID) { |
362 | 364 |
if (u == _graph.target(e)) { |
363 | 365 |
(*_flow)[e] = 1; |
364 | 366 |
u = _graph.source(e); |
365 | 367 |
} else { |
366 | 368 |
(*_flow)[e] = 0; |
367 | 369 |
u = _graph.target(e); |
368 | 370 |
} |
369 | 371 |
} |
370 | 372 |
} |
371 | 373 |
return _path_num; |
372 | 374 |
} |
373 | 375 |
|
374 | 376 |
/// \brief Compute the paths from the flow. |
375 | 377 |
/// |
376 | 378 |
/// This function computes the paths from the flow. |
377 | 379 |
/// |
378 | 380 |
/// \pre \ref init() and \ref findFlow() must be called before using |
379 | 381 |
/// this function. |
380 | 382 |
void findPaths() { |
381 | 383 |
// Create the residual flow map (the union of the paths not found |
382 | 384 |
// so far) |
383 | 385 |
FlowMap res_flow(_graph); |
384 | 386 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
385 | 387 |
|
386 | 388 |
paths.clear(); |
387 | 389 |
paths.resize(_path_num); |
388 | 390 |
for (int i = 0; i < _path_num; ++i) { |
389 | 391 |
Node n = _source; |
390 | 392 |
while (n != _target) { |
391 | 393 |
OutArcIt e(_graph, n); |
392 | 394 |
for ( ; res_flow[e] == 0; ++e) ; |
393 | 395 |
n = _graph.target(e); |
394 | 396 |
paths[i].addBack(e); |
395 | 397 |
res_flow[e] = 0; |
396 | 398 |
} |
397 | 399 |
} |
398 | 400 |
} |
399 | 401 |
|
400 | 402 |
/// @} |
401 | 403 |
|
402 | 404 |
/// \name Query Functions |
403 | 405 |
/// The results of the algorithm can be obtained using these |
404 | 406 |
/// functions. |
405 | 407 |
/// \n The algorithm should be executed before using them. |
406 | 408 |
|
407 | 409 |
/// @{ |
408 | 410 |
|
409 | 411 |
/// \brief Return a const reference to the arc map storing the |
410 | 412 |
/// found flow. |
411 | 413 |
/// |
412 | 414 |
/// This function returns a const reference to the arc map storing |
413 | 415 |
/// the flow that is the union of the found arc-disjoint paths. |
414 | 416 |
/// |
415 | 417 |
/// \pre \ref run() or \ref findFlow() must be called before using |
416 | 418 |
/// this function. |
417 | 419 |
const FlowMap& flowMap() const { |
418 | 420 |
return *_flow; |
419 | 421 |
} |
420 | 422 |
|
421 | 423 |
/// \brief Return a const reference to the node map storing the |
422 | 424 |
/// found potentials (the dual solution). |
423 | 425 |
/// |
424 | 426 |
/// This function returns a const reference to the node map storing |
425 | 427 |
/// the found potentials that provide the dual solution of the |
426 | 428 |
/// underlying minimum cost flow problem. |
427 | 429 |
/// |
428 | 430 |
/// \pre \ref run() or \ref findFlow() must be called before using |
429 | 431 |
/// this function. |
430 | 432 |
const PotentialMap& potentialMap() const { |
431 | 433 |
return *_potential; |
432 | 434 |
} |
433 | 435 |
|
434 | 436 |
/// \brief Return the flow on the given arc. |
435 | 437 |
/// |
436 | 438 |
/// This function returns the flow on the given arc. |
437 | 439 |
/// It is \c 1 if the arc is involved in one of the found paths, |
438 | 440 |
/// otherwise it is \c 0. |
439 | 441 |
/// |
440 | 442 |
/// \pre \ref run() or \ref findFlow() must be called before using |
441 | 443 |
/// this function. |
442 | 444 |
int flow(const Arc& arc) const { |
443 | 445 |
return (*_flow)[arc]; |
444 | 446 |
} |
445 | 447 |
|
446 | 448 |
/// \brief Return the potential of the given node. |
447 | 449 |
/// |
448 | 450 |
/// This function returns the potential of the given node. |
449 | 451 |
/// |
450 | 452 |
/// \pre \ref run() or \ref findFlow() must be called before using |
451 | 453 |
/// this function. |
452 | 454 |
Length potential(const Node& node) const { |
453 | 455 |
return (*_potential)[node]; |
454 | 456 |
} |
455 | 457 |
|
456 | 458 |
/// \brief Return the total length (cost) of the found paths (flow). |
457 | 459 |
/// |
458 | 460 |
/// This function returns the total length (cost) of the found paths |
459 | 461 |
/// (flow). The complexity of the function is \f$ O(e) \f$. |
460 | 462 |
/// |
461 | 463 |
/// \pre \ref run() or \ref findFlow() must be called before using |
462 | 464 |
/// this function. |
463 | 465 |
Length totalLength() const { |
464 | 466 |
Length c = 0; |
465 | 467 |
for (ArcIt e(_graph); e != INVALID; ++e) |
466 | 468 |
c += (*_flow)[e] * _length[e]; |
467 | 469 |
return c; |
468 | 470 |
} |
469 | 471 |
|
470 | 472 |
/// \brief Return the number of the found paths. |
471 | 473 |
/// |
472 | 474 |
/// This function returns the number of the found paths. |
473 | 475 |
/// |
474 | 476 |
/// \pre \ref run() or \ref findFlow() must be called before using |
475 | 477 |
/// this function. |
476 | 478 |
int pathNum() const { |
477 | 479 |
return _path_num; |
478 | 480 |
} |
479 | 481 |
|
480 | 482 |
/// \brief Return a const reference to the specified path. |
481 | 483 |
/// |
482 | 484 |
/// This function returns a const reference to the specified path. |
483 | 485 |
/// |
484 | 486 |
/// \param i The function returns the \c i-th path. |
485 | 487 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
486 | 488 |
/// |
487 | 489 |
/// \pre \ref run() or \ref findPaths() must be called before using |
488 | 490 |
/// this function. |
489 | 491 |
Path path(int i) const { |
490 | 492 |
return paths[i]; |
491 | 493 |
} |
492 | 494 |
|
493 | 495 |
/// @} |
494 | 496 |
|
495 | 497 |
}; //class Suurballe |
496 | 498 |
|
497 | 499 |
///@} |
498 | 500 |
|
499 | 501 |
} //namespace lemon |
500 | 502 |
|
501 | 503 |
#endif //LEMON_SUURBALLE_H |
0 comments (0 inline)