0
15
0
3
2
42
22
10
10
19
19
1
1
348
520
21
21
161
105
... | ... |
@@ -13,7 +13,8 @@ |
13 | 13 |
m4/lx_check_soplex.m4 \ |
14 |
m4/lx_check_clp.m4 \ |
|
15 |
m4/lx_check_cbc.m4 \ |
|
14 |
m4/lx_check_coin.m4 \ |
|
16 | 15 |
CMakeLists.txt \ |
17 | 16 |
cmake/FindGhostscript.cmake \ |
17 |
cmake/FindCPLEX.cmake \ |
|
18 | 18 |
cmake/FindGLPK.cmake \ |
19 |
cmake/FindCOIN.cmake \ |
|
19 | 20 |
cmake/version.cmake.in \ |
... | ... |
@@ -3,24 +3,44 @@ |
3 | 3 |
FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h |
4 |
PATHS ${COIN_ROOT_DIR}/include) |
|
5 |
|
|
6 |
FIND_LIBRARY(COIN_CBC_LIBRARY libCbc |
|
7 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
8 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver |
|
9 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
10 |
FIND_LIBRARY(COIN_CGL_LIBRARY libCgl |
|
11 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
12 |
FIND_LIBRARY(COIN_CLP_LIBRARY libClp |
|
13 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
14 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils |
|
15 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
16 |
FIND_LIBRARY(COIN_OSI_LIBRARY libOsi |
|
17 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
18 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc |
|
19 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
20 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp |
|
21 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
22 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol |
|
23 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
24 |
FIND_LIBRARY(COIN_VOL_LIBRARY libVol |
|
25 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
4 |
HINTS ${COIN_ROOT_DIR}/include |
|
5 |
) |
|
6 |
FIND_LIBRARY(COIN_CBC_LIBRARY |
|
7 |
NAMES Cbc libCbc |
|
8 |
HINTS ${COIN_ROOT_DIR}/lib |
|
9 |
) |
|
10 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY |
|
11 |
NAMES CbcSolver libCbcSolver |
|
12 |
HINTS ${COIN_ROOT_DIR}/lib |
|
13 |
) |
|
14 |
FIND_LIBRARY(COIN_CGL_LIBRARY |
|
15 |
NAMES Cgl libCgl |
|
16 |
HINTS ${COIN_ROOT_DIR}/lib |
|
17 |
) |
|
18 |
FIND_LIBRARY(COIN_CLP_LIBRARY |
|
19 |
NAMES Clp libClp |
|
20 |
HINTS ${COIN_ROOT_DIR}/lib |
|
21 |
) |
|
22 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY |
|
23 |
NAMES CoinUtils libCoinUtils |
|
24 |
HINTS ${COIN_ROOT_DIR}/lib |
|
25 |
) |
|
26 |
FIND_LIBRARY(COIN_OSI_LIBRARY |
|
27 |
NAMES Osi libOsi |
|
28 |
HINTS ${COIN_ROOT_DIR}/lib |
|
29 |
) |
|
30 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY |
|
31 |
NAMES OsiCbc libOsiCbc |
|
32 |
HINTS ${COIN_ROOT_DIR}/lib |
|
33 |
) |
|
34 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY |
|
35 |
NAMES OsiClp libOsiClp |
|
36 |
HINTS ${COIN_ROOT_DIR}/lib |
|
37 |
) |
|
38 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY |
|
39 |
NAMES OsiVol libOsiVol |
|
40 |
HINTS ${COIN_ROOT_DIR}/lib |
|
41 |
) |
|
42 |
FIND_LIBRARY(COIN_VOL_LIBRARY |
|
43 |
NAMES Vol libVol |
|
44 |
HINTS ${COIN_ROOT_DIR}/lib |
|
45 |
) |
|
26 | 46 |
1 |
SET(CPLEX_ROOT_DIR "" CACHE PATH "CPLEX root directory") |
|
2 |
|
|
1 | 3 |
FIND_PATH(CPLEX_INCLUDE_DIR |
2 | 4 |
ilcplex/cplex.h |
3 |
PATHS "C:/ILOG/CPLEX91/include") |
|
4 |
|
|
5 |
PATHS "C:/ILOG/CPLEX91/include" |
|
6 |
PATHS "/opt/ilog/cplex91/include" |
|
7 |
HINTS ${CPLEX_ROOT_DIR}/include |
|
8 |
) |
|
5 | 9 |
FIND_LIBRARY(CPLEX_LIBRARY |
6 |
NAMES cplex91 |
|
7 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda") |
|
10 |
cplex91 |
|
11 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda" |
|
12 |
PATHS "/opt/ilog/cplex91/bin" |
|
13 |
HINTS ${CPLEX_ROOT_DIR}/bin |
|
14 |
) |
|
8 | 15 |
|
... | ... |
@@ -13,3 +20,4 @@ |
13 | 20 |
cplex91.dll |
14 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
21 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
22 |
) |
|
15 | 23 |
|
... | ... |
@@ -18,2 +26,5 @@ |
18 | 26 |
SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY}) |
27 |
IF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
28 |
SET(CPLEX_LIBRARIES "${CPLEX_LIBRARIES};m;pthread") |
|
29 |
ENDIF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
19 | 30 |
ENDIF(CPLEX_FOUND) |
1 |
SET(GLPK_ROOT_DIR "" CACHE PATH "GLPK root directory") |
|
2 |
|
|
1 | 3 |
SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]") |
... | ... |
@@ -5,10 +7,42 @@ |
5 | 7 |
glpk.h |
6 |
PATHS ${GLPK_REGKEY}/include |
|
8 |
PATHS ${GLPK_REGKEY}/include |
|
9 |
HINTS ${GLPK_ROOT_DIR}/include |
|
10 |
) |
|
11 |
FIND_LIBRARY(GLPK_LIBRARY |
|
12 |
glpk |
|
13 |
PATHS ${GLPK_REGKEY}/lib |
|
14 |
HINTS ${GLPK_ROOT_DIR}/lib |
|
15 |
) |
|
7 | 16 |
|
8 |
FIND_LIBRARY(GLPK_LIBRARY |
|
9 |
NAMES glpk |
|
10 |
|
|
17 |
IF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
18 |
FILE(READ ${GLPK_INCLUDE_DIR}/glpk.h GLPK_GLPK_H) |
|
19 |
|
|
20 |
STRING(REGEX MATCH "define[ ]+GLP_MAJOR_VERSION[ ]+[0-9]+" GLPK_MAJOR_VERSION_LINE "${GLPK_GLPK_H}") |
|
21 |
STRING(REGEX REPLACE "define[ ]+GLP_MAJOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MAJOR "${GLPK_MAJOR_VERSION_LINE}") |
|
22 |
|
|
23 |
STRING(REGEX MATCH "define[ ]+GLP_MINOR_VERSION[ ]+[0-9]+" GLPK_MINOR_VERSION_LINE "${GLPK_GLPK_H}") |
|
24 |
STRING(REGEX REPLACE "define[ ]+GLP_MINOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MINOR "${GLPK_MINOR_VERSION_LINE}") |
|
25 |
|
|
26 |
SET(GLPK_VERSION_STRING "${GLPK_VERSION_MAJOR}.${GLPK_VERSION_MINOR}") |
|
27 |
|
|
28 |
IF(GLPK_FIND_VERSION) |
|
29 |
IF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
30 |
MESSAGE(SEND_ERROR "unexpected version string") |
|
31 |
ENDIF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
32 |
|
|
33 |
MATH(EXPR GLPK_REQUESTED_VERSION "${GLPK_FIND_VERSION_MAJOR}*100 + ${GLPK_FIND_VERSION_MINOR}") |
|
34 |
MATH(EXPR GLPK_FOUND_VERSION "${GLPK_VERSION_MAJOR}*100 + ${GLPK_VERSION_MINOR}") |
|
35 |
|
|
36 |
IF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
37 |
SET(GLPK_PROPER_VERSION_FOUND FALSE) |
|
38 |
ELSE(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
39 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
40 |
ENDIF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
41 |
ELSE(GLPK_FIND_VERSION) |
|
42 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
43 |
ENDIF(GLPK_FIND_VERSION) |
|
44 |
ENDIF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
11 | 45 |
|
12 | 46 |
INCLUDE(FindPackageHandleStandardArgs) |
13 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR) |
|
47 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_PROPER_VERSION_FOUND) |
|
14 | 48 |
... | ... |
@@ -354,8 +354,8 @@ |
354 | 354 |
and arc costs. |
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
357 | 357 |
upper bounds for the flow values on the arcs, for which |
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
360 |
|
|
358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 | 361 |
signed supply values of the nodes. |
... | ... |
@@ -364,3 +364,3 @@ |
364 | 364 |
\f$-sup(u)\f$ demand. |
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z} |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
366 | 366 |
of the following optimization problem. |
... | ... |
@@ -406,3 +406,3 @@ |
406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
407 |
An \f$f: A\rightarrow\mathbf{Z} |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
... | ... |
@@ -415,3 +415,3 @@ |
415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
416 |
- For all \f$u\in V\f$: |
|
416 |
- For all \f$u\in V\f$ nodes: |
|
417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
... | ... |
@@ -420,6 +420,6 @@ |
420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
421 |
\f$uv\in A\f$ with respect to the |
|
421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
423 | 423 |
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
424 |
All algorithms provide dual solution (node potentials) as well, |
|
425 | 425 |
if an optimal flow is found. |
... | ... |
@@ -17,3 +17,4 @@ |
17 | 17 |
|
18 |
|
|
18 |
nodist_lemon_HEADERS = lemon/config.h |
|
19 |
|
|
19 | 20 |
lemon_libemon_la_CXXFLAGS = \ |
... | ... |
@@ -59,2 +60,3 @@ |
59 | 60 |
lemon/bin_heap.h \ |
61 |
lemon/cbc.h \ |
|
60 | 62 |
lemon/circulation.h \ |
... | ... |
@@ -63,3 +65,2 @@ |
63 | 65 |
lemon/concept_check.h \ |
64 |
lemon/config.h \ |
|
65 | 66 |
lemon/connectivity.h \ |
... | ... |
@@ -66,4 +66,4 @@ |
66 | 66 |
|
67 |
/// \brief The type of the flow values. |
|
68 |
typedef typename SupplyMap::Value Flow; |
|
67 |
/// \brief The type of the flow and supply values. |
|
68 |
typedef typename SupplyMap::Value Value; |
|
69 | 69 |
|
... | ... |
@@ -74,3 +74,3 @@ |
74 | 74 |
/// concept. |
75 |
typedef typename Digraph::template ArcMap< |
|
75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
76 | 76 |
|
... | ... |
@@ -106,3 +106,3 @@ |
106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 |
typedef lemon::Tolerance< |
|
107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
108 | 108 |
|
... | ... |
@@ -189,4 +189,4 @@ |
189 | 189 |
typedef typename Traits::Digraph Digraph; |
190 |
///The type of the flow values. |
|
191 |
typedef typename Traits::Flow Flow; |
|
190 |
///The type of the flow and supply values. |
|
191 |
typedef typename Traits::Value Value; |
|
192 | 192 |
|
... | ... |
@@ -223,3 +223,3 @@ |
223 | 223 |
|
224 |
typedef typename Digraph::template NodeMap< |
|
224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
225 | 225 |
ExcessMap* _excess; |
... | ... |
@@ -532,3 +532,3 @@ |
532 | 532 |
} else { |
533 |
|
|
533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
534 | 534 |
_flow->set(e, fc); |
... | ... |
@@ -565,3 +565,3 @@ |
565 | 565 |
int mlevel=_node_num; |
566 |
|
|
566 |
Value exc=(*_excess)[act]; |
|
567 | 567 |
|
... | ... |
@@ -569,3 +569,3 @@ |
569 | 569 |
Node v = _g.target(e); |
570 |
|
|
570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
571 | 571 |
if(!_tol.positive(fc)) continue; |
... | ... |
@@ -593,3 +593,3 @@ |
593 | 593 |
Node v = _g.source(e); |
594 |
|
|
594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
595 | 595 |
if(!_tol.positive(fc)) continue; |
... | ... |
@@ -663,5 +663,5 @@ |
663 | 663 |
|
664 |
/// \brief Returns the flow on the given arc. |
|
664 |
/// \brief Returns the flow value on the given arc. |
|
665 | 665 |
/// |
666 |
/// Returns the flow on the given arc. |
|
666 |
/// Returns the flow value on the given arc. |
|
667 | 667 |
/// |
... | ... |
@@ -669,3 +669,3 @@ |
669 | 669 |
/// using this function. |
670 |
|
|
670 |
Value flow(const Arc& arc) const { |
|
671 | 671 |
return (*_flow)[arc]; |
... | ... |
@@ -752,3 +752,3 @@ |
752 | 752 |
{ |
753 |
|
|
753 |
Value dif=-(*_supply)[n]; |
|
754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
... | ... |
@@ -767,6 +767,6 @@ |
767 | 767 |
{ |
768 |
Flow delta=0; |
|
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
768 |
Value delta=0; |
|
769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
770 |
std::numeric_limits<Value>::infinity() : |
|
771 |
std::numeric_limits<Value>::max(); |
|
772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
... | ... |
@@ -32,5 +32,2 @@ |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 | 33 |
|
... | ... |
@@ -52,10 +49,15 @@ |
52 | 49 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
51 |
/// constraints. For more information see \ref SupplyType. |
|
52 |
/// |
|
53 |
/// Most of the parameters of the problem (except for the digraph) |
|
54 |
/// can be given using separate functions, and the algorithm can be |
|
55 |
/// executed using the \ref run() function. If some parameters are not |
|
56 |
/// specified, then default values will be used. |
|
55 | 57 |
/// |
56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
57 |
/// \tparam |
|
59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
58 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
59 | 61 |
/// \tparam C The value type used for costs and potentials in the |
60 |
/// algorithm. By default it is the same as \c |
|
62 |
/// algorithm. By default it is the same as \c V. |
|
61 | 63 |
/// |
... | ... |
@@ -67,3 +69,3 @@ |
67 | 69 |
/// by default. For more information see \ref PivotRule. |
68 |
template <typename GR, typename |
|
70 |
template <typename GR, typename V = int, typename C = V> |
|
69 | 71 |
class NetworkSimplex |
... | ... |
@@ -72,17 +74,6 @@ |
72 | 74 |
|
73 |
/// The flow type of the algorithm |
|
74 |
typedef F Flow; |
|
75 |
/// The |
|
75 |
/// The type of the flow amounts, capacity bounds and supply values |
|
76 |
typedef V Value; |
|
77 |
/// The type of the arc costs |
|
76 | 78 |
typedef C Cost; |
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
83 |
/// The type of the flow map |
|
84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
85 |
/// The type of the potential map |
|
86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
87 |
#endif |
|
88 | 79 |
|
... | ... |
@@ -90,7 +81,76 @@ |
90 | 81 |
|
91 |
/// \brief |
|
82 |
/// \brief Problem type constants for the \c run() function. |
|
92 | 83 |
/// |
93 |
/// Enum type |
|
84 |
/// Enum type containing the problem type constants that can be |
|
85 |
/// returned by the \ref run() function of the algorithm. |
|
86 |
enum ProblemType { |
|
87 |
/// The problem has no feasible solution (flow). |
|
88 |
INFEASIBLE, |
|
89 |
/// The problem has optimal solution (i.e. it is feasible and |
|
90 |
/// bounded), and the algorithm has found optimal flow and node |
|
91 |
/// potentials (primal and dual solutions). |
|
92 |
OPTIMAL, |
|
93 |
/// The objective function of the problem is unbounded, i.e. |
|
94 |
/// there is a directed cycle having negative total cost and |
|
95 |
/// infinite upper bound. |
|
96 |
UNBOUNDED |
|
97 |
}; |
|
98 |
|
|
99 |
/// \brief Constants for selecting the type of the supply constraints. |
|
100 |
/// |
|
101 |
/// Enum type containing constants for selecting the supply type, |
|
102 |
/// i.e. the direction of the inequalities in the supply/demand |
|
103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
104 |
/// |
|
105 |
/// The default supply type is \c GEQ, since this form is supported |
|
106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
107 |
/// algorithm, as well. |
|
108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
94 | 109 |
/// function. |
95 | 110 |
/// |
111 |
/// Note that the equality form is a special case of both supply types. |
|
112 |
enum SupplyType { |
|
113 |
|
|
114 |
/// This option means that there are <em>"greater or equal"</em> |
|
115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
116 |
/// formulation of the problem is the following. |
|
117 |
/** |
|
118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
120 |
sup(u) \quad \forall u\in V \f] |
|
121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
122 |
*/ |
|
123 |
/// It means that the total demand must be greater or equal to the |
|
124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
125 |
/// negative) and all the supplies have to be carried out from |
|
126 |
/// the supply nodes, but there could be demands that are not |
|
127 |
/// satisfied. |
|
128 |
GEQ, |
|
129 |
/// It is just an alias for the \c GEQ option. |
|
130 |
CARRY_SUPPLIES = GEQ, |
|
131 |
|
|
132 |
/// This option means that there are <em>"less or equal"</em> |
|
133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
134 |
/// formulation of the problem is the following. |
|
135 |
/** |
|
136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
138 |
sup(u) \quad \forall u\in V \f] |
|
139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
140 |
*/ |
|
141 |
/// It means that the total demand must be less or equal to the |
|
142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
143 |
/// positive) and all the demands have to be satisfied, but there |
|
144 |
/// could be supplies that are not carried out from the supply |
|
145 |
/// nodes. |
|
146 |
LEQ, |
|
147 |
/// It is just an alias for the \c LEQ option. |
|
148 |
SATISFY_DEMANDS = LEQ |
|
149 |
}; |
|
150 |
|
|
151 |
/// \brief Constants for selecting the pivot rule. |
|
152 |
/// |
|
153 |
/// Enum type containing constants for selecting the pivot rule for |
|
154 |
/// the \ref run() function. |
|
155 |
/// |
|
96 | 156 |
/// \ref NetworkSimplex provides five different pivot rule |
... | ... |
@@ -133,54 +193,2 @@ |
133 | 193 |
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 | 194 |
private: |
... | ... |
@@ -189,6 +197,2 @@ |
189 | 197 |
|
190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
193 |
|
|
194 | 198 |
typedef std::vector<Arc> ArcVector; |
... | ... |
@@ -197,3 +201,3 @@ |
197 | 201 |
typedef std::vector<bool> BoolVector; |
198 |
typedef std::vector< |
|
202 |
typedef std::vector<Value> ValueVector; |
|
199 | 203 |
typedef std::vector<Cost> CostVector; |
... | ... |
@@ -215,16 +219,5 @@ |
215 | 219 |
// Parameters of the problem |
216 |
FlowArcMap *_plower; |
|
217 |
FlowArcMap *_pupper; |
|
218 |
CostArcMap *_pcost; |
|
219 |
FlowNodeMap *_psupply; |
|
220 |
bool _pstsup; |
|
221 |
Node _psource, _ptarget; |
|
222 |
Flow _pstflow; |
|
223 |
ProblemType _ptype; |
|
224 |
|
|
225 |
// Result maps |
|
226 |
FlowMap *_flow_map; |
|
227 |
PotentialMap *_potential_map; |
|
228 |
bool _local_flow; |
|
229 |
bool _local_potential; |
|
220 |
bool _have_lower; |
|
221 |
SupplyType _stype; |
|
222 |
Value _sum_supply; |
|
230 | 223 |
|
... | ... |
@@ -232,3 +225,3 @@ |
232 | 225 |
IntNodeMap _node_id; |
233 |
|
|
226 |
IntArcMap _arc_id; |
|
234 | 227 |
IntVector _source; |
... | ... |
@@ -237,6 +230,8 @@ |
237 | 230 |
// Node and arc data |
238 |
|
|
231 |
ValueVector _lower; |
|
232 |
ValueVector _upper; |
|
233 |
ValueVector _cap; |
|
239 | 234 |
CostVector _cost; |
240 |
FlowVector _supply; |
|
241 |
FlowVector _flow; |
|
235 |
ValueVector _supply; |
|
236 |
ValueVector _flow; |
|
242 | 237 |
CostVector _pi; |
... | ... |
@@ -259,3 +254,12 @@ |
259 | 254 |
int stem, par_stem, new_stem; |
260 |
|
|
255 |
Value delta; |
|
256 |
|
|
257 |
public: |
|
258 |
|
|
259 |
/// \brief Constant for infinite upper bounds (capacities). |
|
260 |
/// |
|
261 |
/// Constant for infinite upper bounds (capacities). |
|
262 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
263 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
264 |
const Value INF; |
|
261 | 265 |
|
... | ... |
@@ -661,21 +665,64 @@ |
661 | 665 |
NetworkSimplex(const GR& graph) : |
662 |
_graph(graph), |
|
663 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
664 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
665 |
_flow_map(NULL), _potential_map(NULL), |
|
666 |
_local_flow(false), _local_potential(false), |
|
667 |
_node_id(graph) |
|
666 |
_graph(graph), _node_id(graph), _arc_id(graph), |
|
667 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
668 |
std::numeric_limits<Value>::infinity() : |
|
669 |
std::numeric_limits<Value>::max()) |
|
668 | 670 |
{ |
669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
670 |
std::numeric_limits<Flow>::is_signed, |
|
671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
673 |
std::numeric_limits<Cost>::is_signed, |
|
674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
675 |
|
|
671 |
// Check the value types |
|
672 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
673 |
"The flow type of NetworkSimplex must be signed"); |
|
674 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
675 |
"The cost type of NetworkSimplex must be signed"); |
|
676 |
|
|
677 |
// Resize vectors |
|
678 |
_node_num = countNodes(_graph); |
|
679 |
_arc_num = countArcs(_graph); |
|
680 |
int all_node_num = _node_num + 1; |
|
681 |
int all_arc_num = _arc_num + _node_num; |
|
676 | 682 |
|
677 |
/// Destructor. |
|
678 |
~NetworkSimplex() { |
|
679 |
if (_local_flow) delete _flow_map; |
|
680 |
if (_local_potential) delete _potential_map; |
|
683 |
_source.resize(all_arc_num); |
|
684 |
_target.resize(all_arc_num); |
|
685 |
|
|
686 |
_lower.resize(all_arc_num); |
|
687 |
_upper.resize(all_arc_num); |
|
688 |
_cap.resize(all_arc_num); |
|
689 |
_cost.resize(all_arc_num); |
|
690 |
_supply.resize(all_node_num); |
|
691 |
_flow.resize(all_arc_num); |
|
692 |
_pi.resize(all_node_num); |
|
693 |
|
|
694 |
_parent.resize(all_node_num); |
|
695 |
_pred.resize(all_node_num); |
|
696 |
_forward.resize(all_node_num); |
|
697 |
_thread.resize(all_node_num); |
|
698 |
_rev_thread.resize(all_node_num); |
|
699 |
_succ_num.resize(all_node_num); |
|
700 |
_last_succ.resize(all_node_num); |
|
701 |
_state.resize(all_arc_num); |
|
702 |
|
|
703 |
// Copy the graph (store the arcs in a mixed order) |
|
704 |
int i = 0; |
|
705 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
706 |
_node_id[n] = i; |
|
707 |
} |
|
708 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
709 |
i = 0; |
|
710 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
711 |
_arc_id[a] = i; |
|
712 |
_source[i] = _node_id[_graph.source(a)]; |
|
713 |
_target[i] = _node_id[_graph.target(a)]; |
|
714 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
715 |
} |
|
716 |
|
|
717 |
// Initialize maps |
|
718 |
for (int i = 0; i != _node_num; ++i) { |
|
719 |
_supply[i] = 0; |
|
720 |
} |
|
721 |
for (int i = 0; i != _arc_num; ++i) { |
|
722 |
_lower[i] = 0; |
|
723 |
_upper[i] = INF; |
|
724 |
_cost[i] = 1; |
|
725 |
} |
|
726 |
_have_lower = false; |
|
727 |
_stype = GEQ; |
|
681 | 728 |
} |
... | ... |
@@ -691,8 +738,7 @@ |
691 | 738 |
/// This function sets the lower bounds on the arcs. |
692 |
/// If neither this function nor \ref boundMaps() is used before |
|
693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
694 |
/// |
|
739 |
/// If it is not used before calling \ref run(), the lower bounds |
|
740 |
/// will be set to zero on all arcs. |
|
695 | 741 |
/// |
696 | 742 |
/// \param map An arc map storing the lower bounds. |
697 |
/// Its \c Value type must be convertible to the \c |
|
743 |
/// Its \c Value type must be convertible to the \c Value type |
|
698 | 744 |
/// of the algorithm. |
... | ... |
@@ -700,8 +746,7 @@ |
700 | 746 |
/// \return <tt>(*this)</tt> |
701 |
template <typename LOWER> |
|
702 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
703 |
delete _plower; |
|
704 |
_plower = new FlowArcMap(_graph); |
|
747 |
template <typename LowerMap> |
|
748 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
|
749 |
_have_lower = true; |
|
705 | 750 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
706 |
|
|
751 |
_lower[_arc_id[a]] = map[a]; |
|
707 | 752 |
} |
... | ... |
@@ -713,9 +758,8 @@ |
713 | 758 |
/// This function sets the upper bounds (capacities) on the arcs. |
714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
716 |
/// the upper bounds (capacities) will be set to |
|
717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
759 |
/// If it is not used before calling \ref run(), the upper bounds |
|
760 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
761 |
/// unbounded from above on each arc). |
|
718 | 762 |
/// |
719 | 763 |
/// \param map An arc map storing the upper bounds. |
720 |
/// Its \c Value type must be convertible to the \c |
|
764 |
/// Its \c Value type must be convertible to the \c Value type |
|
721 | 765 |
/// of the algorithm. |
... | ... |
@@ -723,8 +767,6 @@ |
723 | 767 |
/// \return <tt>(*this)</tt> |
724 |
template<typename UPPER> |
|
725 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
726 |
delete _pupper; |
|
727 |
_pupper = new FlowArcMap(_graph); |
|
768 |
template<typename UpperMap> |
|
769 |
NetworkSimplex& upperMap(const UpperMap& map) { |
|
728 | 770 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
729 |
|
|
771 |
_upper[_arc_id[a]] = map[a]; |
|
730 | 772 |
} |
... | ... |
@@ -733,39 +775,2 @@ |
733 | 775 |
|
734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
735 |
/// |
|
736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
737 |
/// It is just an alias for \ref upperMap(). |
|
738 |
/// |
|
739 |
/// \return <tt>(*this)</tt> |
|
740 |
template<typename CAP> |
|
741 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
742 |
return upperMap(map); |
|
743 |
} |
|
744 |
|
|
745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
746 |
/// |
|
747 |
/// This function sets the lower and upper bounds on the arcs. |
|
748 |
/// If neither this function nor \ref lowerMap() is used before |
|
749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
750 |
/// on all arcs. |
|
751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
753 |
/// the upper bounds (capacities) will be set to |
|
754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
755 |
/// |
|
756 |
/// \param lower An arc map storing the lower bounds. |
|
757 |
/// \param upper An arc map storing the upper bounds. |
|
758 |
/// |
|
759 |
/// The \c Value type of the maps must be convertible to the |
|
760 |
/// \c Flow type of the algorithm. |
|
761 |
/// |
|
762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
763 |
/// and \ref upperMap() separately. |
|
764 |
/// |
|
765 |
/// \return <tt>(*this)</tt> |
|
766 |
template <typename LOWER, typename UPPER> |
|
767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
768 |
return lowerMap(lower).upperMap(upper); |
|
769 |
} |
|
770 |
|
|
771 | 776 |
/// \brief Set the costs of the arcs. |
... | ... |
@@ -781,8 +786,6 @@ |
781 | 786 |
/// \return <tt>(*this)</tt> |
782 |
template<typename COST> |
|
783 |
NetworkSimplex& costMap(const COST& map) { |
|
784 |
delete _pcost; |
|
785 |
_pcost = new CostArcMap(_graph); |
|
787 |
template<typename CostMap> |
|
788 |
NetworkSimplex& costMap(const CostMap& map) { |
|
786 | 789 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
787 |
|
|
790 |
_cost[_arc_id[a]] = map[a]; |
|
788 | 791 |
} |
... | ... |
@@ -799,3 +802,3 @@ |
799 | 802 |
/// \param map A node map storing the supply values. |
800 |
/// Its \c Value type must be convertible to the \c |
|
803 |
/// Its \c Value type must be convertible to the \c Value type |
|
801 | 804 |
/// of the algorithm. |
... | ... |
@@ -803,9 +806,6 @@ |
803 | 806 |
/// \return <tt>(*this)</tt> |
804 |
template<typename SUP> |
|
805 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
806 |
delete _psupply; |
|
807 |
_pstsup = false; |
|
808 |
|
|
807 |
template<typename SupplyMap> |
|
808 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
|
809 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
810 |
|
|
810 |
_supply[_node_id[n]] = map[n]; |
|
811 | 811 |
} |
... | ... |
@@ -822,2 +822,6 @@ |
822 | 822 |
/// |
823 |
/// Using this function has the same effect as using \ref supplyMap() |
|
824 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
825 |
/// assigned to \c t and all other nodes have zero supply value. |
|
826 |
/// |
|
823 | 827 |
/// \param s The source node. |
... | ... |
@@ -828,9 +832,8 @@ |
828 | 832 |
/// \return <tt>(*this)</tt> |
829 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
|
830 |
delete _psupply; |
|
831 |
_psupply = NULL; |
|
832 |
_pstsup = true; |
|
833 |
_psource = s; |
|
834 |
_ptarget = t; |
|
835 |
|
|
833 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|
834 |
for (int i = 0; i != _node_num; ++i) { |
|
835 |
_supply[i] = 0; |
|
836 |
} |
|
837 |
_supply[_node_id[s]] = k; |
|
838 |
_supply[_node_id[t]] = -k; |
|
836 | 839 |
return *this; |
... | ... |
@@ -838,13 +841,13 @@ |
838 | 841 |
|
839 |
/// \brief Set the |
|
842 |
/// \brief Set the type of the supply constraints. |
|
840 | 843 |
/// |
841 |
/// This function sets the problem type for the algorithm. |
|
842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
844 |
/// This function sets the type of the supply/demand constraints. |
|
845 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
843 | 846 |
/// type will be used. |
844 | 847 |
/// |
845 |
/// For more information see \ref |
|
848 |
/// For more information see \ref SupplyType. |
|
846 | 849 |
/// |
847 | 850 |
/// \return <tt>(*this)</tt> |
848 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
849 |
_ptype = problem_type; |
|
851 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
|
852 |
_stype = supply_type; |
|
850 | 853 |
return *this; |
... | ... |
@@ -852,37 +855,2 @@ |
852 | 855 |
|
853 |
/// \brief Set the flow map. |
|
854 |
/// |
|
855 |
/// This function sets the flow map. |
|
856 |
/// If it is not used before calling \ref run(), an instance will |
|
857 |
/// be allocated automatically. The destructor deallocates this |
|
858 |
/// automatically allocated map, of course. |
|
859 |
/// |
|
860 |
/// \return <tt>(*this)</tt> |
|
861 |
NetworkSimplex& flowMap(FlowMap& map) { |
|
862 |
if (_local_flow) { |
|
863 |
delete _flow_map; |
|
864 |
_local_flow = false; |
|
865 |
} |
|
866 |
_flow_map = ↦ |
|
867 |
return *this; |
|
868 |
} |
|
869 |
|
|
870 |
/// \brief Set the potential map. |
|
871 |
/// |
|
872 |
/// This function sets the potential map, which is used for storing |
|
873 |
/// the dual solution. |
|
874 |
/// If it is not used before calling \ref run(), an instance will |
|
875 |
/// be allocated automatically. The destructor deallocates this |
|
876 |
/// automatically allocated map, of course. |
|
877 |
/// |
|
878 |
/// \return <tt>(*this)</tt> |
|
879 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
|
880 |
if (_local_potential) { |
|
881 |
delete _potential_map; |
|
882 |
_local_potential = false; |
|
883 |
} |
|
884 |
_potential_map = ↦ |
|
885 |
return *this; |
|
886 |
} |
|
887 |
|
|
888 | 856 |
/// @} |
... | ... |
@@ -898,5 +866,4 @@ |
898 | 866 |
/// The paramters can be specified using functions \ref lowerMap(), |
899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
901 |
/// \ref |
|
867 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
868 |
/// \ref supplyType(). |
|
902 | 869 |
/// For example, |
... | ... |
@@ -904,3 +871,3 @@ |
904 | 871 |
/// NetworkSimplex<ListDigraph> ns(graph); |
905 |
/// ns. |
|
872 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
906 | 873 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -912,2 +879,4 @@ |
912 | 879 |
/// have to be set again. See \ref reset() for examples. |
880 |
/// However the underlying digraph must not be modified after this |
|
881 |
/// class have been constructed, since it copies and extends the graph. |
|
913 | 882 |
/// |
... | ... |
@@ -916,5 +885,14 @@ |
916 | 885 |
/// |
917 |
/// \return \c true if a feasible flow can be found. |
|
918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
919 |
|
|
886 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
887 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
888 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
889 |
/// optimal flow and node potentials (primal and dual solutions), |
|
890 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
891 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
892 |
/// cost and infinite upper bound. |
|
893 |
/// |
|
894 |
/// \see ProblemType, PivotRule |
|
895 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
896 |
if (!init()) return INFEASIBLE; |
|
897 |
return start(pivot_rule); |
|
920 | 898 |
} |
... | ... |
@@ -925,5 +903,3 @@ |
925 | 903 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
928 |
/// \ref |
|
904 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|
929 | 905 |
/// |
... | ... |
@@ -932,2 +908,4 @@ |
932 | 908 |
/// \ref run() call. |
909 |
/// However the underlying digraph must not be modified after this |
|
910 |
/// class have been constructed, since it copies and extends the graph. |
|
933 | 911 |
/// |
... | ... |
@@ -938,3 +916,3 @@ |
938 | 916 |
/// // First run |
939 |
/// ns.lowerMap(lower). |
|
917 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
940 | 918 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -949,3 +927,3 @@ |
949 | 927 |
/// ns.reset(); |
950 |
/// ns. |
|
928 |
/// ns.upperMap(capacity).costMap(cost) |
|
951 | 929 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -955,19 +933,12 @@ |
955 | 933 |
NetworkSimplex& reset() { |
956 |
delete _plower; |
|
957 |
delete _pupper; |
|
958 |
delete _pcost; |
|
959 |
delete _psupply; |
|
960 |
_plower = NULL; |
|
961 |
_pupper = NULL; |
|
962 |
_pcost = NULL; |
|
963 |
_psupply = NULL; |
|
964 |
_pstsup = false; |
|
965 |
_ptype = GEQ; |
|
966 |
if (_local_flow) delete _flow_map; |
|
967 |
if (_local_potential) delete _potential_map; |
|
968 |
_flow_map = NULL; |
|
969 |
_potential_map = NULL; |
|
970 |
_local_flow = false; |
|
971 |
_local_potential = false; |
|
972 |
|
|
934 |
for (int i = 0; i != _node_num; ++i) { |
|
935 |
_supply[i] = 0; |
|
936 |
} |
|
937 |
for (int i = 0; i != _arc_num; ++i) { |
|
938 |
_lower[i] = 0; |
|
939 |
_upper[i] = INF; |
|
940 |
_cost[i] = 1; |
|
941 |
} |
|
942 |
_have_lower = false; |
|
943 |
_stype = GEQ; |
|
973 | 944 |
return *this; |
... | ... |
@@ -987,3 +958,3 @@ |
987 | 958 |
/// This function returns the total cost of the found flow. |
988 |
/// |
|
959 |
/// Its complexity is O(e). |
|
989 | 960 |
/// |
... | ... |
@@ -999,11 +970,8 @@ |
999 | 970 |
/// \pre \ref run() must be called before using this function. |
1000 |
template <typename Num> |
|
1001 |
Num totalCost() const { |
|
1002 |
Num c = 0; |
|
1003 |
if (_pcost) { |
|
1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
1006 |
} else { |
|
1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1008 |
|
|
971 |
template <typename Number> |
|
972 |
Number totalCost() const { |
|
973 |
Number c = 0; |
|
974 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
975 |
int i = _arc_id[a]; |
|
976 |
c += Number(_flow[i]) * Number(_cost[i]); |
|
1009 | 977 |
} |
... | ... |
@@ -1023,14 +991,18 @@ |
1023 | 991 |
/// \pre \ref run() must be called before using this function. |
1024 |
Flow flow(const Arc& a) const { |
|
1025 |
return (*_flow_map)[a]; |
|
992 |
Value flow(const Arc& a) const { |
|
993 |
return _flow[_arc_id[a]]; |
|
1026 | 994 |
} |
1027 | 995 |
|
1028 |
/// \brief Return |
|
996 |
/// \brief Return the flow map (the primal solution). |
|
1029 | 997 |
/// |
1030 |
/// This function returns a const reference to an arc map storing |
|
1031 |
/// the found flow. |
|
998 |
/// This function copies the flow value on each arc into the given |
|
999 |
/// map. The \c Value type of the algorithm must be convertible to |
|
1000 |
/// the \c Value type of the map. |
|
1032 | 1001 |
/// |
1033 | 1002 |
/// \pre \ref run() must be called before using this function. |
1034 |
const FlowMap& flowMap() const { |
|
1035 |
return *_flow_map; |
|
1003 |
template <typename FlowMap> |
|
1004 |
void flowMap(FlowMap &map) const { |
|
1005 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
1006 |
map.set(a, _flow[_arc_id[a]]); |
|
1007 |
} |
|
1036 | 1008 |
} |
... | ... |
@@ -1044,15 +1016,18 @@ |
1044 | 1016 |
Cost potential(const Node& n) const { |
1045 |
return |
|
1017 |
return _pi[_node_id[n]]; |
|
1046 | 1018 |
} |
1047 | 1019 |
|
1048 |
/// \brief Return a const reference to the potential map |
|
1049 |
/// (the dual solution). |
|
1020 |
/// \brief Return the potential map (the dual solution). |
|
1050 | 1021 |
/// |
1051 |
/// This function returns a const reference to a node map storing |
|
1052 |
/// the found potentials, which form the dual solution of the |
|
1053 |
/// |
|
1022 |
/// This function copies the potential (dual value) of each node |
|
1023 |
/// into the given map. |
|
1024 |
/// The \c Cost type of the algorithm must be convertible to the |
|
1025 |
/// \c Value type of the map. |
|
1054 | 1026 |
/// |
1055 | 1027 |
/// \pre \ref run() must be called before using this function. |
1056 |
const PotentialMap& potentialMap() const { |
|
1057 |
return *_potential_map; |
|
1028 |
template <typename PotentialMap> |
|
1029 |
void potentialMap(PotentialMap &map) const { |
|
1030 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1031 |
map.set(n, _pi[_node_id[n]]); |
|
1032 |
} |
|
1058 | 1033 |
} |
... | ... |
@@ -1065,152 +1040,48 @@ |
1065 | 1040 |
bool init() { |
1066 |
// Initialize result maps |
|
1067 |
if (!_flow_map) { |
|
1068 |
_flow_map = new FlowMap(_graph); |
|
1069 |
_local_flow = true; |
|
1041 |
if (_node_num == 0) return false; |
|
1042 |
|
|
1043 |
// Check the sum of supply values |
|
1044 |
_sum_supply = 0; |
|
1045 |
for (int i = 0; i != _node_num; ++i) { |
|
1046 |
_sum_supply += _supply[i]; |
|
1070 | 1047 |
} |
1071 |
if (!_potential_map) { |
|
1072 |
_potential_map = new PotentialMap(_graph); |
|
1073 |
|
|
1048 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
|
1049 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
|
1050 |
|
|
1051 |
// Remove non-zero lower bounds |
|
1052 |
if (_have_lower) { |
|
1053 |
for (int i = 0; i != _arc_num; ++i) { |
|
1054 |
Value c = _lower[i]; |
|
1055 |
if (c >= 0) { |
|
1056 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|
1057 |
} else { |
|
1058 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|
1059 |
} |
|
1060 |
_supply[_source[i]] -= c; |
|
1061 |
_supply[_target[i]] += c; |
|
1062 |
} |
|
1063 |
} else { |
|
1064 |
for (int i = 0; i != _arc_num; ++i) { |
|
1065 |
_cap[i] = _upper[i]; |
|
1066 |
} |
|
1074 | 1067 |
} |
1075 | 1068 |
|
1076 |
// Initialize vectors |
|
1077 |
_node_num = countNodes(_graph); |
|
1078 |
_arc_num = countArcs(_graph); |
|
1079 |
int all_node_num = _node_num + 1; |
|
1080 |
int all_arc_num = _arc_num + _node_num; |
|
1081 |
if (_node_num == 0) return false; |
|
1082 |
|
|
1083 |
_arc_ref.resize(_arc_num); |
|
1084 |
_source.resize(all_arc_num); |
|
1085 |
_target.resize(all_arc_num); |
|
1086 |
|
|
1087 |
_cap.resize(all_arc_num); |
|
1088 |
_cost.resize(all_arc_num); |
|
1089 |
_supply.resize(all_node_num); |
|
1090 |
_flow.resize(all_arc_num); |
|
1091 |
_pi.resize(all_node_num); |
|
1092 |
|
|
1093 |
_parent.resize(all_node_num); |
|
1094 |
_pred.resize(all_node_num); |
|
1095 |
_forward.resize(all_node_num); |
|
1096 |
_thread.resize(all_node_num); |
|
1097 |
_rev_thread.resize(all_node_num); |
|
1098 |
_succ_num.resize(all_node_num); |
|
1099 |
_last_succ.resize(all_node_num); |
|
1100 |
_state.resize(all_arc_num); |
|
1101 |
|
|
1102 |
// Initialize node related data |
|
1103 |
bool valid_supply = true; |
|
1104 |
Flow sum_supply = 0; |
|
1105 |
if (!_pstsup && !_psupply) { |
|
1106 |
_pstsup = true; |
|
1107 |
_psource = _ptarget = NodeIt(_graph); |
|
1108 |
_pstflow = 0; |
|
1109 |
} |
|
1110 |
if (_psupply) { |
|
1111 |
int i = 0; |
|
1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1113 |
_node_id[n] = i; |
|
1114 |
_supply[i] = (*_psupply)[n]; |
|
1115 |
sum_supply += _supply[i]; |
|
1069 |
// Initialize artifical cost |
|
1070 |
Cost ART_COST; |
|
1071 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1072 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1073 |
} else { |
|
1074 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
1075 |
for (int i = 0; i != _arc_num; ++i) { |
|
1076 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
1116 | 1077 |
} |
1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
1119 |
} else { |
|
1120 |
int i = 0; |
|
1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1122 |
_node_id[n] = i; |
|
1123 |
_supply[i] = 0; |
|
1124 |
} |
|
1125 |
_supply[_node_id[_psource]] = _pstflow; |
|
1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1127 |
} |
|
1128 |
if (!valid_supply) return false; |
|
1129 |
|
|
1130 |
// Infinite capacity value |
|
1131 |
Flow inf_cap = |
|
1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
1133 |
std::numeric_limits<Flow>::infinity() : |
|
1134 |
std::numeric_limits<Flow>::max(); |
|
1135 |
|
|
1136 |
// Initialize artifical cost |
|
1137 |
Cost art_cost; |
|
1138 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1140 |
} else { |
|
1141 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1142 |
for (int i = 0; i != _arc_num; ++i) { |
|
1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1144 |
} |
|
1145 |
|
|
1078 |
ART_COST = (ART_COST + 1) * _node_num; |
|
1146 | 1079 |
} |
1147 | 1080 |
|
1148 |
// Run Circulation to check if a feasible solution exists |
|
1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1151 |
FlowNodeMap *csup = NULL; |
|
1152 |
bool local_csup = false; |
|
1153 |
if (_psupply) { |
|
1154 |
csup = _psupply; |
|
1155 |
} else { |
|
1156 |
csup = new FlowNodeMap(_graph, 0); |
|
1157 |
(*csup)[_psource] = _pstflow; |
|
1158 |
(*csup)[_ptarget] = -_pstflow; |
|
1159 |
local_csup = true; |
|
1081 |
// Initialize arc maps |
|
1082 |
for (int i = 0; i != _arc_num; ++i) { |
|
1083 |
_flow[i] = 0; |
|
1084 |
_state[i] = STATE_LOWER; |
|
1160 | 1085 |
} |
1161 |
bool circ_result = false; |
|
1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1163 |
// GEQ problem type |
|
1164 |
if (_plower) { |
|
1165 |
if (_pupper) { |
|
1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} else { |
|
1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1172 |
circ_result = circ.run(); |
|
1173 |
} |
|
1174 |
} else { |
|
1175 |
if (_pupper) { |
|
1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} else { |
|
1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1182 |
circ_result = circ.run(); |
|
1183 |
} |
|
1184 |
} |
|
1185 |
} else { |
|
1186 |
// LEQ problem type |
|
1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1189 |
RevGraph rgraph(_graph); |
|
1190 |
NegNodeMap neg_csup(*csup); |
|
1191 |
if (_plower) { |
|
1192 |
if (_pupper) { |
|
1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} else { |
|
1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1199 |
circ_result = circ.run(); |
|
1200 |
} |
|
1201 |
} else { |
|
1202 |
if (_pupper) { |
|
1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} else { |
|
1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1209 |
circ_result = circ.run(); |
|
1210 |
} |
|
1211 |
} |
|
1212 |
} |
|
1213 |
if (local_csup) delete csup; |
|
1214 |
if (!circ_result) return false; |
|
1215 |
|
|
1086 |
|
|
1216 | 1087 |
// Set data for the artificial root node |
... | ... |
@@ -1221,65 +1092,6 @@ |
1221 | 1092 |
_rev_thread[0] = _root; |
1222 |
_succ_num[_root] = |
|
1093 |
_succ_num[_root] = _node_num + 1; |
|
1223 | 1094 |
_last_succ[_root] = _root - 1; |
1224 |
_supply[_root] = -sum_supply; |
|
1225 |
if (sum_supply < 0) { |
|
1226 |
_pi[_root] = -art_cost; |
|
1227 |
} else { |
|
1228 |
_pi[_root] = art_cost; |
|
1229 |
} |
|
1230 |
|
|
1231 |
// Store the arcs in a mixed order |
|
1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
1233 |
int i = 0; |
|
1234 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1235 |
_arc_ref[i] = e; |
|
1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
1237 |
} |
|
1238 |
|
|
1239 |
// Initialize arc maps |
|
1240 |
if (_pupper && _pcost) { |
|
1241 |
for (int i = 0; i != _arc_num; ++i) { |
|
1242 |
Arc e = _arc_ref[i]; |
|
1243 |
_source[i] = _node_id[_graph.source(e)]; |
|
1244 |
_target[i] = _node_id[_graph.target(e)]; |
|
1245 |
_cap[i] = (*_pupper)[e]; |
|
1246 |
_cost[i] = (*_pcost)[e]; |
|
1247 |
_flow[i] = 0; |
|
1248 |
_state[i] = STATE_LOWER; |
|
1249 |
} |
|
1250 |
} else { |
|
1251 |
for (int i = 0; i != _arc_num; ++i) { |
|
1252 |
Arc e = _arc_ref[i]; |
|
1253 |
_source[i] = _node_id[_graph.source(e)]; |
|
1254 |
_target[i] = _node_id[_graph.target(e)]; |
|
1255 |
_flow[i] = 0; |
|
1256 |
_state[i] = STATE_LOWER; |
|
1257 |
} |
|
1258 |
if (_pupper) { |
|
1259 |
for (int i = 0; i != _arc_num; ++i) |
|
1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
1261 |
} else { |
|
1262 |
for (int i = 0; i != _arc_num; ++i) |
|
1263 |
_cap[i] = inf_cap; |
|
1264 |
} |
|
1265 |
if (_pcost) { |
|
1266 |
for (int i = 0; i != _arc_num; ++i) |
|
1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
1268 |
} else { |
|
1269 |
for (int i = 0; i != _arc_num; ++i) |
|
1270 |
_cost[i] = 1; |
|
1271 |
} |
|
1272 |
} |
|
1273 |
|
|
1274 |
// Remove non-zero lower bounds |
|
1275 |
if (_plower) { |
|
1276 |
for (int i = 0; i != _arc_num; ++i) { |
|
1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
1278 |
if (c != 0) { |
|
1279 |
_cap[i] -= c; |
|
1280 |
_supply[_source[i]] -= c; |
|
1281 |
_supply[_target[i]] += c; |
|
1282 |
} |
|
1283 |
} |
|
1284 |
|
|
1095 |
_supply[_root] = -_sum_supply; |
|
1096 |
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST; |
|
1285 | 1097 |
|
... | ... |
@@ -1287,2 +1099,4 @@ |
1287 | 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1100 |
_parent[u] = _root; |
|
1101 |
_pred[u] = e; |
|
1288 | 1102 |
_thread[u] = u + 1; |
... | ... |
@@ -1291,11 +1105,9 @@ |
1291 | 1105 |
_last_succ[u] = u; |
1292 |
_parent[u] = _root; |
|
1293 |
_pred[u] = e; |
|
1294 |
_cost[e] = art_cost; |
|
1295 |
_cap[e] = inf_cap; |
|
1106 |
_cost[e] = ART_COST; |
|
1107 |
_cap[e] = INF; |
|
1296 | 1108 |
_state[e] = STATE_TREE; |
1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1298 | 1110 |
_flow[e] = _supply[u]; |
1299 | 1111 |
_forward[u] = true; |
1300 |
_pi[u] = - |
|
1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1301 | 1113 |
} else { |
... | ... |
@@ -1303,3 +1115,3 @@ |
1303 | 1115 |
_forward[u] = false; |
1304 |
_pi[u] = |
|
1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
1305 | 1117 |
} |
... | ... |
@@ -1338,3 +1150,3 @@ |
1338 | 1150 |
int result = 0; |
1339 |
|
|
1151 |
Value d; |
|
1340 | 1152 |
int e; |
... | ... |
@@ -1344,3 +1156,4 @@ |
1344 | 1156 |
e = _pred[u]; |
1345 |
d = _forward[u] ? |
|
1157 |
d = _forward[u] ? |
|
1158 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
1346 | 1159 |
if (d < delta) { |
... | ... |
@@ -1354,3 +1167,4 @@ |
1354 | 1167 |
e = _pred[u]; |
1355 |
d = _forward[u] ? |
|
1168 |
d = _forward[u] ? |
|
1169 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1356 | 1170 |
if (d <= delta) { |
... | ... |
@@ -1376,3 +1190,3 @@ |
1376 | 1190 |
if (delta > 0) { |
1377 |
|
|
1191 |
Value val = _state[in_arc] * delta; |
|
1378 | 1192 |
_flow[in_arc] += val; |
... | ... |
@@ -1528,3 +1342,3 @@ |
1528 | 1342 |
// Execute the algorithm |
1529 |
|
|
1343 |
ProblemType start(PivotRule pivot_rule) { |
|
1530 | 1344 |
// Select the pivot rule implementation |
... | ... |
@@ -1542,3 +1356,3 @@ |
1542 | 1356 |
} |
1543 |
return |
|
1357 |
return INFEASIBLE; // avoid warning |
|
1544 | 1358 |
} |
... | ... |
@@ -1546,3 +1360,3 @@ |
1546 | 1360 |
template <typename PivotRuleImpl> |
1547 |
|
|
1361 |
ProblemType start() { |
|
1548 | 1362 |
PivotRuleImpl pivot(*this); |
... | ... |
@@ -1553,2 +1367,3 @@ |
1553 | 1367 |
bool change = findLeavingArc(); |
1368 |
if (delta >= INF) return UNBOUNDED; |
|
1554 | 1369 |
changeFlow(change); |
... | ... |
@@ -1559,20 +1374,33 @@ |
1559 | 1374 |
} |
1560 |
|
|
1561 |
// Copy flow values to _flow_map |
|
1562 |
if (_plower) { |
|
1563 |
for (int i = 0; i != _arc_num; ++i) { |
|
1564 |
Arc e = _arc_ref[i]; |
|
1565 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
1566 |
} |
|
1567 |
} else { |
|
1568 |
for (int i = 0; i != _arc_num; ++i) { |
|
1569 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
1375 |
|
|
1376 |
// Check feasibility |
|
1377 |
if (_sum_supply < 0) { |
|
1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1570 | 1380 |
} |
1571 | 1381 |
} |
1572 |
// Copy potential values to _potential_map |
|
1573 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1574 |
|
|
1382 |
else if (_sum_supply > 0) { |
|
1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1385 |
} |
|
1386 |
} |
|
1387 |
else { |
|
1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1390 |
} |
|
1575 | 1391 |
} |
1576 | 1392 |
|
1577 |
|
|
1393 |
// Transform the solution and the supply map to the original form |
|
1394 |
if (_have_lower) { |
|
1395 |
for (int i = 0; i != _arc_num; ++i) { |
|
1396 |
Value c = _lower[i]; |
|
1397 |
if (c != 0) { |
|
1398 |
_flow[i] += c; |
|
1399 |
_supply[_source[i]] += c; |
|
1400 |
_supply[_target[i]] -= c; |
|
1401 |
} |
|
1402 |
} |
|
1403 |
} |
|
1404 |
|
|
1405 |
return OPTIMAL; |
|
1578 | 1406 |
} |
... | ... |
@@ -48,3 +48,3 @@ |
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Value; |
|
50 | 50 |
|
... | ... |
@@ -54,3 +54,3 @@ |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
56 | 56 |
|
... | ... |
@@ -86,3 +86,3 @@ |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
88 | 88 |
|
... | ... |
@@ -127,3 +127,3 @@ |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Value Value; |
|
129 | 129 |
|
... | ... |
@@ -153,3 +153,3 @@ |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
... | ... |
@@ -472,3 +472,3 @@ |
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Value excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
... | ... |
@@ -521,3 +521,3 @@ |
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
... | ... |
@@ -533,3 +533,3 @@ |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Value rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
... | ... |
@@ -566,3 +566,3 @@ |
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Value excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
... | ... |
@@ -570,3 +570,3 @@ |
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -593,3 +593,3 @@ |
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Value rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -639,3 +639,3 @@ |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Value excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
... | ... |
@@ -643,3 +643,3 @@ |
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -666,3 +666,3 @@ |
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Value rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -780,3 +780,3 @@ |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Value excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
... | ... |
@@ -785,3 +785,3 @@ |
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -808,3 +808,3 @@ |
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Value rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
... | ... |
@@ -899,3 +899,3 @@ |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Value flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
... | ... |
@@ -903,5 +903,5 @@ |
903 | 903 |
|
904 |
/// \brief Returns the flow on the given arc. |
|
904 |
/// \brief Returns the flow value on the given arc. |
|
905 | 905 |
/// |
906 |
/// Returns the flow on the given arc. This method can |
|
906 |
/// Returns the flow value on the given arc. This method can |
|
907 | 907 |
/// be called after the second phase of the algorithm. |
... | ... |
@@ -910,3 +910,3 @@ |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Value flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
... | ... |
@@ -20,2 +20,3 @@ |
20 | 20 |
#include <fstream> |
21 |
#include <limits> |
|
21 | 22 |
|
... | ... |
@@ -35,39 +36,39 @@ |
35 | 36 |
"@nodes\n" |
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 |
"\n" |
|
37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
38 |
" 1 20 27 0 30 20 30\n" |
|
39 |
" 2 -4 0 0 0 -8 -3\n" |
|
40 |
" 3 0 0 0 0 0 0\n" |
|
41 |
" 4 0 0 0 0 0 0\n" |
|
42 |
" 5 9 0 0 0 6 11\n" |
|
43 |
" 6 -6 0 0 0 -5 -6\n" |
|
44 |
" 7 0 0 0 0 0 0\n" |
|
45 |
" 8 0 0 0 0 0 3\n" |
|
46 |
" 9 3 0 0 0 0 0\n" |
|
47 |
" 10 -2 0 0 0 -7 -2\n" |
|
48 |
" 11 0 0 0 0 -10 0\n" |
|
49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
50 |
"\n" |
|
50 | 51 |
"@arcs\n" |
51 |
" cost cap low1 low2\n" |
|
52 |
" 1 2 70 11 0 8\n" |
|
53 |
" 1 3 150 3 0 1\n" |
|
54 |
" 1 4 80 15 0 2\n" |
|
55 |
" 2 8 80 12 0 0\n" |
|
56 |
" 3 5 140 5 0 3\n" |
|
57 |
" 4 6 60 10 0 1\n" |
|
58 |
" 4 7 80 2 0 0\n" |
|
59 |
" 4 8 110 3 0 0\n" |
|
60 |
" 5 7 60 14 0 0\n" |
|
61 |
" 5 11 120 12 0 0\n" |
|
62 |
" 6 3 0 3 0 0\n" |
|
63 |
" 6 9 140 4 0 0\n" |
|
64 |
" 6 10 90 8 0 0\n" |
|
65 |
" 7 1 30 5 0 0\n" |
|
66 |
" 8 12 60 16 0 4\n" |
|
67 |
" 9 12 50 6 0 0\n" |
|
68 |
"10 12 70 13 0 5\n" |
|
69 |
"10 2 100 7 0 0\n" |
|
70 |
"10 7 60 10 0 0\n" |
|
71 |
"11 10 20 14 0 6\n" |
|
72 |
"12 11 30 10 0 0\n" |
|
52 |
" cost cap low1 low2 low3\n" |
|
53 |
" 1 2 70 11 0 8 8\n" |
|
54 |
" 1 3 150 3 0 1 0\n" |
|
55 |
" 1 4 80 15 0 2 2\n" |
|
56 |
" 2 8 80 12 0 0 0\n" |
|
57 |
" 3 5 140 5 0 3 1\n" |
|
58 |
" 4 6 60 10 0 1 0\n" |
|
59 |
" 4 7 80 2 0 0 0\n" |
|
60 |
" 4 8 110 3 0 0 0\n" |
|
61 |
" 5 7 60 14 0 0 0\n" |
|
62 |
" 5 11 120 12 0 0 0\n" |
|
63 |
" 6 3 0 3 0 0 0\n" |
|
64 |
" 6 9 140 4 0 0 0\n" |
|
65 |
" 6 10 90 8 0 0 0\n" |
|
66 |
" 7 1 30 5 0 0 -5\n" |
|
67 |
" 8 12 60 16 0 4 3\n" |
|
68 |
" 9 12 50 6 0 0 0\n" |
|
69 |
"10 12 70 13 0 5 2\n" |
|
70 |
"10 2 100 7 0 0 0\n" |
|
71 |
"10 7 60 10 0 0 -3\n" |
|
72 |
"11 10 20 14 0 6 -20\n" |
|
73 |
"12 11 30 10 0 0 -10\n" |
|
73 | 74 |
"\n" |
... | ... |
@@ -78,3 +79,3 @@ |
78 | 79 |
|
79 |
enum |
|
80 |
enum SupplyType { |
|
80 | 81 |
EQ, |
... | ... |
@@ -85,3 +86,3 @@ |
85 | 86 |
// Check the interface of an MCF algorithm |
86 |
template <typename GR, typename |
|
87 |
template <typename GR, typename Value, typename Cost> |
|
87 | 88 |
class McfClassConcept |
... | ... |
@@ -96,2 +97,3 @@ |
96 | 97 |
MCF mcf(g); |
98 |
const MCF& const_mcf = mcf; |
|
97 | 99 |
|
... | ... |
@@ -100,4 +102,2 @@ |
100 | 102 |
.upperMap(upper) |
101 |
.capacityMap(upper) |
|
102 |
.boundMaps(lower, upper) |
|
103 | 103 |
.costMap(cost) |
... | ... |
@@ -105,19 +105,10 @@ |
105 | 105 |
.stSupply(n, n, k) |
106 |
.flowMap(flow) |
|
107 |
.potentialMap(pot) |
|
108 | 106 |
.run(); |
109 |
|
|
110 |
const MCF& const_mcf = mcf; |
|
111 | 107 |
|
112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
114 |
|
|
115 |
v = const_mcf.totalCost(); |
|
116 |
|
|
108 |
c = const_mcf.totalCost(); |
|
109 |
x = const_mcf.template totalCost<double>(); |
|
117 | 110 |
v = const_mcf.flow(a); |
118 |
v = const_mcf.potential(n); |
|
119 |
|
|
120 |
ignore_unused_variable_warning(fm); |
|
121 |
ignore_unused_variable_warning(pm); |
|
122 |
|
|
111 |
c = const_mcf.potential(n); |
|
112 |
const_mcf.flowMap(fm); |
|
113 |
const_mcf.potentialMap(pm); |
|
123 | 114 |
} |
... | ... |
@@ -126,9 +117,11 @@ |
126 | 117 |
typedef typename GR::Arc Arc; |
127 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
118 |
typedef concepts::ReadMap<Node, Value> NM; |
|
119 |
typedef concepts::ReadMap<Arc, Value> VAM; |
|
129 | 120 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
121 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
|
122 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
|
130 | 123 |
|
131 | 124 |
const GR &g; |
132 |
const FAM &lower; |
|
133 |
const FAM &upper; |
|
125 |
const VAM &lower; |
|
126 |
const VAM &upper; |
|
134 | 127 |
const CAM &cost; |
... | ... |
@@ -137,8 +130,9 @@ |
137 | 130 |
const Arc &a; |
138 |
const Flow &k; |
|
139 |
Flow v; |
|
131 |
const Value &k; |
|
132 |
FlowMap fm; |
|
133 |
PotMap pm; |
|
140 | 134 |
bool b; |
141 |
|
|
142 |
typename MCF::FlowMap &flow; |
|
143 |
|
|
135 |
double x; |
|
136 |
typename MCF::Value v; |
|
137 |
typename MCF::Cost c; |
|
144 | 138 |
}; |
... | ... |
@@ -153,3 +147,3 @@ |
153 | 147 |
const SM& supply, const FM& flow, |
154 |
|
|
148 |
SupplyType type = EQ ) |
|
155 | 149 |
{ |
... | ... |
@@ -210,17 +204,21 @@ |
210 | 204 |
typename LM, typename UM, |
211 |
typename CM, typename SM > |
|
212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
205 |
typename CM, typename SM, |
|
206 |
typename PT > |
|
207 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
213 | 208 |
const GR& gr, const LM& lower, const UM& upper, |
214 | 209 |
const CM& cost, const SM& supply, |
215 |
bool |
|
210 |
PT result, bool optimal, typename CM::Value total, |
|
216 | 211 |
const std::string &test_id = "", |
217 |
|
|
212 |
SupplyType type = EQ ) |
|
218 | 213 |
{ |
219 | 214 |
check(mcf_result == result, "Wrong result " + test_id); |
220 |
if (result) { |
|
221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
215 |
if (optimal) { |
|
216 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
|
217 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
|
218 |
mcf.flowMap(flow); |
|
219 |
mcf.potentialMap(pi); |
|
220 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
|
222 | 221 |
"The flow is not feasible " + test_id); |
223 | 222 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
225 |
mcf.potentialMap()), |
|
223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
226 | 224 |
"Wrong potentials " + test_id); |
... | ... |
@@ -233,7 +231,9 @@ |
233 | 231 |
{ |
234 |
typedef int Flow; |
|
235 |
typedef int Cost; |
|
236 | 232 |
typedef concepts::Digraph GR; |
237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
238 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
233 |
checkConcept< McfClassConcept<GR, int, int>, |
|
234 |
NetworkSimplex<GR> >(); |
|
235 |
checkConcept< McfClassConcept<GR, double, double>, |
|
236 |
NetworkSimplex<GR, double> >(); |
|
237 |
checkConcept< McfClassConcept<GR, int, double>, |
|
238 |
NetworkSimplex<GR, int, double> >(); |
|
239 | 239 |
} |
... | ... |
@@ -246,4 +246,4 @@ |
246 | 246 |
Digraph gr; |
247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
249 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
... | ... |
@@ -257,2 +257,3 @@ |
257 | 257 |
.arcMap("low2", l2) |
258 |
.arcMap("low3", l3) |
|
258 | 259 |
.nodeMap("sup1", s1) |
... | ... |
@@ -262,2 +263,3 @@ |
262 | 263 |
.nodeMap("sup5", s5) |
264 |
.nodeMap("sup6", s6) |
|
263 | 265 |
.node("source", v) |
... | ... |
@@ -265,2 +267,42 @@ |
265 | 267 |
.run(); |
268 |
|
|
269 |
// Build a test digraph for testing negative costs |
|
270 |
Digraph ngr; |
|
271 |
Node n1 = ngr.addNode(); |
|
272 |
Node n2 = ngr.addNode(); |
|
273 |
Node n3 = ngr.addNode(); |
|
274 |
Node n4 = ngr.addNode(); |
|
275 |
Node n5 = ngr.addNode(); |
|
276 |
Node n6 = ngr.addNode(); |
|
277 |
Node n7 = ngr.addNode(); |
|
278 |
|
|
279 |
Arc a1 = ngr.addArc(n1, n2); |
|
280 |
Arc a2 = ngr.addArc(n1, n3); |
|
281 |
Arc a3 = ngr.addArc(n2, n4); |
|
282 |
Arc a4 = ngr.addArc(n3, n4); |
|
283 |
Arc a5 = ngr.addArc(n3, n2); |
|
284 |
Arc a6 = ngr.addArc(n5, n3); |
|
285 |
Arc a7 = ngr.addArc(n5, n6); |
|
286 |
Arc a8 = ngr.addArc(n6, n7); |
|
287 |
Arc a9 = ngr.addArc(n7, n5); |
|
288 |
|
|
289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
291 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
292 |
|
|
293 |
nl2[a7] = 1000; |
|
294 |
nl2[a8] = -1000; |
|
295 |
|
|
296 |
ns[n1] = 100; |
|
297 |
ns[n4] = -100; |
|
298 |
|
|
299 |
nc[a1] = 100; |
|
300 |
nc[a2] = 30; |
|
301 |
nc[a3] = 20; |
|
302 |
nc[a4] = 80; |
|
303 |
nc[a5] = 50; |
|
304 |
nc[a6] = 10; |
|
305 |
nc[a7] = 80; |
|
306 |
nc[a8] = 30; |
|
307 |
nc[a9] = -120; |
|
266 | 308 |
|
... | ... |
@@ -273,42 +315,56 @@ |
273 | 315 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
316 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
275 | 317 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
318 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
277 | 319 |
mcf.lowerMap(l2); |
278 | 320 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
321 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
280 | 322 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
323 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
282 | 324 |
mcf.reset(); |
283 | 325 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
326 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
285 | 327 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
328 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
287 | 329 |
mcf.reset(); |
288 | 330 |
checkMcf(mcf, mcf.run(), |
289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
291 |
gr, |
|
331 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
332 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
333 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
334 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
335 |
checkMcf(mcf, mcf.run(), |
|
336 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
292 | 337 |
|
293 | 338 |
// Check the GEQ form |
294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
339 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
295 | 340 |
checkMcf(mcf, mcf.run(), |
296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
297 |
mcf.problemType(mcf.GEQ); |
|
341 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
342 |
mcf.supplyType(mcf.GEQ); |
|
298 | 343 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
344 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
345 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
301 | 346 |
checkMcf(mcf, mcf.run(), |
302 |
gr, l2, u, c, |
|
347 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
303 | 348 |
|
304 | 349 |
// Check the LEQ form |
305 |
mcf.reset().problemType(mcf.LEQ); |
|
306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
350 |
mcf.reset().supplyType(mcf.LEQ); |
|
351 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
307 | 352 |
checkMcf(mcf, mcf.run(), |
308 |
gr, l1, u, c, |
|
353 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
309 | 354 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
355 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
356 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
312 | 357 |
checkMcf(mcf, mcf.run(), |
313 |
gr, l2, u, c, |
|
358 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
359 |
|
|
360 |
// Check negative costs |
|
361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
363 |
checkMcf(nmcf, nmcf.run(), |
|
364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
368 |
checkMcf(nmcf, nmcf.run(), |
|
369 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
314 | 370 |
} |
... | ... |
@@ -318,14 +374,14 @@ |
318 | 374 |
NetworkSimplex<Digraph> mcf(gr); |
319 |
mcf.supplyMap(s1).costMap(c). |
|
375 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
320 | 376 |
|
321 | 377 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
378 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
323 | 379 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
380 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
325 | 381 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
382 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
327 | 383 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
384 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
329 | 385 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
386 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
331 | 387 |
} |
... | ... |
@@ -121,4 +121,4 @@ |
121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
0 comments (0 inline)