... | ... |
@@ -1056,49 +1056,49 @@ |
1056 | 1056 |
|
1057 | 1057 |
// Remove non-zero lower bounds |
1058 | 1058 |
if (_have_lower) { |
1059 | 1059 |
for (int i = 0; i != _arc_num; ++i) { |
1060 | 1060 |
Value c = _lower[i]; |
1061 | 1061 |
if (c >= 0) { |
1062 | 1062 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1063 | 1063 |
} else { |
1064 | 1064 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1065 | 1065 |
} |
1066 | 1066 |
_supply[_source[i]] -= c; |
1067 | 1067 |
_supply[_target[i]] += c; |
1068 | 1068 |
} |
1069 | 1069 |
} else { |
1070 | 1070 |
for (int i = 0; i != _arc_num; ++i) { |
1071 | 1071 |
_cap[i] = _upper[i]; |
1072 | 1072 |
} |
1073 | 1073 |
} |
1074 | 1074 |
|
1075 | 1075 |
// Initialize artifical cost |
1076 | 1076 |
Cost ART_COST; |
1077 | 1077 |
if (std::numeric_limits<Cost>::is_exact) { |
1078 | 1078 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1079 | 1079 |
} else { |
1080 |
ART_COST = |
|
1080 |
ART_COST = 0; |
|
1081 | 1081 |
for (int i = 0; i != _arc_num; ++i) { |
1082 | 1082 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1083 | 1083 |
} |
1084 | 1084 |
ART_COST = (ART_COST + 1) * _node_num; |
1085 | 1085 |
} |
1086 | 1086 |
|
1087 | 1087 |
// Initialize arc maps |
1088 | 1088 |
for (int i = 0; i != _arc_num; ++i) { |
1089 | 1089 |
_flow[i] = 0; |
1090 | 1090 |
_state[i] = STATE_LOWER; |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
// Set data for the artificial root node |
1094 | 1094 |
_root = _node_num; |
1095 | 1095 |
_parent[_root] = -1; |
1096 | 1096 |
_pred[_root] = -1; |
1097 | 1097 |
_thread[_root] = 0; |
1098 | 1098 |
_rev_thread[0] = _root; |
1099 | 1099 |
_succ_num[_root] = _node_num + 1; |
1100 | 1100 |
_last_succ[_root] = _root - 1; |
1101 | 1101 |
_supply[_root] = -_sum_supply; |
1102 | 1102 |
_pi[_root] = 0; |
1103 | 1103 |
|
1104 | 1104 |
// Add artificial arcs and initialize the spanning tree data structure |
... | ... |
@@ -1568,49 +1568,49 @@ |
1568 | 1568 |
} |
1569 | 1569 |
} |
1570 | 1570 |
|
1571 | 1571 |
// Check feasibility |
1572 | 1572 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1573 | 1573 |
if (_flow[e] != 0) return INFEASIBLE; |
1574 | 1574 |
} |
1575 | 1575 |
|
1576 | 1576 |
// Transform the solution and the supply map to the original form |
1577 | 1577 |
if (_have_lower) { |
1578 | 1578 |
for (int i = 0; i != _arc_num; ++i) { |
1579 | 1579 |
Value c = _lower[i]; |
1580 | 1580 |
if (c != 0) { |
1581 | 1581 |
_flow[i] += c; |
1582 | 1582 |
_supply[_source[i]] += c; |
1583 | 1583 |
_supply[_target[i]] -= c; |
1584 | 1584 |
} |
1585 | 1585 |
} |
1586 | 1586 |
} |
1587 | 1587 |
|
1588 | 1588 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1589 | 1589 |
// optimality conditions |
1590 | 1590 |
if (_sum_supply == 0) { |
1591 | 1591 |
if (_stype == GEQ) { |
1592 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
1592 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
1593 | 1593 |
for (int i = 0; i != _node_num; ++i) { |
1594 | 1594 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1595 | 1595 |
} |
1596 | 1596 |
if (max_pot > 0) { |
1597 | 1597 |
for (int i = 0; i != _node_num; ++i) |
1598 | 1598 |
_pi[i] -= max_pot; |
1599 | 1599 |
} |
1600 | 1600 |
} else { |
1601 | 1601 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1602 | 1602 |
for (int i = 0; i != _node_num; ++i) { |
1603 | 1603 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1604 | 1604 |
} |
1605 | 1605 |
if (min_pot < 0) { |
1606 | 1606 |
for (int i = 0; i != _node_num; ++i) |
1607 | 1607 |
_pi[i] -= min_pot; |
1608 | 1608 |
} |
1609 | 1609 |
} |
1610 | 1610 |
} |
1611 | 1611 |
|
1612 | 1612 |
return OPTIMAL; |
1613 | 1613 |
} |
1614 | 1614 |
|
1615 | 1615 |
}; //class NetworkSimplex |
1616 | 1616 |
|
0 comments (0 inline)