0
15
0
3
2
42
22
10
10
19
19
1
1
348
520
21
21
161
105
| 1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
| 2 | 2 |
|
| 3 | 3 |
IF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
|
| 4 | 4 |
INCLUDE(${CMAKE_SOURCE_DIR}/cmake/version.cmake)
|
| 5 | 5 |
ELSE(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
|
| 6 | 6 |
SET(PROJECT_NAME "LEMON") |
| 7 | 7 |
SET(PROJECT_VERSION "hg-tip" CACHE STRING "LEMON version string.") |
| 8 | 8 |
ENDIF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
|
| 9 | 9 |
|
| 10 | 10 |
PROJECT(${PROJECT_NAME})
|
| 11 | 11 |
|
| 12 | 12 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
|
| 13 | 13 |
|
| 14 | 14 |
INCLUDE(FindDoxygen) |
| 15 | 15 |
INCLUDE(FindGhostscript) |
| 16 | 16 |
FIND_PACKAGE(GLPK 4.33) |
| 17 | 17 |
FIND_PACKAGE(CPLEX) |
| 18 | 18 |
FIND_PACKAGE(COIN) |
| 19 | 19 |
|
| 20 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
| 21 |
|
|
| 22 | 20 |
IF(MSVC) |
| 23 | 21 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996")
|
| 24 | 22 |
# Suppressed warnings: |
| 25 | 23 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
| 26 | 24 |
# C4355: 'this' : used in base member initializer list |
| 27 | 25 |
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
| 28 | 26 |
# C4996: 'function': was declared deprecated |
| 29 | 27 |
ENDIF(MSVC) |
| 30 | 28 |
|
| 31 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
| 32 |
|
|
| 33 | 29 |
INCLUDE(CheckTypeSize) |
| 34 | 30 |
CHECK_TYPE_SIZE("long long" LEMON_LONG_LONG)
|
| 35 | 31 |
|
| 36 | 32 |
ENABLE_TESTING() |
| 37 | 33 |
|
| 38 | 34 |
ADD_SUBDIRECTORY(lemon) |
| 39 | 35 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 40 | 36 |
ADD_SUBDIRECTORY(demo) |
| 41 | 37 |
ADD_SUBDIRECTORY(tools) |
| 42 | 38 |
ADD_SUBDIRECTORY(doc) |
| 43 | 39 |
ADD_SUBDIRECTORY(test) |
| 44 | 40 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 45 | 41 |
|
| 46 | 42 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 47 | 43 |
IF(WIN32) |
| 48 | 44 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME})
|
| 49 | 45 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
| 50 | 46 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
| 51 | 47 |
"LEMON - Library of Efficient Models and Optimization in Networks") |
| 52 | 48 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
|
| 53 | 49 |
|
| 54 | 50 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
|
| 55 | 51 |
|
| 56 | 52 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
| 57 | 53 |
"${PROJECT_NAME} ${PROJECT_VERSION}")
|
| 58 | 54 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
| 59 | 55 |
"${PROJECT_NAME} ${PROJECT_VERSION}")
|
| 60 | 56 |
|
| 61 | 57 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
| 62 | 58 |
|
| 63 | 59 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
| 64 | 60 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
| 65 | 61 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
| 66 | 62 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
| 67 | 63 |
|
| 68 | 64 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
| 69 | 65 |
"C++ header files") |
| 70 | 66 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
| 71 | 67 |
"DLL and import library") |
| 72 | 68 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
| 73 | 69 |
"Command line utilities") |
| 74 | 70 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
| 75 | 71 |
"Doxygen generated documentation") |
| 76 | 72 |
|
| 77 | 73 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
| 78 | 74 |
|
| 79 | 75 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
| 80 | 76 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
| 81 | 77 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
| 82 | 78 |
|
| 83 | 79 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
| 84 | 80 |
"Components needed to develop software using LEMON") |
| 85 | 81 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
| 86 | 82 |
"Documentation of LEMON") |
| 87 | 83 |
|
| 88 | 84 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
| 89 | 85 |
|
| 90 | 86 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
| 91 | 87 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
| 92 | 88 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
| 93 | 89 |
|
| 94 | 90 |
SET(CPACK_GENERATOR "NSIS") |
| 95 | 91 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico")
|
| 96 | 92 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico")
|
| 97 | 93 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp")
|
| 98 | 94 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
| 99 | 95 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}")
|
| 100 | 96 |
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu") |
| 101 | 97 |
SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu") |
| 102 | 98 |
SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu") |
| 103 | 99 |
SET(CPACK_NSIS_CREATE_ICONS_EXTRA " |
| 104 | 100 |
CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\" |
| 105 | 101 |
") |
| 106 | 102 |
SET(CPACK_NSIS_DELETE_ICONS_EXTRA " |
| 107 | 103 |
!insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP |
| 108 | 104 |
Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\" |
| 109 | 105 |
") |
| 110 | 106 |
|
| 111 | 107 |
INCLUDE(CPack) |
| 112 | 108 |
ENDIF(WIN32) |
| 113 | 109 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 1 | 1 |
ACLOCAL_AMFLAGS = -I m4 |
| 2 | 2 |
|
| 3 | 3 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
| 4 | 4 |
|
| 5 | 5 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
| 6 | 6 |
LDADD = $(top_builddir)/lemon/libemon.la |
| 7 | 7 |
|
| 8 | 8 |
EXTRA_DIST = \ |
| 9 | 9 |
AUTHORS \ |
| 10 | 10 |
LICENSE \ |
| 11 | 11 |
m4/lx_check_cplex.m4 \ |
| 12 | 12 |
m4/lx_check_glpk.m4 \ |
| 13 | 13 |
m4/lx_check_soplex.m4 \ |
| 14 |
m4/lx_check_clp.m4 \ |
|
| 15 |
m4/lx_check_cbc.m4 \ |
|
| 14 |
m4/lx_check_coin.m4 \ |
|
| 16 | 15 |
CMakeLists.txt \ |
| 17 | 16 |
cmake/FindGhostscript.cmake \ |
| 17 |
cmake/FindCPLEX.cmake \ |
|
| 18 | 18 |
cmake/FindGLPK.cmake \ |
| 19 |
cmake/FindCOIN.cmake \ |
|
| 19 | 20 |
cmake/version.cmake.in \ |
| 20 | 21 |
cmake/version.cmake \ |
| 21 | 22 |
cmake/nsis/lemon.ico \ |
| 22 | 23 |
cmake/nsis/uninstall.ico |
| 23 | 24 |
|
| 24 | 25 |
pkgconfigdir = $(libdir)/pkgconfig |
| 25 | 26 |
lemondir = $(pkgincludedir) |
| 26 | 27 |
bitsdir = $(lemondir)/bits |
| 27 | 28 |
conceptdir = $(lemondir)/concepts |
| 28 | 29 |
pkgconfig_DATA = |
| 29 | 30 |
lib_LTLIBRARIES = |
| 30 | 31 |
lemon_HEADERS = |
| 31 | 32 |
bits_HEADERS = |
| 32 | 33 |
concept_HEADERS = |
| 33 | 34 |
noinst_HEADERS = |
| 34 | 35 |
noinst_PROGRAMS = |
| 35 | 36 |
bin_PROGRAMS = |
| 36 | 37 |
check_PROGRAMS = |
| 37 | 38 |
dist_bin_SCRIPTS = |
| 38 | 39 |
TESTS = |
| 39 | 40 |
XFAIL_TESTS = |
| 40 | 41 |
|
| 41 | 42 |
include lemon/Makefile.am |
| 42 | 43 |
include test/Makefile.am |
| 43 | 44 |
include doc/Makefile.am |
| 44 | 45 |
include tools/Makefile.am |
| 45 | 46 |
|
| 46 | 47 |
DIST_SUBDIRS = demo |
| 47 | 48 |
|
| 48 | 49 |
demo: |
| 49 | 50 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
| 50 | 51 |
|
| 51 | 52 |
MRPROPERFILES = \ |
| 52 | 53 |
aclocal.m4 \ |
| 53 | 54 |
config.h.in \ |
| 54 | 55 |
config.h.in~ \ |
| 55 | 56 |
configure \ |
| 56 | 57 |
Makefile.in \ |
| 57 | 58 |
build-aux/config.guess \ |
| 58 | 59 |
build-aux/config.sub \ |
| 59 | 60 |
build-aux/depcomp \ |
| 60 | 61 |
build-aux/install-sh \ |
| 61 | 62 |
build-aux/ltmain.sh \ |
| 62 | 63 |
build-aux/missing \ |
| 63 | 64 |
doc/doxygen.log |
| 64 | 65 |
|
| 65 | 66 |
mrproper: |
| 66 | 67 |
$(MAKE) $(AM_MAKEFLAGS) maintainer-clean |
| 67 | 68 |
-rm -f $(MRPROPERFILES) |
| 68 | 69 |
|
| 69 | 70 |
dist-bz2: dist |
| 70 | 71 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
| 71 | 72 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
| 72 | 73 |
|
| 73 | 74 |
distcheck-bz2: distcheck |
| 74 | 75 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
| 75 | 76 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
| 76 | 77 |
|
| 77 | 78 |
.PHONY: demo mrproper dist-bz2 distcheck-bz2 |
| 1 | 1 |
SET(COIN_ROOT_DIR "" CACHE PATH "COIN root directory") |
| 2 | 2 |
|
| 3 | 3 |
FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h |
| 4 |
PATHS ${COIN_ROOT_DIR}/include)
|
|
| 5 |
|
|
| 6 |
FIND_LIBRARY(COIN_CBC_LIBRARY libCbc |
|
| 7 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 8 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver |
|
| 9 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 10 |
FIND_LIBRARY(COIN_CGL_LIBRARY libCgl |
|
| 11 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 12 |
FIND_LIBRARY(COIN_CLP_LIBRARY libClp |
|
| 13 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 14 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils |
|
| 15 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 16 |
FIND_LIBRARY(COIN_OSI_LIBRARY libOsi |
|
| 17 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 18 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc |
|
| 19 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 20 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp |
|
| 21 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 22 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol |
|
| 23 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 24 |
FIND_LIBRARY(COIN_VOL_LIBRARY libVol |
|
| 25 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 4 |
HINTS ${COIN_ROOT_DIR}/include
|
|
| 5 |
) |
|
| 6 |
FIND_LIBRARY(COIN_CBC_LIBRARY |
|
| 7 |
NAMES Cbc libCbc |
|
| 8 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 9 |
) |
|
| 10 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY |
|
| 11 |
NAMES CbcSolver libCbcSolver |
|
| 12 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 13 |
) |
|
| 14 |
FIND_LIBRARY(COIN_CGL_LIBRARY |
|
| 15 |
NAMES Cgl libCgl |
|
| 16 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 17 |
) |
|
| 18 |
FIND_LIBRARY(COIN_CLP_LIBRARY |
|
| 19 |
NAMES Clp libClp |
|
| 20 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 21 |
) |
|
| 22 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY |
|
| 23 |
NAMES CoinUtils libCoinUtils |
|
| 24 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 25 |
) |
|
| 26 |
FIND_LIBRARY(COIN_OSI_LIBRARY |
|
| 27 |
NAMES Osi libOsi |
|
| 28 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 29 |
) |
|
| 30 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY |
|
| 31 |
NAMES OsiCbc libOsiCbc |
|
| 32 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 33 |
) |
|
| 34 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY |
|
| 35 |
NAMES OsiClp libOsiClp |
|
| 36 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 37 |
) |
|
| 38 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY |
|
| 39 |
NAMES OsiVol libOsiVol |
|
| 40 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 41 |
) |
|
| 42 |
FIND_LIBRARY(COIN_VOL_LIBRARY |
|
| 43 |
NAMES Vol libVol |
|
| 44 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 45 |
) |
|
| 26 | 46 |
|
| 27 | 47 |
INCLUDE(FindPackageHandleStandardArgs) |
| 28 | 48 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(COIN DEFAULT_MSG |
| 29 | 49 |
COIN_INCLUDE_DIR |
| 30 | 50 |
COIN_CBC_LIBRARY |
| 31 | 51 |
COIN_CBC_SOLVER_LIBRARY |
| 32 | 52 |
COIN_CGL_LIBRARY |
| 33 | 53 |
COIN_CLP_LIBRARY |
| 34 | 54 |
COIN_COIN_UTILS_LIBRARY |
| 35 | 55 |
COIN_OSI_LIBRARY |
| 36 | 56 |
COIN_OSI_CBC_LIBRARY |
| 37 | 57 |
COIN_OSI_CLP_LIBRARY |
| 38 | 58 |
COIN_OSI_VOL_LIBRARY |
| 39 | 59 |
COIN_VOL_LIBRARY |
| 40 | 60 |
) |
| 41 | 61 |
|
| 42 | 62 |
IF(COIN_FOUND) |
| 43 | 63 |
SET(COIN_INCLUDE_DIRS ${COIN_INCLUDE_DIR})
|
| 44 | 64 |
SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY};${COIN_OSI_VOL_LIBRARY};${COIN_VOL_LIBRARY}")
|
| 45 | 65 |
SET(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY}")
|
| 46 | 66 |
SET(COIN_CBC_LIBRARIES ${COIN_LIBRARIES})
|
| 47 | 67 |
ENDIF(COIN_FOUND) |
| 48 | 68 |
|
| 49 | 69 |
MARK_AS_ADVANCED( |
| 50 | 70 |
COIN_INCLUDE_DIR |
| 51 | 71 |
COIN_CBC_LIBRARY |
| 52 | 72 |
COIN_CBC_SOLVER_LIBRARY |
| 53 | 73 |
COIN_CGL_LIBRARY |
| 54 | 74 |
COIN_CLP_LIBRARY |
| 55 | 75 |
COIN_COIN_UTILS_LIBRARY |
| 56 | 76 |
COIN_OSI_LIBRARY |
| 57 | 77 |
COIN_OSI_CBC_LIBRARY |
| 58 | 78 |
COIN_OSI_CLP_LIBRARY |
| 59 | 79 |
COIN_OSI_VOL_LIBRARY |
| 60 | 80 |
COIN_VOL_LIBRARY |
| 61 | 81 |
) |
| 62 | 82 |
|
| 63 | 83 |
IF(COIN_FOUND) |
| 64 | 84 |
SET(LEMON_HAVE_LP TRUE) |
| 65 | 85 |
SET(LEMON_HAVE_MIP TRUE) |
| 66 | 86 |
SET(LEMON_HAVE_CLP TRUE) |
| 67 | 87 |
SET(LEMON_HAVE_CBC TRUE) |
| 68 | 88 |
ENDIF(COIN_FOUND) |
| 1 |
SET(CPLEX_ROOT_DIR "" CACHE PATH "CPLEX root directory") |
|
| 2 |
|
|
| 1 | 3 |
FIND_PATH(CPLEX_INCLUDE_DIR |
| 2 | 4 |
ilcplex/cplex.h |
| 3 |
PATHS "C:/ILOG/CPLEX91/include") |
|
| 4 |
|
|
| 5 |
PATHS "C:/ILOG/CPLEX91/include" |
|
| 6 |
PATHS "/opt/ilog/cplex91/include" |
|
| 7 |
HINTS ${CPLEX_ROOT_DIR}/include
|
|
| 8 |
) |
|
| 5 | 9 |
FIND_LIBRARY(CPLEX_LIBRARY |
| 6 |
NAMES cplex91 |
|
| 7 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda") |
|
| 10 |
cplex91 |
|
| 11 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda" |
|
| 12 |
PATHS "/opt/ilog/cplex91/bin" |
|
| 13 |
HINTS ${CPLEX_ROOT_DIR}/bin
|
|
| 14 |
) |
|
| 8 | 15 |
|
| 9 | 16 |
INCLUDE(FindPackageHandleStandardArgs) |
| 10 | 17 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(CPLEX DEFAULT_MSG CPLEX_LIBRARY CPLEX_INCLUDE_DIR) |
| 11 | 18 |
|
| 12 | 19 |
FIND_PATH(CPLEX_BIN_DIR |
| 13 | 20 |
cplex91.dll |
| 14 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
| 21 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
| 22 |
) |
|
| 15 | 23 |
|
| 16 | 24 |
IF(CPLEX_FOUND) |
| 17 | 25 |
SET(CPLEX_INCLUDE_DIRS ${CPLEX_INCLUDE_DIR})
|
| 18 | 26 |
SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY})
|
| 27 |
IF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
| 28 |
SET(CPLEX_LIBRARIES "${CPLEX_LIBRARIES};m;pthread")
|
|
| 29 |
ENDIF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
| 19 | 30 |
ENDIF(CPLEX_FOUND) |
| 20 | 31 |
|
| 21 | 32 |
MARK_AS_ADVANCED(CPLEX_LIBRARY CPLEX_INCLUDE_DIR CPLEX_BIN_DIR) |
| 22 | 33 |
|
| 23 | 34 |
IF(CPLEX_FOUND) |
| 24 | 35 |
SET(LEMON_HAVE_LP TRUE) |
| 25 | 36 |
SET(LEMON_HAVE_MIP TRUE) |
| 26 | 37 |
SET(LEMON_HAVE_CPLEX TRUE) |
| 27 | 38 |
ENDIF(CPLEX_FOUND) |
| 1 |
SET(GLPK_ROOT_DIR "" CACHE PATH "GLPK root directory") |
|
| 2 |
|
|
| 1 | 3 |
SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]") |
| 2 | 4 |
GET_FILENAME_COMPONENT(GLPK_ROOT_PATH ${GLPK_REGKEY} ABSOLUTE)
|
| 3 | 5 |
|
| 4 | 6 |
FIND_PATH(GLPK_INCLUDE_DIR |
| 5 | 7 |
glpk.h |
| 6 |
PATHS ${GLPK_REGKEY}/include
|
|
| 8 |
PATHS ${GLPK_REGKEY}/include
|
|
| 9 |
HINTS ${GLPK_ROOT_DIR}/include
|
|
| 10 |
) |
|
| 11 |
FIND_LIBRARY(GLPK_LIBRARY |
|
| 12 |
glpk |
|
| 13 |
PATHS ${GLPK_REGKEY}/lib
|
|
| 14 |
HINTS ${GLPK_ROOT_DIR}/lib
|
|
| 15 |
) |
|
| 7 | 16 |
|
| 8 |
FIND_LIBRARY(GLPK_LIBRARY |
|
| 9 |
NAMES glpk |
|
| 10 |
|
|
| 17 |
IF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
| 18 |
FILE(READ ${GLPK_INCLUDE_DIR}/glpk.h GLPK_GLPK_H)
|
|
| 19 |
|
|
| 20 |
STRING(REGEX MATCH "define[ ]+GLP_MAJOR_VERSION[ ]+[0-9]+" GLPK_MAJOR_VERSION_LINE "${GLPK_GLPK_H}")
|
|
| 21 |
STRING(REGEX REPLACE "define[ ]+GLP_MAJOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MAJOR "${GLPK_MAJOR_VERSION_LINE}")
|
|
| 22 |
|
|
| 23 |
STRING(REGEX MATCH "define[ ]+GLP_MINOR_VERSION[ ]+[0-9]+" GLPK_MINOR_VERSION_LINE "${GLPK_GLPK_H}")
|
|
| 24 |
STRING(REGEX REPLACE "define[ ]+GLP_MINOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MINOR "${GLPK_MINOR_VERSION_LINE}")
|
|
| 25 |
|
|
| 26 |
SET(GLPK_VERSION_STRING "${GLPK_VERSION_MAJOR}.${GLPK_VERSION_MINOR}")
|
|
| 27 |
|
|
| 28 |
IF(GLPK_FIND_VERSION) |
|
| 29 |
IF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
| 30 |
MESSAGE(SEND_ERROR "unexpected version string") |
|
| 31 |
ENDIF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
| 32 |
|
|
| 33 |
MATH(EXPR GLPK_REQUESTED_VERSION "${GLPK_FIND_VERSION_MAJOR}*100 + ${GLPK_FIND_VERSION_MINOR}")
|
|
| 34 |
MATH(EXPR GLPK_FOUND_VERSION "${GLPK_VERSION_MAJOR}*100 + ${GLPK_VERSION_MINOR}")
|
|
| 35 |
|
|
| 36 |
IF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 37 |
SET(GLPK_PROPER_VERSION_FOUND FALSE) |
|
| 38 |
ELSE(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 39 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
| 40 |
ENDIF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 41 |
ELSE(GLPK_FIND_VERSION) |
|
| 42 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
| 43 |
ENDIF(GLPK_FIND_VERSION) |
|
| 44 |
ENDIF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
| 11 | 45 |
|
| 12 | 46 |
INCLUDE(FindPackageHandleStandardArgs) |
| 13 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR) |
|
| 47 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_PROPER_VERSION_FOUND) |
|
| 14 | 48 |
|
| 15 | 49 |
IF(GLPK_FOUND) |
| 16 | 50 |
SET(GLPK_INCLUDE_DIRS ${GLPK_INCLUDE_DIR})
|
| 17 | 51 |
SET(GLPK_LIBRARIES ${GLPK_LIBRARY})
|
| 18 | 52 |
SET(GLPK_BIN_DIR ${GLPK_ROOT_PATH}/bin)
|
| 19 | 53 |
ENDIF(GLPK_FOUND) |
| 20 | 54 |
|
| 21 | 55 |
MARK_AS_ADVANCED(GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_BIN_DIR) |
| 22 | 56 |
|
| 23 | 57 |
IF(GLPK_FOUND) |
| 24 | 58 |
SET(LEMON_HAVE_LP TRUE) |
| 25 | 59 |
SET(LEMON_HAVE_MIP TRUE) |
| 26 | 60 |
SET(LEMON_HAVE_GLPK TRUE) |
| 27 | 61 |
ENDIF(GLPK_FOUND) |
| ... | ... |
@@ -163,454 +163,454 @@ |
| 163 | 163 |
/** |
| 164 | 164 |
@defgroup graph_maps Graph Maps |
| 165 | 165 |
@ingroup maps |
| 166 | 166 |
\brief Special graph-related maps. |
| 167 | 167 |
|
| 168 | 168 |
This group contains maps that are specifically designed to assign |
| 169 | 169 |
values to the nodes and arcs/edges of graphs. |
| 170 | 170 |
|
| 171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 173 | 173 |
*/ |
| 174 | 174 |
|
| 175 | 175 |
/** |
| 176 | 176 |
\defgroup map_adaptors Map Adaptors |
| 177 | 177 |
\ingroup maps |
| 178 | 178 |
\brief Tools to create new maps from existing ones |
| 179 | 179 |
|
| 180 | 180 |
This group contains map adaptors that are used to create "implicit" |
| 181 | 181 |
maps from other maps. |
| 182 | 182 |
|
| 183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 184 | 184 |
They can make arithmetic and logical operations between one or two maps |
| 185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 187 | 187 |
|
| 188 | 188 |
The typical usage of this classes is passing implicit maps to |
| 189 | 189 |
algorithms. If a function type algorithm is called then the function |
| 190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
| 191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
| 192 | 192 |
\code |
| 193 | 193 |
Color nodeColor(int deg) {
|
| 194 | 194 |
if (deg >= 2) {
|
| 195 | 195 |
return Color(0.5, 0.0, 0.5); |
| 196 | 196 |
} else if (deg == 1) {
|
| 197 | 197 |
return Color(1.0, 0.5, 1.0); |
| 198 | 198 |
} else {
|
| 199 | 199 |
return Color(0.0, 0.0, 0.0); |
| 200 | 200 |
} |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
| 204 | 204 |
|
| 205 | 205 |
graphToEps(graph, "graph.eps") |
| 206 | 206 |
.coords(coords).scaleToA4().undirected() |
| 207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 208 | 208 |
.run(); |
| 209 | 209 |
\endcode |
| 210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 212 | 212 |
and the previously created map. The composed map is a proper function to |
| 213 | 213 |
get the color of each node. |
| 214 | 214 |
|
| 215 | 215 |
The usage with class type algorithms is little bit harder. In this |
| 216 | 216 |
case the function type map adaptors can not be used, because the |
| 217 | 217 |
function map adaptors give back temporary objects. |
| 218 | 218 |
\code |
| 219 | 219 |
Digraph graph; |
| 220 | 220 |
|
| 221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 222 | 222 |
DoubleArcMap length(graph); |
| 223 | 223 |
DoubleArcMap speed(graph); |
| 224 | 224 |
|
| 225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 226 | 226 |
TimeMap time(length, speed); |
| 227 | 227 |
|
| 228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 229 | 229 |
dijkstra.run(source, target); |
| 230 | 230 |
\endcode |
| 231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
| 233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
| 234 | 234 |
class. We use the implicit minimum time map as the length map of the |
| 235 | 235 |
\c Dijkstra algorithm. |
| 236 | 236 |
*/ |
| 237 | 237 |
|
| 238 | 238 |
/** |
| 239 | 239 |
@defgroup matrices Matrices |
| 240 | 240 |
@ingroup datas |
| 241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
| 242 | 242 |
|
| 243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
| 244 | 244 |
*/ |
| 245 | 245 |
|
| 246 | 246 |
/** |
| 247 | 247 |
@defgroup paths Path Structures |
| 248 | 248 |
@ingroup datas |
| 249 | 249 |
\brief %Path structures implemented in LEMON. |
| 250 | 250 |
|
| 251 | 251 |
This group contains the path structures implemented in LEMON. |
| 252 | 252 |
|
| 253 | 253 |
LEMON provides flexible data structures to work with paths. |
| 254 | 254 |
All of them have similar interfaces and they can be copied easily with |
| 255 | 255 |
assignment operators and copy constructors. This makes it easy and |
| 256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 257 | 257 |
any kind of path structure. |
| 258 | 258 |
|
| 259 | 259 |
\sa lemon::concepts::Path |
| 260 | 260 |
*/ |
| 261 | 261 |
|
| 262 | 262 |
/** |
| 263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
| 264 | 264 |
@ingroup datas |
| 265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
| 266 | 266 |
|
| 267 | 267 |
This group contains some data structures implemented in LEMON in |
| 268 | 268 |
order to make it easier to implement combinatorial algorithms. |
| 269 | 269 |
*/ |
| 270 | 270 |
|
| 271 | 271 |
/** |
| 272 | 272 |
@defgroup algs Algorithms |
| 273 | 273 |
\brief This group contains the several algorithms |
| 274 | 274 |
implemented in LEMON. |
| 275 | 275 |
|
| 276 | 276 |
This group contains the several algorithms |
| 277 | 277 |
implemented in LEMON. |
| 278 | 278 |
*/ |
| 279 | 279 |
|
| 280 | 280 |
/** |
| 281 | 281 |
@defgroup search Graph Search |
| 282 | 282 |
@ingroup algs |
| 283 | 283 |
\brief Common graph search algorithms. |
| 284 | 284 |
|
| 285 | 285 |
This group contains the common graph search algorithms, namely |
| 286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 287 | 287 |
*/ |
| 288 | 288 |
|
| 289 | 289 |
/** |
| 290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
| 291 | 291 |
@ingroup algs |
| 292 | 292 |
\brief Algorithms for finding shortest paths. |
| 293 | 293 |
|
| 294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
| 295 | 295 |
|
| 296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 297 | 297 |
when all arc lengths are non-negative. |
| 298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
| 300 | 300 |
but the digraph should not contain directed cycles with negative total |
| 301 | 301 |
length. |
| 302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 304 | 304 |
lenghts can be either positive or negative, but the digraph should |
| 305 | 305 |
not contain directed cycles with negative total length. |
| 306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
| 308 | 308 |
*/ |
| 309 | 309 |
|
| 310 | 310 |
/** |
| 311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
| 312 | 312 |
@ingroup algs |
| 313 | 313 |
\brief Algorithms for finding maximum flows. |
| 314 | 314 |
|
| 315 | 315 |
This group contains the algorithms for finding maximum flows and |
| 316 | 316 |
feasible circulations. |
| 317 | 317 |
|
| 318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 320 | 320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
| 322 | 322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 323 | 323 |
following optimization problem. |
| 324 | 324 |
|
| 325 | 325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 326 | 326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 327 | 327 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 328 | 328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 329 | 329 |
|
| 330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
| 331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 335 | 335 |
|
| 336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 337 | 337 |
fastest method for computing a maximum flow. All implementations |
| 338 | 338 |
provides functions to also query the minimum cut, which is the dual |
| 339 | 339 |
problem of the maximum flow. |
| 340 | 340 |
*/ |
| 341 | 341 |
|
| 342 | 342 |
/** |
| 343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
| 344 | 344 |
@ingroup algs |
| 345 | 345 |
|
| 346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 347 | 347 |
|
| 348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
| 349 | 349 |
circulations. |
| 350 | 350 |
|
| 351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 | 353 |
in a network with capacity constraints (lower and upper bounds) |
| 354 | 354 |
and arc costs. |
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
| 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
|
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
|
|
| 356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
|
|
| 357 | 357 |
upper bounds for the flow values on the arcs, for which |
| 358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
|
| 360 |
|
|
| 358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
|
|
| 360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 361 | 361 |
signed supply values of the nodes. |
| 362 | 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 363 | 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 364 | 364 |
\f$-sup(u)\f$ demand. |
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}
|
|
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
|
|
| 366 | 366 |
of the following optimization problem. |
| 367 | 367 |
|
| 368 | 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 369 | 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 370 | 370 |
sup(u) \quad \forall u\in V \f] |
| 371 | 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 372 | 372 |
|
| 373 | 373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 374 | 374 |
zero or negative in order to have a feasible solution (since the sum |
| 375 | 375 |
of the expressions on the left-hand side of the inequalities is zero). |
| 376 | 376 |
It means that the total demand must be greater or equal to the total |
| 377 | 377 |
supply and all the supplies have to be carried out from the supply nodes, |
| 378 | 378 |
but there could be demands that are not satisfied. |
| 379 | 379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 380 | 380 |
constraints have to be satisfied with equality, i.e. all demands |
| 381 | 381 |
have to be satisfied and all supplies have to be used. |
| 382 | 382 |
|
| 383 | 383 |
If you need the opposite inequalities in the supply/demand constraints |
| 384 | 384 |
(i.e. the total demand is less than the total supply and all the demands |
| 385 | 385 |
have to be satisfied while there could be supplies that are not used), |
| 386 | 386 |
then you could easily transform the problem to the above form by reversing |
| 387 | 387 |
the direction of the arcs and taking the negative of the supply values |
| 388 | 388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 389 | 389 |
However \ref NetworkSimplex algorithm also supports this form directly |
| 390 | 390 |
for the sake of convenience. |
| 391 | 391 |
|
| 392 | 392 |
A feasible solution for this problem can be found using \ref Circulation. |
| 393 | 393 |
|
| 394 | 394 |
Note that the above formulation is actually more general than the usual |
| 395 | 395 |
definition of the minimum cost flow problem, in which strict equalities |
| 396 | 396 |
are required in the supply/demand contraints, i.e. |
| 397 | 397 |
|
| 398 | 398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
| 399 | 399 |
sup(u) \quad \forall u\in V. \f] |
| 400 | 400 |
|
| 401 | 401 |
However if the sum of the supply values is zero, then these two problems |
| 402 | 402 |
are equivalent. So if you need the equality form, you have to ensure this |
| 403 | 403 |
additional contraint for the algorithms. |
| 404 | 404 |
|
| 405 | 405 |
The dual solution of the minimum cost flow problem is represented by node |
| 406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}
|
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
|
|
| 408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
| 409 | 409 |
node potentials the following \e complementary \e slackness optimality |
| 410 | 410 |
conditions hold. |
| 411 | 411 |
|
| 412 | 412 |
- For all \f$uv\in A\f$ arcs: |
| 413 | 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 414 | 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 416 |
- For all \f$u\in V\f$: |
|
| 416 |
- For all \f$u\in V\f$ nodes: |
|
| 417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 418 | 418 |
then \f$\pi(u)=0\f$. |
| 419 | 419 |
|
| 420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 421 |
\f$uv\in A\f$ with respect to the |
|
| 421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
| 422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 423 | 423 |
|
| 424 |
All algorithms provide dual solution (node potentials) as well |
|
| 424 |
All algorithms provide dual solution (node potentials) as well, |
|
| 425 | 425 |
if an optimal flow is found. |
| 426 | 426 |
|
| 427 | 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
| 428 | 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 429 | 429 |
pivot strategies. |
| 430 | 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 431 | 431 |
cost scaling. |
| 432 | 432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 433 | 433 |
capacity scaling. |
| 434 | 434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
| 435 | 435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
| 436 | 436 |
|
| 437 | 437 |
Most of these implementations support the general inequality form of the |
| 438 | 438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
| 439 | 439 |
only support the equality form due to the primal method they use. |
| 440 | 440 |
|
| 441 | 441 |
In general NetworkSimplex is the most efficient implementation, |
| 442 | 442 |
but in special cases other algorithms could be faster. |
| 443 | 443 |
For example, if the total supply and/or capacities are rather small, |
| 444 | 444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 445 | 445 |
*/ |
| 446 | 446 |
|
| 447 | 447 |
/** |
| 448 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
| 449 | 449 |
@ingroup algs |
| 450 | 450 |
|
| 451 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
| 452 | 452 |
|
| 453 | 453 |
This group contains the algorithms for finding minimum cut in graphs. |
| 454 | 454 |
|
| 455 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 456 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 457 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 458 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 459 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 460 | 460 |
|
| 461 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 462 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
|
| 463 | 463 |
|
| 464 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
| 465 | 465 |
|
| 466 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 467 | 467 |
in directed graphs. |
| 468 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 469 | 469 |
calculating minimum cut in undirected graphs. |
| 470 | 470 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 471 | 471 |
all-pairs minimum cut in undirected graphs. |
| 472 | 472 |
|
| 473 | 473 |
If you want to find minimum cut just between two distinict nodes, |
| 474 | 474 |
see the \ref max_flow "maximum flow problem". |
| 475 | 475 |
*/ |
| 476 | 476 |
|
| 477 | 477 |
/** |
| 478 | 478 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 479 | 479 |
@ingroup algs |
| 480 | 480 |
\brief Algorithms for discovering the graph properties |
| 481 | 481 |
|
| 482 | 482 |
This group contains the algorithms for discovering the graph properties |
| 483 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 484 | 484 |
|
| 485 | 485 |
\image html edge_biconnected_components.png |
| 486 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 487 | 487 |
*/ |
| 488 | 488 |
|
| 489 | 489 |
/** |
| 490 | 490 |
@defgroup planar Planarity Embedding and Drawing |
| 491 | 491 |
@ingroup algs |
| 492 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
| 493 | 493 |
|
| 494 | 494 |
This group contains the algorithms for planarity checking, |
| 495 | 495 |
embedding and drawing. |
| 496 | 496 |
|
| 497 | 497 |
\image html planar.png |
| 498 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 499 | 499 |
*/ |
| 500 | 500 |
|
| 501 | 501 |
/** |
| 502 | 502 |
@defgroup matching Matching Algorithms |
| 503 | 503 |
@ingroup algs |
| 504 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 505 | 505 |
|
| 506 | 506 |
This group contains the algorithms for calculating |
| 507 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 508 | 508 |
finding a subset of the edges for which each node has at most one incident |
| 509 | 509 |
edge. |
| 510 | 510 |
|
| 511 | 511 |
There are several different algorithms for calculate matchings in |
| 512 | 512 |
graphs. The matching problems in bipartite graphs are generally |
| 513 | 513 |
easier than in general graphs. The goal of the matching optimization |
| 514 | 514 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 515 | 515 |
matching. The search can be constrained to find perfect or |
| 516 | 516 |
maximum cardinality matching. |
| 517 | 517 |
|
| 518 | 518 |
The matching algorithms implemented in LEMON: |
| 519 | 519 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 520 | 520 |
for calculating maximum cardinality matching in bipartite graphs. |
| 521 | 521 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 522 | 522 |
for calculating maximum cardinality matching in bipartite graphs. |
| 523 | 523 |
- \ref MaxWeightedBipartiteMatching |
| 524 | 524 |
Successive shortest path algorithm for calculating maximum weighted |
| 525 | 525 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 526 | 526 |
- \ref MinCostMaxBipartiteMatching |
| 527 | 527 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 528 | 528 |
matching in bipartite graphs. |
| 529 | 529 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 530 | 530 |
maximum cardinality matching in general graphs. |
| 531 | 531 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 532 | 532 |
maximum weighted matching in general graphs. |
| 533 | 533 |
- \ref MaxWeightedPerfectMatching |
| 534 | 534 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 535 | 535 |
perfect matching in general graphs. |
| 536 | 536 |
|
| 537 | 537 |
\image html bipartite_matching.png |
| 538 | 538 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 539 | 539 |
*/ |
| 540 | 540 |
|
| 541 | 541 |
/** |
| 542 | 542 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 543 | 543 |
@ingroup algs |
| 544 | 544 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
| 545 | 545 |
|
| 546 | 546 |
This group contains the algorithms for finding a minimum cost spanning |
| 547 | 547 |
tree in a graph. |
| 548 | 548 |
*/ |
| 549 | 549 |
|
| 550 | 550 |
/** |
| 551 | 551 |
@defgroup auxalg Auxiliary Algorithms |
| 552 | 552 |
@ingroup algs |
| 553 | 553 |
\brief Auxiliary algorithms implemented in LEMON. |
| 554 | 554 |
|
| 555 | 555 |
This group contains some algorithms implemented in LEMON |
| 556 | 556 |
in order to make it easier to implement complex algorithms. |
| 557 | 557 |
*/ |
| 558 | 558 |
|
| 559 | 559 |
/** |
| 560 | 560 |
@defgroup approx Approximation Algorithms |
| 561 | 561 |
@ingroup algs |
| 562 | 562 |
\brief Approximation algorithms. |
| 563 | 563 |
|
| 564 | 564 |
This group contains the approximation and heuristic algorithms |
| 565 | 565 |
implemented in LEMON. |
| 566 | 566 |
*/ |
| 567 | 567 |
|
| 568 | 568 |
/** |
| 569 | 569 |
@defgroup gen_opt_group General Optimization Tools |
| 570 | 570 |
\brief This group contains some general optimization frameworks |
| 571 | 571 |
implemented in LEMON. |
| 572 | 572 |
|
| 573 | 573 |
This group contains some general optimization frameworks |
| 574 | 574 |
implemented in LEMON. |
| 575 | 575 |
*/ |
| 576 | 576 |
|
| 577 | 577 |
/** |
| 578 | 578 |
@defgroup lp_group Lp and Mip Solvers |
| 579 | 579 |
@ingroup gen_opt_group |
| 580 | 580 |
\brief Lp and Mip solver interfaces for LEMON. |
| 581 | 581 |
|
| 582 | 582 |
This group contains Lp and Mip solver interfaces for LEMON. The |
| 583 | 583 |
various LP solvers could be used in the same manner with this |
| 584 | 584 |
interface. |
| 585 | 585 |
*/ |
| 586 | 586 |
|
| 587 | 587 |
/** |
| 588 | 588 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 589 | 589 |
@ingroup lp_group |
| 590 | 590 |
\brief Helper tools to the Lp and Mip solvers. |
| 591 | 591 |
|
| 592 | 592 |
This group adds some helper tools to general optimization framework |
| 593 | 593 |
implemented in LEMON. |
| 594 | 594 |
*/ |
| 595 | 595 |
|
| 596 | 596 |
/** |
| 597 | 597 |
@defgroup metah Metaheuristics |
| 598 | 598 |
@ingroup gen_opt_group |
| 599 | 599 |
\brief Metaheuristics for LEMON library. |
| 600 | 600 |
|
| 601 | 601 |
This group contains some metaheuristic optimization tools. |
| 602 | 602 |
*/ |
| 603 | 603 |
|
| 604 | 604 |
/** |
| 605 | 605 |
@defgroup utils Tools and Utilities |
| 606 | 606 |
\brief Tools and utilities for programming in LEMON |
| 607 | 607 |
|
| 608 | 608 |
Tools and utilities for programming in LEMON. |
| 609 | 609 |
*/ |
| 610 | 610 |
|
| 611 | 611 |
/** |
| 612 | 612 |
@defgroup gutils Basic Graph Utilities |
| 613 | 613 |
@ingroup utils |
| 614 | 614 |
\brief Simple basic graph utilities. |
| 615 | 615 |
|
| 616 | 616 |
This group contains some simple basic graph utilities. |
| 1 | 1 |
EXTRA_DIST += \ |
| 2 | 2 |
lemon/lemon.pc.in \ |
| 3 | 3 |
lemon/CMakeLists.txt |
| 4 | 4 |
|
| 5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
| 6 | 6 |
|
| 7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
| 8 | 8 |
|
| 9 | 9 |
lemon_libemon_la_SOURCES = \ |
| 10 | 10 |
lemon/arg_parser.cc \ |
| 11 | 11 |
lemon/base.cc \ |
| 12 | 12 |
lemon/color.cc \ |
| 13 | 13 |
lemon/lp_base.cc \ |
| 14 | 14 |
lemon/lp_skeleton.cc \ |
| 15 | 15 |
lemon/random.cc \ |
| 16 | 16 |
lemon/bits/windows.cc |
| 17 | 17 |
|
| 18 |
|
|
| 18 |
nodist_lemon_HEADERS = lemon/config.h |
|
| 19 |
|
|
| 19 | 20 |
lemon_libemon_la_CXXFLAGS = \ |
| 20 | 21 |
$(AM_CXXFLAGS) \ |
| 21 | 22 |
$(GLPK_CFLAGS) \ |
| 22 | 23 |
$(CPLEX_CFLAGS) \ |
| 23 | 24 |
$(SOPLEX_CXXFLAGS) \ |
| 24 | 25 |
$(CLP_CXXFLAGS) \ |
| 25 | 26 |
$(CBC_CXXFLAGS) |
| 26 | 27 |
|
| 27 | 28 |
lemon_libemon_la_LDFLAGS = \ |
| 28 | 29 |
$(GLPK_LIBS) \ |
| 29 | 30 |
$(CPLEX_LIBS) \ |
| 30 | 31 |
$(SOPLEX_LIBS) \ |
| 31 | 32 |
$(CLP_LIBS) \ |
| 32 | 33 |
$(CBC_LIBS) |
| 33 | 34 |
|
| 34 | 35 |
if HAVE_GLPK |
| 35 | 36 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
| 36 | 37 |
endif |
| 37 | 38 |
|
| 38 | 39 |
if HAVE_CPLEX |
| 39 | 40 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
| 40 | 41 |
endif |
| 41 | 42 |
|
| 42 | 43 |
if HAVE_SOPLEX |
| 43 | 44 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
| 44 | 45 |
endif |
| 45 | 46 |
|
| 46 | 47 |
if HAVE_CLP |
| 47 | 48 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
| 48 | 49 |
endif |
| 49 | 50 |
|
| 50 | 51 |
if HAVE_CBC |
| 51 | 52 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
| 52 | 53 |
endif |
| 53 | 54 |
|
| 54 | 55 |
lemon_HEADERS += \ |
| 55 | 56 |
lemon/adaptors.h \ |
| 56 | 57 |
lemon/arg_parser.h \ |
| 57 | 58 |
lemon/assert.h \ |
| 58 | 59 |
lemon/bfs.h \ |
| 59 | 60 |
lemon/bin_heap.h \ |
| 61 |
lemon/cbc.h \ |
|
| 60 | 62 |
lemon/circulation.h \ |
| 61 | 63 |
lemon/clp.h \ |
| 62 | 64 |
lemon/color.h \ |
| 63 | 65 |
lemon/concept_check.h \ |
| 64 |
lemon/config.h \ |
|
| 65 | 66 |
lemon/connectivity.h \ |
| 66 | 67 |
lemon/counter.h \ |
| 67 | 68 |
lemon/core.h \ |
| 68 | 69 |
lemon/cplex.h \ |
| 69 | 70 |
lemon/dfs.h \ |
| 70 | 71 |
lemon/dijkstra.h \ |
| 71 | 72 |
lemon/dim2.h \ |
| 72 | 73 |
lemon/dimacs.h \ |
| 73 | 74 |
lemon/edge_set.h \ |
| 74 | 75 |
lemon/elevator.h \ |
| 75 | 76 |
lemon/error.h \ |
| 76 | 77 |
lemon/euler.h \ |
| 77 | 78 |
lemon/full_graph.h \ |
| 78 | 79 |
lemon/glpk.h \ |
| 79 | 80 |
lemon/gomory_hu.h \ |
| 80 | 81 |
lemon/graph_to_eps.h \ |
| 81 | 82 |
lemon/grid_graph.h \ |
| 82 | 83 |
lemon/hypercube_graph.h \ |
| 83 | 84 |
lemon/kruskal.h \ |
| 84 | 85 |
lemon/hao_orlin.h \ |
| 85 | 86 |
lemon/lgf_reader.h \ |
| 86 | 87 |
lemon/lgf_writer.h \ |
| 87 | 88 |
lemon/list_graph.h \ |
| 88 | 89 |
lemon/lp.h \ |
| 89 | 90 |
lemon/lp_base.h \ |
| 90 | 91 |
lemon/lp_skeleton.h \ |
| 91 | 92 |
lemon/list_graph.h \ |
| 92 | 93 |
lemon/maps.h \ |
| 93 | 94 |
lemon/matching.h \ |
| 94 | 95 |
lemon/math.h \ |
| 95 | 96 |
lemon/min_cost_arborescence.h \ |
| 96 | 97 |
lemon/nauty_reader.h \ |
| 97 | 98 |
lemon/network_simplex.h \ |
| 98 | 99 |
lemon/path.h \ |
| 99 | 100 |
lemon/preflow.h \ |
| 100 | 101 |
lemon/radix_sort.h \ |
| 101 | 102 |
lemon/random.h \ |
| 102 | 103 |
lemon/smart_graph.h \ |
| 103 | 104 |
lemon/soplex.h \ |
| 104 | 105 |
lemon/suurballe.h \ |
| 105 | 106 |
lemon/time_measure.h \ |
| 106 | 107 |
lemon/tolerance.h \ |
| 107 | 108 |
lemon/unionfind.h \ |
| 108 | 109 |
lemon/bits/windows.h |
| 109 | 110 |
|
| 110 | 111 |
bits_HEADERS += \ |
| 111 | 112 |
lemon/bits/alteration_notifier.h \ |
| 112 | 113 |
lemon/bits/array_map.h \ |
| 113 | 114 |
lemon/bits/base_extender.h \ |
| 114 | 115 |
lemon/bits/bezier.h \ |
| 115 | 116 |
lemon/bits/default_map.h \ |
| 116 | 117 |
lemon/bits/edge_set_extender.h \ |
| 117 | 118 |
lemon/bits/enable_if.h \ |
| 118 | 119 |
lemon/bits/graph_adaptor_extender.h \ |
| 119 | 120 |
lemon/bits/graph_extender.h \ |
| 120 | 121 |
lemon/bits/map_extender.h \ |
| 121 | 122 |
lemon/bits/path_dump.h \ |
| 122 | 123 |
lemon/bits/solver_bits.h \ |
| 123 | 124 |
lemon/bits/traits.h \ |
| 124 | 125 |
lemon/bits/variant.h \ |
| 125 | 126 |
lemon/bits/vector_map.h |
| 126 | 127 |
|
| 127 | 128 |
concept_HEADERS += \ |
| 128 | 129 |
lemon/concepts/digraph.h \ |
| 129 | 130 |
lemon/concepts/graph.h \ |
| 130 | 131 |
lemon/concepts/graph_components.h \ |
| 131 | 132 |
lemon/concepts/heap.h \ |
| 132 | 133 |
lemon/concepts/maps.h \ |
| 133 | 134 |
lemon/concepts/path.h |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 |
/// \brief The type of the flow values. |
|
| 68 |
typedef typename SupplyMap::Value Flow; |
|
| 67 |
/// \brief The type of the flow and supply values. |
|
| 68 |
typedef typename SupplyMap::Value Value; |
|
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
typedef typename Digraph::template ArcMap< |
|
| 75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 76 | 76 |
|
| 77 | 77 |
/// \brief Instantiates a FlowMap. |
| 78 | 78 |
/// |
| 79 | 79 |
/// This function instantiates a \ref FlowMap. |
| 80 | 80 |
/// \param digraph The digraph for which we would like to define |
| 81 | 81 |
/// the flow map. |
| 82 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 83 |
return new FlowMap(digraph); |
| 84 | 84 |
} |
| 85 | 85 |
|
| 86 | 86 |
/// \brief The elevator type used by the algorithm. |
| 87 | 87 |
/// |
| 88 | 88 |
/// The elevator type used by the algorithm. |
| 89 | 89 |
/// |
| 90 | 90 |
/// \sa Elevator |
| 91 | 91 |
/// \sa LinkedElevator |
| 92 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 93 | 93 |
|
| 94 | 94 |
/// \brief Instantiates an Elevator. |
| 95 | 95 |
/// |
| 96 | 96 |
/// This function instantiates an \ref Elevator. |
| 97 | 97 |
/// \param digraph The digraph for which we would like to define |
| 98 | 98 |
/// the elevator. |
| 99 | 99 |
/// \param max_level The maximum level of the elevator. |
| 100 | 100 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 101 |
return new Elevator(digraph, max_level); |
| 102 | 102 |
} |
| 103 | 103 |
|
| 104 | 104 |
/// \brief The tolerance used by the algorithm |
| 105 | 105 |
/// |
| 106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 |
typedef lemon::Tolerance< |
|
| 107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 108 | 108 |
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
/** |
| 112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 113 |
|
| 114 | 114 |
\ingroup max_flow |
| 115 | 115 |
This class implements a push-relabel algorithm for the \e network |
| 116 | 116 |
\e circulation problem. |
| 117 | 117 |
It is to find a feasible circulation when lower and upper bounds |
| 118 | 118 |
are given for the flow values on the arcs and lower bounds are |
| 119 | 119 |
given for the difference between the outgoing and incoming flow |
| 120 | 120 |
at the nodes. |
| 121 | 121 |
|
| 122 | 122 |
The exact formulation of this problem is the following. |
| 123 | 123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 124 | 124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 125 | 125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 126 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 127 | 127 |
denotes the signed supply values of the nodes. |
| 128 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 129 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 130 | 130 |
\f$-sup(u)\f$ demand. |
| 131 | 131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 132 |
solution of the following problem. |
| 133 | 133 |
|
| 134 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 | 137 |
|
| 138 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 139 |
zero or negative in order to have a feasible solution (since the sum |
| 140 | 140 |
of the expressions on the left-hand side of the inequalities is zero). |
| 141 | 141 |
It means that the total demand must be greater or equal to the total |
| 142 | 142 |
supply and all the supplies have to be carried out from the supply nodes, |
| 143 | 143 |
but there could be demands that are not satisfied. |
| 144 | 144 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 145 | 145 |
constraints have to be satisfied with equality, i.e. all demands |
| 146 | 146 |
have to be satisfied and all supplies have to be used. |
| 147 | 147 |
|
| 148 | 148 |
If you need the opposite inequalities in the supply/demand constraints |
| 149 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
| 150 | 150 |
have to be satisfied while there could be supplies that are not used), |
| 151 | 151 |
then you could easily transform the problem to the above form by reversing |
| 152 | 152 |
the direction of the arcs and taking the negative of the supply values |
| 153 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 154 | 154 |
|
| 155 | 155 |
This algorithm either calculates a feasible circulation, or provides |
| 156 | 156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 157 | 157 |
cannot exist. |
| 158 | 158 |
|
| 159 | 159 |
Note that this algorithm also provides a feasible solution for the |
| 160 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
| 161 | 161 |
|
| 162 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
| 163 | 163 |
\tparam LM The type of the lower bound map. The default |
| 164 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 165 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
| 166 | 166 |
The default map type is \c LM. |
| 167 | 167 |
\tparam SM The type of the supply map. The default map type is |
| 168 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 169 | 169 |
*/ |
| 170 | 170 |
#ifdef DOXYGEN |
| 171 | 171 |
template< typename GR, |
| 172 | 172 |
typename LM, |
| 173 | 173 |
typename UM, |
| 174 | 174 |
typename SM, |
| 175 | 175 |
typename TR > |
| 176 | 176 |
#else |
| 177 | 177 |
template< typename GR, |
| 178 | 178 |
typename LM = typename GR::template ArcMap<int>, |
| 179 | 179 |
typename UM = LM, |
| 180 | 180 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 181 | 181 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 182 | 182 |
#endif |
| 183 | 183 |
class Circulation {
|
| 184 | 184 |
public: |
| 185 | 185 |
|
| 186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 187 | 187 |
typedef TR Traits; |
| 188 | 188 |
///The type of the digraph the algorithm runs on. |
| 189 | 189 |
typedef typename Traits::Digraph Digraph; |
| 190 |
///The type of the flow values. |
|
| 191 |
typedef typename Traits::Flow Flow; |
|
| 190 |
///The type of the flow and supply values. |
|
| 191 |
typedef typename Traits::Value Value; |
|
| 192 | 192 |
|
| 193 | 193 |
///The type of the lower bound map. |
| 194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
| 195 | 195 |
///The type of the upper bound (capacity) map. |
| 196 | 196 |
typedef typename Traits::UpperMap UpperMap; |
| 197 | 197 |
///The type of the supply map. |
| 198 | 198 |
typedef typename Traits::SupplyMap SupplyMap; |
| 199 | 199 |
///The type of the flow map. |
| 200 | 200 |
typedef typename Traits::FlowMap FlowMap; |
| 201 | 201 |
|
| 202 | 202 |
///The type of the elevator. |
| 203 | 203 |
typedef typename Traits::Elevator Elevator; |
| 204 | 204 |
///The type of the tolerance. |
| 205 | 205 |
typedef typename Traits::Tolerance Tolerance; |
| 206 | 206 |
|
| 207 | 207 |
private: |
| 208 | 208 |
|
| 209 | 209 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 210 | 210 |
|
| 211 | 211 |
const Digraph &_g; |
| 212 | 212 |
int _node_num; |
| 213 | 213 |
|
| 214 | 214 |
const LowerMap *_lo; |
| 215 | 215 |
const UpperMap *_up; |
| 216 | 216 |
const SupplyMap *_supply; |
| 217 | 217 |
|
| 218 | 218 |
FlowMap *_flow; |
| 219 | 219 |
bool _local_flow; |
| 220 | 220 |
|
| 221 | 221 |
Elevator* _level; |
| 222 | 222 |
bool _local_level; |
| 223 | 223 |
|
| 224 |
typedef typename Digraph::template NodeMap< |
|
| 224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 225 | 225 |
ExcessMap* _excess; |
| 226 | 226 |
|
| 227 | 227 |
Tolerance _tol; |
| 228 | 228 |
int _el; |
| 229 | 229 |
|
| 230 | 230 |
public: |
| 231 | 231 |
|
| 232 | 232 |
typedef Circulation Create; |
| 233 | 233 |
|
| 234 | 234 |
///\name Named Template Parameters |
| 235 | 235 |
|
| 236 | 236 |
///@{
|
| 237 | 237 |
|
| 238 | 238 |
template <typename T> |
| 239 | 239 |
struct SetFlowMapTraits : public Traits {
|
| 240 | 240 |
typedef T FlowMap; |
| 241 | 241 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 242 | 242 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 243 | 243 |
return 0; // ignore warnings |
| 244 | 244 |
} |
| 245 | 245 |
}; |
| 246 | 246 |
|
| 247 | 247 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 248 | 248 |
/// FlowMap type |
| 249 | 249 |
/// |
| 250 | 250 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 251 | 251 |
/// type. |
| 252 | 252 |
template <typename T> |
| 253 | 253 |
struct SetFlowMap |
| 254 | 254 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 255 | 255 |
SetFlowMapTraits<T> > {
|
| 256 | 256 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 257 | 257 |
SetFlowMapTraits<T> > Create; |
| 258 | 258 |
}; |
| 259 | 259 |
|
| 260 | 260 |
template <typename T> |
| 261 | 261 |
struct SetElevatorTraits : public Traits {
|
| 262 | 262 |
typedef T Elevator; |
| 263 | 263 |
static Elevator *createElevator(const Digraph&, int) {
|
| 264 | 264 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 265 | 265 |
return 0; // ignore warnings |
| 266 | 266 |
} |
| 267 | 267 |
}; |
| 268 | 268 |
|
| 269 | 269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 270 | 270 |
/// Elevator type |
| 271 | 271 |
/// |
| 272 | 272 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 273 | 273 |
/// type. If this named parameter is used, then an external |
| 274 | 274 |
/// elevator object must be passed to the algorithm using the |
| 275 | 275 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 276 | 276 |
/// \ref run() or \ref init(). |
| 277 | 277 |
/// \sa SetStandardElevator |
| 278 | 278 |
template <typename T> |
| 279 | 279 |
struct SetElevator |
| 280 | 280 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 281 | 281 |
SetElevatorTraits<T> > {
|
| 282 | 282 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 283 | 283 |
SetElevatorTraits<T> > Create; |
| 284 | 284 |
}; |
| 285 | 285 |
|
| 286 | 286 |
template <typename T> |
| 287 | 287 |
struct SetStandardElevatorTraits : public Traits {
|
| 288 | 288 |
typedef T Elevator; |
| 289 | 289 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 290 | 290 |
return new Elevator(digraph, max_level); |
| 291 | 291 |
} |
| 292 | 292 |
}; |
| 293 | 293 |
|
| 294 | 294 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 295 | 295 |
/// Elevator type with automatic allocation |
| 296 | 296 |
/// |
| 297 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 298 |
/// type with automatic allocation. |
| 299 | 299 |
/// The Elevator should have standard constructor interface to be |
| 300 | 300 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 301 |
/// digraph and the maximum level should be passed to it). |
| 302 | 302 |
/// However an external elevator object could also be passed to the |
| 303 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 304 |
/// before calling \ref run() or \ref init(). |
| 305 | 305 |
/// \sa SetElevator |
| 306 | 306 |
template <typename T> |
| 307 | 307 |
struct SetStandardElevator |
| 308 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 309 | 309 |
SetStandardElevatorTraits<T> > {
|
| 310 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 311 | 311 |
SetStandardElevatorTraits<T> > Create; |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
/// @} |
| 315 | 315 |
|
| 316 | 316 |
protected: |
| 317 | 317 |
|
| 318 | 318 |
Circulation() {}
|
| 319 | 319 |
|
| 320 | 320 |
public: |
| 321 | 321 |
|
| 322 | 322 |
/// Constructor. |
| 323 | 323 |
|
| 324 | 324 |
/// The constructor of the class. |
| 325 | 325 |
/// |
| 326 | 326 |
/// \param graph The digraph the algorithm runs on. |
| 327 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 328 | 328 |
/// \param upper The upper bounds (capacities) for the flow values |
| 329 | 329 |
/// on the arcs. |
| 330 | 330 |
/// \param supply The signed supply values of the nodes. |
| 331 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 332 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
| 333 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 334 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 335 | 335 |
_excess(NULL) {}
|
| 336 | 336 |
|
| 337 | 337 |
/// Destructor. |
| 338 | 338 |
~Circulation() {
|
| 339 | 339 |
destroyStructures(); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
|
| 343 | 343 |
private: |
| 344 | 344 |
|
| 345 | 345 |
bool checkBoundMaps() {
|
| 346 | 346 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 347 | 347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 348 | 348 |
} |
| 349 | 349 |
return true; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
void createStructures() {
|
| 353 | 353 |
_node_num = _el = countNodes(_g); |
| 354 | 354 |
|
| 355 | 355 |
if (!_flow) {
|
| 356 | 356 |
_flow = Traits::createFlowMap(_g); |
| 357 | 357 |
_local_flow = true; |
| 358 | 358 |
} |
| 359 | 359 |
if (!_level) {
|
| 360 | 360 |
_level = Traits::createElevator(_g, _node_num); |
| 361 | 361 |
_local_level = true; |
| 362 | 362 |
} |
| 363 | 363 |
if (!_excess) {
|
| 364 | 364 |
_excess = new ExcessMap(_g); |
| 365 | 365 |
} |
| 366 | 366 |
} |
| 367 | 367 |
|
| 368 | 368 |
void destroyStructures() {
|
| 369 | 369 |
if (_local_flow) {
|
| 370 | 370 |
delete _flow; |
| 371 | 371 |
} |
| 372 | 372 |
if (_local_level) {
|
| 373 | 373 |
delete _level; |
| 374 | 374 |
} |
| 375 | 375 |
if (_excess) {
|
| 376 | 376 |
delete _excess; |
| 377 | 377 |
} |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
public: |
| 381 | 381 |
|
| 382 | 382 |
/// Sets the lower bound map. |
| 383 | 383 |
|
| 384 | 384 |
/// Sets the lower bound map. |
| 385 | 385 |
/// \return <tt>(*this)</tt> |
| 386 | 386 |
Circulation& lowerMap(const LowerMap& map) {
|
| 387 | 387 |
_lo = ↦ |
| 388 | 388 |
return *this; |
| 389 | 389 |
} |
| 390 | 390 |
|
| 391 | 391 |
/// Sets the upper bound (capacity) map. |
| 392 | 392 |
|
| 393 | 393 |
/// Sets the upper bound (capacity) map. |
| 394 | 394 |
/// \return <tt>(*this)</tt> |
| 395 | 395 |
Circulation& upperMap(const UpperMap& map) {
|
| 396 | 396 |
_up = ↦ |
| 397 | 397 |
return *this; |
| 398 | 398 |
} |
| 399 | 399 |
|
| 400 | 400 |
/// Sets the supply map. |
| 401 | 401 |
|
| 402 | 402 |
/// Sets the supply map. |
| 403 | 403 |
/// \return <tt>(*this)</tt> |
| 404 | 404 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 405 | 405 |
_supply = ↦ |
| 406 | 406 |
return *this; |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
/// \brief Sets the flow map. |
| 410 | 410 |
/// |
| 411 | 411 |
/// Sets the flow map. |
| 412 | 412 |
/// If you don't use this function before calling \ref run() or |
| 413 | 413 |
/// \ref init(), an instance will be allocated automatically. |
| 414 | 414 |
/// The destructor deallocates this automatically allocated map, |
| 415 | 415 |
/// of course. |
| 416 | 416 |
/// \return <tt>(*this)</tt> |
| 417 | 417 |
Circulation& flowMap(FlowMap& map) {
|
| 418 | 418 |
if (_local_flow) {
|
| 419 | 419 |
delete _flow; |
| 420 | 420 |
_local_flow = false; |
| 421 | 421 |
} |
| 422 | 422 |
_flow = ↦ |
| 423 | 423 |
return *this; |
| 424 | 424 |
} |
| 425 | 425 |
|
| 426 | 426 |
/// \brief Sets the elevator used by algorithm. |
| 427 | 427 |
/// |
| 428 | 428 |
/// Sets the elevator used by algorithm. |
| 429 | 429 |
/// If you don't use this function before calling \ref run() or |
| 430 | 430 |
/// \ref init(), an instance will be allocated automatically. |
| 431 | 431 |
/// The destructor deallocates this automatically allocated elevator, |
| 432 | 432 |
/// of course. |
| 433 | 433 |
/// \return <tt>(*this)</tt> |
| 434 | 434 |
Circulation& elevator(Elevator& elevator) {
|
| 435 | 435 |
if (_local_level) {
|
| 436 | 436 |
delete _level; |
| 437 | 437 |
_local_level = false; |
| 438 | 438 |
} |
| 439 | 439 |
_level = &elevator; |
| 440 | 440 |
return *this; |
| 441 | 441 |
} |
| 442 | 442 |
|
| 443 | 443 |
/// \brief Returns a const reference to the elevator. |
| 444 | 444 |
/// |
| 445 | 445 |
/// Returns a const reference to the elevator. |
| 446 | 446 |
/// |
| 447 | 447 |
/// \pre Either \ref run() or \ref init() must be called before |
| 448 | 448 |
/// using this function. |
| 449 | 449 |
const Elevator& elevator() const {
|
| 450 | 450 |
return *_level; |
| 451 | 451 |
} |
| 452 | 452 |
|
| 453 | 453 |
/// \brief Sets the tolerance used by algorithm. |
| 454 | 454 |
/// |
| 455 | 455 |
/// Sets the tolerance used by algorithm. |
| 456 | 456 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
| 457 | 457 |
_tol = tolerance; |
| 458 | 458 |
return *this; |
| 459 | 459 |
} |
| 460 | 460 |
|
| 461 | 461 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 462 |
/// |
| 463 | 463 |
/// Returns a const reference to the tolerance. |
| 464 | 464 |
const Tolerance& tolerance() const {
|
| 465 | 465 |
return tolerance; |
| 466 | 466 |
} |
| 467 | 467 |
|
| 468 | 468 |
/// \name Execution Control |
| 469 | 469 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 | 470 |
/// If you need more control on the initial solution or the execution, |
| 471 | 471 |
/// first you have to call one of the \ref init() functions, then |
| 472 | 472 |
/// the \ref start() function. |
| 473 | 473 |
|
| 474 | 474 |
///@{
|
| 475 | 475 |
|
| 476 | 476 |
/// Initializes the internal data structures. |
| 477 | 477 |
|
| 478 | 478 |
/// Initializes the internal data structures and sets all flow values |
| 479 | 479 |
/// to the lower bound. |
| 480 | 480 |
void init() |
| 481 | 481 |
{
|
| 482 | 482 |
LEMON_DEBUG(checkBoundMaps(), |
| 483 | 483 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 484 | 484 |
|
| 485 | 485 |
createStructures(); |
| 486 | 486 |
|
| 487 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 488 | 488 |
(*_excess)[n] = (*_supply)[n]; |
| 489 | 489 |
} |
| 490 | 490 |
|
| 491 | 491 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 492 | 492 |
_flow->set(e, (*_lo)[e]); |
| 493 | 493 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 494 | 494 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 495 | 495 |
} |
| 496 | 496 |
|
| 497 | 497 |
// global relabeling tested, but in general case it provides |
| 498 | 498 |
// worse performance for random digraphs |
| 499 | 499 |
_level->initStart(); |
| 500 | 500 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 501 | 501 |
_level->initAddItem(n); |
| 502 | 502 |
_level->initFinish(); |
| 503 | 503 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 504 | 504 |
if(_tol.positive((*_excess)[n])) |
| 505 | 505 |
_level->activate(n); |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
/// Initializes the internal data structures using a greedy approach. |
| 509 | 509 |
|
| 510 | 510 |
/// Initializes the internal data structures using a greedy approach |
| 511 | 511 |
/// to construct the initial solution. |
| 512 | 512 |
void greedyInit() |
| 513 | 513 |
{
|
| 514 | 514 |
LEMON_DEBUG(checkBoundMaps(), |
| 515 | 515 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 516 | 516 |
|
| 517 | 517 |
createStructures(); |
| 518 | 518 |
|
| 519 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 520 | 520 |
(*_excess)[n] = (*_supply)[n]; |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 524 | 524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 525 | 525 |
_flow->set(e, (*_up)[e]); |
| 526 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 529 | 529 |
_flow->set(e, (*_lo)[e]); |
| 530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 532 | 532 |
} else {
|
| 533 |
|
|
| 533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
| 534 | 534 |
_flow->set(e, fc); |
| 535 | 535 |
(*_excess)[_g.target(e)] = 0; |
| 536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
| 537 | 537 |
} |
| 538 | 538 |
} |
| 539 | 539 |
|
| 540 | 540 |
_level->initStart(); |
| 541 | 541 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 542 | 542 |
_level->initAddItem(n); |
| 543 | 543 |
_level->initFinish(); |
| 544 | 544 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 545 | 545 |
if(_tol.positive((*_excess)[n])) |
| 546 | 546 |
_level->activate(n); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
///Executes the algorithm |
| 550 | 550 |
|
| 551 | 551 |
///This function executes the algorithm. |
| 552 | 552 |
/// |
| 553 | 553 |
///\return \c true if a feasible circulation is found. |
| 554 | 554 |
/// |
| 555 | 555 |
///\sa barrier() |
| 556 | 556 |
///\sa barrierMap() |
| 557 | 557 |
bool start() |
| 558 | 558 |
{
|
| 559 | 559 |
|
| 560 | 560 |
Node act; |
| 561 | 561 |
Node bact=INVALID; |
| 562 | 562 |
Node last_activated=INVALID; |
| 563 | 563 |
while((act=_level->highestActive())!=INVALID) {
|
| 564 | 564 |
int actlevel=(*_level)[act]; |
| 565 | 565 |
int mlevel=_node_num; |
| 566 |
|
|
| 566 |
Value exc=(*_excess)[act]; |
|
| 567 | 567 |
|
| 568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 569 | 569 |
Node v = _g.target(e); |
| 570 |
|
|
| 570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
| 571 | 571 |
if(!_tol.positive(fc)) continue; |
| 572 | 572 |
if((*_level)[v]<actlevel) {
|
| 573 | 573 |
if(!_tol.less(fc, exc)) {
|
| 574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
| 575 | 575 |
(*_excess)[v] += exc; |
| 576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 577 | 577 |
_level->activate(v); |
| 578 | 578 |
(*_excess)[act] = 0; |
| 579 | 579 |
_level->deactivate(act); |
| 580 | 580 |
goto next_l; |
| 581 | 581 |
} |
| 582 | 582 |
else {
|
| 583 | 583 |
_flow->set(e, (*_up)[e]); |
| 584 | 584 |
(*_excess)[v] += fc; |
| 585 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 586 |
_level->activate(v); |
| 587 | 587 |
exc-=fc; |
| 588 | 588 |
} |
| 589 | 589 |
} |
| 590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 591 | 591 |
} |
| 592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 593 | 593 |
Node v = _g.source(e); |
| 594 |
|
|
| 594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
| 595 | 595 |
if(!_tol.positive(fc)) continue; |
| 596 | 596 |
if((*_level)[v]<actlevel) {
|
| 597 | 597 |
if(!_tol.less(fc, exc)) {
|
| 598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
| 599 | 599 |
(*_excess)[v] += exc; |
| 600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 601 | 601 |
_level->activate(v); |
| 602 | 602 |
(*_excess)[act] = 0; |
| 603 | 603 |
_level->deactivate(act); |
| 604 | 604 |
goto next_l; |
| 605 | 605 |
} |
| 606 | 606 |
else {
|
| 607 | 607 |
_flow->set(e, (*_lo)[e]); |
| 608 | 608 |
(*_excess)[v] += fc; |
| 609 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 610 |
_level->activate(v); |
| 611 | 611 |
exc-=fc; |
| 612 | 612 |
} |
| 613 | 613 |
} |
| 614 | 614 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
(*_excess)[act] = exc; |
| 618 | 618 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 619 | 619 |
else if(mlevel==_node_num) {
|
| 620 | 620 |
_level->liftHighestActiveToTop(); |
| 621 | 621 |
_el = _node_num; |
| 622 | 622 |
return false; |
| 623 | 623 |
} |
| 624 | 624 |
else {
|
| 625 | 625 |
_level->liftHighestActive(mlevel+1); |
| 626 | 626 |
if(_level->onLevel(actlevel)==0) {
|
| 627 | 627 |
_el = actlevel; |
| 628 | 628 |
return false; |
| 629 | 629 |
} |
| 630 | 630 |
} |
| 631 | 631 |
next_l: |
| 632 | 632 |
; |
| 633 | 633 |
} |
| 634 | 634 |
return true; |
| 635 | 635 |
} |
| 636 | 636 |
|
| 637 | 637 |
/// Runs the algorithm. |
| 638 | 638 |
|
| 639 | 639 |
/// This function runs the algorithm. |
| 640 | 640 |
/// |
| 641 | 641 |
/// \return \c true if a feasible circulation is found. |
| 642 | 642 |
/// |
| 643 | 643 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 644 | 644 |
/// the following code. |
| 645 | 645 |
/// \code |
| 646 | 646 |
/// c.greedyInit(); |
| 647 | 647 |
/// c.start(); |
| 648 | 648 |
/// \endcode |
| 649 | 649 |
bool run() {
|
| 650 | 650 |
greedyInit(); |
| 651 | 651 |
return start(); |
| 652 | 652 |
} |
| 653 | 653 |
|
| 654 | 654 |
/// @} |
| 655 | 655 |
|
| 656 | 656 |
/// \name Query Functions |
| 657 | 657 |
/// The results of the circulation algorithm can be obtained using |
| 658 | 658 |
/// these functions.\n |
| 659 | 659 |
/// Either \ref run() or \ref start() should be called before |
| 660 | 660 |
/// using them. |
| 661 | 661 |
|
| 662 | 662 |
///@{
|
| 663 | 663 |
|
| 664 |
/// \brief Returns the flow on the given arc. |
|
| 664 |
/// \brief Returns the flow value on the given arc. |
|
| 665 | 665 |
/// |
| 666 |
/// Returns the flow on the given arc. |
|
| 666 |
/// Returns the flow value on the given arc. |
|
| 667 | 667 |
/// |
| 668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
| 669 | 669 |
/// using this function. |
| 670 |
|
|
| 670 |
Value flow(const Arc& arc) const {
|
|
| 671 | 671 |
return (*_flow)[arc]; |
| 672 | 672 |
} |
| 673 | 673 |
|
| 674 | 674 |
/// \brief Returns a const reference to the flow map. |
| 675 | 675 |
/// |
| 676 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
| 677 | 677 |
/// |
| 678 | 678 |
/// \pre Either \ref run() or \ref init() must be called before |
| 679 | 679 |
/// using this function. |
| 680 | 680 |
const FlowMap& flowMap() const {
|
| 681 | 681 |
return *_flow; |
| 682 | 682 |
} |
| 683 | 683 |
|
| 684 | 684 |
/** |
| 685 | 685 |
\brief Returns \c true if the given node is in a barrier. |
| 686 | 686 |
|
| 687 | 687 |
Barrier is a set \e B of nodes for which |
| 688 | 688 |
|
| 689 | 689 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 690 | 690 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 691 | 691 |
|
| 692 | 692 |
holds. The existence of a set with this property prooves that a |
| 693 | 693 |
feasible circualtion cannot exist. |
| 694 | 694 |
|
| 695 | 695 |
This function returns \c true if the given node is in the found |
| 696 | 696 |
barrier. If a feasible circulation is found, the function |
| 697 | 697 |
gives back \c false for every node. |
| 698 | 698 |
|
| 699 | 699 |
\pre Either \ref run() or \ref init() must be called before |
| 700 | 700 |
using this function. |
| 701 | 701 |
|
| 702 | 702 |
\sa barrierMap() |
| 703 | 703 |
\sa checkBarrier() |
| 704 | 704 |
*/ |
| 705 | 705 |
bool barrier(const Node& node) const |
| 706 | 706 |
{
|
| 707 | 707 |
return (*_level)[node] >= _el; |
| 708 | 708 |
} |
| 709 | 709 |
|
| 710 | 710 |
/// \brief Gives back a barrier. |
| 711 | 711 |
/// |
| 712 | 712 |
/// This function sets \c bar to the characteristic vector of the |
| 713 | 713 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 714 | 714 |
/// node map with \c bool (or convertible) value type. |
| 715 | 715 |
/// |
| 716 | 716 |
/// If a feasible circulation is found, the function gives back an |
| 717 | 717 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 718 | 718 |
/// |
| 719 | 719 |
/// \note This function calls \ref barrier() for each node, |
| 720 | 720 |
/// so it runs in O(n) time. |
| 721 | 721 |
/// |
| 722 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
| 723 | 723 |
/// using this function. |
| 724 | 724 |
/// |
| 725 | 725 |
/// \sa barrier() |
| 726 | 726 |
/// \sa checkBarrier() |
| 727 | 727 |
template<class BarrierMap> |
| 728 | 728 |
void barrierMap(BarrierMap &bar) const |
| 729 | 729 |
{
|
| 730 | 730 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 731 | 731 |
bar.set(n, (*_level)[n] >= _el); |
| 732 | 732 |
} |
| 733 | 733 |
|
| 734 | 734 |
/// @} |
| 735 | 735 |
|
| 736 | 736 |
/// \name Checker Functions |
| 737 | 737 |
/// The feasibility of the results can be checked using |
| 738 | 738 |
/// these functions.\n |
| 739 | 739 |
/// Either \ref run() or \ref start() should be called before |
| 740 | 740 |
/// using them. |
| 741 | 741 |
|
| 742 | 742 |
///@{
|
| 743 | 743 |
|
| 744 | 744 |
///Check if the found flow is a feasible circulation |
| 745 | 745 |
|
| 746 | 746 |
///Check if the found flow is a feasible circulation, |
| 747 | 747 |
/// |
| 748 | 748 |
bool checkFlow() const {
|
| 749 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 752 | 752 |
{
|
| 753 |
|
|
| 753 |
Value dif=-(*_supply)[n]; |
|
| 754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 756 | 756 |
if(_tol.negative(dif)) return false; |
| 757 | 757 |
} |
| 758 | 758 |
return true; |
| 759 | 759 |
} |
| 760 | 760 |
|
| 761 | 761 |
///Check whether or not the last execution provides a barrier |
| 762 | 762 |
|
| 763 | 763 |
///Check whether or not the last execution provides a barrier. |
| 764 | 764 |
///\sa barrier() |
| 765 | 765 |
///\sa barrierMap() |
| 766 | 766 |
bool checkBarrier() const |
| 767 | 767 |
{
|
| 768 |
Flow delta=0; |
|
| 769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
| 770 |
std::numeric_limits<Flow>::infinity() : |
|
| 771 |
std::numeric_limits<Flow>::max(); |
|
| 768 |
Value delta=0; |
|
| 769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
| 770 |
std::numeric_limits<Value>::infinity() : |
|
| 771 |
std::numeric_limits<Value>::max(); |
|
| 772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 773 | 773 |
if(barrier(n)) |
| 774 | 774 |
delta-=(*_supply)[n]; |
| 775 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 776 | 776 |
{
|
| 777 | 777 |
Node s=_g.source(e); |
| 778 | 778 |
Node t=_g.target(e); |
| 779 | 779 |
if(barrier(s)&&!barrier(t)) {
|
| 780 | 780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 781 | 781 |
delta+=(*_up)[e]; |
| 782 | 782 |
} |
| 783 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 784 | 784 |
} |
| 785 | 785 |
return _tol.negative(delta); |
| 786 | 786 |
} |
| 787 | 787 |
|
| 788 | 788 |
/// @} |
| 789 | 789 |
|
| 790 | 790 |
}; |
| 791 | 791 |
|
| 792 | 792 |
} |
| 793 | 793 |
|
| 794 | 794 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CORE_H |
| 20 | 20 |
#define LEMON_CORE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 |
#include <lemon/ |
|
| 25 |
#include <lemon/config.h> |
|
| 26 | 26 |
#include <lemon/bits/enable_if.h> |
| 27 | 27 |
#include <lemon/bits/traits.h> |
| 28 | 28 |
#include <lemon/assert.h> |
| 29 | 29 |
|
| 30 | 30 |
///\file |
| 31 | 31 |
///\brief LEMON core utilities. |
| 32 | 32 |
/// |
| 33 | 33 |
///This header file contains core utilities for LEMON. |
| 34 | 34 |
///It is automatically included by all graph types, therefore it usually |
| 35 | 35 |
///do not have to be included directly. |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Dummy type to make it easier to create invalid iterators. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Dummy type to make it easier to create invalid iterators. |
| 42 | 42 |
/// See \ref INVALID for the usage. |
| 43 | 43 |
struct Invalid {
|
| 44 | 44 |
public: |
| 45 | 45 |
bool operator==(Invalid) { return true; }
|
| 46 | 46 |
bool operator!=(Invalid) { return false; }
|
| 47 | 47 |
bool operator< (Invalid) { return false; }
|
| 48 | 48 |
}; |
| 49 | 49 |
|
| 50 | 50 |
/// \brief Invalid iterators. |
| 51 | 51 |
/// |
| 52 | 52 |
/// \ref Invalid is a global type that converts to each iterator |
| 53 | 53 |
/// in such a way that the value of the target iterator will be invalid. |
| 54 | 54 |
#ifdef LEMON_ONLY_TEMPLATES |
| 55 | 55 |
const Invalid INVALID = Invalid(); |
| 56 | 56 |
#else |
| 57 | 57 |
extern const Invalid INVALID; |
| 58 | 58 |
#endif |
| 59 | 59 |
|
| 60 | 60 |
/// \addtogroup gutils |
| 61 | 61 |
/// @{
|
| 62 | 62 |
|
| 63 | 63 |
///Create convenience typedefs for the digraph types and iterators |
| 64 | 64 |
|
| 65 | 65 |
///This \c \#define creates convenient type definitions for the following |
| 66 | 66 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
| 67 | 67 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
| 68 | 68 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
| 69 | 69 |
/// |
| 70 | 70 |
///\note If the graph type is a dependent type, ie. the graph type depend |
| 71 | 71 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
| 72 | 72 |
///macro. |
| 73 | 73 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
| 74 | 74 |
typedef Digraph::Node Node; \ |
| 75 | 75 |
typedef Digraph::NodeIt NodeIt; \ |
| 76 | 76 |
typedef Digraph::Arc Arc; \ |
| 77 | 77 |
typedef Digraph::ArcIt ArcIt; \ |
| 78 | 78 |
typedef Digraph::InArcIt InArcIt; \ |
| 79 | 79 |
typedef Digraph::OutArcIt OutArcIt; \ |
| 80 | 80 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
| 81 | 81 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
| 82 | 82 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
| 83 | 83 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
| 84 | 84 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
| 85 | 85 |
typedef Digraph::ArcMap<double> DoubleArcMap |
| 86 | 86 |
|
| 87 | 87 |
///Create convenience typedefs for the digraph types and iterators |
| 88 | 88 |
|
| 89 | 89 |
///\see DIGRAPH_TYPEDEFS |
| 90 | 90 |
/// |
| 91 | 91 |
///\note Use this macro, if the graph type is a dependent type, |
| 92 | 92 |
///ie. the graph type depend on a template parameter. |
| 93 | 93 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
| 94 | 94 |
typedef typename Digraph::Node Node; \ |
| 95 | 95 |
typedef typename Digraph::NodeIt NodeIt; \ |
| 96 | 96 |
typedef typename Digraph::Arc Arc; \ |
| 97 | 97 |
typedef typename Digraph::ArcIt ArcIt; \ |
| 98 | 98 |
typedef typename Digraph::InArcIt InArcIt; \ |
| 99 | 99 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
| 100 | 100 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
| 101 | 101 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
| 102 | 102 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
| 103 | 103 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
| 104 | 104 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
| 105 | 105 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
| 106 | 106 |
|
| 107 | 107 |
///Create convenience typedefs for the graph types and iterators |
| 108 | 108 |
|
| 109 | 109 |
///This \c \#define creates the same convenient type definitions as defined |
| 110 | 110 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
| 111 | 111 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
| 112 | 112 |
///\c DoubleEdgeMap. |
| 113 | 113 |
/// |
| 114 | 114 |
///\note If the graph type is a dependent type, ie. the graph type depend |
| 115 | 115 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
| 116 | 116 |
///macro. |
| 117 | 117 |
#define GRAPH_TYPEDEFS(Graph) \ |
| 118 | 118 |
DIGRAPH_TYPEDEFS(Graph); \ |
| 119 | 119 |
typedef Graph::Edge Edge; \ |
| 120 | 120 |
typedef Graph::EdgeIt EdgeIt; \ |
| 121 | 121 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
| 122 | 122 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
| 123 | 123 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
| 124 | 124 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
| 125 | 125 |
|
| 126 | 126 |
///Create convenience typedefs for the graph types and iterators |
| 127 | 127 |
|
| 128 | 128 |
///\see GRAPH_TYPEDEFS |
| 129 | 129 |
/// |
| 130 | 130 |
///\note Use this macro, if the graph type is a dependent type, |
| 131 | 131 |
///ie. the graph type depend on a template parameter. |
| 132 | 132 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
| 133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
| 134 | 134 |
typedef typename Graph::Edge Edge; \ |
| 135 | 135 |
typedef typename Graph::EdgeIt EdgeIt; \ |
| 136 | 136 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
| 137 | 137 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
| 138 | 138 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
| 139 | 139 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
| 140 | 140 |
|
| 141 | 141 |
/// \brief Function to count the items in a graph. |
| 142 | 142 |
/// |
| 143 | 143 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
| 144 | 144 |
/// The complexity of the function is linear because |
| 145 | 145 |
/// it iterates on all of the items. |
| 146 | 146 |
template <typename Graph, typename Item> |
| 147 | 147 |
inline int countItems(const Graph& g) {
|
| 148 | 148 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
| 149 | 149 |
int num = 0; |
| 150 | 150 |
for (ItemIt it(g); it != INVALID; ++it) {
|
| 151 | 151 |
++num; |
| 152 | 152 |
} |
| 153 | 153 |
return num; |
| 154 | 154 |
} |
| 155 | 155 |
|
| 156 | 156 |
// Node counting: |
| 157 | 157 |
|
| 158 | 158 |
namespace _core_bits {
|
| 159 | 159 |
|
| 160 | 160 |
template <typename Graph, typename Enable = void> |
| 161 | 161 |
struct CountNodesSelector {
|
| 162 | 162 |
static int count(const Graph &g) {
|
| 163 | 163 |
return countItems<Graph, typename Graph::Node>(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
template <typename Graph> |
| 168 | 168 |
struct CountNodesSelector< |
| 169 | 169 |
Graph, typename |
| 170 | 170 |
enable_if<typename Graph::NodeNumTag, void>::type> |
| 171 | 171 |
{
|
| 172 | 172 |
static int count(const Graph &g) {
|
| 173 | 173 |
return g.nodeNum(); |
| 174 | 174 |
} |
| 175 | 175 |
}; |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
/// \brief Function to count the nodes in the graph. |
| 179 | 179 |
/// |
| 180 | 180 |
/// This function counts the nodes in the graph. |
| 181 | 181 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
| 182 | 182 |
/// graph structures it is specialized to run in <em>O</em>(1). |
| 183 | 183 |
/// |
| 184 | 184 |
/// \note If the graph contains a \c nodeNum() member function and a |
| 185 | 185 |
/// \c NodeNumTag tag then this function calls directly the member |
| 186 | 186 |
/// function to query the cardinality of the node set. |
| 187 | 187 |
template <typename Graph> |
| 188 | 188 |
inline int countNodes(const Graph& g) {
|
| 189 | 189 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
| 190 | 190 |
} |
| 191 | 191 |
|
| 192 | 192 |
// Arc counting: |
| 193 | 193 |
|
| 194 | 194 |
namespace _core_bits {
|
| 195 | 195 |
|
| 196 | 196 |
template <typename Graph, typename Enable = void> |
| 197 | 197 |
struct CountArcsSelector {
|
| 198 | 198 |
static int count(const Graph &g) {
|
| 199 | 199 |
return countItems<Graph, typename Graph::Arc>(g); |
| 200 | 200 |
} |
| 201 | 201 |
}; |
| 202 | 202 |
|
| 203 | 203 |
template <typename Graph> |
| 204 | 204 |
struct CountArcsSelector< |
| 205 | 205 |
Graph, |
| 206 | 206 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
| 207 | 207 |
{
|
| 208 | 208 |
static int count(const Graph &g) {
|
| 209 | 209 |
return g.arcNum(); |
| 210 | 210 |
} |
| 211 | 211 |
}; |
| 212 | 212 |
} |
| 213 | 213 |
|
| 214 | 214 |
/// \brief Function to count the arcs in the graph. |
| 215 | 215 |
/// |
| 216 | 216 |
/// This function counts the arcs in the graph. |
| 217 | 217 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
| 20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/maps.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 36 | 33 |
|
| 37 | 34 |
namespace lemon {
|
| 38 | 35 |
|
| 39 | 36 |
/// \addtogroup min_cost_flow |
| 40 | 37 |
/// @{
|
| 41 | 38 |
|
| 42 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 43 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 41 |
/// |
| 45 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 46 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 47 | 44 |
/// This algorithm is a specialized version of the linear programming |
| 48 | 45 |
/// simplex method directly for the minimum cost flow problem. |
| 49 | 46 |
/// It is one of the most efficient solution methods. |
| 50 | 47 |
/// |
| 51 | 48 |
/// In general this class is the fastest implementation available |
| 52 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
| 54 |
/// constraints. For more information see \ref ProblemType. |
|
| 50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
| 51 |
/// constraints. For more information see \ref SupplyType. |
|
| 52 |
/// |
|
| 53 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 54 |
/// can be given using separate functions, and the algorithm can be |
|
| 55 |
/// executed using the \ref run() function. If some parameters are not |
|
| 56 |
/// specified, then default values will be used. |
|
| 55 | 57 |
/// |
| 56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 57 |
/// \tparam |
|
| 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 58 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
| 59 | 61 |
/// \tparam C The value type used for costs and potentials in the |
| 60 |
/// algorithm. By default it is the same as \c |
|
| 62 |
/// algorithm. By default it is the same as \c V. |
|
| 61 | 63 |
/// |
| 62 | 64 |
/// \warning Both value types must be signed and all input data must |
| 63 | 65 |
/// be integer. |
| 64 | 66 |
/// |
| 65 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
| 66 | 68 |
/// implementations, from which the most efficient one is used |
| 67 | 69 |
/// by default. For more information see \ref PivotRule. |
| 68 |
template <typename GR, typename |
|
| 70 |
template <typename GR, typename V = int, typename C = V> |
|
| 69 | 71 |
class NetworkSimplex |
| 70 | 72 |
{
|
| 71 | 73 |
public: |
| 72 | 74 |
|
| 73 |
/// The flow type of the algorithm |
|
| 74 |
typedef F Flow; |
|
| 75 |
/// The |
|
| 75 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 76 |
typedef V Value; |
|
| 77 |
/// The type of the arc costs |
|
| 76 | 78 |
typedef C Cost; |
| 77 |
#ifdef DOXYGEN |
|
| 78 |
/// The type of the flow map |
|
| 79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
| 80 |
/// The type of the potential map |
|
| 81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
| 82 |
#else |
|
| 83 |
/// The type of the flow map |
|
| 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
| 85 |
/// The type of the potential map |
|
| 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
| 87 |
#endif |
|
| 88 | 79 |
|
| 89 | 80 |
public: |
| 90 | 81 |
|
| 91 |
/// \brief |
|
| 82 |
/// \brief Problem type constants for the \c run() function. |
|
| 92 | 83 |
/// |
| 93 |
/// Enum type |
|
| 84 |
/// Enum type containing the problem type constants that can be |
|
| 85 |
/// returned by the \ref run() function of the algorithm. |
|
| 86 |
enum ProblemType {
|
|
| 87 |
/// The problem has no feasible solution (flow). |
|
| 88 |
INFEASIBLE, |
|
| 89 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 90 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 91 |
/// potentials (primal and dual solutions). |
|
| 92 |
OPTIMAL, |
|
| 93 |
/// The objective function of the problem is unbounded, i.e. |
|
| 94 |
/// there is a directed cycle having negative total cost and |
|
| 95 |
/// infinite upper bound. |
|
| 96 |
UNBOUNDED |
|
| 97 |
}; |
|
| 98 |
|
|
| 99 |
/// \brief Constants for selecting the type of the supply constraints. |
|
| 100 |
/// |
|
| 101 |
/// Enum type containing constants for selecting the supply type, |
|
| 102 |
/// i.e. the direction of the inequalities in the supply/demand |
|
| 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
| 104 |
/// |
|
| 105 |
/// The default supply type is \c GEQ, since this form is supported |
|
| 106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 107 |
/// algorithm, as well. |
|
| 108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
| 94 | 109 |
/// function. |
| 95 | 110 |
/// |
| 111 |
/// Note that the equality form is a special case of both supply types. |
|
| 112 |
enum SupplyType {
|
|
| 113 |
|
|
| 114 |
/// This option means that there are <em>"greater or equal"</em> |
|
| 115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 116 |
/// formulation of the problem is the following. |
|
| 117 |
/** |
|
| 118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 120 |
sup(u) \quad \forall u\in V \f] |
|
| 121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 122 |
*/ |
|
| 123 |
/// It means that the total demand must be greater or equal to the |
|
| 124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 125 |
/// negative) and all the supplies have to be carried out from |
|
| 126 |
/// the supply nodes, but there could be demands that are not |
|
| 127 |
/// satisfied. |
|
| 128 |
GEQ, |
|
| 129 |
/// It is just an alias for the \c GEQ option. |
|
| 130 |
CARRY_SUPPLIES = GEQ, |
|
| 131 |
|
|
| 132 |
/// This option means that there are <em>"less or equal"</em> |
|
| 133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 134 |
/// formulation of the problem is the following. |
|
| 135 |
/** |
|
| 136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 138 |
sup(u) \quad \forall u\in V \f] |
|
| 139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 140 |
*/ |
|
| 141 |
/// It means that the total demand must be less or equal to the |
|
| 142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 143 |
/// positive) and all the demands have to be satisfied, but there |
|
| 144 |
/// could be supplies that are not carried out from the supply |
|
| 145 |
/// nodes. |
|
| 146 |
LEQ, |
|
| 147 |
/// It is just an alias for the \c LEQ option. |
|
| 148 |
SATISFY_DEMANDS = LEQ |
|
| 149 |
}; |
|
| 150 |
|
|
| 151 |
/// \brief Constants for selecting the pivot rule. |
|
| 152 |
/// |
|
| 153 |
/// Enum type containing constants for selecting the pivot rule for |
|
| 154 |
/// the \ref run() function. |
|
| 155 |
/// |
|
| 96 | 156 |
/// \ref NetworkSimplex provides five different pivot rule |
| 97 | 157 |
/// implementations that significantly affect the running time |
| 98 | 158 |
/// of the algorithm. |
| 99 | 159 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 100 | 160 |
/// proved to be the most efficient and the most robust on various |
| 101 | 161 |
/// test inputs according to our benchmark tests. |
| 102 | 162 |
/// However another pivot rule can be selected using the \ref run() |
| 103 | 163 |
/// function with the proper parameter. |
| 104 | 164 |
enum PivotRule {
|
| 105 | 165 |
|
| 106 | 166 |
/// The First Eligible pivot rule. |
| 107 | 167 |
/// The next eligible arc is selected in a wraparound fashion |
| 108 | 168 |
/// in every iteration. |
| 109 | 169 |
FIRST_ELIGIBLE, |
| 110 | 170 |
|
| 111 | 171 |
/// The Best Eligible pivot rule. |
| 112 | 172 |
/// The best eligible arc is selected in every iteration. |
| 113 | 173 |
BEST_ELIGIBLE, |
| 114 | 174 |
|
| 115 | 175 |
/// The Block Search pivot rule. |
| 116 | 176 |
/// A specified number of arcs are examined in every iteration |
| 117 | 177 |
/// in a wraparound fashion and the best eligible arc is selected |
| 118 | 178 |
/// from this block. |
| 119 | 179 |
BLOCK_SEARCH, |
| 120 | 180 |
|
| 121 | 181 |
/// The Candidate List pivot rule. |
| 122 | 182 |
/// In a major iteration a candidate list is built from eligible arcs |
| 123 | 183 |
/// in a wraparound fashion and in the following minor iterations |
| 124 | 184 |
/// the best eligible arc is selected from this list. |
| 125 | 185 |
CANDIDATE_LIST, |
| 126 | 186 |
|
| 127 | 187 |
/// The Altering Candidate List pivot rule. |
| 128 | 188 |
/// It is a modified version of the Candidate List method. |
| 129 | 189 |
/// It keeps only the several best eligible arcs from the former |
| 130 | 190 |
/// candidate list and extends this list in every iteration. |
| 131 | 191 |
ALTERING_LIST |
| 132 | 192 |
}; |
| 133 | 193 |
|
| 134 |
/// \brief Enum type for selecting the problem type. |
|
| 135 |
/// |
|
| 136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
| 137 |
/// the inequalities in the supply/demand constraints of the |
|
| 138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 139 |
/// |
|
| 140 |
/// The default problem type is \c GEQ, since this form is supported |
|
| 141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 142 |
/// algorithm as well. |
|
| 143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
| 144 |
/// function. |
|
| 145 |
/// |
|
| 146 |
/// Note that the equality form is a special case of both problem type. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
|
|
| 149 |
/// This option means that there are "<em>greater or equal</em>" |
|
| 150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 151 |
/// problem is the following. |
|
| 152 |
/** |
|
| 153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 155 |
sup(u) \quad \forall u\in V \f] |
|
| 156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 157 |
*/ |
|
| 158 |
/// It means that the total demand must be greater or equal to the |
|
| 159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 160 |
/// negative) and all the supplies have to be carried out from |
|
| 161 |
/// the supply nodes, but there could be demands that are not |
|
| 162 |
/// satisfied. |
|
| 163 |
GEQ, |
|
| 164 |
/// It is just an alias for the \c GEQ option. |
|
| 165 |
CARRY_SUPPLIES = GEQ, |
|
| 166 |
|
|
| 167 |
/// This option means that there are "<em>less or equal</em>" |
|
| 168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 169 |
/// problem is the following. |
|
| 170 |
/** |
|
| 171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 173 |
sup(u) \quad \forall u\in V \f] |
|
| 174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 175 |
*/ |
|
| 176 |
/// It means that the total demand must be less or equal to the |
|
| 177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 178 |
/// positive) and all the demands have to be satisfied, but there |
|
| 179 |
/// could be supplies that are not carried out from the supply |
|
| 180 |
/// nodes. |
|
| 181 |
LEQ, |
|
| 182 |
/// It is just an alias for the \c LEQ option. |
|
| 183 |
SATISFY_DEMANDS = LEQ |
|
| 184 |
}; |
|
| 185 |
|
|
| 186 | 194 |
private: |
| 187 | 195 |
|
| 188 | 196 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 189 | 197 |
|
| 190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
| 191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
| 192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
| 193 |
|
|
| 194 | 198 |
typedef std::vector<Arc> ArcVector; |
| 195 | 199 |
typedef std::vector<Node> NodeVector; |
| 196 | 200 |
typedef std::vector<int> IntVector; |
| 197 | 201 |
typedef std::vector<bool> BoolVector; |
| 198 |
typedef std::vector< |
|
| 202 |
typedef std::vector<Value> ValueVector; |
|
| 199 | 203 |
typedef std::vector<Cost> CostVector; |
| 200 | 204 |
|
| 201 | 205 |
// State constants for arcs |
| 202 | 206 |
enum ArcStateEnum {
|
| 203 | 207 |
STATE_UPPER = -1, |
| 204 | 208 |
STATE_TREE = 0, |
| 205 | 209 |
STATE_LOWER = 1 |
| 206 | 210 |
}; |
| 207 | 211 |
|
| 208 | 212 |
private: |
| 209 | 213 |
|
| 210 | 214 |
// Data related to the underlying digraph |
| 211 | 215 |
const GR &_graph; |
| 212 | 216 |
int _node_num; |
| 213 | 217 |
int _arc_num; |
| 214 | 218 |
|
| 215 | 219 |
// Parameters of the problem |
| 216 |
FlowArcMap *_plower; |
|
| 217 |
FlowArcMap *_pupper; |
|
| 218 |
CostArcMap *_pcost; |
|
| 219 |
FlowNodeMap *_psupply; |
|
| 220 |
bool _pstsup; |
|
| 221 |
Node _psource, _ptarget; |
|
| 222 |
Flow _pstflow; |
|
| 223 |
ProblemType _ptype; |
|
| 224 |
|
|
| 225 |
// Result maps |
|
| 226 |
FlowMap *_flow_map; |
|
| 227 |
PotentialMap *_potential_map; |
|
| 228 |
bool _local_flow; |
|
| 229 |
bool _local_potential; |
|
| 220 |
bool _have_lower; |
|
| 221 |
SupplyType _stype; |
|
| 222 |
Value _sum_supply; |
|
| 230 | 223 |
|
| 231 | 224 |
// Data structures for storing the digraph |
| 232 | 225 |
IntNodeMap _node_id; |
| 233 |
|
|
| 226 |
IntArcMap _arc_id; |
|
| 234 | 227 |
IntVector _source; |
| 235 | 228 |
IntVector _target; |
| 236 | 229 |
|
| 237 | 230 |
// Node and arc data |
| 238 |
|
|
| 231 |
ValueVector _lower; |
|
| 232 |
ValueVector _upper; |
|
| 233 |
ValueVector _cap; |
|
| 239 | 234 |
CostVector _cost; |
| 240 |
FlowVector _supply; |
|
| 241 |
FlowVector _flow; |
|
| 235 |
ValueVector _supply; |
|
| 236 |
ValueVector _flow; |
|
| 242 | 237 |
CostVector _pi; |
| 243 | 238 |
|
| 244 | 239 |
// Data for storing the spanning tree structure |
| 245 | 240 |
IntVector _parent; |
| 246 | 241 |
IntVector _pred; |
| 247 | 242 |
IntVector _thread; |
| 248 | 243 |
IntVector _rev_thread; |
| 249 | 244 |
IntVector _succ_num; |
| 250 | 245 |
IntVector _last_succ; |
| 251 | 246 |
IntVector _dirty_revs; |
| 252 | 247 |
BoolVector _forward; |
| 253 | 248 |
IntVector _state; |
| 254 | 249 |
int _root; |
| 255 | 250 |
|
| 256 | 251 |
// Temporary data used in the current pivot iteration |
| 257 | 252 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 258 | 253 |
int first, second, right, last; |
| 259 | 254 |
int stem, par_stem, new_stem; |
| 260 |
|
|
| 255 |
Value delta; |
|
| 256 |
|
|
| 257 |
public: |
|
| 258 |
|
|
| 259 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 260 |
/// |
|
| 261 |
/// Constant for infinite upper bounds (capacities). |
|
| 262 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 263 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 264 |
const Value INF; |
|
| 261 | 265 |
|
| 262 | 266 |
private: |
| 263 | 267 |
|
| 264 | 268 |
// Implementation of the First Eligible pivot rule |
| 265 | 269 |
class FirstEligiblePivotRule |
| 266 | 270 |
{
|
| 267 | 271 |
private: |
| 268 | 272 |
|
| 269 | 273 |
// References to the NetworkSimplex class |
| 270 | 274 |
const IntVector &_source; |
| 271 | 275 |
const IntVector &_target; |
| 272 | 276 |
const CostVector &_cost; |
| 273 | 277 |
const IntVector &_state; |
| 274 | 278 |
const CostVector &_pi; |
| 275 | 279 |
int &_in_arc; |
| 276 | 280 |
int _arc_num; |
| 277 | 281 |
|
| 278 | 282 |
// Pivot rule data |
| 279 | 283 |
int _next_arc; |
| 280 | 284 |
|
| 281 | 285 |
public: |
| 282 | 286 |
|
| 283 | 287 |
// Constructor |
| 284 | 288 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 285 | 289 |
_source(ns._source), _target(ns._target), |
| 286 | 290 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 287 | 291 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 288 | 292 |
{}
|
| 289 | 293 |
|
| 290 | 294 |
// Find next entering arc |
| 291 | 295 |
bool findEnteringArc() {
|
| 292 | 296 |
Cost c; |
| 293 | 297 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
| 294 | 298 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 295 | 299 |
if (c < 0) {
|
| 296 | 300 |
_in_arc = e; |
| 297 | 301 |
_next_arc = e + 1; |
| 298 | 302 |
return true; |
| 299 | 303 |
} |
| 300 | 304 |
} |
| 301 | 305 |
for (int e = 0; e < _next_arc; ++e) {
|
| 302 | 306 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 303 | 307 |
if (c < 0) {
|
| 304 | 308 |
_in_arc = e; |
| 305 | 309 |
_next_arc = e + 1; |
| 306 | 310 |
return true; |
| 307 | 311 |
} |
| 308 | 312 |
} |
| 309 | 313 |
return false; |
| 310 | 314 |
} |
| 311 | 315 |
|
| 312 | 316 |
}; //class FirstEligiblePivotRule |
| 313 | 317 |
|
| 314 | 318 |
|
| 315 | 319 |
// Implementation of the Best Eligible pivot rule |
| 316 | 320 |
class BestEligiblePivotRule |
| 317 | 321 |
{
|
| 318 | 322 |
private: |
| 319 | 323 |
|
| 320 | 324 |
// References to the NetworkSimplex class |
| 321 | 325 |
const IntVector &_source; |
| 322 | 326 |
const IntVector &_target; |
| 323 | 327 |
const CostVector &_cost; |
| 324 | 328 |
const IntVector &_state; |
| 325 | 329 |
const CostVector &_pi; |
| 326 | 330 |
int &_in_arc; |
| 327 | 331 |
int _arc_num; |
| 328 | 332 |
|
| 329 | 333 |
public: |
| 330 | 334 |
|
| 331 | 335 |
// Constructor |
| 332 | 336 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 333 | 337 |
_source(ns._source), _target(ns._target), |
| 334 | 338 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 335 | 339 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
| 336 | 340 |
{}
|
| 337 | 341 |
|
| 338 | 342 |
// Find next entering arc |
| 339 | 343 |
bool findEnteringArc() {
|
| 340 | 344 |
Cost c, min = 0; |
| 341 | 345 |
for (int e = 0; e < _arc_num; ++e) {
|
| 342 | 346 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 343 | 347 |
if (c < min) {
|
| 344 | 348 |
min = c; |
| 345 | 349 |
_in_arc = e; |
| 346 | 350 |
} |
| 347 | 351 |
} |
| 348 | 352 |
return min < 0; |
| 349 | 353 |
} |
| 350 | 354 |
|
| 351 | 355 |
}; //class BestEligiblePivotRule |
| 352 | 356 |
|
| 353 | 357 |
|
| 354 | 358 |
// Implementation of the Block Search pivot rule |
| 355 | 359 |
class BlockSearchPivotRule |
| 356 | 360 |
{
|
| 357 | 361 |
private: |
| 358 | 362 |
|
| 359 | 363 |
// References to the NetworkSimplex class |
| 360 | 364 |
const IntVector &_source; |
| 361 | 365 |
const IntVector &_target; |
| 362 | 366 |
const CostVector &_cost; |
| 363 | 367 |
const IntVector &_state; |
| 364 | 368 |
const CostVector &_pi; |
| 365 | 369 |
int &_in_arc; |
| 366 | 370 |
int _arc_num; |
| 367 | 371 |
|
| 368 | 372 |
// Pivot rule data |
| 369 | 373 |
int _block_size; |
| 370 | 374 |
int _next_arc; |
| 371 | 375 |
|
| 372 | 376 |
public: |
| 373 | 377 |
|
| 374 | 378 |
// Constructor |
| 375 | 379 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 376 | 380 |
_source(ns._source), _target(ns._target), |
| 377 | 381 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 378 | 382 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 379 | 383 |
{
|
| 380 | 384 |
// The main parameters of the pivot rule |
| 381 | 385 |
const double BLOCK_SIZE_FACTOR = 2.0; |
| 382 | 386 |
const int MIN_BLOCK_SIZE = 10; |
| 383 | 387 |
|
| 384 | 388 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 385 | 389 |
std::sqrt(double(_arc_num))), |
| 386 | 390 |
MIN_BLOCK_SIZE ); |
| 387 | 391 |
} |
| 388 | 392 |
|
| 389 | 393 |
// Find next entering arc |
| 390 | 394 |
bool findEnteringArc() {
|
| 391 | 395 |
Cost c, min = 0; |
| 392 | 396 |
int cnt = _block_size; |
| 393 | 397 |
int e, min_arc = _next_arc; |
| 394 | 398 |
for (e = _next_arc; e < _arc_num; ++e) {
|
| 395 | 399 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 396 | 400 |
if (c < min) {
|
| 397 | 401 |
min = c; |
| 398 | 402 |
min_arc = e; |
| 399 | 403 |
} |
| 400 | 404 |
if (--cnt == 0) {
|
| 401 | 405 |
if (min < 0) break; |
| 402 | 406 |
cnt = _block_size; |
| 403 | 407 |
} |
| 404 | 408 |
} |
| 405 | 409 |
if (min == 0 || cnt > 0) {
|
| 406 | 410 |
for (e = 0; e < _next_arc; ++e) {
|
| 407 | 411 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 408 | 412 |
if (c < min) {
|
| 409 | 413 |
min = c; |
| 410 | 414 |
min_arc = e; |
| 411 | 415 |
} |
| 412 | 416 |
if (--cnt == 0) {
|
| 413 | 417 |
if (min < 0) break; |
| 414 | 418 |
cnt = _block_size; |
| 415 | 419 |
} |
| 416 | 420 |
} |
| 417 | 421 |
} |
| 418 | 422 |
if (min >= 0) return false; |
| 419 | 423 |
_in_arc = min_arc; |
| 420 | 424 |
_next_arc = e; |
| 421 | 425 |
return true; |
| 422 | 426 |
} |
| 423 | 427 |
|
| 424 | 428 |
}; //class BlockSearchPivotRule |
| 425 | 429 |
|
| 426 | 430 |
|
| 427 | 431 |
// Implementation of the Candidate List pivot rule |
| 428 | 432 |
class CandidateListPivotRule |
| 429 | 433 |
{
|
| 430 | 434 |
private: |
| 431 | 435 |
|
| 432 | 436 |
// References to the NetworkSimplex class |
| 433 | 437 |
const IntVector &_source; |
| 434 | 438 |
const IntVector &_target; |
| 435 | 439 |
const CostVector &_cost; |
| 436 | 440 |
const IntVector &_state; |
| 437 | 441 |
const CostVector &_pi; |
| 438 | 442 |
int &_in_arc; |
| 439 | 443 |
int _arc_num; |
| 440 | 444 |
|
| 441 | 445 |
// Pivot rule data |
| 442 | 446 |
IntVector _candidates; |
| 443 | 447 |
int _list_length, _minor_limit; |
| 444 | 448 |
int _curr_length, _minor_count; |
| 445 | 449 |
int _next_arc; |
| 446 | 450 |
|
| 447 | 451 |
public: |
| 448 | 452 |
|
| 449 | 453 |
/// Constructor |
| 450 | 454 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 451 | 455 |
_source(ns._source), _target(ns._target), |
| 452 | 456 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| ... | ... |
@@ -470,1117 +474,941 @@ |
| 470 | 474 |
/// Find next entering arc |
| 471 | 475 |
bool findEnteringArc() {
|
| 472 | 476 |
Cost min, c; |
| 473 | 477 |
int e, min_arc = _next_arc; |
| 474 | 478 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 475 | 479 |
// Minor iteration: select the best eligible arc from the |
| 476 | 480 |
// current candidate list |
| 477 | 481 |
++_minor_count; |
| 478 | 482 |
min = 0; |
| 479 | 483 |
for (int i = 0; i < _curr_length; ++i) {
|
| 480 | 484 |
e = _candidates[i]; |
| 481 | 485 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 482 | 486 |
if (c < min) {
|
| 483 | 487 |
min = c; |
| 484 | 488 |
min_arc = e; |
| 485 | 489 |
} |
| 486 | 490 |
if (c >= 0) {
|
| 487 | 491 |
_candidates[i--] = _candidates[--_curr_length]; |
| 488 | 492 |
} |
| 489 | 493 |
} |
| 490 | 494 |
if (min < 0) {
|
| 491 | 495 |
_in_arc = min_arc; |
| 492 | 496 |
return true; |
| 493 | 497 |
} |
| 494 | 498 |
} |
| 495 | 499 |
|
| 496 | 500 |
// Major iteration: build a new candidate list |
| 497 | 501 |
min = 0; |
| 498 | 502 |
_curr_length = 0; |
| 499 | 503 |
for (e = _next_arc; e < _arc_num; ++e) {
|
| 500 | 504 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 501 | 505 |
if (c < 0) {
|
| 502 | 506 |
_candidates[_curr_length++] = e; |
| 503 | 507 |
if (c < min) {
|
| 504 | 508 |
min = c; |
| 505 | 509 |
min_arc = e; |
| 506 | 510 |
} |
| 507 | 511 |
if (_curr_length == _list_length) break; |
| 508 | 512 |
} |
| 509 | 513 |
} |
| 510 | 514 |
if (_curr_length < _list_length) {
|
| 511 | 515 |
for (e = 0; e < _next_arc; ++e) {
|
| 512 | 516 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 513 | 517 |
if (c < 0) {
|
| 514 | 518 |
_candidates[_curr_length++] = e; |
| 515 | 519 |
if (c < min) {
|
| 516 | 520 |
min = c; |
| 517 | 521 |
min_arc = e; |
| 518 | 522 |
} |
| 519 | 523 |
if (_curr_length == _list_length) break; |
| 520 | 524 |
} |
| 521 | 525 |
} |
| 522 | 526 |
} |
| 523 | 527 |
if (_curr_length == 0) return false; |
| 524 | 528 |
_minor_count = 1; |
| 525 | 529 |
_in_arc = min_arc; |
| 526 | 530 |
_next_arc = e; |
| 527 | 531 |
return true; |
| 528 | 532 |
} |
| 529 | 533 |
|
| 530 | 534 |
}; //class CandidateListPivotRule |
| 531 | 535 |
|
| 532 | 536 |
|
| 533 | 537 |
// Implementation of the Altering Candidate List pivot rule |
| 534 | 538 |
class AlteringListPivotRule |
| 535 | 539 |
{
|
| 536 | 540 |
private: |
| 537 | 541 |
|
| 538 | 542 |
// References to the NetworkSimplex class |
| 539 | 543 |
const IntVector &_source; |
| 540 | 544 |
const IntVector &_target; |
| 541 | 545 |
const CostVector &_cost; |
| 542 | 546 |
const IntVector &_state; |
| 543 | 547 |
const CostVector &_pi; |
| 544 | 548 |
int &_in_arc; |
| 545 | 549 |
int _arc_num; |
| 546 | 550 |
|
| 547 | 551 |
// Pivot rule data |
| 548 | 552 |
int _block_size, _head_length, _curr_length; |
| 549 | 553 |
int _next_arc; |
| 550 | 554 |
IntVector _candidates; |
| 551 | 555 |
CostVector _cand_cost; |
| 552 | 556 |
|
| 553 | 557 |
// Functor class to compare arcs during sort of the candidate list |
| 554 | 558 |
class SortFunc |
| 555 | 559 |
{
|
| 556 | 560 |
private: |
| 557 | 561 |
const CostVector &_map; |
| 558 | 562 |
public: |
| 559 | 563 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 560 | 564 |
bool operator()(int left, int right) {
|
| 561 | 565 |
return _map[left] > _map[right]; |
| 562 | 566 |
} |
| 563 | 567 |
}; |
| 564 | 568 |
|
| 565 | 569 |
SortFunc _sort_func; |
| 566 | 570 |
|
| 567 | 571 |
public: |
| 568 | 572 |
|
| 569 | 573 |
// Constructor |
| 570 | 574 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 571 | 575 |
_source(ns._source), _target(ns._target), |
| 572 | 576 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 573 | 577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
| 574 | 578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
| 575 | 579 |
{
|
| 576 | 580 |
// The main parameters of the pivot rule |
| 577 | 581 |
const double BLOCK_SIZE_FACTOR = 1.5; |
| 578 | 582 |
const int MIN_BLOCK_SIZE = 10; |
| 579 | 583 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 580 | 584 |
const int MIN_HEAD_LENGTH = 3; |
| 581 | 585 |
|
| 582 | 586 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 583 | 587 |
std::sqrt(double(_arc_num))), |
| 584 | 588 |
MIN_BLOCK_SIZE ); |
| 585 | 589 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 586 | 590 |
MIN_HEAD_LENGTH ); |
| 587 | 591 |
_candidates.resize(_head_length + _block_size); |
| 588 | 592 |
_curr_length = 0; |
| 589 | 593 |
} |
| 590 | 594 |
|
| 591 | 595 |
// Find next entering arc |
| 592 | 596 |
bool findEnteringArc() {
|
| 593 | 597 |
// Check the current candidate list |
| 594 | 598 |
int e; |
| 595 | 599 |
for (int i = 0; i < _curr_length; ++i) {
|
| 596 | 600 |
e = _candidates[i]; |
| 597 | 601 |
_cand_cost[e] = _state[e] * |
| 598 | 602 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 599 | 603 |
if (_cand_cost[e] >= 0) {
|
| 600 | 604 |
_candidates[i--] = _candidates[--_curr_length]; |
| 601 | 605 |
} |
| 602 | 606 |
} |
| 603 | 607 |
|
| 604 | 608 |
// Extend the list |
| 605 | 609 |
int cnt = _block_size; |
| 606 | 610 |
int last_arc = 0; |
| 607 | 611 |
int limit = _head_length; |
| 608 | 612 |
|
| 609 | 613 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
| 610 | 614 |
_cand_cost[e] = _state[e] * |
| 611 | 615 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 612 | 616 |
if (_cand_cost[e] < 0) {
|
| 613 | 617 |
_candidates[_curr_length++] = e; |
| 614 | 618 |
last_arc = e; |
| 615 | 619 |
} |
| 616 | 620 |
if (--cnt == 0) {
|
| 617 | 621 |
if (_curr_length > limit) break; |
| 618 | 622 |
limit = 0; |
| 619 | 623 |
cnt = _block_size; |
| 620 | 624 |
} |
| 621 | 625 |
} |
| 622 | 626 |
if (_curr_length <= limit) {
|
| 623 | 627 |
for (int e = 0; e < _next_arc; ++e) {
|
| 624 | 628 |
_cand_cost[e] = _state[e] * |
| 625 | 629 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 626 | 630 |
if (_cand_cost[e] < 0) {
|
| 627 | 631 |
_candidates[_curr_length++] = e; |
| 628 | 632 |
last_arc = e; |
| 629 | 633 |
} |
| 630 | 634 |
if (--cnt == 0) {
|
| 631 | 635 |
if (_curr_length > limit) break; |
| 632 | 636 |
limit = 0; |
| 633 | 637 |
cnt = _block_size; |
| 634 | 638 |
} |
| 635 | 639 |
} |
| 636 | 640 |
} |
| 637 | 641 |
if (_curr_length == 0) return false; |
| 638 | 642 |
_next_arc = last_arc + 1; |
| 639 | 643 |
|
| 640 | 644 |
// Make heap of the candidate list (approximating a partial sort) |
| 641 | 645 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 642 | 646 |
_sort_func ); |
| 643 | 647 |
|
| 644 | 648 |
// Pop the first element of the heap |
| 645 | 649 |
_in_arc = _candidates[0]; |
| 646 | 650 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 647 | 651 |
_sort_func ); |
| 648 | 652 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 649 | 653 |
return true; |
| 650 | 654 |
} |
| 651 | 655 |
|
| 652 | 656 |
}; //class AlteringListPivotRule |
| 653 | 657 |
|
| 654 | 658 |
public: |
| 655 | 659 |
|
| 656 | 660 |
/// \brief Constructor. |
| 657 | 661 |
/// |
| 658 | 662 |
/// The constructor of the class. |
| 659 | 663 |
/// |
| 660 | 664 |
/// \param graph The digraph the algorithm runs on. |
| 661 | 665 |
NetworkSimplex(const GR& graph) : |
| 662 |
_graph(graph), |
|
| 663 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
| 664 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
| 665 |
_flow_map(NULL), _potential_map(NULL), |
|
| 666 |
_local_flow(false), _local_potential(false), |
|
| 667 |
_node_id(graph) |
|
| 666 |
_graph(graph), _node_id(graph), _arc_id(graph), |
|
| 667 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 668 |
std::numeric_limits<Value>::infinity() : |
|
| 669 |
std::numeric_limits<Value>::max()) |
|
| 668 | 670 |
{
|
| 669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
| 670 |
std::numeric_limits<Flow>::is_signed, |
|
| 671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
| 672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
| 673 |
std::numeric_limits<Cost>::is_signed, |
|
| 674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
| 675 |
|
|
| 671 |
// Check the value types |
|
| 672 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 673 |
"The flow type of NetworkSimplex must be signed"); |
|
| 674 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 675 |
"The cost type of NetworkSimplex must be signed"); |
|
| 676 |
|
|
| 677 |
// Resize vectors |
|
| 678 |
_node_num = countNodes(_graph); |
|
| 679 |
_arc_num = countArcs(_graph); |
|
| 680 |
int all_node_num = _node_num + 1; |
|
| 681 |
int all_arc_num = _arc_num + _node_num; |
|
| 676 | 682 |
|
| 677 |
/// Destructor. |
|
| 678 |
~NetworkSimplex() {
|
|
| 679 |
if (_local_flow) delete _flow_map; |
|
| 680 |
if (_local_potential) delete _potential_map; |
|
| 683 |
_source.resize(all_arc_num); |
|
| 684 |
_target.resize(all_arc_num); |
|
| 685 |
|
|
| 686 |
_lower.resize(all_arc_num); |
|
| 687 |
_upper.resize(all_arc_num); |
|
| 688 |
_cap.resize(all_arc_num); |
|
| 689 |
_cost.resize(all_arc_num); |
|
| 690 |
_supply.resize(all_node_num); |
|
| 691 |
_flow.resize(all_arc_num); |
|
| 692 |
_pi.resize(all_node_num); |
|
| 693 |
|
|
| 694 |
_parent.resize(all_node_num); |
|
| 695 |
_pred.resize(all_node_num); |
|
| 696 |
_forward.resize(all_node_num); |
|
| 697 |
_thread.resize(all_node_num); |
|
| 698 |
_rev_thread.resize(all_node_num); |
|
| 699 |
_succ_num.resize(all_node_num); |
|
| 700 |
_last_succ.resize(all_node_num); |
|
| 701 |
_state.resize(all_arc_num); |
|
| 702 |
|
|
| 703 |
// Copy the graph (store the arcs in a mixed order) |
|
| 704 |
int i = 0; |
|
| 705 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 706 |
_node_id[n] = i; |
|
| 707 |
} |
|
| 708 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 709 |
i = 0; |
|
| 710 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 711 |
_arc_id[a] = i; |
|
| 712 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 713 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 714 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 715 |
} |
|
| 716 |
|
|
| 717 |
// Initialize maps |
|
| 718 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 719 |
_supply[i] = 0; |
|
| 720 |
} |
|
| 721 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 722 |
_lower[i] = 0; |
|
| 723 |
_upper[i] = INF; |
|
| 724 |
_cost[i] = 1; |
|
| 725 |
} |
|
| 726 |
_have_lower = false; |
|
| 727 |
_stype = GEQ; |
|
| 681 | 728 |
} |
| 682 | 729 |
|
| 683 | 730 |
/// \name Parameters |
| 684 | 731 |
/// The parameters of the algorithm can be specified using these |
| 685 | 732 |
/// functions. |
| 686 | 733 |
|
| 687 | 734 |
/// @{
|
| 688 | 735 |
|
| 689 | 736 |
/// \brief Set the lower bounds on the arcs. |
| 690 | 737 |
/// |
| 691 | 738 |
/// This function sets the lower bounds on the arcs. |
| 692 |
/// If neither this function nor \ref boundMaps() is used before |
|
| 693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 694 |
/// |
|
| 739 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 740 |
/// will be set to zero on all arcs. |
|
| 695 | 741 |
/// |
| 696 | 742 |
/// \param map An arc map storing the lower bounds. |
| 697 |
/// Its \c Value type must be convertible to the \c |
|
| 743 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 698 | 744 |
/// of the algorithm. |
| 699 | 745 |
/// |
| 700 | 746 |
/// \return <tt>(*this)</tt> |
| 701 |
template <typename LOWER> |
|
| 702 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
|
| 703 |
delete _plower; |
|
| 704 |
_plower = new FlowArcMap(_graph); |
|
| 747 |
template <typename LowerMap> |
|
| 748 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
|
| 749 |
_have_lower = true; |
|
| 705 | 750 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 706 |
|
|
| 751 |
_lower[_arc_id[a]] = map[a]; |
|
| 707 | 752 |
} |
| 708 | 753 |
return *this; |
| 709 | 754 |
} |
| 710 | 755 |
|
| 711 | 756 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 712 | 757 |
/// |
| 713 | 758 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 716 |
/// the upper bounds (capacities) will be set to |
|
| 717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 759 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 760 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 761 |
/// unbounded from above on each arc). |
|
| 718 | 762 |
/// |
| 719 | 763 |
/// \param map An arc map storing the upper bounds. |
| 720 |
/// Its \c Value type must be convertible to the \c |
|
| 764 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 721 | 765 |
/// of the algorithm. |
| 722 | 766 |
/// |
| 723 | 767 |
/// \return <tt>(*this)</tt> |
| 724 |
template<typename UPPER> |
|
| 725 |
NetworkSimplex& upperMap(const UPPER& map) {
|
|
| 726 |
delete _pupper; |
|
| 727 |
_pupper = new FlowArcMap(_graph); |
|
| 768 |
template<typename UpperMap> |
|
| 769 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
|
| 728 | 770 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 729 |
|
|
| 771 |
_upper[_arc_id[a]] = map[a]; |
|
| 730 | 772 |
} |
| 731 | 773 |
return *this; |
| 732 | 774 |
} |
| 733 | 775 |
|
| 734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 735 |
/// |
|
| 736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 737 |
/// It is just an alias for \ref upperMap(). |
|
| 738 |
/// |
|
| 739 |
/// \return <tt>(*this)</tt> |
|
| 740 |
template<typename CAP> |
|
| 741 |
NetworkSimplex& capacityMap(const CAP& map) {
|
|
| 742 |
return upperMap(map); |
|
| 743 |
} |
|
| 744 |
|
|
| 745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
| 746 |
/// |
|
| 747 |
/// This function sets the lower and upper bounds on the arcs. |
|
| 748 |
/// If neither this function nor \ref lowerMap() is used before |
|
| 749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 750 |
/// on all arcs. |
|
| 751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 753 |
/// the upper bounds (capacities) will be set to |
|
| 754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 755 |
/// |
|
| 756 |
/// \param lower An arc map storing the lower bounds. |
|
| 757 |
/// \param upper An arc map storing the upper bounds. |
|
| 758 |
/// |
|
| 759 |
/// The \c Value type of the maps must be convertible to the |
|
| 760 |
/// \c Flow type of the algorithm. |
|
| 761 |
/// |
|
| 762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
| 763 |
/// and \ref upperMap() separately. |
|
| 764 |
/// |
|
| 765 |
/// \return <tt>(*this)</tt> |
|
| 766 |
template <typename LOWER, typename UPPER> |
|
| 767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
|
| 768 |
return lowerMap(lower).upperMap(upper); |
|
| 769 |
} |
|
| 770 |
|
|
| 771 | 776 |
/// \brief Set the costs of the arcs. |
| 772 | 777 |
/// |
| 773 | 778 |
/// This function sets the costs of the arcs. |
| 774 | 779 |
/// If it is not used before calling \ref run(), the costs |
| 775 | 780 |
/// will be set to \c 1 on all arcs. |
| 776 | 781 |
/// |
| 777 | 782 |
/// \param map An arc map storing the costs. |
| 778 | 783 |
/// Its \c Value type must be convertible to the \c Cost type |
| 779 | 784 |
/// of the algorithm. |
| 780 | 785 |
/// |
| 781 | 786 |
/// \return <tt>(*this)</tt> |
| 782 |
template<typename COST> |
|
| 783 |
NetworkSimplex& costMap(const COST& map) {
|
|
| 784 |
delete _pcost; |
|
| 785 |
_pcost = new CostArcMap(_graph); |
|
| 787 |
template<typename CostMap> |
|
| 788 |
NetworkSimplex& costMap(const CostMap& map) {
|
|
| 786 | 789 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 787 |
|
|
| 790 |
_cost[_arc_id[a]] = map[a]; |
|
| 788 | 791 |
} |
| 789 | 792 |
return *this; |
| 790 | 793 |
} |
| 791 | 794 |
|
| 792 | 795 |
/// \brief Set the supply values of the nodes. |
| 793 | 796 |
/// |
| 794 | 797 |
/// This function sets the supply values of the nodes. |
| 795 | 798 |
/// If neither this function nor \ref stSupply() is used before |
| 796 | 799 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 797 | 800 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 798 | 801 |
/// |
| 799 | 802 |
/// \param map A node map storing the supply values. |
| 800 |
/// Its \c Value type must be convertible to the \c |
|
| 803 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 801 | 804 |
/// of the algorithm. |
| 802 | 805 |
/// |
| 803 | 806 |
/// \return <tt>(*this)</tt> |
| 804 |
template<typename SUP> |
|
| 805 |
NetworkSimplex& supplyMap(const SUP& map) {
|
|
| 806 |
delete _psupply; |
|
| 807 |
_pstsup = false; |
|
| 808 |
|
|
| 807 |
template<typename SupplyMap> |
|
| 808 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
|
| 809 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 810 |
|
|
| 810 |
_supply[_node_id[n]] = map[n]; |
|
| 811 | 811 |
} |
| 812 | 812 |
return *this; |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
/// \brief Set single source and target nodes and a supply value. |
| 816 | 816 |
/// |
| 817 | 817 |
/// This function sets a single source node and a single target node |
| 818 | 818 |
/// and the required flow value. |
| 819 | 819 |
/// If neither this function nor \ref supplyMap() is used before |
| 820 | 820 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 821 | 821 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 822 | 822 |
/// |
| 823 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 824 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 825 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 826 |
/// |
|
| 823 | 827 |
/// \param s The source node. |
| 824 | 828 |
/// \param t The target node. |
| 825 | 829 |
/// \param k The required amount of flow from node \c s to node \c t |
| 826 | 830 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 827 | 831 |
/// |
| 828 | 832 |
/// \return <tt>(*this)</tt> |
| 829 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
|
|
| 830 |
delete _psupply; |
|
| 831 |
_psupply = NULL; |
|
| 832 |
_pstsup = true; |
|
| 833 |
_psource = s; |
|
| 834 |
_ptarget = t; |
|
| 835 |
|
|
| 833 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 834 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 835 |
_supply[i] = 0; |
|
| 836 |
} |
|
| 837 |
_supply[_node_id[s]] = k; |
|
| 838 |
_supply[_node_id[t]] = -k; |
|
| 836 | 839 |
return *this; |
| 837 | 840 |
} |
| 838 | 841 |
|
| 839 |
/// \brief Set the |
|
| 842 |
/// \brief Set the type of the supply constraints. |
|
| 840 | 843 |
/// |
| 841 |
/// This function sets the problem type for the algorithm. |
|
| 842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
| 844 |
/// This function sets the type of the supply/demand constraints. |
|
| 845 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
| 843 | 846 |
/// type will be used. |
| 844 | 847 |
/// |
| 845 |
/// For more information see \ref |
|
| 848 |
/// For more information see \ref SupplyType. |
|
| 846 | 849 |
/// |
| 847 | 850 |
/// \return <tt>(*this)</tt> |
| 848 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
| 849 |
_ptype = problem_type; |
|
| 851 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
|
| 852 |
_stype = supply_type; |
|
| 850 | 853 |
return *this; |
| 851 | 854 |
} |
| 852 | 855 |
|
| 853 |
/// \brief Set the flow map. |
|
| 854 |
/// |
|
| 855 |
/// This function sets the flow map. |
|
| 856 |
/// If it is not used before calling \ref run(), an instance will |
|
| 857 |
/// be allocated automatically. The destructor deallocates this |
|
| 858 |
/// automatically allocated map, of course. |
|
| 859 |
/// |
|
| 860 |
/// \return <tt>(*this)</tt> |
|
| 861 |
NetworkSimplex& flowMap(FlowMap& map) {
|
|
| 862 |
if (_local_flow) {
|
|
| 863 |
delete _flow_map; |
|
| 864 |
_local_flow = false; |
|
| 865 |
} |
|
| 866 |
_flow_map = ↦ |
|
| 867 |
return *this; |
|
| 868 |
} |
|
| 869 |
|
|
| 870 |
/// \brief Set the potential map. |
|
| 871 |
/// |
|
| 872 |
/// This function sets the potential map, which is used for storing |
|
| 873 |
/// the dual solution. |
|
| 874 |
/// If it is not used before calling \ref run(), an instance will |
|
| 875 |
/// be allocated automatically. The destructor deallocates this |
|
| 876 |
/// automatically allocated map, of course. |
|
| 877 |
/// |
|
| 878 |
/// \return <tt>(*this)</tt> |
|
| 879 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
|
| 880 |
if (_local_potential) {
|
|
| 881 |
delete _potential_map; |
|
| 882 |
_local_potential = false; |
|
| 883 |
} |
|
| 884 |
_potential_map = ↦ |
|
| 885 |
return *this; |
|
| 886 |
} |
|
| 887 |
|
|
| 888 | 856 |
/// @} |
| 889 | 857 |
|
| 890 | 858 |
/// \name Execution Control |
| 891 | 859 |
/// The algorithm can be executed using \ref run(). |
| 892 | 860 |
|
| 893 | 861 |
/// @{
|
| 894 | 862 |
|
| 895 | 863 |
/// \brief Run the algorithm. |
| 896 | 864 |
/// |
| 897 | 865 |
/// This function runs the algorithm. |
| 898 | 866 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 901 |
/// \ref |
|
| 867 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 868 |
/// \ref supplyType(). |
|
| 902 | 869 |
/// For example, |
| 903 | 870 |
/// \code |
| 904 | 871 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 905 |
/// ns. |
|
| 872 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 906 | 873 |
/// .supplyMap(sup).run(); |
| 907 | 874 |
/// \endcode |
| 908 | 875 |
/// |
| 909 | 876 |
/// This function can be called more than once. All the parameters |
| 910 | 877 |
/// that have been given are kept for the next call, unless |
| 911 | 878 |
/// \ref reset() is called, thus only the modified parameters |
| 912 | 879 |
/// have to be set again. See \ref reset() for examples. |
| 880 |
/// However the underlying digraph must not be modified after this |
|
| 881 |
/// class have been constructed, since it copies and extends the graph. |
|
| 913 | 882 |
/// |
| 914 | 883 |
/// \param pivot_rule The pivot rule that will be used during the |
| 915 | 884 |
/// algorithm. For more information see \ref PivotRule. |
| 916 | 885 |
/// |
| 917 |
/// \return \c true if a feasible flow can be found. |
|
| 918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 919 |
|
|
| 886 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 887 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 888 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 889 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 890 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
| 891 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
| 892 |
/// cost and infinite upper bound. |
|
| 893 |
/// |
|
| 894 |
/// \see ProblemType, PivotRule |
|
| 895 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 896 |
if (!init()) return INFEASIBLE; |
|
| 897 |
return start(pivot_rule); |
|
| 920 | 898 |
} |
| 921 | 899 |
|
| 922 | 900 |
/// \brief Reset all the parameters that have been given before. |
| 923 | 901 |
/// |
| 924 | 902 |
/// This function resets all the paramaters that have been given |
| 925 | 903 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
| 927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
| 928 |
/// \ref |
|
| 904 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|
| 929 | 905 |
/// |
| 930 | 906 |
/// It is useful for multiple run() calls. If this function is not |
| 931 | 907 |
/// used, all the parameters given before are kept for the next |
| 932 | 908 |
/// \ref run() call. |
| 909 |
/// However the underlying digraph must not be modified after this |
|
| 910 |
/// class have been constructed, since it copies and extends the graph. |
|
| 933 | 911 |
/// |
| 934 | 912 |
/// For example, |
| 935 | 913 |
/// \code |
| 936 | 914 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 937 | 915 |
/// |
| 938 | 916 |
/// // First run |
| 939 |
/// ns.lowerMap(lower). |
|
| 917 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 940 | 918 |
/// .supplyMap(sup).run(); |
| 941 | 919 |
/// |
| 942 | 920 |
/// // Run again with modified cost map (reset() is not called, |
| 943 | 921 |
/// // so only the cost map have to be set again) |
| 944 | 922 |
/// cost[e] += 100; |
| 945 | 923 |
/// ns.costMap(cost).run(); |
| 946 | 924 |
/// |
| 947 | 925 |
/// // Run again from scratch using reset() |
| 948 | 926 |
/// // (the lower bounds will be set to zero on all arcs) |
| 949 | 927 |
/// ns.reset(); |
| 950 |
/// ns. |
|
| 928 |
/// ns.upperMap(capacity).costMap(cost) |
|
| 951 | 929 |
/// .supplyMap(sup).run(); |
| 952 | 930 |
/// \endcode |
| 953 | 931 |
/// |
| 954 | 932 |
/// \return <tt>(*this)</tt> |
| 955 | 933 |
NetworkSimplex& reset() {
|
| 956 |
delete _plower; |
|
| 957 |
delete _pupper; |
|
| 958 |
delete _pcost; |
|
| 959 |
delete _psupply; |
|
| 960 |
_plower = NULL; |
|
| 961 |
_pupper = NULL; |
|
| 962 |
_pcost = NULL; |
|
| 963 |
_psupply = NULL; |
|
| 964 |
_pstsup = false; |
|
| 965 |
_ptype = GEQ; |
|
| 966 |
if (_local_flow) delete _flow_map; |
|
| 967 |
if (_local_potential) delete _potential_map; |
|
| 968 |
_flow_map = NULL; |
|
| 969 |
_potential_map = NULL; |
|
| 970 |
_local_flow = false; |
|
| 971 |
_local_potential = false; |
|
| 972 |
|
|
| 934 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 935 |
_supply[i] = 0; |
|
| 936 |
} |
|
| 937 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 938 |
_lower[i] = 0; |
|
| 939 |
_upper[i] = INF; |
|
| 940 |
_cost[i] = 1; |
|
| 941 |
} |
|
| 942 |
_have_lower = false; |
|
| 943 |
_stype = GEQ; |
|
| 973 | 944 |
return *this; |
| 974 | 945 |
} |
| 975 | 946 |
|
| 976 | 947 |
/// @} |
| 977 | 948 |
|
| 978 | 949 |
/// \name Query Functions |
| 979 | 950 |
/// The results of the algorithm can be obtained using these |
| 980 | 951 |
/// functions.\n |
| 981 | 952 |
/// The \ref run() function must be called before using them. |
| 982 | 953 |
|
| 983 | 954 |
/// @{
|
| 984 | 955 |
|
| 985 | 956 |
/// \brief Return the total cost of the found flow. |
| 986 | 957 |
/// |
| 987 | 958 |
/// This function returns the total cost of the found flow. |
| 988 |
/// |
|
| 959 |
/// Its complexity is O(e). |
|
| 989 | 960 |
/// |
| 990 | 961 |
/// \note The return type of the function can be specified as a |
| 991 | 962 |
/// template parameter. For example, |
| 992 | 963 |
/// \code |
| 993 | 964 |
/// ns.totalCost<double>(); |
| 994 | 965 |
/// \endcode |
| 995 | 966 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 996 | 967 |
/// type of the algorithm, which is the default return type of the |
| 997 | 968 |
/// function. |
| 998 | 969 |
/// |
| 999 | 970 |
/// \pre \ref run() must be called before using this function. |
| 1000 |
template <typename Num> |
|
| 1001 |
Num totalCost() const {
|
|
| 1002 |
Num c = 0; |
|
| 1003 |
if (_pcost) {
|
|
| 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
| 1006 |
} else {
|
|
| 1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1008 |
|
|
| 971 |
template <typename Number> |
|
| 972 |
Number totalCost() const {
|
|
| 973 |
Number c = 0; |
|
| 974 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 975 |
int i = _arc_id[a]; |
|
| 976 |
c += Number(_flow[i]) * Number(_cost[i]); |
|
| 1009 | 977 |
} |
| 1010 | 978 |
return c; |
| 1011 | 979 |
} |
| 1012 | 980 |
|
| 1013 | 981 |
#ifndef DOXYGEN |
| 1014 | 982 |
Cost totalCost() const {
|
| 1015 | 983 |
return totalCost<Cost>(); |
| 1016 | 984 |
} |
| 1017 | 985 |
#endif |
| 1018 | 986 |
|
| 1019 | 987 |
/// \brief Return the flow on the given arc. |
| 1020 | 988 |
/// |
| 1021 | 989 |
/// This function returns the flow on the given arc. |
| 1022 | 990 |
/// |
| 1023 | 991 |
/// \pre \ref run() must be called before using this function. |
| 1024 |
Flow flow(const Arc& a) const {
|
|
| 1025 |
return (*_flow_map)[a]; |
|
| 992 |
Value flow(const Arc& a) const {
|
|
| 993 |
return _flow[_arc_id[a]]; |
|
| 1026 | 994 |
} |
| 1027 | 995 |
|
| 1028 |
/// \brief Return |
|
| 996 |
/// \brief Return the flow map (the primal solution). |
|
| 1029 | 997 |
/// |
| 1030 |
/// This function returns a const reference to an arc map storing |
|
| 1031 |
/// the found flow. |
|
| 998 |
/// This function copies the flow value on each arc into the given |
|
| 999 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 1000 |
/// the \c Value type of the map. |
|
| 1032 | 1001 |
/// |
| 1033 | 1002 |
/// \pre \ref run() must be called before using this function. |
| 1034 |
const FlowMap& flowMap() const {
|
|
| 1035 |
return *_flow_map; |
|
| 1003 |
template <typename FlowMap> |
|
| 1004 |
void flowMap(FlowMap &map) const {
|
|
| 1005 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 1006 |
map.set(a, _flow[_arc_id[a]]); |
|
| 1007 |
} |
|
| 1036 | 1008 |
} |
| 1037 | 1009 |
|
| 1038 | 1010 |
/// \brief Return the potential (dual value) of the given node. |
| 1039 | 1011 |
/// |
| 1040 | 1012 |
/// This function returns the potential (dual value) of the |
| 1041 | 1013 |
/// given node. |
| 1042 | 1014 |
/// |
| 1043 | 1015 |
/// \pre \ref run() must be called before using this function. |
| 1044 | 1016 |
Cost potential(const Node& n) const {
|
| 1045 |
return |
|
| 1017 |
return _pi[_node_id[n]]; |
|
| 1046 | 1018 |
} |
| 1047 | 1019 |
|
| 1048 |
/// \brief Return a const reference to the potential map |
|
| 1049 |
/// (the dual solution). |
|
| 1020 |
/// \brief Return the potential map (the dual solution). |
|
| 1050 | 1021 |
/// |
| 1051 |
/// This function returns a const reference to a node map storing |
|
| 1052 |
/// the found potentials, which form the dual solution of the |
|
| 1053 |
/// |
|
| 1022 |
/// This function copies the potential (dual value) of each node |
|
| 1023 |
/// into the given map. |
|
| 1024 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 1025 |
/// \c Value type of the map. |
|
| 1054 | 1026 |
/// |
| 1055 | 1027 |
/// \pre \ref run() must be called before using this function. |
| 1056 |
const PotentialMap& potentialMap() const {
|
|
| 1057 |
return *_potential_map; |
|
| 1028 |
template <typename PotentialMap> |
|
| 1029 |
void potentialMap(PotentialMap &map) const {
|
|
| 1030 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1031 |
map.set(n, _pi[_node_id[n]]); |
|
| 1032 |
} |
|
| 1058 | 1033 |
} |
| 1059 | 1034 |
|
| 1060 | 1035 |
/// @} |
| 1061 | 1036 |
|
| 1062 | 1037 |
private: |
| 1063 | 1038 |
|
| 1064 | 1039 |
// Initialize internal data structures |
| 1065 | 1040 |
bool init() {
|
| 1066 |
// Initialize result maps |
|
| 1067 |
if (!_flow_map) {
|
|
| 1068 |
_flow_map = new FlowMap(_graph); |
|
| 1069 |
_local_flow = true; |
|
| 1041 |
if (_node_num == 0) return false; |
|
| 1042 |
|
|
| 1043 |
// Check the sum of supply values |
|
| 1044 |
_sum_supply = 0; |
|
| 1045 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1046 |
_sum_supply += _supply[i]; |
|
| 1070 | 1047 |
} |
| 1071 |
if (!_potential_map) {
|
|
| 1072 |
_potential_map = new PotentialMap(_graph); |
|
| 1073 |
|
|
| 1048 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
|
| 1049 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
|
| 1050 |
|
|
| 1051 |
// Remove non-zero lower bounds |
|
| 1052 |
if (_have_lower) {
|
|
| 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1054 |
Value c = _lower[i]; |
|
| 1055 |
if (c >= 0) {
|
|
| 1056 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|
| 1057 |
} else {
|
|
| 1058 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|
| 1059 |
} |
|
| 1060 |
_supply[_source[i]] -= c; |
|
| 1061 |
_supply[_target[i]] += c; |
|
| 1062 |
} |
|
| 1063 |
} else {
|
|
| 1064 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1065 |
_cap[i] = _upper[i]; |
|
| 1066 |
} |
|
| 1074 | 1067 |
} |
| 1075 | 1068 |
|
| 1076 |
// Initialize vectors |
|
| 1077 |
_node_num = countNodes(_graph); |
|
| 1078 |
_arc_num = countArcs(_graph); |
|
| 1079 |
int all_node_num = _node_num + 1; |
|
| 1080 |
int all_arc_num = _arc_num + _node_num; |
|
| 1081 |
if (_node_num == 0) return false; |
|
| 1082 |
|
|
| 1083 |
_arc_ref.resize(_arc_num); |
|
| 1084 |
_source.resize(all_arc_num); |
|
| 1085 |
_target.resize(all_arc_num); |
|
| 1086 |
|
|
| 1087 |
_cap.resize(all_arc_num); |
|
| 1088 |
_cost.resize(all_arc_num); |
|
| 1089 |
_supply.resize(all_node_num); |
|
| 1090 |
_flow.resize(all_arc_num); |
|
| 1091 |
_pi.resize(all_node_num); |
|
| 1092 |
|
|
| 1093 |
_parent.resize(all_node_num); |
|
| 1094 |
_pred.resize(all_node_num); |
|
| 1095 |
_forward.resize(all_node_num); |
|
| 1096 |
_thread.resize(all_node_num); |
|
| 1097 |
_rev_thread.resize(all_node_num); |
|
| 1098 |
_succ_num.resize(all_node_num); |
|
| 1099 |
_last_succ.resize(all_node_num); |
|
| 1100 |
_state.resize(all_arc_num); |
|
| 1101 |
|
|
| 1102 |
// Initialize node related data |
|
| 1103 |
bool valid_supply = true; |
|
| 1104 |
Flow sum_supply = 0; |
|
| 1105 |
if (!_pstsup && !_psupply) {
|
|
| 1106 |
_pstsup = true; |
|
| 1107 |
_psource = _ptarget = NodeIt(_graph); |
|
| 1108 |
_pstflow = 0; |
|
| 1109 |
} |
|
| 1110 |
if (_psupply) {
|
|
| 1111 |
int i = 0; |
|
| 1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1113 |
_node_id[n] = i; |
|
| 1114 |
_supply[i] = (*_psupply)[n]; |
|
| 1115 |
sum_supply += _supply[i]; |
|
| 1069 |
// Initialize artifical cost |
|
| 1070 |
Cost ART_COST; |
|
| 1071 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1072 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1073 |
} else {
|
|
| 1074 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
| 1075 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1076 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
| 1116 | 1077 |
} |
| 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
| 1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
| 1119 |
} else {
|
|
| 1120 |
int i = 0; |
|
| 1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1122 |
_node_id[n] = i; |
|
| 1123 |
_supply[i] = 0; |
|
| 1124 |
} |
|
| 1125 |
_supply[_node_id[_psource]] = _pstflow; |
|
| 1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
| 1127 |
} |
|
| 1128 |
if (!valid_supply) return false; |
|
| 1129 |
|
|
| 1130 |
// Infinite capacity value |
|
| 1131 |
Flow inf_cap = |
|
| 1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1133 |
std::numeric_limits<Flow>::infinity() : |
|
| 1134 |
std::numeric_limits<Flow>::max(); |
|
| 1135 |
|
|
| 1136 |
// Initialize artifical cost |
|
| 1137 |
Cost art_cost; |
|
| 1138 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1140 |
} else {
|
|
| 1141 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1142 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1144 |
} |
|
| 1145 |
|
|
| 1078 |
ART_COST = (ART_COST + 1) * _node_num; |
|
| 1146 | 1079 |
} |
| 1147 | 1080 |
|
| 1148 |
// Run Circulation to check if a feasible solution exists |
|
| 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
| 1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
| 1151 |
FlowNodeMap *csup = NULL; |
|
| 1152 |
bool local_csup = false; |
|
| 1153 |
if (_psupply) {
|
|
| 1154 |
csup = _psupply; |
|
| 1155 |
} else {
|
|
| 1156 |
csup = new FlowNodeMap(_graph, 0); |
|
| 1157 |
(*csup)[_psource] = _pstflow; |
|
| 1158 |
(*csup)[_ptarget] = -_pstflow; |
|
| 1159 |
local_csup = true; |
|
| 1081 |
// Initialize arc maps |
|
| 1082 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1083 |
_flow[i] = 0; |
|
| 1084 |
_state[i] = STATE_LOWER; |
|
| 1160 | 1085 |
} |
| 1161 |
bool circ_result = false; |
|
| 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
| 1163 |
// GEQ problem type |
|
| 1164 |
if (_plower) {
|
|
| 1165 |
if (_pupper) {
|
|
| 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
| 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
| 1168 |
circ_result = circ.run(); |
|
| 1169 |
} else {
|
|
| 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
| 1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
| 1172 |
circ_result = circ.run(); |
|
| 1173 |
} |
|
| 1174 |
} else {
|
|
| 1175 |
if (_pupper) {
|
|
| 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
| 1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
| 1178 |
circ_result = circ.run(); |
|
| 1179 |
} else {
|
|
| 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
| 1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
| 1182 |
circ_result = circ.run(); |
|
| 1183 |
} |
|
| 1184 |
} |
|
| 1185 |
} else {
|
|
| 1186 |
// LEQ problem type |
|
| 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
| 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
| 1189 |
RevGraph rgraph(_graph); |
|
| 1190 |
NegNodeMap neg_csup(*csup); |
|
| 1191 |
if (_plower) {
|
|
| 1192 |
if (_pupper) {
|
|
| 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
| 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
| 1195 |
circ_result = circ.run(); |
|
| 1196 |
} else {
|
|
| 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
| 1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
| 1199 |
circ_result = circ.run(); |
|
| 1200 |
} |
|
| 1201 |
} else {
|
|
| 1202 |
if (_pupper) {
|
|
| 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
| 1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
| 1205 |
circ_result = circ.run(); |
|
| 1206 |
} else {
|
|
| 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
| 1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
| 1209 |
circ_result = circ.run(); |
|
| 1210 |
} |
|
| 1211 |
} |
|
| 1212 |
} |
|
| 1213 |
if (local_csup) delete csup; |
|
| 1214 |
if (!circ_result) return false; |
|
| 1215 |
|
|
| 1086 |
|
|
| 1216 | 1087 |
// Set data for the artificial root node |
| 1217 | 1088 |
_root = _node_num; |
| 1218 | 1089 |
_parent[_root] = -1; |
| 1219 | 1090 |
_pred[_root] = -1; |
| 1220 | 1091 |
_thread[_root] = 0; |
| 1221 | 1092 |
_rev_thread[0] = _root; |
| 1222 |
_succ_num[_root] = |
|
| 1093 |
_succ_num[_root] = _node_num + 1; |
|
| 1223 | 1094 |
_last_succ[_root] = _root - 1; |
| 1224 |
_supply[_root] = -sum_supply; |
|
| 1225 |
if (sum_supply < 0) {
|
|
| 1226 |
_pi[_root] = -art_cost; |
|
| 1227 |
} else {
|
|
| 1228 |
_pi[_root] = art_cost; |
|
| 1229 |
} |
|
| 1230 |
|
|
| 1231 |
// Store the arcs in a mixed order |
|
| 1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 1233 |
int i = 0; |
|
| 1234 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1235 |
_arc_ref[i] = e; |
|
| 1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 1237 |
} |
|
| 1238 |
|
|
| 1239 |
// Initialize arc maps |
|
| 1240 |
if (_pupper && _pcost) {
|
|
| 1241 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1242 |
Arc e = _arc_ref[i]; |
|
| 1243 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1244 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1245 |
_cap[i] = (*_pupper)[e]; |
|
| 1246 |
_cost[i] = (*_pcost)[e]; |
|
| 1247 |
_flow[i] = 0; |
|
| 1248 |
_state[i] = STATE_LOWER; |
|
| 1249 |
} |
|
| 1250 |
} else {
|
|
| 1251 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1252 |
Arc e = _arc_ref[i]; |
|
| 1253 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1254 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1255 |
_flow[i] = 0; |
|
| 1256 |
_state[i] = STATE_LOWER; |
|
| 1257 |
} |
|
| 1258 |
if (_pupper) {
|
|
| 1259 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
| 1261 |
} else {
|
|
| 1262 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1263 |
_cap[i] = inf_cap; |
|
| 1264 |
} |
|
| 1265 |
if (_pcost) {
|
|
| 1266 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
| 1268 |
} else {
|
|
| 1269 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1270 |
_cost[i] = 1; |
|
| 1271 |
} |
|
| 1272 |
} |
|
| 1273 |
|
|
| 1274 |
// Remove non-zero lower bounds |
|
| 1275 |
if (_plower) {
|
|
| 1276 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
| 1278 |
if (c != 0) {
|
|
| 1279 |
_cap[i] -= c; |
|
| 1280 |
_supply[_source[i]] -= c; |
|
| 1281 |
_supply[_target[i]] += c; |
|
| 1282 |
} |
|
| 1283 |
} |
|
| 1284 |
|
|
| 1095 |
_supply[_root] = -_sum_supply; |
|
| 1096 |
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST; |
|
| 1285 | 1097 |
|
| 1286 | 1098 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1287 | 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1100 |
_parent[u] = _root; |
|
| 1101 |
_pred[u] = e; |
|
| 1288 | 1102 |
_thread[u] = u + 1; |
| 1289 | 1103 |
_rev_thread[u + 1] = u; |
| 1290 | 1104 |
_succ_num[u] = 1; |
| 1291 | 1105 |
_last_succ[u] = u; |
| 1292 |
_parent[u] = _root; |
|
| 1293 |
_pred[u] = e; |
|
| 1294 |
_cost[e] = art_cost; |
|
| 1295 |
_cap[e] = inf_cap; |
|
| 1106 |
_cost[e] = ART_COST; |
|
| 1107 |
_cap[e] = INF; |
|
| 1296 | 1108 |
_state[e] = STATE_TREE; |
| 1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
| 1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
|
| 1298 | 1110 |
_flow[e] = _supply[u]; |
| 1299 | 1111 |
_forward[u] = true; |
| 1300 |
_pi[u] = - |
|
| 1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
| 1301 | 1113 |
} else {
|
| 1302 | 1114 |
_flow[e] = -_supply[u]; |
| 1303 | 1115 |
_forward[u] = false; |
| 1304 |
_pi[u] = |
|
| 1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
| 1305 | 1117 |
} |
| 1306 | 1118 |
} |
| 1307 | 1119 |
|
| 1308 | 1120 |
return true; |
| 1309 | 1121 |
} |
| 1310 | 1122 |
|
| 1311 | 1123 |
// Find the join node |
| 1312 | 1124 |
void findJoinNode() {
|
| 1313 | 1125 |
int u = _source[in_arc]; |
| 1314 | 1126 |
int v = _target[in_arc]; |
| 1315 | 1127 |
while (u != v) {
|
| 1316 | 1128 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1317 | 1129 |
u = _parent[u]; |
| 1318 | 1130 |
} else {
|
| 1319 | 1131 |
v = _parent[v]; |
| 1320 | 1132 |
} |
| 1321 | 1133 |
} |
| 1322 | 1134 |
join = u; |
| 1323 | 1135 |
} |
| 1324 | 1136 |
|
| 1325 | 1137 |
// Find the leaving arc of the cycle and returns true if the |
| 1326 | 1138 |
// leaving arc is not the same as the entering arc |
| 1327 | 1139 |
bool findLeavingArc() {
|
| 1328 | 1140 |
// Initialize first and second nodes according to the direction |
| 1329 | 1141 |
// of the cycle |
| 1330 | 1142 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1331 | 1143 |
first = _source[in_arc]; |
| 1332 | 1144 |
second = _target[in_arc]; |
| 1333 | 1145 |
} else {
|
| 1334 | 1146 |
first = _target[in_arc]; |
| 1335 | 1147 |
second = _source[in_arc]; |
| 1336 | 1148 |
} |
| 1337 | 1149 |
delta = _cap[in_arc]; |
| 1338 | 1150 |
int result = 0; |
| 1339 |
|
|
| 1151 |
Value d; |
|
| 1340 | 1152 |
int e; |
| 1341 | 1153 |
|
| 1342 | 1154 |
// Search the cycle along the path form the first node to the root |
| 1343 | 1155 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1344 | 1156 |
e = _pred[u]; |
| 1345 |
d = _forward[u] ? |
|
| 1157 |
d = _forward[u] ? |
|
| 1158 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
| 1346 | 1159 |
if (d < delta) {
|
| 1347 | 1160 |
delta = d; |
| 1348 | 1161 |
u_out = u; |
| 1349 | 1162 |
result = 1; |
| 1350 | 1163 |
} |
| 1351 | 1164 |
} |
| 1352 | 1165 |
// Search the cycle along the path form the second node to the root |
| 1353 | 1166 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1354 | 1167 |
e = _pred[u]; |
| 1355 |
d = _forward[u] ? |
|
| 1168 |
d = _forward[u] ? |
|
| 1169 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
| 1356 | 1170 |
if (d <= delta) {
|
| 1357 | 1171 |
delta = d; |
| 1358 | 1172 |
u_out = u; |
| 1359 | 1173 |
result = 2; |
| 1360 | 1174 |
} |
| 1361 | 1175 |
} |
| 1362 | 1176 |
|
| 1363 | 1177 |
if (result == 1) {
|
| 1364 | 1178 |
u_in = first; |
| 1365 | 1179 |
v_in = second; |
| 1366 | 1180 |
} else {
|
| 1367 | 1181 |
u_in = second; |
| 1368 | 1182 |
v_in = first; |
| 1369 | 1183 |
} |
| 1370 | 1184 |
return result != 0; |
| 1371 | 1185 |
} |
| 1372 | 1186 |
|
| 1373 | 1187 |
// Change _flow and _state vectors |
| 1374 | 1188 |
void changeFlow(bool change) {
|
| 1375 | 1189 |
// Augment along the cycle |
| 1376 | 1190 |
if (delta > 0) {
|
| 1377 |
|
|
| 1191 |
Value val = _state[in_arc] * delta; |
|
| 1378 | 1192 |
_flow[in_arc] += val; |
| 1379 | 1193 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1380 | 1194 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1381 | 1195 |
} |
| 1382 | 1196 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1383 | 1197 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1384 | 1198 |
} |
| 1385 | 1199 |
} |
| 1386 | 1200 |
// Update the state of the entering and leaving arcs |
| 1387 | 1201 |
if (change) {
|
| 1388 | 1202 |
_state[in_arc] = STATE_TREE; |
| 1389 | 1203 |
_state[_pred[u_out]] = |
| 1390 | 1204 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1391 | 1205 |
} else {
|
| 1392 | 1206 |
_state[in_arc] = -_state[in_arc]; |
| 1393 | 1207 |
} |
| 1394 | 1208 |
} |
| 1395 | 1209 |
|
| 1396 | 1210 |
// Update the tree structure |
| 1397 | 1211 |
void updateTreeStructure() {
|
| 1398 | 1212 |
int u, w; |
| 1399 | 1213 |
int old_rev_thread = _rev_thread[u_out]; |
| 1400 | 1214 |
int old_succ_num = _succ_num[u_out]; |
| 1401 | 1215 |
int old_last_succ = _last_succ[u_out]; |
| 1402 | 1216 |
v_out = _parent[u_out]; |
| 1403 | 1217 |
|
| 1404 | 1218 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1405 | 1219 |
right = _thread[u]; // the node after it |
| 1406 | 1220 |
|
| 1407 | 1221 |
// Handle the case when old_rev_thread equals to v_in |
| 1408 | 1222 |
// (it also means that join and v_out coincide) |
| 1409 | 1223 |
if (old_rev_thread == v_in) {
|
| 1410 | 1224 |
last = _thread[_last_succ[u_out]]; |
| 1411 | 1225 |
} else {
|
| 1412 | 1226 |
last = _thread[v_in]; |
| 1413 | 1227 |
} |
| 1414 | 1228 |
|
| 1415 | 1229 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1416 | 1230 |
// between u_in and u_out, whose parent have to be changed) |
| 1417 | 1231 |
_thread[v_in] = stem = u_in; |
| 1418 | 1232 |
_dirty_revs.clear(); |
| 1419 | 1233 |
_dirty_revs.push_back(v_in); |
| 1420 | 1234 |
par_stem = v_in; |
| 1421 | 1235 |
while (stem != u_out) {
|
| 1422 | 1236 |
// Insert the next stem node into the thread list |
| 1423 | 1237 |
new_stem = _parent[stem]; |
| 1424 | 1238 |
_thread[u] = new_stem; |
| 1425 | 1239 |
_dirty_revs.push_back(u); |
| 1426 | 1240 |
|
| 1427 | 1241 |
// Remove the subtree of stem from the thread list |
| 1428 | 1242 |
w = _rev_thread[stem]; |
| 1429 | 1243 |
_thread[w] = right; |
| 1430 | 1244 |
_rev_thread[right] = w; |
| 1431 | 1245 |
|
| 1432 | 1246 |
// Change the parent node and shift stem nodes |
| 1433 | 1247 |
_parent[stem] = par_stem; |
| 1434 | 1248 |
par_stem = stem; |
| 1435 | 1249 |
stem = new_stem; |
| 1436 | 1250 |
|
| 1437 | 1251 |
// Update u and right |
| 1438 | 1252 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1439 | 1253 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1440 | 1254 |
right = _thread[u]; |
| 1441 | 1255 |
} |
| 1442 | 1256 |
_parent[u_out] = par_stem; |
| 1443 | 1257 |
_thread[u] = last; |
| 1444 | 1258 |
_rev_thread[last] = u; |
| 1445 | 1259 |
_last_succ[u_out] = u; |
| 1446 | 1260 |
|
| 1447 | 1261 |
// Remove the subtree of u_out from the thread list except for |
| 1448 | 1262 |
// the case when old_rev_thread equals to v_in |
| 1449 | 1263 |
// (it also means that join and v_out coincide) |
| 1450 | 1264 |
if (old_rev_thread != v_in) {
|
| 1451 | 1265 |
_thread[old_rev_thread] = right; |
| 1452 | 1266 |
_rev_thread[right] = old_rev_thread; |
| 1453 | 1267 |
} |
| 1454 | 1268 |
|
| 1455 | 1269 |
// Update _rev_thread using the new _thread values |
| 1456 | 1270 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1457 | 1271 |
u = _dirty_revs[i]; |
| 1458 | 1272 |
_rev_thread[_thread[u]] = u; |
| 1459 | 1273 |
} |
| 1460 | 1274 |
|
| 1461 | 1275 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1462 | 1276 |
// stem nodes from u_out to u_in |
| 1463 | 1277 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1464 | 1278 |
u = u_out; |
| 1465 | 1279 |
while (u != u_in) {
|
| 1466 | 1280 |
w = _parent[u]; |
| 1467 | 1281 |
_pred[u] = _pred[w]; |
| 1468 | 1282 |
_forward[u] = !_forward[w]; |
| 1469 | 1283 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1470 | 1284 |
_succ_num[u] = tmp_sc; |
| 1471 | 1285 |
_last_succ[w] = tmp_ls; |
| 1472 | 1286 |
u = w; |
| 1473 | 1287 |
} |
| 1474 | 1288 |
_pred[u_in] = in_arc; |
| 1475 | 1289 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1476 | 1290 |
_succ_num[u_in] = old_succ_num; |
| 1477 | 1291 |
|
| 1478 | 1292 |
// Set limits for updating _last_succ form v_in and v_out |
| 1479 | 1293 |
// towards the root |
| 1480 | 1294 |
int up_limit_in = -1; |
| 1481 | 1295 |
int up_limit_out = -1; |
| 1482 | 1296 |
if (_last_succ[join] == v_in) {
|
| 1483 | 1297 |
up_limit_out = join; |
| 1484 | 1298 |
} else {
|
| 1485 | 1299 |
up_limit_in = join; |
| 1486 | 1300 |
} |
| 1487 | 1301 |
|
| 1488 | 1302 |
// Update _last_succ from v_in towards the root |
| 1489 | 1303 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1490 | 1304 |
u = _parent[u]) {
|
| 1491 | 1305 |
_last_succ[u] = _last_succ[u_out]; |
| 1492 | 1306 |
} |
| 1493 | 1307 |
// Update _last_succ from v_out towards the root |
| 1494 | 1308 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1495 | 1309 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1496 | 1310 |
u = _parent[u]) {
|
| 1497 | 1311 |
_last_succ[u] = old_rev_thread; |
| 1498 | 1312 |
} |
| 1499 | 1313 |
} else {
|
| 1500 | 1314 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1501 | 1315 |
u = _parent[u]) {
|
| 1502 | 1316 |
_last_succ[u] = _last_succ[u_out]; |
| 1503 | 1317 |
} |
| 1504 | 1318 |
} |
| 1505 | 1319 |
|
| 1506 | 1320 |
// Update _succ_num from v_in to join |
| 1507 | 1321 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1508 | 1322 |
_succ_num[u] += old_succ_num; |
| 1509 | 1323 |
} |
| 1510 | 1324 |
// Update _succ_num from v_out to join |
| 1511 | 1325 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1512 | 1326 |
_succ_num[u] -= old_succ_num; |
| 1513 | 1327 |
} |
| 1514 | 1328 |
} |
| 1515 | 1329 |
|
| 1516 | 1330 |
// Update potentials |
| 1517 | 1331 |
void updatePotential() {
|
| 1518 | 1332 |
Cost sigma = _forward[u_in] ? |
| 1519 | 1333 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1520 | 1334 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1521 | 1335 |
// Update potentials in the subtree, which has been moved |
| 1522 | 1336 |
int end = _thread[_last_succ[u_in]]; |
| 1523 | 1337 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1524 | 1338 |
_pi[u] += sigma; |
| 1525 | 1339 |
} |
| 1526 | 1340 |
} |
| 1527 | 1341 |
|
| 1528 | 1342 |
// Execute the algorithm |
| 1529 |
|
|
| 1343 |
ProblemType start(PivotRule pivot_rule) {
|
|
| 1530 | 1344 |
// Select the pivot rule implementation |
| 1531 | 1345 |
switch (pivot_rule) {
|
| 1532 | 1346 |
case FIRST_ELIGIBLE: |
| 1533 | 1347 |
return start<FirstEligiblePivotRule>(); |
| 1534 | 1348 |
case BEST_ELIGIBLE: |
| 1535 | 1349 |
return start<BestEligiblePivotRule>(); |
| 1536 | 1350 |
case BLOCK_SEARCH: |
| 1537 | 1351 |
return start<BlockSearchPivotRule>(); |
| 1538 | 1352 |
case CANDIDATE_LIST: |
| 1539 | 1353 |
return start<CandidateListPivotRule>(); |
| 1540 | 1354 |
case ALTERING_LIST: |
| 1541 | 1355 |
return start<AlteringListPivotRule>(); |
| 1542 | 1356 |
} |
| 1543 |
return |
|
| 1357 |
return INFEASIBLE; // avoid warning |
|
| 1544 | 1358 |
} |
| 1545 | 1359 |
|
| 1546 | 1360 |
template <typename PivotRuleImpl> |
| 1547 |
|
|
| 1361 |
ProblemType start() {
|
|
| 1548 | 1362 |
PivotRuleImpl pivot(*this); |
| 1549 | 1363 |
|
| 1550 | 1364 |
// Execute the Network Simplex algorithm |
| 1551 | 1365 |
while (pivot.findEnteringArc()) {
|
| 1552 | 1366 |
findJoinNode(); |
| 1553 | 1367 |
bool change = findLeavingArc(); |
| 1368 |
if (delta >= INF) return UNBOUNDED; |
|
| 1554 | 1369 |
changeFlow(change); |
| 1555 | 1370 |
if (change) {
|
| 1556 | 1371 |
updateTreeStructure(); |
| 1557 | 1372 |
updatePotential(); |
| 1558 | 1373 |
} |
| 1559 | 1374 |
} |
| 1560 |
|
|
| 1561 |
// Copy flow values to _flow_map |
|
| 1562 |
if (_plower) {
|
|
| 1563 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1564 |
Arc e = _arc_ref[i]; |
|
| 1565 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
| 1566 |
} |
|
| 1567 |
} else {
|
|
| 1568 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1569 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
| 1375 |
|
|
| 1376 |
// Check feasibility |
|
| 1377 |
if (_sum_supply < 0) {
|
|
| 1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1570 | 1380 |
} |
| 1571 | 1381 |
} |
| 1572 |
// Copy potential values to _potential_map |
|
| 1573 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1574 |
|
|
| 1382 |
else if (_sum_supply > 0) {
|
|
| 1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1385 |
} |
|
| 1386 |
} |
|
| 1387 |
else {
|
|
| 1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
| 1390 |
} |
|
| 1575 | 1391 |
} |
| 1576 | 1392 |
|
| 1577 |
|
|
| 1393 |
// Transform the solution and the supply map to the original form |
|
| 1394 |
if (_have_lower) {
|
|
| 1395 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1396 |
Value c = _lower[i]; |
|
| 1397 |
if (c != 0) {
|
|
| 1398 |
_flow[i] += c; |
|
| 1399 |
_supply[_source[i]] += c; |
|
| 1400 |
_supply[_target[i]] -= c; |
|
| 1401 |
} |
|
| 1402 |
} |
|
| 1403 |
} |
|
| 1404 |
|
|
| 1405 |
return OPTIMAL; |
|
| 1578 | 1406 |
} |
| 1579 | 1407 |
|
| 1580 | 1408 |
}; //class NetworkSimplex |
| 1581 | 1409 |
|
| 1582 | 1410 |
///@} |
| 1583 | 1411 |
|
| 1584 | 1412 |
} //namespace lemon |
| 1585 | 1413 |
|
| 1586 | 1414 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PREFLOW_H |
| 20 | 20 |
#define LEMON_PREFLOW_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \file |
| 26 | 26 |
/// \ingroup max_flow |
| 27 | 27 |
/// \brief Implementation of the preflow algorithm. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
/// \brief Default traits class of Preflow class. |
| 32 | 32 |
/// |
| 33 | 33 |
/// Default traits class of Preflow class. |
| 34 | 34 |
/// \tparam GR Digraph type. |
| 35 | 35 |
/// \tparam CAP Capacity map type. |
| 36 | 36 |
template <typename GR, typename CAP> |
| 37 | 37 |
struct PreflowDefaultTraits {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
| 40 | 40 |
typedef GR Digraph; |
| 41 | 41 |
|
| 42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 |
typedef typename CapacityMap::Value |
|
| 49 |
typedef typename CapacityMap::Value Value; |
|
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
typedef typename Digraph::template ArcMap< |
|
| 55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Instantiates a FlowMap. |
| 58 | 58 |
/// |
| 59 | 59 |
/// This function instantiates a \ref FlowMap. |
| 60 | 60 |
/// \param digraph The digraph for which we would like to define |
| 61 | 61 |
/// the flow map. |
| 62 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 | 63 |
return new FlowMap(digraph); |
| 64 | 64 |
} |
| 65 | 65 |
|
| 66 | 66 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 67 |
/// |
| 68 | 68 |
/// The elevator type used by Preflow algorithm. |
| 69 | 69 |
/// |
| 70 | 70 |
/// \sa Elevator |
| 71 | 71 |
/// \sa LinkedElevator |
| 72 | 72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
| 73 | 73 |
|
| 74 | 74 |
/// \brief Instantiates an Elevator. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This function instantiates an \ref Elevator. |
| 77 | 77 |
/// \param digraph The digraph for which we would like to define |
| 78 | 78 |
/// the elevator. |
| 79 | 79 |
/// \param max_level The maximum level of the elevator. |
| 80 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 | 81 |
return new Elevator(digraph, max_level); |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
/// \brief The tolerance used by the algorithm |
| 85 | 85 |
/// |
| 86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 87 |
typedef lemon::Tolerance< |
|
| 87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 88 | 88 |
|
| 89 | 89 |
}; |
| 90 | 90 |
|
| 91 | 91 |
|
| 92 | 92 |
/// \ingroup max_flow |
| 93 | 93 |
/// |
| 94 | 94 |
/// \brief %Preflow algorithm class. |
| 95 | 95 |
/// |
| 96 | 96 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
| 97 | 97 |
/// \e push-relabel algorithm producing a \ref max_flow |
| 98 | 98 |
/// "flow of maximum value" in a digraph. |
| 99 | 99 |
/// The preflow algorithms are the fastest known maximum |
| 100 | 100 |
/// flow algorithms. The current implementation use a mixture of the |
| 101 | 101 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 102 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 103 |
/// |
| 104 | 104 |
/// The algorithm consists of two phases. After the first phase |
| 105 | 105 |
/// the maximum flow value and the minimum cut is obtained. The |
| 106 | 106 |
/// second phase constructs a feasible maximum flow on each arc. |
| 107 | 107 |
/// |
| 108 | 108 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 109 | 109 |
/// \tparam CAP The type of the capacity map. The default map |
| 110 | 110 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 111 | 111 |
#ifdef DOXYGEN |
| 112 | 112 |
template <typename GR, typename CAP, typename TR> |
| 113 | 113 |
#else |
| 114 | 114 |
template <typename GR, |
| 115 | 115 |
typename CAP = typename GR::template ArcMap<int>, |
| 116 | 116 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
| 117 | 117 |
#endif |
| 118 | 118 |
class Preflow {
|
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
| 122 | 122 |
typedef TR Traits; |
| 123 | 123 |
///The type of the digraph the algorithm runs on. |
| 124 | 124 |
typedef typename Traits::Digraph Digraph; |
| 125 | 125 |
///The type of the capacity map. |
| 126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
| 127 | 127 |
///The type of the flow values. |
| 128 |
typedef typename Traits:: |
|
| 128 |
typedef typename Traits::Value Value; |
|
| 129 | 129 |
|
| 130 | 130 |
///The type of the flow map. |
| 131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
| 132 | 132 |
///The type of the elevator. |
| 133 | 133 |
typedef typename Traits::Elevator Elevator; |
| 134 | 134 |
///The type of the tolerance. |
| 135 | 135 |
typedef typename Traits::Tolerance Tolerance; |
| 136 | 136 |
|
| 137 | 137 |
private: |
| 138 | 138 |
|
| 139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 140 | 140 |
|
| 141 | 141 |
const Digraph& _graph; |
| 142 | 142 |
const CapacityMap* _capacity; |
| 143 | 143 |
|
| 144 | 144 |
int _node_num; |
| 145 | 145 |
|
| 146 | 146 |
Node _source, _target; |
| 147 | 147 |
|
| 148 | 148 |
FlowMap* _flow; |
| 149 | 149 |
bool _local_flow; |
| 150 | 150 |
|
| 151 | 151 |
Elevator* _level; |
| 152 | 152 |
bool _local_level; |
| 153 | 153 |
|
| 154 |
typedef typename Digraph::template NodeMap< |
|
| 154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 155 | 155 |
ExcessMap* _excess; |
| 156 | 156 |
|
| 157 | 157 |
Tolerance _tolerance; |
| 158 | 158 |
|
| 159 | 159 |
bool _phase; |
| 160 | 160 |
|
| 161 | 161 |
|
| 162 | 162 |
void createStructures() {
|
| 163 | 163 |
_node_num = countNodes(_graph); |
| 164 | 164 |
|
| 165 | 165 |
if (!_flow) {
|
| 166 | 166 |
_flow = Traits::createFlowMap(_graph); |
| 167 | 167 |
_local_flow = true; |
| 168 | 168 |
} |
| 169 | 169 |
if (!_level) {
|
| 170 | 170 |
_level = Traits::createElevator(_graph, _node_num); |
| 171 | 171 |
_local_level = true; |
| 172 | 172 |
} |
| 173 | 173 |
if (!_excess) {
|
| 174 | 174 |
_excess = new ExcessMap(_graph); |
| 175 | 175 |
} |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
void destroyStructures() {
|
| 179 | 179 |
if (_local_flow) {
|
| 180 | 180 |
delete _flow; |
| 181 | 181 |
} |
| 182 | 182 |
if (_local_level) {
|
| 183 | 183 |
delete _level; |
| 184 | 184 |
} |
| 185 | 185 |
if (_excess) {
|
| 186 | 186 |
delete _excess; |
| 187 | 187 |
} |
| 188 | 188 |
} |
| 189 | 189 |
|
| 190 | 190 |
public: |
| 191 | 191 |
|
| 192 | 192 |
typedef Preflow Create; |
| 193 | 193 |
|
| 194 | 194 |
///\name Named Template Parameters |
| 195 | 195 |
|
| 196 | 196 |
///@{
|
| 197 | 197 |
|
| 198 | 198 |
template <typename T> |
| 199 | 199 |
struct SetFlowMapTraits : public Traits {
|
| 200 | 200 |
typedef T FlowMap; |
| 201 | 201 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 202 | 202 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 203 | 203 |
return 0; // ignore warnings |
| 204 | 204 |
} |
| 205 | 205 |
}; |
| 206 | 206 |
|
| 207 | 207 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 208 | 208 |
/// FlowMap type |
| 209 | 209 |
/// |
| 210 | 210 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 211 | 211 |
/// type. |
| 212 | 212 |
template <typename T> |
| 213 | 213 |
struct SetFlowMap |
| 214 | 214 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
|
| 215 | 215 |
typedef Preflow<Digraph, CapacityMap, |
| 216 | 216 |
SetFlowMapTraits<T> > Create; |
| 217 | 217 |
}; |
| 218 | 218 |
|
| 219 | 219 |
template <typename T> |
| 220 | 220 |
struct SetElevatorTraits : public Traits {
|
| 221 | 221 |
typedef T Elevator; |
| 222 | 222 |
static Elevator *createElevator(const Digraph&, int) {
|
| 223 | 223 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 224 | 224 |
return 0; // ignore warnings |
| 225 | 225 |
} |
| 226 | 226 |
}; |
| 227 | 227 |
|
| 228 | 228 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 229 | 229 |
/// Elevator type |
| 230 | 230 |
/// |
| 231 | 231 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 232 | 232 |
/// type. If this named parameter is used, then an external |
| 233 | 233 |
/// elevator object must be passed to the algorithm using the |
| 234 | 234 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 235 | 235 |
/// \ref run() or \ref init(). |
| 236 | 236 |
/// \sa SetStandardElevator |
| 237 | 237 |
template <typename T> |
| 238 | 238 |
struct SetElevator |
| 239 | 239 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
|
| 240 | 240 |
typedef Preflow<Digraph, CapacityMap, |
| 241 | 241 |
SetElevatorTraits<T> > Create; |
| 242 | 242 |
}; |
| 243 | 243 |
|
| 244 | 244 |
template <typename T> |
| 245 | 245 |
struct SetStandardElevatorTraits : public Traits {
|
| 246 | 246 |
typedef T Elevator; |
| 247 | 247 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 248 | 248 |
return new Elevator(digraph, max_level); |
| 249 | 249 |
} |
| 250 | 250 |
}; |
| 251 | 251 |
|
| 252 | 252 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 253 | 253 |
/// Elevator type with automatic allocation |
| 254 | 254 |
/// |
| 255 | 255 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 256 | 256 |
/// type with automatic allocation. |
| 257 | 257 |
/// The Elevator should have standard constructor interface to be |
| 258 | 258 |
/// able to automatically created by the algorithm (i.e. the |
| 259 | 259 |
/// digraph and the maximum level should be passed to it). |
| 260 | 260 |
/// However an external elevator object could also be passed to the |
| 261 | 261 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 262 | 262 |
/// before calling \ref run() or \ref init(). |
| 263 | 263 |
/// \sa SetElevator |
| 264 | 264 |
template <typename T> |
| 265 | 265 |
struct SetStandardElevator |
| 266 | 266 |
: public Preflow<Digraph, CapacityMap, |
| 267 | 267 |
SetStandardElevatorTraits<T> > {
|
| 268 | 268 |
typedef Preflow<Digraph, CapacityMap, |
| 269 | 269 |
SetStandardElevatorTraits<T> > Create; |
| 270 | 270 |
}; |
| 271 | 271 |
|
| 272 | 272 |
/// @} |
| 273 | 273 |
|
| 274 | 274 |
protected: |
| 275 | 275 |
|
| 276 | 276 |
Preflow() {}
|
| 277 | 277 |
|
| 278 | 278 |
public: |
| 279 | 279 |
|
| 280 | 280 |
|
| 281 | 281 |
/// \brief The constructor of the class. |
| 282 | 282 |
/// |
| 283 | 283 |
/// The constructor of the class. |
| 284 | 284 |
/// \param digraph The digraph the algorithm runs on. |
| 285 | 285 |
/// \param capacity The capacity of the arcs. |
| 286 | 286 |
/// \param source The source node. |
| 287 | 287 |
/// \param target The target node. |
| 288 | 288 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
| 289 | 289 |
Node source, Node target) |
| 290 | 290 |
: _graph(digraph), _capacity(&capacity), |
| 291 | 291 |
_node_num(0), _source(source), _target(target), |
| 292 | 292 |
_flow(0), _local_flow(false), |
| 293 | 293 |
_level(0), _local_level(false), |
| 294 | 294 |
_excess(0), _tolerance(), _phase() {}
|
| 295 | 295 |
|
| 296 | 296 |
/// \brief Destructor. |
| 297 | 297 |
/// |
| 298 | 298 |
/// Destructor. |
| 299 | 299 |
~Preflow() {
|
| 300 | 300 |
destroyStructures(); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
/// \brief Sets the capacity map. |
| 304 | 304 |
/// |
| 305 | 305 |
/// Sets the capacity map. |
| 306 | 306 |
/// \return <tt>(*this)</tt> |
| 307 | 307 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 308 | 308 |
_capacity = ↦ |
| 309 | 309 |
return *this; |
| 310 | 310 |
} |
| 311 | 311 |
|
| 312 | 312 |
/// \brief Sets the flow map. |
| 313 | 313 |
/// |
| 314 | 314 |
/// Sets the flow map. |
| 315 | 315 |
/// If you don't use this function before calling \ref run() or |
| 316 | 316 |
/// \ref init(), an instance will be allocated automatically. |
| 317 | 317 |
/// The destructor deallocates this automatically allocated map, |
| 318 | 318 |
/// of course. |
| 319 | 319 |
/// \return <tt>(*this)</tt> |
| 320 | 320 |
Preflow& flowMap(FlowMap& map) {
|
| 321 | 321 |
if (_local_flow) {
|
| 322 | 322 |
delete _flow; |
| 323 | 323 |
_local_flow = false; |
| 324 | 324 |
} |
| 325 | 325 |
_flow = ↦ |
| 326 | 326 |
return *this; |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
/// \brief Sets the source node. |
| 330 | 330 |
/// |
| 331 | 331 |
/// Sets the source node. |
| 332 | 332 |
/// \return <tt>(*this)</tt> |
| 333 | 333 |
Preflow& source(const Node& node) {
|
| 334 | 334 |
_source = node; |
| 335 | 335 |
return *this; |
| 336 | 336 |
} |
| 337 | 337 |
|
| 338 | 338 |
/// \brief Sets the target node. |
| 339 | 339 |
/// |
| 340 | 340 |
/// Sets the target node. |
| 341 | 341 |
/// \return <tt>(*this)</tt> |
| 342 | 342 |
Preflow& target(const Node& node) {
|
| 343 | 343 |
_target = node; |
| 344 | 344 |
return *this; |
| 345 | 345 |
} |
| 346 | 346 |
|
| 347 | 347 |
/// \brief Sets the elevator used by algorithm. |
| 348 | 348 |
/// |
| 349 | 349 |
/// Sets the elevator used by algorithm. |
| 350 | 350 |
/// If you don't use this function before calling \ref run() or |
| 351 | 351 |
/// \ref init(), an instance will be allocated automatically. |
| 352 | 352 |
/// The destructor deallocates this automatically allocated elevator, |
| 353 | 353 |
/// of course. |
| 354 | 354 |
/// \return <tt>(*this)</tt> |
| 355 | 355 |
Preflow& elevator(Elevator& elevator) {
|
| 356 | 356 |
if (_local_level) {
|
| 357 | 357 |
delete _level; |
| 358 | 358 |
_local_level = false; |
| 359 | 359 |
} |
| 360 | 360 |
_level = &elevator; |
| 361 | 361 |
return *this; |
| 362 | 362 |
} |
| 363 | 363 |
|
| 364 | 364 |
/// \brief Returns a const reference to the elevator. |
| 365 | 365 |
/// |
| 366 | 366 |
/// Returns a const reference to the elevator. |
| 367 | 367 |
/// |
| 368 | 368 |
/// \pre Either \ref run() or \ref init() must be called before |
| 369 | 369 |
/// using this function. |
| 370 | 370 |
const Elevator& elevator() const {
|
| 371 | 371 |
return *_level; |
| 372 | 372 |
} |
| 373 | 373 |
|
| 374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
| 375 | 375 |
/// |
| 376 | 376 |
/// Sets the tolerance used by algorithm. |
| 377 | 377 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
| 378 | 378 |
_tolerance = tolerance; |
| 379 | 379 |
return *this; |
| 380 | 380 |
} |
| 381 | 381 |
|
| 382 | 382 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 383 |
/// |
| 384 | 384 |
/// Returns a const reference to the tolerance. |
| 385 | 385 |
const Tolerance& tolerance() const {
|
| 386 | 386 |
return tolerance; |
| 387 | 387 |
} |
| 388 | 388 |
|
| 389 | 389 |
/// \name Execution Control |
| 390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 391 |
/// \ref run() or \ref runMinCut().\n |
| 392 | 392 |
/// If you need more control on the initial solution or the execution, |
| 393 | 393 |
/// first you have to call one of the \ref init() functions, then |
| 394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 395 |
|
| 396 | 396 |
///@{
|
| 397 | 397 |
|
| 398 | 398 |
/// \brief Initializes the internal data structures. |
| 399 | 399 |
/// |
| 400 | 400 |
/// Initializes the internal data structures and sets the initial |
| 401 | 401 |
/// flow to zero on each arc. |
| 402 | 402 |
void init() {
|
| 403 | 403 |
createStructures(); |
| 404 | 404 |
|
| 405 | 405 |
_phase = true; |
| 406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 407 | 407 |
(*_excess)[n] = 0; |
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 411 | 411 |
_flow->set(e, 0); |
| 412 | 412 |
} |
| 413 | 413 |
|
| 414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 415 | 415 |
|
| 416 | 416 |
_level->initStart(); |
| 417 | 417 |
_level->initAddItem(_target); |
| 418 | 418 |
|
| 419 | 419 |
std::vector<Node> queue; |
| 420 | 420 |
reached[_source] = true; |
| 421 | 421 |
|
| 422 | 422 |
queue.push_back(_target); |
| 423 | 423 |
reached[_target] = true; |
| 424 | 424 |
while (!queue.empty()) {
|
| 425 | 425 |
_level->initNewLevel(); |
| 426 | 426 |
std::vector<Node> nqueue; |
| 427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 428 | 428 |
Node n = queue[i]; |
| 429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 430 | 430 |
Node u = _graph.source(e); |
| 431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 432 | 432 |
reached[u] = true; |
| 433 | 433 |
_level->initAddItem(u); |
| 434 | 434 |
nqueue.push_back(u); |
| 435 | 435 |
} |
| 436 | 436 |
} |
| 437 | 437 |
} |
| 438 | 438 |
queue.swap(nqueue); |
| 439 | 439 |
} |
| 440 | 440 |
_level->initFinish(); |
| 441 | 441 |
|
| 442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 443 | 443 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 444 | 444 |
Node u = _graph.target(e); |
| 445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 446 | 446 |
_flow->set(e, (*_capacity)[e]); |
| 447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
| 448 | 448 |
if (u != _target && !_level->active(u)) {
|
| 449 | 449 |
_level->activate(u); |
| 450 | 450 |
} |
| 451 | 451 |
} |
| 452 | 452 |
} |
| 453 | 453 |
} |
| 454 | 454 |
|
| 455 | 455 |
/// \brief Initializes the internal data structures using the |
| 456 | 456 |
/// given flow map. |
| 457 | 457 |
/// |
| 458 | 458 |
/// Initializes the internal data structures and sets the initial |
| 459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 461 | 461 |
/// source node the incoming flow should greater or equal to the |
| 462 | 462 |
/// outgoing flow. |
| 463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 464 | 464 |
template <typename FlowMap> |
| 465 | 465 |
bool init(const FlowMap& flowMap) {
|
| 466 | 466 |
createStructures(); |
| 467 | 467 |
|
| 468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 469 | 469 |
_flow->set(e, flowMap[e]); |
| 470 | 470 |
} |
| 471 | 471 |
|
| 472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 473 |
|
|
| 473 |
Value excess = 0; |
|
| 474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 475 | 475 |
excess += (*_flow)[e]; |
| 476 | 476 |
} |
| 477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 478 | 478 |
excess -= (*_flow)[e]; |
| 479 | 479 |
} |
| 480 | 480 |
if (excess < 0 && n != _source) return false; |
| 481 | 481 |
(*_excess)[n] = excess; |
| 482 | 482 |
} |
| 483 | 483 |
|
| 484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 485 | 485 |
|
| 486 | 486 |
_level->initStart(); |
| 487 | 487 |
_level->initAddItem(_target); |
| 488 | 488 |
|
| 489 | 489 |
std::vector<Node> queue; |
| 490 | 490 |
reached[_source] = true; |
| 491 | 491 |
|
| 492 | 492 |
queue.push_back(_target); |
| 493 | 493 |
reached[_target] = true; |
| 494 | 494 |
while (!queue.empty()) {
|
| 495 | 495 |
_level->initNewLevel(); |
| 496 | 496 |
std::vector<Node> nqueue; |
| 497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 498 | 498 |
Node n = queue[i]; |
| 499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 500 | 500 |
Node u = _graph.source(e); |
| 501 | 501 |
if (!reached[u] && |
| 502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 503 | 503 |
reached[u] = true; |
| 504 | 504 |
_level->initAddItem(u); |
| 505 | 505 |
nqueue.push_back(u); |
| 506 | 506 |
} |
| 507 | 507 |
} |
| 508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 509 | 509 |
Node v = _graph.target(e); |
| 510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 511 | 511 |
reached[v] = true; |
| 512 | 512 |
_level->initAddItem(v); |
| 513 | 513 |
nqueue.push_back(v); |
| 514 | 514 |
} |
| 515 | 515 |
} |
| 516 | 516 |
} |
| 517 | 517 |
queue.swap(nqueue); |
| 518 | 518 |
} |
| 519 | 519 |
_level->initFinish(); |
| 520 | 520 |
|
| 521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 522 |
|
|
| 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 523 | 523 |
if (_tolerance.positive(rem)) {
|
| 524 | 524 |
Node u = _graph.target(e); |
| 525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 526 | 526 |
_flow->set(e, (*_capacity)[e]); |
| 527 | 527 |
(*_excess)[u] += rem; |
| 528 | 528 |
if (u != _target && !_level->active(u)) {
|
| 529 | 529 |
_level->activate(u); |
| 530 | 530 |
} |
| 531 | 531 |
} |
| 532 | 532 |
} |
| 533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 534 |
|
|
| 534 |
Value rem = (*_flow)[e]; |
|
| 535 | 535 |
if (_tolerance.positive(rem)) {
|
| 536 | 536 |
Node v = _graph.source(e); |
| 537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 538 | 538 |
_flow->set(e, 0); |
| 539 | 539 |
(*_excess)[v] += rem; |
| 540 | 540 |
if (v != _target && !_level->active(v)) {
|
| 541 | 541 |
_level->activate(v); |
| 542 | 542 |
} |
| 543 | 543 |
} |
| 544 | 544 |
} |
| 545 | 545 |
return true; |
| 546 | 546 |
} |
| 547 | 547 |
|
| 548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
| 549 | 549 |
/// |
| 550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
| 551 | 551 |
/// the first phase. After the first phase the maximum flow value |
| 552 | 552 |
/// and a minimum value cut can already be computed, although a |
| 553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
| 554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 555 | 555 |
/// minCut() returns a minimum cut. |
| 556 | 556 |
/// \pre One of the \ref init() functions must be called before |
| 557 | 557 |
/// using this function. |
| 558 | 558 |
void startFirstPhase() {
|
| 559 | 559 |
_phase = true; |
| 560 | 560 |
|
| 561 | 561 |
Node n = _level->highestActive(); |
| 562 | 562 |
int level = _level->highestActiveLevel(); |
| 563 | 563 |
while (n != INVALID) {
|
| 564 | 564 |
int num = _node_num; |
| 565 | 565 |
|
| 566 | 566 |
while (num > 0 && n != INVALID) {
|
| 567 |
|
|
| 567 |
Value excess = (*_excess)[n]; |
|
| 568 | 568 |
int new_level = _level->maxLevel(); |
| 569 | 569 |
|
| 570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 571 |
|
|
| 571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 572 | 572 |
if (!_tolerance.positive(rem)) continue; |
| 573 | 573 |
Node v = _graph.target(e); |
| 574 | 574 |
if ((*_level)[v] < level) {
|
| 575 | 575 |
if (!_level->active(v) && v != _target) {
|
| 576 | 576 |
_level->activate(v); |
| 577 | 577 |
} |
| 578 | 578 |
if (!_tolerance.less(rem, excess)) {
|
| 579 | 579 |
_flow->set(e, (*_flow)[e] + excess); |
| 580 | 580 |
(*_excess)[v] += excess; |
| 581 | 581 |
excess = 0; |
| 582 | 582 |
goto no_more_push_1; |
| 583 | 583 |
} else {
|
| 584 | 584 |
excess -= rem; |
| 585 | 585 |
(*_excess)[v] += rem; |
| 586 | 586 |
_flow->set(e, (*_capacity)[e]); |
| 587 | 587 |
} |
| 588 | 588 |
} else if (new_level > (*_level)[v]) {
|
| 589 | 589 |
new_level = (*_level)[v]; |
| 590 | 590 |
} |
| 591 | 591 |
} |
| 592 | 592 |
|
| 593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 594 |
|
|
| 594 |
Value rem = (*_flow)[e]; |
|
| 595 | 595 |
if (!_tolerance.positive(rem)) continue; |
| 596 | 596 |
Node v = _graph.source(e); |
| 597 | 597 |
if ((*_level)[v] < level) {
|
| 598 | 598 |
if (!_level->active(v) && v != _target) {
|
| 599 | 599 |
_level->activate(v); |
| 600 | 600 |
} |
| 601 | 601 |
if (!_tolerance.less(rem, excess)) {
|
| 602 | 602 |
_flow->set(e, (*_flow)[e] - excess); |
| 603 | 603 |
(*_excess)[v] += excess; |
| 604 | 604 |
excess = 0; |
| 605 | 605 |
goto no_more_push_1; |
| 606 | 606 |
} else {
|
| 607 | 607 |
excess -= rem; |
| 608 | 608 |
(*_excess)[v] += rem; |
| 609 | 609 |
_flow->set(e, 0); |
| 610 | 610 |
} |
| 611 | 611 |
} else if (new_level > (*_level)[v]) {
|
| 612 | 612 |
new_level = (*_level)[v]; |
| 613 | 613 |
} |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
no_more_push_1: |
| 617 | 617 |
|
| 618 | 618 |
(*_excess)[n] = excess; |
| 619 | 619 |
|
| 620 | 620 |
if (excess != 0) {
|
| 621 | 621 |
if (new_level + 1 < _level->maxLevel()) {
|
| 622 | 622 |
_level->liftHighestActive(new_level + 1); |
| 623 | 623 |
} else {
|
| 624 | 624 |
_level->liftHighestActiveToTop(); |
| 625 | 625 |
} |
| 626 | 626 |
if (_level->emptyLevel(level)) {
|
| 627 | 627 |
_level->liftToTop(level); |
| 628 | 628 |
} |
| 629 | 629 |
} else {
|
| 630 | 630 |
_level->deactivate(n); |
| 631 | 631 |
} |
| 632 | 632 |
|
| 633 | 633 |
n = _level->highestActive(); |
| 634 | 634 |
level = _level->highestActiveLevel(); |
| 635 | 635 |
--num; |
| 636 | 636 |
} |
| 637 | 637 |
|
| 638 | 638 |
num = _node_num * 20; |
| 639 | 639 |
while (num > 0 && n != INVALID) {
|
| 640 |
|
|
| 640 |
Value excess = (*_excess)[n]; |
|
| 641 | 641 |
int new_level = _level->maxLevel(); |
| 642 | 642 |
|
| 643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 644 |
|
|
| 644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 645 | 645 |
if (!_tolerance.positive(rem)) continue; |
| 646 | 646 |
Node v = _graph.target(e); |
| 647 | 647 |
if ((*_level)[v] < level) {
|
| 648 | 648 |
if (!_level->active(v) && v != _target) {
|
| 649 | 649 |
_level->activate(v); |
| 650 | 650 |
} |
| 651 | 651 |
if (!_tolerance.less(rem, excess)) {
|
| 652 | 652 |
_flow->set(e, (*_flow)[e] + excess); |
| 653 | 653 |
(*_excess)[v] += excess; |
| 654 | 654 |
excess = 0; |
| 655 | 655 |
goto no_more_push_2; |
| 656 | 656 |
} else {
|
| 657 | 657 |
excess -= rem; |
| 658 | 658 |
(*_excess)[v] += rem; |
| 659 | 659 |
_flow->set(e, (*_capacity)[e]); |
| 660 | 660 |
} |
| 661 | 661 |
} else if (new_level > (*_level)[v]) {
|
| 662 | 662 |
new_level = (*_level)[v]; |
| 663 | 663 |
} |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 667 |
|
|
| 667 |
Value rem = (*_flow)[e]; |
|
| 668 | 668 |
if (!_tolerance.positive(rem)) continue; |
| 669 | 669 |
Node v = _graph.source(e); |
| 670 | 670 |
if ((*_level)[v] < level) {
|
| 671 | 671 |
if (!_level->active(v) && v != _target) {
|
| 672 | 672 |
_level->activate(v); |
| 673 | 673 |
} |
| 674 | 674 |
if (!_tolerance.less(rem, excess)) {
|
| 675 | 675 |
_flow->set(e, (*_flow)[e] - excess); |
| 676 | 676 |
(*_excess)[v] += excess; |
| 677 | 677 |
excess = 0; |
| 678 | 678 |
goto no_more_push_2; |
| 679 | 679 |
} else {
|
| 680 | 680 |
excess -= rem; |
| 681 | 681 |
(*_excess)[v] += rem; |
| 682 | 682 |
_flow->set(e, 0); |
| 683 | 683 |
} |
| 684 | 684 |
} else if (new_level > (*_level)[v]) {
|
| 685 | 685 |
new_level = (*_level)[v]; |
| 686 | 686 |
} |
| 687 | 687 |
} |
| 688 | 688 |
|
| 689 | 689 |
no_more_push_2: |
| 690 | 690 |
|
| 691 | 691 |
(*_excess)[n] = excess; |
| 692 | 692 |
|
| 693 | 693 |
if (excess != 0) {
|
| 694 | 694 |
if (new_level + 1 < _level->maxLevel()) {
|
| 695 | 695 |
_level->liftActiveOn(level, new_level + 1); |
| 696 | 696 |
} else {
|
| 697 | 697 |
_level->liftActiveToTop(level); |
| 698 | 698 |
} |
| 699 | 699 |
if (_level->emptyLevel(level)) {
|
| 700 | 700 |
_level->liftToTop(level); |
| 701 | 701 |
} |
| 702 | 702 |
} else {
|
| 703 | 703 |
_level->deactivate(n); |
| 704 | 704 |
} |
| 705 | 705 |
|
| 706 | 706 |
while (level >= 0 && _level->activeFree(level)) {
|
| 707 | 707 |
--level; |
| 708 | 708 |
} |
| 709 | 709 |
if (level == -1) {
|
| 710 | 710 |
n = _level->highestActive(); |
| 711 | 711 |
level = _level->highestActiveLevel(); |
| 712 | 712 |
} else {
|
| 713 | 713 |
n = _level->activeOn(level); |
| 714 | 714 |
} |
| 715 | 715 |
--num; |
| 716 | 716 |
} |
| 717 | 717 |
} |
| 718 | 718 |
} |
| 719 | 719 |
|
| 720 | 720 |
/// \brief Starts the second phase of the preflow algorithm. |
| 721 | 721 |
/// |
| 722 | 722 |
/// The preflow algorithm consists of two phases, this method runs |
| 723 | 723 |
/// the second phase. After calling one of the \ref init() functions |
| 724 | 724 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
| 725 | 725 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
| 726 | 726 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
| 727 | 727 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
| 728 | 728 |
/// must be called before using this function. |
| 729 | 729 |
void startSecondPhase() {
|
| 730 | 730 |
_phase = false; |
| 731 | 731 |
|
| 732 | 732 |
typename Digraph::template NodeMap<bool> reached(_graph); |
| 733 | 733 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 734 | 734 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
| 735 | 735 |
} |
| 736 | 736 |
|
| 737 | 737 |
_level->initStart(); |
| 738 | 738 |
_level->initAddItem(_source); |
| 739 | 739 |
|
| 740 | 740 |
std::vector<Node> queue; |
| 741 | 741 |
queue.push_back(_source); |
| 742 | 742 |
reached[_source] = true; |
| 743 | 743 |
|
| 744 | 744 |
while (!queue.empty()) {
|
| 745 | 745 |
_level->initNewLevel(); |
| 746 | 746 |
std::vector<Node> nqueue; |
| 747 | 747 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 748 | 748 |
Node n = queue[i]; |
| 749 | 749 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 750 | 750 |
Node v = _graph.target(e); |
| 751 | 751 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 752 | 752 |
reached[v] = true; |
| 753 | 753 |
_level->initAddItem(v); |
| 754 | 754 |
nqueue.push_back(v); |
| 755 | 755 |
} |
| 756 | 756 |
} |
| 757 | 757 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 758 | 758 |
Node u = _graph.source(e); |
| 759 | 759 |
if (!reached[u] && |
| 760 | 760 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 761 | 761 |
reached[u] = true; |
| 762 | 762 |
_level->initAddItem(u); |
| 763 | 763 |
nqueue.push_back(u); |
| 764 | 764 |
} |
| 765 | 765 |
} |
| 766 | 766 |
} |
| 767 | 767 |
queue.swap(nqueue); |
| 768 | 768 |
} |
| 769 | 769 |
_level->initFinish(); |
| 770 | 770 |
|
| 771 | 771 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 772 | 772 |
if (!reached[n]) {
|
| 773 | 773 |
_level->dirtyTopButOne(n); |
| 774 | 774 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 775 | 775 |
_level->activate(n); |
| 776 | 776 |
} |
| 777 | 777 |
} |
| 778 | 778 |
|
| 779 | 779 |
Node n; |
| 780 | 780 |
while ((n = _level->highestActive()) != INVALID) {
|
| 781 |
|
|
| 781 |
Value excess = (*_excess)[n]; |
|
| 782 | 782 |
int level = _level->highestActiveLevel(); |
| 783 | 783 |
int new_level = _level->maxLevel(); |
| 784 | 784 |
|
| 785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 786 |
|
|
| 786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 787 | 787 |
if (!_tolerance.positive(rem)) continue; |
| 788 | 788 |
Node v = _graph.target(e); |
| 789 | 789 |
if ((*_level)[v] < level) {
|
| 790 | 790 |
if (!_level->active(v) && v != _source) {
|
| 791 | 791 |
_level->activate(v); |
| 792 | 792 |
} |
| 793 | 793 |
if (!_tolerance.less(rem, excess)) {
|
| 794 | 794 |
_flow->set(e, (*_flow)[e] + excess); |
| 795 | 795 |
(*_excess)[v] += excess; |
| 796 | 796 |
excess = 0; |
| 797 | 797 |
goto no_more_push; |
| 798 | 798 |
} else {
|
| 799 | 799 |
excess -= rem; |
| 800 | 800 |
(*_excess)[v] += rem; |
| 801 | 801 |
_flow->set(e, (*_capacity)[e]); |
| 802 | 802 |
} |
| 803 | 803 |
} else if (new_level > (*_level)[v]) {
|
| 804 | 804 |
new_level = (*_level)[v]; |
| 805 | 805 |
} |
| 806 | 806 |
} |
| 807 | 807 |
|
| 808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 809 |
|
|
| 809 |
Value rem = (*_flow)[e]; |
|
| 810 | 810 |
if (!_tolerance.positive(rem)) continue; |
| 811 | 811 |
Node v = _graph.source(e); |
| 812 | 812 |
if ((*_level)[v] < level) {
|
| 813 | 813 |
if (!_level->active(v) && v != _source) {
|
| 814 | 814 |
_level->activate(v); |
| 815 | 815 |
} |
| 816 | 816 |
if (!_tolerance.less(rem, excess)) {
|
| 817 | 817 |
_flow->set(e, (*_flow)[e] - excess); |
| 818 | 818 |
(*_excess)[v] += excess; |
| 819 | 819 |
excess = 0; |
| 820 | 820 |
goto no_more_push; |
| 821 | 821 |
} else {
|
| 822 | 822 |
excess -= rem; |
| 823 | 823 |
(*_excess)[v] += rem; |
| 824 | 824 |
_flow->set(e, 0); |
| 825 | 825 |
} |
| 826 | 826 |
} else if (new_level > (*_level)[v]) {
|
| 827 | 827 |
new_level = (*_level)[v]; |
| 828 | 828 |
} |
| 829 | 829 |
} |
| 830 | 830 |
|
| 831 | 831 |
no_more_push: |
| 832 | 832 |
|
| 833 | 833 |
(*_excess)[n] = excess; |
| 834 | 834 |
|
| 835 | 835 |
if (excess != 0) {
|
| 836 | 836 |
if (new_level + 1 < _level->maxLevel()) {
|
| 837 | 837 |
_level->liftHighestActive(new_level + 1); |
| 838 | 838 |
} else {
|
| 839 | 839 |
// Calculation error |
| 840 | 840 |
_level->liftHighestActiveToTop(); |
| 841 | 841 |
} |
| 842 | 842 |
if (_level->emptyLevel(level)) {
|
| 843 | 843 |
// Calculation error |
| 844 | 844 |
_level->liftToTop(level); |
| 845 | 845 |
} |
| 846 | 846 |
} else {
|
| 847 | 847 |
_level->deactivate(n); |
| 848 | 848 |
} |
| 849 | 849 |
|
| 850 | 850 |
} |
| 851 | 851 |
} |
| 852 | 852 |
|
| 853 | 853 |
/// \brief Runs the preflow algorithm. |
| 854 | 854 |
/// |
| 855 | 855 |
/// Runs the preflow algorithm. |
| 856 | 856 |
/// \note pf.run() is just a shortcut of the following code. |
| 857 | 857 |
/// \code |
| 858 | 858 |
/// pf.init(); |
| 859 | 859 |
/// pf.startFirstPhase(); |
| 860 | 860 |
/// pf.startSecondPhase(); |
| 861 | 861 |
/// \endcode |
| 862 | 862 |
void run() {
|
| 863 | 863 |
init(); |
| 864 | 864 |
startFirstPhase(); |
| 865 | 865 |
startSecondPhase(); |
| 866 | 866 |
} |
| 867 | 867 |
|
| 868 | 868 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
| 869 | 869 |
/// |
| 870 | 870 |
/// Runs the preflow algorithm to compute the minimum cut. |
| 871 | 871 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
| 872 | 872 |
/// \code |
| 873 | 873 |
/// pf.init(); |
| 874 | 874 |
/// pf.startFirstPhase(); |
| 875 | 875 |
/// \endcode |
| 876 | 876 |
void runMinCut() {
|
| 877 | 877 |
init(); |
| 878 | 878 |
startFirstPhase(); |
| 879 | 879 |
} |
| 880 | 880 |
|
| 881 | 881 |
/// @} |
| 882 | 882 |
|
| 883 | 883 |
/// \name Query Functions |
| 884 | 884 |
/// The results of the preflow algorithm can be obtained using these |
| 885 | 885 |
/// functions.\n |
| 886 | 886 |
/// Either one of the \ref run() "run*()" functions or one of the |
| 887 | 887 |
/// \ref startFirstPhase() "start*()" functions should be called |
| 888 | 888 |
/// before using them. |
| 889 | 889 |
|
| 890 | 890 |
///@{
|
| 891 | 891 |
|
| 892 | 892 |
/// \brief Returns the value of the maximum flow. |
| 893 | 893 |
/// |
| 894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
| 895 | 895 |
/// of the target node. This value equals to the value of |
| 896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
| 897 | 897 |
/// |
| 898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
| 899 | 899 |
/// using this function. |
| 900 |
|
|
| 900 |
Value flowValue() const {
|
|
| 901 | 901 |
return (*_excess)[_target]; |
| 902 | 902 |
} |
| 903 | 903 |
|
| 904 |
/// \brief Returns the flow on the given arc. |
|
| 904 |
/// \brief Returns the flow value on the given arc. |
|
| 905 | 905 |
/// |
| 906 |
/// Returns the flow on the given arc. This method can |
|
| 906 |
/// Returns the flow value on the given arc. This method can |
|
| 907 | 907 |
/// be called after the second phase of the algorithm. |
| 908 | 908 |
/// |
| 909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
| 910 | 910 |
/// using this function. |
| 911 |
|
|
| 911 |
Value flow(const Arc& arc) const {
|
|
| 912 | 912 |
return (*_flow)[arc]; |
| 913 | 913 |
} |
| 914 | 914 |
|
| 915 | 915 |
/// \brief Returns a const reference to the flow map. |
| 916 | 916 |
/// |
| 917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
| 918 | 918 |
/// This method can be called after the second phase of the algorithm. |
| 919 | 919 |
/// |
| 920 | 920 |
/// \pre Either \ref run() or \ref init() must be called before |
| 921 | 921 |
/// using this function. |
| 922 | 922 |
const FlowMap& flowMap() const {
|
| 923 | 923 |
return *_flow; |
| 924 | 924 |
} |
| 925 | 925 |
|
| 926 | 926 |
/// \brief Returns \c true when the node is on the source side of the |
| 927 | 927 |
/// minimum cut. |
| 928 | 928 |
/// |
| 929 | 929 |
/// Returns true when the node is on the source side of the found |
| 930 | 930 |
/// minimum cut. This method can be called both after running \ref |
| 931 | 931 |
/// startFirstPhase() and \ref startSecondPhase(). |
| 932 | 932 |
/// |
| 933 | 933 |
/// \pre Either \ref run() or \ref init() must be called before |
| 934 | 934 |
/// using this function. |
| 935 | 935 |
bool minCut(const Node& node) const {
|
| 936 | 936 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
| 937 | 937 |
} |
| 938 | 938 |
|
| 939 | 939 |
/// \brief Gives back a minimum value cut. |
| 940 | 940 |
/// |
| 941 | 941 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
| 942 | 942 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
| 943 | 943 |
/// node map with \c bool (or convertible) value type. |
| 944 | 944 |
/// |
| 945 | 945 |
/// This method can be called both after running \ref startFirstPhase() |
| 946 | 946 |
/// and \ref startSecondPhase(). The result after the second phase |
| 947 | 947 |
/// could be slightly different if inexact computation is used. |
| 948 | 948 |
/// |
| 949 | 949 |
/// \note This function calls \ref minCut() for each node, so it runs in |
| 950 | 950 |
/// O(n) time. |
| 951 | 951 |
/// |
| 952 | 952 |
/// \pre Either \ref run() or \ref init() must be called before |
| 953 | 953 |
/// using this function. |
| 954 | 954 |
template <typename CutMap> |
| 955 | 955 |
void minCutMap(CutMap& cutMap) const {
|
| 956 | 956 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 957 | 957 |
cutMap.set(n, minCut(n)); |
| 958 | 958 |
} |
| 959 | 959 |
} |
| 960 | 960 |
|
| 961 | 961 |
/// @} |
| 962 | 962 |
}; |
| 963 | 963 |
} |
| 964 | 964 |
|
| 965 | 965 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <sstream> |
| 20 | 20 |
#include <lemon/lp_skeleton.h> |
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
|
| 24 |
#ifdef HAVE_CONFIG_H |
|
| 25 | 24 |
#include <lemon/config.h> |
| 26 |
#endif |
|
| 27 | 25 |
|
| 28 | 26 |
#ifdef LEMON_HAVE_GLPK |
| 29 | 27 |
#include <lemon/glpk.h> |
| 30 | 28 |
#endif |
| 31 | 29 |
|
| 32 | 30 |
#ifdef LEMON_HAVE_CPLEX |
| 33 | 31 |
#include <lemon/cplex.h> |
| 34 | 32 |
#endif |
| 35 | 33 |
|
| 36 | 34 |
#ifdef LEMON_HAVE_SOPLEX |
| 37 | 35 |
#include <lemon/soplex.h> |
| 38 | 36 |
#endif |
| 39 | 37 |
|
| 40 | 38 |
#ifdef LEMON_HAVE_CLP |
| 41 | 39 |
#include <lemon/clp.h> |
| 42 | 40 |
#endif |
| 43 | 41 |
|
| 44 | 42 |
using namespace lemon; |
| 45 | 43 |
|
| 46 | 44 |
void lpTest(LpSolver& lp) |
| 47 | 45 |
{
|
| 48 | 46 |
|
| 49 | 47 |
typedef LpSolver LP; |
| 50 | 48 |
|
| 51 | 49 |
std::vector<LP::Col> x(10); |
| 52 | 50 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol()); |
| 53 | 51 |
lp.addColSet(x); |
| 54 | 52 |
lp.colLowerBound(x,1); |
| 55 | 53 |
lp.colUpperBound(x,1); |
| 56 | 54 |
lp.colBounds(x,1,2); |
| 57 | 55 |
|
| 58 | 56 |
std::vector<LP::Col> y(10); |
| 59 | 57 |
lp.addColSet(y); |
| 60 | 58 |
|
| 61 | 59 |
lp.colLowerBound(y,1); |
| 62 | 60 |
lp.colUpperBound(y,1); |
| 63 | 61 |
lp.colBounds(y,1,2); |
| 64 | 62 |
|
| 65 | 63 |
std::map<int,LP::Col> z; |
| 66 | 64 |
|
| 67 | 65 |
z.insert(std::make_pair(12,INVALID)); |
| 68 | 66 |
z.insert(std::make_pair(2,INVALID)); |
| 69 | 67 |
z.insert(std::make_pair(7,INVALID)); |
| 70 | 68 |
z.insert(std::make_pair(5,INVALID)); |
| 71 | 69 |
|
| 72 | 70 |
lp.addColSet(z); |
| 73 | 71 |
|
| 74 | 72 |
lp.colLowerBound(z,1); |
| 75 | 73 |
lp.colUpperBound(z,1); |
| 76 | 74 |
lp.colBounds(z,1,2); |
| 77 | 75 |
|
| 78 | 76 |
{
|
| 79 | 77 |
LP::Expr e,f,g; |
| 80 | 78 |
LP::Col p1,p2,p3,p4,p5; |
| 81 | 79 |
LP::Constr c; |
| 82 | 80 |
|
| 83 | 81 |
p1=lp.addCol(); |
| 84 | 82 |
p2=lp.addCol(); |
| 85 | 83 |
p3=lp.addCol(); |
| 86 | 84 |
p4=lp.addCol(); |
| 87 | 85 |
p5=lp.addCol(); |
| 88 | 86 |
|
| 89 | 87 |
e[p1]=2; |
| 90 | 88 |
*e=12; |
| 91 | 89 |
e[p1]+=2; |
| 92 | 90 |
*e+=12; |
| 93 | 91 |
e[p1]-=2; |
| 94 | 92 |
*e-=12; |
| 95 | 93 |
|
| 96 | 94 |
e=2; |
| 97 | 95 |
e=2.2; |
| 98 | 96 |
e=p1; |
| 99 | 97 |
e=f; |
| 100 | 98 |
|
| 101 | 99 |
e+=2; |
| 102 | 100 |
e+=2.2; |
| 103 | 101 |
e+=p1; |
| 104 | 102 |
e+=f; |
| 105 | 103 |
|
| 106 | 104 |
e-=2; |
| 107 | 105 |
e-=2.2; |
| 108 | 106 |
e-=p1; |
| 109 | 107 |
e-=f; |
| 110 | 108 |
|
| 111 | 109 |
e*=2; |
| 112 | 110 |
e*=2.2; |
| 113 | 111 |
e/=2; |
| 114 | 112 |
e/=2.2; |
| 115 | 113 |
|
| 116 | 114 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ |
| 117 | 115 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ |
| 118 | 116 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ |
| 119 | 117 |
2.2*f+f*2.2+f/2.2+ |
| 120 | 118 |
2*f+f*2+f/2+ |
| 121 | 119 |
2.2*p1+p1*2.2+p1/2.2+ |
| 122 | 120 |
2*p1+p1*2+p1/2 |
| 123 | 121 |
); |
| 124 | 122 |
|
| 125 | 123 |
|
| 126 | 124 |
c = (e <= f ); |
| 127 | 125 |
c = (e <= 2.2); |
| 128 | 126 |
c = (e <= 2 ); |
| 129 | 127 |
c = (e <= p1 ); |
| 130 | 128 |
c = (2.2<= f ); |
| 131 | 129 |
c = (2 <= f ); |
| 132 | 130 |
c = (p1 <= f ); |
| 133 | 131 |
c = (p1 <= p2 ); |
| 134 | 132 |
c = (p1 <= 2.2); |
| 135 | 133 |
c = (p1 <= 2 ); |
| 136 | 134 |
c = (2.2<= p2 ); |
| 137 | 135 |
c = (2 <= p2 ); |
| 138 | 136 |
|
| 139 | 137 |
c = (e >= f ); |
| 140 | 138 |
c = (e >= 2.2); |
| 141 | 139 |
c = (e >= 2 ); |
| 142 | 140 |
c = (e >= p1 ); |
| 143 | 141 |
c = (2.2>= f ); |
| 144 | 142 |
c = (2 >= f ); |
| 145 | 143 |
c = (p1 >= f ); |
| 146 | 144 |
c = (p1 >= p2 ); |
| 147 | 145 |
c = (p1 >= 2.2); |
| 148 | 146 |
c = (p1 >= 2 ); |
| 149 | 147 |
c = (2.2>= p2 ); |
| 150 | 148 |
c = (2 >= p2 ); |
| 151 | 149 |
|
| 152 | 150 |
c = (e == f ); |
| 153 | 151 |
c = (e == 2.2); |
| 154 | 152 |
c = (e == 2 ); |
| 155 | 153 |
c = (e == p1 ); |
| 156 | 154 |
c = (2.2== f ); |
| 157 | 155 |
c = (2 == f ); |
| 158 | 156 |
c = (p1 == f ); |
| 159 | 157 |
//c = (p1 == p2 ); |
| 160 | 158 |
c = (p1 == 2.2); |
| 161 | 159 |
c = (p1 == 2 ); |
| 162 | 160 |
c = (2.2== p2 ); |
| 163 | 161 |
c = (2 == p2 ); |
| 164 | 162 |
|
| 165 | 163 |
c = ((2 <= e) <= 3); |
| 166 | 164 |
c = ((2 <= p1) <= 3); |
| 167 | 165 |
|
| 168 | 166 |
c = ((2 >= e) >= 3); |
| 169 | 167 |
c = ((2 >= p1) >= 3); |
| 170 | 168 |
|
| 171 | 169 |
e[x[3]]=2; |
| 172 | 170 |
e[x[3]]=4; |
| 173 | 171 |
e[x[3]]=1; |
| 174 | 172 |
*e=12; |
| 175 | 173 |
|
| 176 | 174 |
lp.addRow(-LP::INF,e,23); |
| 177 | 175 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); |
| 178 | 176 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); |
| 179 | 177 |
|
| 180 | 178 |
lp.addRow(x[1]+x[3]<=x[5]-3); |
| 181 | 179 |
lp.addRow((-7<=x[1]+x[3]-12)<=3); |
| 182 | 180 |
lp.addRow(x[1]<=x[5]); |
| 183 | 181 |
|
| 184 | 182 |
std::ostringstream buf; |
| 185 | 183 |
|
| 186 | 184 |
|
| 187 | 185 |
e=((p1+p2)+(p1-0.99*p2)); |
| 188 | 186 |
//e.prettyPrint(std::cout); |
| 189 | 187 |
//(e<=2).prettyPrint(std::cout); |
| 190 | 188 |
double tolerance=0.001; |
| 191 | 189 |
e.simplify(tolerance); |
| 192 | 190 |
buf << "Coeff. of p2 should be 0.01"; |
| 193 | 191 |
check(e[p2]>0, buf.str()); |
| 194 | 192 |
|
| 195 | 193 |
tolerance=0.02; |
| 196 | 194 |
e.simplify(tolerance); |
| 197 | 195 |
buf << "Coeff. of p2 should be 0"; |
| 198 | 196 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str()); |
| 199 | 197 |
|
| 200 | 198 |
//Test for clone/new |
| 201 | 199 |
LP* lpnew = lp.newSolver(); |
| 202 | 200 |
LP* lpclone = lp.cloneSolver(); |
| 203 | 201 |
delete lpnew; |
| 204 | 202 |
delete lpclone; |
| 205 | 203 |
|
| 206 | 204 |
} |
| 207 | 205 |
|
| 208 | 206 |
{
|
| 209 | 207 |
LP::DualExpr e,f,g; |
| 210 | 208 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, |
| 211 | 209 |
p4 = INVALID, p5 = INVALID; |
| 212 | 210 |
|
| 213 | 211 |
e[p1]=2; |
| 214 | 212 |
e[p1]+=2; |
| 215 | 213 |
e[p1]-=2; |
| 216 | 214 |
|
| 217 | 215 |
e=p1; |
| 218 | 216 |
e=f; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 |
#include <limits> |
|
| 21 | 22 |
|
| 22 | 23 |
#include <lemon/list_graph.h> |
| 23 | 24 |
#include <lemon/lgf_reader.h> |
| 24 | 25 |
|
| 25 | 26 |
#include <lemon/network_simplex.h> |
| 26 | 27 |
|
| 27 | 28 |
#include <lemon/concepts/digraph.h> |
| 28 | 29 |
#include <lemon/concept_check.h> |
| 29 | 30 |
|
| 30 | 31 |
#include "test_tools.h" |
| 31 | 32 |
|
| 32 | 33 |
using namespace lemon; |
| 33 | 34 |
|
| 34 | 35 |
char test_lgf[] = |
| 35 | 36 |
"@nodes\n" |
| 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
| 37 |
" 1 20 27 0 20 30\n" |
|
| 38 |
" 2 -4 0 0 -8 -3\n" |
|
| 39 |
" 3 0 0 0 0 0\n" |
|
| 40 |
" 4 0 0 0 0 0\n" |
|
| 41 |
" 5 9 0 0 6 11\n" |
|
| 42 |
" 6 -6 0 0 -5 -6\n" |
|
| 43 |
" 7 0 0 0 0 0\n" |
|
| 44 |
" 8 0 0 0 0 3\n" |
|
| 45 |
" 9 3 0 0 0 0\n" |
|
| 46 |
" 10 -2 0 0 -7 -2\n" |
|
| 47 |
" 11 0 0 0 -10 0\n" |
|
| 48 |
" 12 -20 -27 0 -30 -20\n" |
|
| 49 |
"\n" |
|
| 37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
| 38 |
" 1 20 27 0 30 20 30\n" |
|
| 39 |
" 2 -4 0 0 0 -8 -3\n" |
|
| 40 |
" 3 0 0 0 0 0 0\n" |
|
| 41 |
" 4 0 0 0 0 0 0\n" |
|
| 42 |
" 5 9 0 0 0 6 11\n" |
|
| 43 |
" 6 -6 0 0 0 -5 -6\n" |
|
| 44 |
" 7 0 0 0 0 0 0\n" |
|
| 45 |
" 8 0 0 0 0 0 3\n" |
|
| 46 |
" 9 3 0 0 0 0 0\n" |
|
| 47 |
" 10 -2 0 0 0 -7 -2\n" |
|
| 48 |
" 11 0 0 0 0 -10 0\n" |
|
| 49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
| 50 |
"\n" |
|
| 50 | 51 |
"@arcs\n" |
| 51 |
" cost cap low1 low2\n" |
|
| 52 |
" 1 2 70 11 0 8\n" |
|
| 53 |
" 1 3 150 3 0 1\n" |
|
| 54 |
" 1 4 80 15 0 2\n" |
|
| 55 |
" 2 8 80 12 0 0\n" |
|
| 56 |
" 3 5 140 5 0 3\n" |
|
| 57 |
" 4 6 60 10 0 1\n" |
|
| 58 |
" 4 7 80 2 0 0\n" |
|
| 59 |
" 4 8 110 3 0 0\n" |
|
| 60 |
" 5 7 60 14 0 0\n" |
|
| 61 |
" 5 11 120 12 0 0\n" |
|
| 62 |
" 6 3 0 3 0 0\n" |
|
| 63 |
" 6 9 140 4 0 0\n" |
|
| 64 |
" 6 10 90 8 0 0\n" |
|
| 65 |
" 7 1 30 5 0 0\n" |
|
| 66 |
" 8 12 60 16 0 4\n" |
|
| 67 |
" 9 12 50 6 0 0\n" |
|
| 68 |
"10 12 70 13 0 5\n" |
|
| 69 |
"10 2 100 7 0 0\n" |
|
| 70 |
"10 7 60 10 0 0\n" |
|
| 71 |
"11 10 20 14 0 6\n" |
|
| 72 |
"12 11 30 10 0 0\n" |
|
| 52 |
" cost cap low1 low2 low3\n" |
|
| 53 |
" 1 2 70 11 0 8 8\n" |
|
| 54 |
" 1 3 150 3 0 1 0\n" |
|
| 55 |
" 1 4 80 15 0 2 2\n" |
|
| 56 |
" 2 8 80 12 0 0 0\n" |
|
| 57 |
" 3 5 140 5 0 3 1\n" |
|
| 58 |
" 4 6 60 10 0 1 0\n" |
|
| 59 |
" 4 7 80 2 0 0 0\n" |
|
| 60 |
" 4 8 110 3 0 0 0\n" |
|
| 61 |
" 5 7 60 14 0 0 0\n" |
|
| 62 |
" 5 11 120 12 0 0 0\n" |
|
| 63 |
" 6 3 0 3 0 0 0\n" |
|
| 64 |
" 6 9 140 4 0 0 0\n" |
|
| 65 |
" 6 10 90 8 0 0 0\n" |
|
| 66 |
" 7 1 30 5 0 0 -5\n" |
|
| 67 |
" 8 12 60 16 0 4 3\n" |
|
| 68 |
" 9 12 50 6 0 0 0\n" |
|
| 69 |
"10 12 70 13 0 5 2\n" |
|
| 70 |
"10 2 100 7 0 0 0\n" |
|
| 71 |
"10 7 60 10 0 0 -3\n" |
|
| 72 |
"11 10 20 14 0 6 -20\n" |
|
| 73 |
"12 11 30 10 0 0 -10\n" |
|
| 73 | 74 |
"\n" |
| 74 | 75 |
"@attributes\n" |
| 75 | 76 |
"source 1\n" |
| 76 | 77 |
"target 12\n"; |
| 77 | 78 |
|
| 78 | 79 |
|
| 79 |
enum |
|
| 80 |
enum SupplyType {
|
|
| 80 | 81 |
EQ, |
| 81 | 82 |
GEQ, |
| 82 | 83 |
LEQ |
| 83 | 84 |
}; |
| 84 | 85 |
|
| 85 | 86 |
// Check the interface of an MCF algorithm |
| 86 |
template <typename GR, typename |
|
| 87 |
template <typename GR, typename Value, typename Cost> |
|
| 87 | 88 |
class McfClassConcept |
| 88 | 89 |
{
|
| 89 | 90 |
public: |
| 90 | 91 |
|
| 91 | 92 |
template <typename MCF> |
| 92 | 93 |
struct Constraints {
|
| 93 | 94 |
void constraints() {
|
| 94 | 95 |
checkConcept<concepts::Digraph, GR>(); |
| 95 | 96 |
|
| 96 | 97 |
MCF mcf(g); |
| 98 |
const MCF& const_mcf = mcf; |
|
| 97 | 99 |
|
| 98 | 100 |
b = mcf.reset() |
| 99 | 101 |
.lowerMap(lower) |
| 100 | 102 |
.upperMap(upper) |
| 101 |
.capacityMap(upper) |
|
| 102 |
.boundMaps(lower, upper) |
|
| 103 | 103 |
.costMap(cost) |
| 104 | 104 |
.supplyMap(sup) |
| 105 | 105 |
.stSupply(n, n, k) |
| 106 |
.flowMap(flow) |
|
| 107 |
.potentialMap(pot) |
|
| 108 | 106 |
.run(); |
| 109 |
|
|
| 110 |
const MCF& const_mcf = mcf; |
|
| 111 | 107 |
|
| 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
| 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
| 114 |
|
|
| 115 |
v = const_mcf.totalCost(); |
|
| 116 |
|
|
| 108 |
c = const_mcf.totalCost(); |
|
| 109 |
x = const_mcf.template totalCost<double>(); |
|
| 117 | 110 |
v = const_mcf.flow(a); |
| 118 |
v = const_mcf.potential(n); |
|
| 119 |
|
|
| 120 |
ignore_unused_variable_warning(fm); |
|
| 121 |
ignore_unused_variable_warning(pm); |
|
| 122 |
|
|
| 111 |
c = const_mcf.potential(n); |
|
| 112 |
const_mcf.flowMap(fm); |
|
| 113 |
const_mcf.potentialMap(pm); |
|
| 123 | 114 |
} |
| 124 | 115 |
|
| 125 | 116 |
typedef typename GR::Node Node; |
| 126 | 117 |
typedef typename GR::Arc Arc; |
| 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
| 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
| 118 |
typedef concepts::ReadMap<Node, Value> NM; |
|
| 119 |
typedef concepts::ReadMap<Arc, Value> VAM; |
|
| 129 | 120 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 121 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
|
| 122 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
|
| 130 | 123 |
|
| 131 | 124 |
const GR &g; |
| 132 |
const FAM &lower; |
|
| 133 |
const FAM &upper; |
|
| 125 |
const VAM &lower; |
|
| 126 |
const VAM &upper; |
|
| 134 | 127 |
const CAM &cost; |
| 135 | 128 |
const NM ⊃ |
| 136 | 129 |
const Node &n; |
| 137 | 130 |
const Arc &a; |
| 138 |
const Flow &k; |
|
| 139 |
Flow v; |
|
| 131 |
const Value &k; |
|
| 132 |
FlowMap fm; |
|
| 133 |
PotMap pm; |
|
| 140 | 134 |
bool b; |
| 141 |
|
|
| 142 |
typename MCF::FlowMap &flow; |
|
| 143 |
|
|
| 135 |
double x; |
|
| 136 |
typename MCF::Value v; |
|
| 137 |
typename MCF::Cost c; |
|
| 144 | 138 |
}; |
| 145 | 139 |
|
| 146 | 140 |
}; |
| 147 | 141 |
|
| 148 | 142 |
|
| 149 | 143 |
// Check the feasibility of the given flow (primal soluiton) |
| 150 | 144 |
template < typename GR, typename LM, typename UM, |
| 151 | 145 |
typename SM, typename FM > |
| 152 | 146 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 153 | 147 |
const SM& supply, const FM& flow, |
| 154 |
|
|
| 148 |
SupplyType type = EQ ) |
|
| 155 | 149 |
{
|
| 156 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 157 | 151 |
|
| 158 | 152 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 159 | 153 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 160 | 154 |
} |
| 161 | 155 |
|
| 162 | 156 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 163 | 157 |
typename SM::Value sum = 0; |
| 164 | 158 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 165 | 159 |
sum += flow[e]; |
| 166 | 160 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 167 | 161 |
sum -= flow[e]; |
| 168 | 162 |
bool b = (type == EQ && sum == supply[n]) || |
| 169 | 163 |
(type == GEQ && sum >= supply[n]) || |
| 170 | 164 |
(type == LEQ && sum <= supply[n]); |
| 171 | 165 |
if (!b) return false; |
| 172 | 166 |
} |
| 173 | 167 |
|
| 174 | 168 |
return true; |
| 175 | 169 |
} |
| 176 | 170 |
|
| 177 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
| 178 | 172 |
// using the "Complementary Slackness" optimality condition |
| 179 | 173 |
template < typename GR, typename LM, typename UM, |
| 180 | 174 |
typename CM, typename SM, typename FM, typename PM > |
| 181 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 182 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
| 183 | 177 |
const PM& pi ) |
| 184 | 178 |
{
|
| 185 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 186 | 180 |
|
| 187 | 181 |
bool opt = true; |
| 188 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 189 | 183 |
typename CM::Value red_cost = |
| 190 | 184 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 191 | 185 |
opt = red_cost == 0 || |
| 192 | 186 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 193 | 187 |
(red_cost < 0 && flow[e] == upper[e]); |
| 194 | 188 |
} |
| 195 | 189 |
|
| 196 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 197 | 191 |
typename SM::Value sum = 0; |
| 198 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 199 | 193 |
sum += flow[e]; |
| 200 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 201 | 195 |
sum -= flow[e]; |
| 202 | 196 |
opt = (sum == supply[n]) || (pi[n] == 0); |
| 203 | 197 |
} |
| 204 | 198 |
|
| 205 | 199 |
return opt; |
| 206 | 200 |
} |
| 207 | 201 |
|
| 208 | 202 |
// Run a minimum cost flow algorithm and check the results |
| 209 | 203 |
template < typename MCF, typename GR, |
| 210 | 204 |
typename LM, typename UM, |
| 211 |
typename CM, typename SM > |
|
| 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
| 205 |
typename CM, typename SM, |
|
| 206 |
typename PT > |
|
| 207 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
| 213 | 208 |
const GR& gr, const LM& lower, const UM& upper, |
| 214 | 209 |
const CM& cost, const SM& supply, |
| 215 |
bool |
|
| 210 |
PT result, bool optimal, typename CM::Value total, |
|
| 216 | 211 |
const std::string &test_id = "", |
| 217 |
|
|
| 212 |
SupplyType type = EQ ) |
|
| 218 | 213 |
{
|
| 219 | 214 |
check(mcf_result == result, "Wrong result " + test_id); |
| 220 |
if (result) {
|
|
| 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
| 215 |
if (optimal) {
|
|
| 216 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
|
| 217 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
|
| 218 |
mcf.flowMap(flow); |
|
| 219 |
mcf.potentialMap(pi); |
|
| 220 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
|
| 222 | 221 |
"The flow is not feasible " + test_id); |
| 223 | 222 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
| 225 |
mcf.potentialMap()), |
|
| 223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
| 226 | 224 |
"Wrong potentials " + test_id); |
| 227 | 225 |
} |
| 228 | 226 |
} |
| 229 | 227 |
|
| 230 | 228 |
int main() |
| 231 | 229 |
{
|
| 232 | 230 |
// Check the interfaces |
| 233 | 231 |
{
|
| 234 |
typedef int Flow; |
|
| 235 |
typedef int Cost; |
|
| 236 | 232 |
typedef concepts::Digraph GR; |
| 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
| 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
| 233 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 234 |
NetworkSimplex<GR> >(); |
|
| 235 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 236 |
NetworkSimplex<GR, double> >(); |
|
| 237 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 238 |
NetworkSimplex<GR, int, double> >(); |
|
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
// Run various MCF tests |
| 242 | 242 |
typedef ListDigraph Digraph; |
| 243 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 244 | 244 |
|
| 245 | 245 |
// Read the test digraph |
| 246 | 246 |
Digraph gr; |
| 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
| 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
| 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
| 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
| 249 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 250 | 250 |
Node v, w; |
| 251 | 251 |
|
| 252 | 252 |
std::istringstream input(test_lgf); |
| 253 | 253 |
DigraphReader<Digraph>(gr, input) |
| 254 | 254 |
.arcMap("cost", c)
|
| 255 | 255 |
.arcMap("cap", u)
|
| 256 | 256 |
.arcMap("low1", l1)
|
| 257 | 257 |
.arcMap("low2", l2)
|
| 258 |
.arcMap("low3", l3)
|
|
| 258 | 259 |
.nodeMap("sup1", s1)
|
| 259 | 260 |
.nodeMap("sup2", s2)
|
| 260 | 261 |
.nodeMap("sup3", s3)
|
| 261 | 262 |
.nodeMap("sup4", s4)
|
| 262 | 263 |
.nodeMap("sup5", s5)
|
| 264 |
.nodeMap("sup6", s6)
|
|
| 263 | 265 |
.node("source", v)
|
| 264 | 266 |
.node("target", w)
|
| 265 | 267 |
.run(); |
| 268 |
|
|
| 269 |
// Build a test digraph for testing negative costs |
|
| 270 |
Digraph ngr; |
|
| 271 |
Node n1 = ngr.addNode(); |
|
| 272 |
Node n2 = ngr.addNode(); |
|
| 273 |
Node n3 = ngr.addNode(); |
|
| 274 |
Node n4 = ngr.addNode(); |
|
| 275 |
Node n5 = ngr.addNode(); |
|
| 276 |
Node n6 = ngr.addNode(); |
|
| 277 |
Node n7 = ngr.addNode(); |
|
| 278 |
|
|
| 279 |
Arc a1 = ngr.addArc(n1, n2); |
|
| 280 |
Arc a2 = ngr.addArc(n1, n3); |
|
| 281 |
Arc a3 = ngr.addArc(n2, n4); |
|
| 282 |
Arc a4 = ngr.addArc(n3, n4); |
|
| 283 |
Arc a5 = ngr.addArc(n3, n2); |
|
| 284 |
Arc a6 = ngr.addArc(n5, n3); |
|
| 285 |
Arc a7 = ngr.addArc(n5, n6); |
|
| 286 |
Arc a8 = ngr.addArc(n6, n7); |
|
| 287 |
Arc a9 = ngr.addArc(n7, n5); |
|
| 288 |
|
|
| 289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
| 290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
| 291 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
| 292 |
|
|
| 293 |
nl2[a7] = 1000; |
|
| 294 |
nl2[a8] = -1000; |
|
| 295 |
|
|
| 296 |
ns[n1] = 100; |
|
| 297 |
ns[n4] = -100; |
|
| 298 |
|
|
| 299 |
nc[a1] = 100; |
|
| 300 |
nc[a2] = 30; |
|
| 301 |
nc[a3] = 20; |
|
| 302 |
nc[a4] = 80; |
|
| 303 |
nc[a5] = 50; |
|
| 304 |
nc[a6] = 10; |
|
| 305 |
nc[a7] = 80; |
|
| 306 |
nc[a8] = 30; |
|
| 307 |
nc[a9] = -120; |
|
| 266 | 308 |
|
| 267 | 309 |
// A. Test NetworkSimplex with the default pivot rule |
| 268 | 310 |
{
|
| 269 | 311 |
NetworkSimplex<Digraph> mcf(gr); |
| 270 | 312 |
|
| 271 | 313 |
// Check the equality form |
| 272 | 314 |
mcf.upperMap(u).costMap(c); |
| 273 | 315 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 316 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
| 275 | 317 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 318 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
| 277 | 319 |
mcf.lowerMap(l2); |
| 278 | 320 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
| 321 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
| 280 | 322 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
| 323 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
| 282 | 324 |
mcf.reset(); |
| 283 | 325 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
| 326 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
| 285 | 327 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
| 328 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
| 287 | 329 |
mcf.reset(); |
| 288 | 330 |
checkMcf(mcf, mcf.run(), |
| 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
| 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
| 291 |
gr, |
|
| 331 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
| 332 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
| 333 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
| 334 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
| 335 |
checkMcf(mcf, mcf.run(), |
|
| 336 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
| 292 | 337 |
|
| 293 | 338 |
// Check the GEQ form |
| 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
| 339 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
| 295 | 340 |
checkMcf(mcf, mcf.run(), |
| 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
| 297 |
mcf.problemType(mcf.GEQ); |
|
| 341 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
| 342 |
mcf.supplyType(mcf.GEQ); |
|
| 298 | 343 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
| 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
| 344 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
| 345 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
| 301 | 346 |
checkMcf(mcf, mcf.run(), |
| 302 |
gr, l2, u, c, |
|
| 347 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
| 303 | 348 |
|
| 304 | 349 |
// Check the LEQ form |
| 305 |
mcf.reset().problemType(mcf.LEQ); |
|
| 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
| 350 |
mcf.reset().supplyType(mcf.LEQ); |
|
| 351 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
| 307 | 352 |
checkMcf(mcf, mcf.run(), |
| 308 |
gr, l1, u, c, |
|
| 353 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
| 309 | 354 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
| 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
| 355 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
| 356 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
| 312 | 357 |
checkMcf(mcf, mcf.run(), |
| 313 |
gr, l2, u, c, |
|
| 358 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
| 359 |
|
|
| 360 |
// Check negative costs |
|
| 361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
| 362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
| 363 |
checkMcf(nmcf, nmcf.run(), |
|
| 364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
| 365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
| 366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
| 367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
| 368 |
checkMcf(nmcf, nmcf.run(), |
|
| 369 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
| 314 | 370 |
} |
| 315 | 371 |
|
| 316 | 372 |
// B. Test NetworkSimplex with each pivot rule |
| 317 | 373 |
{
|
| 318 | 374 |
NetworkSimplex<Digraph> mcf(gr); |
| 319 |
mcf.supplyMap(s1).costMap(c). |
|
| 375 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
| 320 | 376 |
|
| 321 | 377 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
| 378 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
| 323 | 379 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
| 380 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
| 325 | 381 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
| 382 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
| 327 | 383 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 384 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
| 329 | 385 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
| 386 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
| 331 | 387 |
} |
| 332 | 388 |
|
| 333 | 389 |
return 0; |
| 334 | 390 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include "test_tools.h" |
| 20 | 20 |
|
| 21 |
#ifdef HAVE_CONFIG_H |
|
| 22 | 21 |
#include <lemon/config.h> |
| 23 |
#endif |
|
| 24 | 22 |
|
| 25 | 23 |
#ifdef LEMON_HAVE_CPLEX |
| 26 | 24 |
#include <lemon/cplex.h> |
| 27 | 25 |
#endif |
| 28 | 26 |
|
| 29 | 27 |
#ifdef LEMON_HAVE_GLPK |
| 30 | 28 |
#include <lemon/glpk.h> |
| 31 | 29 |
#endif |
| 32 | 30 |
|
| 33 | 31 |
#ifdef LEMON_HAVE_CBC |
| 34 | 32 |
#include <lemon/cbc.h> |
| 35 | 33 |
#endif |
| 36 | 34 |
|
| 37 | 35 |
|
| 38 | 36 |
using namespace lemon; |
| 39 | 37 |
|
| 40 | 38 |
void solveAndCheck(MipSolver& mip, MipSolver::ProblemType stat, |
| 41 | 39 |
double exp_opt) {
|
| 42 | 40 |
using std::string; |
| 43 | 41 |
|
| 44 | 42 |
mip.solve(); |
| 45 | 43 |
//int decimal,sign; |
| 46 | 44 |
std::ostringstream buf; |
| 47 | 45 |
buf << "Type should be: " << int(stat)<<" and it is "<<int(mip.type()); |
| 48 | 46 |
|
| 49 | 47 |
|
| 50 | 48 |
// itoa(stat,buf1, 10); |
| 51 | 49 |
check(mip.type()==stat, buf.str()); |
| 52 | 50 |
|
| 53 | 51 |
if (stat == MipSolver::OPTIMAL) {
|
| 54 | 52 |
std::ostringstream sbuf; |
| 55 | 53 |
buf << "Wrong optimal value: the right optimum is " << exp_opt; |
| 56 | 54 |
check(std::abs(mip.solValue()-exp_opt) < 1e-3, sbuf.str()); |
| 57 | 55 |
//+ecvt(exp_opt,2) |
| 58 | 56 |
} |
| 59 | 57 |
} |
| 60 | 58 |
|
| 61 | 59 |
void aTest(MipSolver& mip) |
| 62 | 60 |
{
|
| 63 | 61 |
//The following example is very simple |
| 64 | 62 |
|
| 65 | 63 |
|
| 66 | 64 |
typedef MipSolver::Row Row; |
| 67 | 65 |
typedef MipSolver::Col Col; |
| 68 | 66 |
|
| 69 | 67 |
|
| 70 | 68 |
Col x1 = mip.addCol(); |
| 71 | 69 |
Col x2 = mip.addCol(); |
| 72 | 70 |
|
| 73 | 71 |
|
| 74 | 72 |
//Objective function |
| 75 | 73 |
mip.obj(x1); |
| 76 | 74 |
|
| 77 | 75 |
mip.max(); |
| 78 | 76 |
|
| 79 | 77 |
//Unconstrained optimization |
| 80 | 78 |
mip.solve(); |
| 81 | 79 |
//Check it out! |
| 82 | 80 |
|
| 83 | 81 |
//Constraints |
| 84 | 82 |
mip.addRow(2 * x1 + x2 <= 2); |
| 85 | 83 |
Row y2 = mip.addRow(x1 - 2 * x2 <= 0); |
| 86 | 84 |
|
| 87 | 85 |
//Nonnegativity of the variable x1 |
| 88 | 86 |
mip.colLowerBound(x1, 0); |
| 89 | 87 |
|
| 90 | 88 |
|
| 91 | 89 |
//Maximization of x1 |
| 92 | 90 |
//over the triangle with vertices (0,0),(4/5,2/5),(0,2) |
| 93 | 91 |
double expected_opt=4.0/5.0; |
| 94 | 92 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 95 | 93 |
|
| 96 | 94 |
|
| 97 | 95 |
//Restrict x2 to integer |
| 98 | 96 |
mip.colType(x2,MipSolver::INTEGER); |
| 99 | 97 |
expected_opt=1.0/2.0; |
| 100 | 98 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 101 | 99 |
|
| 102 | 100 |
|
| 103 | 101 |
//Restrict both to integer |
| 104 | 102 |
mip.colType(x1,MipSolver::INTEGER); |
| 105 | 103 |
expected_opt=0; |
| 106 | 104 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 107 | 105 |
|
| 108 | 106 |
//Erase a variable |
| 109 | 107 |
mip.erase(x2); |
| 110 | 108 |
mip.rowUpperBound(y2, 8); |
| 111 | 109 |
expected_opt=1; |
| 112 | 110 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
| 113 | 111 |
|
| 114 | 112 |
} |
| 115 | 113 |
|
| 116 | 114 |
|
| 117 | 115 |
template<class MIP> |
| 118 | 116 |
void cloneTest() |
| 119 | 117 |
{
|
| 120 | 118 |
|
| 121 | 119 |
MIP* mip = new MIP(); |
| 122 | 120 |
MIP* mipnew = mip->newSolver(); |
| 123 | 121 |
MIP* mipclone = mip->cloneSolver(); |
| 124 | 122 |
delete mip; |
| 125 | 123 |
delete mipnew; |
| 126 | 124 |
delete mipclone; |
| 127 | 125 |
} |
| 128 | 126 |
|
| 129 | 127 |
int main() |
| 130 | 128 |
{
|
| 131 | 129 |
|
| 132 | 130 |
#ifdef LEMON_HAVE_GLPK |
| 133 | 131 |
{
|
| 134 | 132 |
GlpkMip mip1; |
| 135 | 133 |
aTest(mip1); |
| 136 | 134 |
cloneTest<GlpkMip>(); |
| 137 | 135 |
} |
| 138 | 136 |
#endif |
| 139 | 137 |
|
| 140 | 138 |
#ifdef LEMON_HAVE_CPLEX |
| 141 | 139 |
try {
|
| 142 | 140 |
CplexMip mip2; |
| 143 | 141 |
aTest(mip2); |
| 144 | 142 |
cloneTest<CplexMip>(); |
| 145 | 143 |
} catch (CplexEnv::LicenseError& error) {
|
| 146 | 144 |
check(false, error.what()); |
| 147 | 145 |
} |
| 148 | 146 |
#endif |
| 149 | 147 |
|
| 150 | 148 |
#ifdef LEMON_HAVE_CBC |
| 151 | 149 |
{
|
| 152 | 150 |
CbcMip mip1; |
| 153 | 151 |
aTest(mip1); |
| 154 | 152 |
cloneTest<CbcMip>(); |
| 155 | 153 |
} |
| 156 | 154 |
#endif |
| 157 | 155 |
|
| 158 | 156 |
return 0; |
| 159 | 157 |
|
| 160 | 158 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup tools |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief DIMACS problem solver. |
| 22 | 22 |
/// |
| 23 | 23 |
/// This program solves various problems given in DIMACS format. |
| 24 | 24 |
/// |
| 25 | 25 |
/// See |
| 26 | 26 |
/// \code |
| 27 | 27 |
/// dimacs-solver --help |
| 28 | 28 |
/// \endcode |
| 29 | 29 |
/// for more info on usage. |
| 30 | 30 |
|
| 31 | 31 |
#include <iostream> |
| 32 | 32 |
#include <fstream> |
| 33 | 33 |
#include <cstring> |
| 34 | 34 |
|
| 35 | 35 |
#include <lemon/smart_graph.h> |
| 36 | 36 |
#include <lemon/dimacs.h> |
| 37 | 37 |
#include <lemon/lgf_writer.h> |
| 38 | 38 |
#include <lemon/time_measure.h> |
| 39 | 39 |
|
| 40 | 40 |
#include <lemon/arg_parser.h> |
| 41 | 41 |
#include <lemon/error.h> |
| 42 | 42 |
|
| 43 | 43 |
#include <lemon/dijkstra.h> |
| 44 | 44 |
#include <lemon/preflow.h> |
| 45 | 45 |
#include <lemon/matching.h> |
| 46 | 46 |
#include <lemon/network_simplex.h> |
| 47 | 47 |
|
| 48 | 48 |
using namespace lemon; |
| 49 | 49 |
typedef SmartDigraph Digraph; |
| 50 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
| 51 | 51 |
typedef SmartGraph Graph; |
| 52 | 52 |
|
| 53 | 53 |
template<class Value> |
| 54 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
| 55 | 55 |
DimacsDescriptor &desc) |
| 56 | 56 |
{
|
| 57 | 57 |
bool report = !ap.given("q");
|
| 58 | 58 |
Digraph g; |
| 59 | 59 |
Node s; |
| 60 | 60 |
Digraph::ArcMap<Value> len(g); |
| 61 | 61 |
Timer t; |
| 62 | 62 |
t.restart(); |
| 63 | 63 |
readDimacsSp(is, g, len, s, desc); |
| 64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
| 65 | 65 |
t.restart(); |
| 66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
| 67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
| 68 | 68 |
t.restart(); |
| 69 | 69 |
dij.run(s); |
| 70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
template<class Value> |
| 74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
| 75 | 75 |
Value infty, DimacsDescriptor &desc) |
| 76 | 76 |
{
|
| 77 | 77 |
bool report = !ap.given("q");
|
| 78 | 78 |
Digraph g; |
| 79 | 79 |
Node s,t; |
| 80 | 80 |
Digraph::ArcMap<Value> cap(g); |
| 81 | 81 |
Timer ti; |
| 82 | 82 |
ti.restart(); |
| 83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
| 84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
| 85 | 85 |
ti.restart(); |
| 86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
| 87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
| 88 | 88 |
ti.restart(); |
| 89 | 89 |
pre.run(); |
| 90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
| 91 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
template<class Value> |
| 95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
| 96 | 96 |
Value infty, DimacsDescriptor &desc) |
| 97 | 97 |
{
|
| 98 | 98 |
bool report = !ap.given("q");
|
| 99 | 99 |
Digraph g; |
| 100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
| 101 | 101 |
Digraph::NodeMap<Value> sup(g); |
| 102 | 102 |
Timer ti; |
| 103 | 103 |
|
| 104 | 104 |
ti.restart(); |
| 105 | 105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
| 106 | 106 |
ti.stop(); |
| 107 | 107 |
Value sum_sup = 0; |
| 108 | 108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) {
|
| 109 | 109 |
sum_sup += sup[n]; |
| 110 | 110 |
} |
| 111 | 111 |
if (report) {
|
| 112 | 112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
| 113 | 113 |
if (sum_sup <= 0) |
| 114 | 114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
| 115 | 115 |
else |
| 116 | 116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
| 117 | 117 |
} |
| 118 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
| 119 | 119 |
|
| 120 | 120 |
ti.restart(); |
| 121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
| 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
| 122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
| 124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 125 | 125 |
ti.restart(); |
| 126 | 126 |
bool res = ns.run(); |
| 127 | 127 |
if (report) {
|
| 128 | 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
| 129 | 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
| 130 | 130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
| 131 | 131 |
} |
| 132 | 132 |
} |
| 133 | 133 |
|
| 134 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
| 135 | 135 |
DimacsDescriptor &desc) |
| 136 | 136 |
{
|
| 137 | 137 |
bool report = !ap.given("q");
|
| 138 | 138 |
Graph g; |
| 139 | 139 |
Timer ti; |
| 140 | 140 |
ti.restart(); |
| 141 | 141 |
readDimacsMat(is, g, desc); |
| 142 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
| 143 | 143 |
ti.restart(); |
| 144 | 144 |
MaxMatching<Graph> mat(g); |
| 145 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
| 146 | 146 |
ti.restart(); |
| 147 | 147 |
mat.run(); |
| 148 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
| 149 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
| 150 | 150 |
<< mat.matchingSize() << '\n'; |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
|
| 154 | 154 |
template<class Value> |
| 155 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
| 156 | 156 |
DimacsDescriptor &desc) |
| 157 | 157 |
{
|
| 158 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
| 159 | 159 |
Value infty; |
| 160 | 160 |
iss >> infty; |
| 161 | 161 |
if(iss.fail()) |
| 162 | 162 |
{
|
| 163 | 163 |
std::cerr << "Cannot interpret '" |
| 164 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
| 165 | 165 |
<< std::endl; |
| 166 | 166 |
exit(1); |
| 167 | 167 |
} |
| 168 | 168 |
|
| 169 | 169 |
switch(desc.type) |
| 170 | 170 |
{
|
| 171 | 171 |
case DimacsDescriptor::MIN: |
| 172 | 172 |
solve_min<Value>(ap,is,os,infty,desc); |
| 173 | 173 |
break; |
| 174 | 174 |
case DimacsDescriptor::MAX: |
| 175 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
| 176 | 176 |
break; |
| 177 | 177 |
case DimacsDescriptor::SP: |
| 178 | 178 |
solve_sp<Value>(ap,is,os,desc); |
| 179 | 179 |
break; |
| 180 | 180 |
case DimacsDescriptor::MAT: |
| 181 | 181 |
solve_mat(ap,is,os,desc); |
| 182 | 182 |
break; |
| 183 | 183 |
default: |
| 184 | 184 |
break; |
| 185 | 185 |
} |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
int main(int argc, const char *argv[]) {
|
| 189 | 189 |
typedef SmartDigraph Digraph; |
| 190 | 190 |
|
| 191 | 191 |
typedef Digraph::Arc Arc; |
| 192 | 192 |
|
| 193 | 193 |
std::string inputName; |
| 194 | 194 |
std::string outputName; |
| 195 | 195 |
|
| 196 | 196 |
ArgParser ap(argc, argv); |
| 197 | 197 |
ap.other("[INFILE [OUTFILE]]",
|
| 198 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
| 199 | 199 |
" input/output will be used instead.") |
| 200 | 200 |
.boolOption("q", "Do not print any report")
|
| 201 | 201 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)")
|
| 202 | 202 |
.optionGroup("datatype","int")
|
| 203 | 203 |
#ifdef LEMON_HAVE_LONG_LONG |
| 204 | 204 |
.boolOption("long","Use 'long long' for capacities, costs etc.")
|
| 205 | 205 |
.optionGroup("datatype","long")
|
| 206 | 206 |
#endif |
| 207 | 207 |
.boolOption("double","Use 'double' for capacities, costs etc.")
|
| 208 | 208 |
.optionGroup("datatype","double")
|
| 209 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.")
|
| 210 | 210 |
.optionGroup("datatype","ldouble")
|
| 211 | 211 |
.onlyOneGroup("datatype")
|
| 212 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0")
|
| 213 | 213 |
.run(); |
| 214 | 214 |
|
| 215 | 215 |
std::ifstream input; |
| 216 | 216 |
std::ofstream output; |
| 217 | 217 |
|
| 218 | 218 |
switch(ap.files().size()) |
| 219 | 219 |
{
|
| 220 | 220 |
case 2: |
| 221 | 221 |
output.open(ap.files()[1].c_str()); |
| 222 | 222 |
if (!output) {
|
| 223 | 223 |
throw IoError("Cannot open the file for writing", ap.files()[1]);
|
| 224 | 224 |
} |
| 225 | 225 |
case 1: |
| 226 | 226 |
input.open(ap.files()[0].c_str()); |
| 227 | 227 |
if (!input) {
|
| 228 | 228 |
throw IoError("File cannot be found", ap.files()[0]);
|
| 229 | 229 |
} |
| 230 | 230 |
case 0: |
| 231 | 231 |
break; |
| 232 | 232 |
default: |
| 233 | 233 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
| 234 | 234 |
return 1; |
| 235 | 235 |
} |
| 236 | 236 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
| 237 | 237 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
| 238 | 238 |
|
| 239 | 239 |
DimacsDescriptor desc = dimacsType(is); |
| 240 | 240 |
|
| 241 | 241 |
if(!ap.given("q"))
|
| 242 | 242 |
{
|
| 243 | 243 |
std::cout << "Problem type: "; |
| 244 | 244 |
switch(desc.type) |
| 245 | 245 |
{
|
| 246 | 246 |
case DimacsDescriptor::MIN: |
| 247 | 247 |
std::cout << "min"; |
| 248 | 248 |
break; |
| 249 | 249 |
case DimacsDescriptor::MAX: |
| 250 | 250 |
std::cout << "max"; |
| 251 | 251 |
break; |
| 252 | 252 |
case DimacsDescriptor::SP: |
| 253 | 253 |
std::cout << "sp"; |
| 254 | 254 |
case DimacsDescriptor::MAT: |
| 255 | 255 |
std::cout << "mat"; |
| 256 | 256 |
break; |
| 257 | 257 |
default: |
| 258 | 258 |
exit(1); |
| 259 | 259 |
break; |
| 260 | 260 |
} |
| 261 | 261 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
| 262 | 262 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
| 263 | 263 |
std::cout << "\n\n"; |
| 264 | 264 |
} |
| 265 | 265 |
|
| 266 | 266 |
if(ap.given("double"))
|
| 267 | 267 |
solve<double>(ap,is,os,desc); |
| 268 | 268 |
else if(ap.given("ldouble"))
|
| 269 | 269 |
solve<long double>(ap,is,os,desc); |
| 270 | 270 |
#ifdef LEMON_HAVE_LONG_LONG |
| 271 | 271 |
else if(ap.given("long"))
|
| 272 | 272 |
solve<long long>(ap,is,os,desc); |
| 273 | 273 |
#endif |
| 274 | 274 |
else solve<int>(ap,is,os,desc); |
| 275 | 275 |
|
| 276 | 276 |
return 0; |
| 277 | 277 |
} |
0 comments (0 inline)