0
15
0
1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
2 | 2 |
|
3 | 3 |
IF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
4 | 4 |
INCLUDE(${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
5 | 5 |
ELSE(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
6 | 6 |
SET(PROJECT_NAME "LEMON") |
7 | 7 |
SET(PROJECT_VERSION "hg-tip" CACHE STRING "LEMON version string.") |
8 | 8 |
ENDIF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
9 | 9 |
|
10 | 10 |
PROJECT(${PROJECT_NAME}) |
11 | 11 |
|
12 | 12 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) |
13 | 13 |
|
14 | 14 |
INCLUDE(FindDoxygen) |
15 | 15 |
INCLUDE(FindGhostscript) |
16 | 16 |
FIND_PACKAGE(GLPK 4.33) |
17 | 17 |
FIND_PACKAGE(CPLEX) |
18 | 18 |
FIND_PACKAGE(COIN) |
19 | 19 |
|
20 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
21 |
|
|
22 | 20 |
IF(MSVC) |
23 | 21 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996") |
24 | 22 |
# Suppressed warnings: |
25 | 23 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
26 | 24 |
# C4355: 'this' : used in base member initializer list |
27 | 25 |
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
28 | 26 |
# C4996: 'function': was declared deprecated |
29 | 27 |
ENDIF(MSVC) |
30 | 28 |
|
31 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
32 |
|
|
33 | 29 |
INCLUDE(CheckTypeSize) |
34 | 30 |
CHECK_TYPE_SIZE("long long" LEMON_LONG_LONG) |
35 | 31 |
|
36 | 32 |
ENABLE_TESTING() |
37 | 33 |
|
38 | 34 |
ADD_SUBDIRECTORY(lemon) |
39 | 35 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
40 | 36 |
ADD_SUBDIRECTORY(demo) |
41 | 37 |
ADD_SUBDIRECTORY(tools) |
42 | 38 |
ADD_SUBDIRECTORY(doc) |
43 | 39 |
ADD_SUBDIRECTORY(test) |
44 | 40 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
45 | 41 |
|
46 | 42 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
47 | 43 |
IF(WIN32) |
48 | 44 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME}) |
49 | 45 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
50 | 46 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
51 | 47 |
"LEMON - Library of Efficient Models and Optimization in Networks") |
52 | 48 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE") |
53 | 49 |
|
54 | 50 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION}) |
55 | 51 |
|
56 | 52 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
57 | 53 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
58 | 54 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
59 | 55 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
60 | 56 |
|
61 | 57 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
62 | 58 |
|
63 | 59 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
64 | 60 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
65 | 61 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
66 | 62 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
67 | 63 |
|
68 | 64 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
69 | 65 |
"C++ header files") |
70 | 66 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
71 | 67 |
"DLL and import library") |
72 | 68 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
73 | 69 |
"Command line utilities") |
74 | 70 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
75 | 71 |
"Doxygen generated documentation") |
76 | 72 |
|
77 | 73 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
78 | 74 |
|
79 | 75 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
80 | 76 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
81 | 77 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
82 | 78 |
|
83 | 79 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
84 | 80 |
"Components needed to develop software using LEMON") |
85 | 81 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
86 | 82 |
"Documentation of LEMON") |
87 | 83 |
|
88 | 84 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
89 | 85 |
|
90 | 86 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
91 | 87 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
92 | 88 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
93 | 89 |
|
94 | 90 |
SET(CPACK_GENERATOR "NSIS") |
95 | 91 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico") |
96 | 92 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico") |
97 | 93 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp") |
98 | 94 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
99 | 95 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}") |
100 | 96 |
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu") |
101 | 97 |
SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu") |
102 | 98 |
SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu") |
103 | 99 |
SET(CPACK_NSIS_CREATE_ICONS_EXTRA " |
104 | 100 |
CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\" |
105 | 101 |
") |
106 | 102 |
SET(CPACK_NSIS_DELETE_ICONS_EXTRA " |
107 | 103 |
!insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP |
108 | 104 |
Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\" |
109 | 105 |
") |
110 | 106 |
|
111 | 107 |
INCLUDE(CPack) |
112 | 108 |
ENDIF(WIN32) |
113 | 109 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
1 | 1 |
ACLOCAL_AMFLAGS = -I m4 |
2 | 2 |
|
3 | 3 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
4 | 4 |
|
5 | 5 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
6 | 6 |
LDADD = $(top_builddir)/lemon/libemon.la |
7 | 7 |
|
8 | 8 |
EXTRA_DIST = \ |
9 | 9 |
AUTHORS \ |
10 | 10 |
LICENSE \ |
11 | 11 |
m4/lx_check_cplex.m4 \ |
12 | 12 |
m4/lx_check_glpk.m4 \ |
13 | 13 |
m4/lx_check_soplex.m4 \ |
14 |
m4/lx_check_clp.m4 \ |
|
15 |
m4/lx_check_cbc.m4 \ |
|
14 |
m4/lx_check_coin.m4 \ |
|
16 | 15 |
CMakeLists.txt \ |
17 | 16 |
cmake/FindGhostscript.cmake \ |
17 |
cmake/FindCPLEX.cmake \ |
|
18 | 18 |
cmake/FindGLPK.cmake \ |
19 |
cmake/FindCOIN.cmake \ |
|
19 | 20 |
cmake/version.cmake.in \ |
20 | 21 |
cmake/version.cmake \ |
21 | 22 |
cmake/nsis/lemon.ico \ |
22 | 23 |
cmake/nsis/uninstall.ico |
23 | 24 |
|
24 | 25 |
pkgconfigdir = $(libdir)/pkgconfig |
25 | 26 |
lemondir = $(pkgincludedir) |
26 | 27 |
bitsdir = $(lemondir)/bits |
27 | 28 |
conceptdir = $(lemondir)/concepts |
28 | 29 |
pkgconfig_DATA = |
29 | 30 |
lib_LTLIBRARIES = |
30 | 31 |
lemon_HEADERS = |
31 | 32 |
bits_HEADERS = |
32 | 33 |
concept_HEADERS = |
33 | 34 |
noinst_HEADERS = |
34 | 35 |
noinst_PROGRAMS = |
35 | 36 |
bin_PROGRAMS = |
36 | 37 |
check_PROGRAMS = |
37 | 38 |
dist_bin_SCRIPTS = |
38 | 39 |
TESTS = |
39 | 40 |
XFAIL_TESTS = |
40 | 41 |
|
41 | 42 |
include lemon/Makefile.am |
42 | 43 |
include test/Makefile.am |
43 | 44 |
include doc/Makefile.am |
44 | 45 |
include tools/Makefile.am |
45 | 46 |
|
46 | 47 |
DIST_SUBDIRS = demo |
47 | 48 |
|
48 | 49 |
demo: |
49 | 50 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
50 | 51 |
|
51 | 52 |
MRPROPERFILES = \ |
52 | 53 |
aclocal.m4 \ |
53 | 54 |
config.h.in \ |
54 | 55 |
config.h.in~ \ |
55 | 56 |
configure \ |
56 | 57 |
Makefile.in \ |
57 | 58 |
build-aux/config.guess \ |
58 | 59 |
build-aux/config.sub \ |
59 | 60 |
build-aux/depcomp \ |
60 | 61 |
build-aux/install-sh \ |
61 | 62 |
build-aux/ltmain.sh \ |
62 | 63 |
build-aux/missing \ |
63 | 64 |
doc/doxygen.log |
64 | 65 |
|
65 | 66 |
mrproper: |
66 | 67 |
$(MAKE) $(AM_MAKEFLAGS) maintainer-clean |
67 | 68 |
-rm -f $(MRPROPERFILES) |
68 | 69 |
|
69 | 70 |
dist-bz2: dist |
70 | 71 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
71 | 72 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
72 | 73 |
|
73 | 74 |
distcheck-bz2: distcheck |
74 | 75 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
75 | 76 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
76 | 77 |
|
77 | 78 |
.PHONY: demo mrproper dist-bz2 distcheck-bz2 |
1 | 1 |
SET(COIN_ROOT_DIR "" CACHE PATH "COIN root directory") |
2 | 2 |
|
3 | 3 |
FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h |
4 |
PATHS ${COIN_ROOT_DIR}/include) |
|
5 |
|
|
6 |
FIND_LIBRARY(COIN_CBC_LIBRARY libCbc |
|
7 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
8 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver |
|
9 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
10 |
FIND_LIBRARY(COIN_CGL_LIBRARY libCgl |
|
11 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
12 |
FIND_LIBRARY(COIN_CLP_LIBRARY libClp |
|
13 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
14 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils |
|
15 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
16 |
FIND_LIBRARY(COIN_OSI_LIBRARY libOsi |
|
17 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
18 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc |
|
19 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
20 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp |
|
21 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
22 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol |
|
23 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
24 |
FIND_LIBRARY(COIN_VOL_LIBRARY libVol |
|
25 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
4 |
HINTS ${COIN_ROOT_DIR}/include |
|
5 |
) |
|
6 |
FIND_LIBRARY(COIN_CBC_LIBRARY |
|
7 |
NAMES Cbc libCbc |
|
8 |
HINTS ${COIN_ROOT_DIR}/lib |
|
9 |
) |
|
10 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY |
|
11 |
NAMES CbcSolver libCbcSolver |
|
12 |
HINTS ${COIN_ROOT_DIR}/lib |
|
13 |
) |
|
14 |
FIND_LIBRARY(COIN_CGL_LIBRARY |
|
15 |
NAMES Cgl libCgl |
|
16 |
HINTS ${COIN_ROOT_DIR}/lib |
|
17 |
) |
|
18 |
FIND_LIBRARY(COIN_CLP_LIBRARY |
|
19 |
NAMES Clp libClp |
|
20 |
HINTS ${COIN_ROOT_DIR}/lib |
|
21 |
) |
|
22 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY |
|
23 |
NAMES CoinUtils libCoinUtils |
|
24 |
HINTS ${COIN_ROOT_DIR}/lib |
|
25 |
) |
|
26 |
FIND_LIBRARY(COIN_OSI_LIBRARY |
|
27 |
NAMES Osi libOsi |
|
28 |
HINTS ${COIN_ROOT_DIR}/lib |
|
29 |
) |
|
30 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY |
|
31 |
NAMES OsiCbc libOsiCbc |
|
32 |
HINTS ${COIN_ROOT_DIR}/lib |
|
33 |
) |
|
34 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY |
|
35 |
NAMES OsiClp libOsiClp |
|
36 |
HINTS ${COIN_ROOT_DIR}/lib |
|
37 |
) |
|
38 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY |
|
39 |
NAMES OsiVol libOsiVol |
|
40 |
HINTS ${COIN_ROOT_DIR}/lib |
|
41 |
) |
|
42 |
FIND_LIBRARY(COIN_VOL_LIBRARY |
|
43 |
NAMES Vol libVol |
|
44 |
HINTS ${COIN_ROOT_DIR}/lib |
|
45 |
) |
|
26 | 46 |
|
27 | 47 |
INCLUDE(FindPackageHandleStandardArgs) |
28 | 48 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(COIN DEFAULT_MSG |
29 | 49 |
COIN_INCLUDE_DIR |
30 | 50 |
COIN_CBC_LIBRARY |
31 | 51 |
COIN_CBC_SOLVER_LIBRARY |
32 | 52 |
COIN_CGL_LIBRARY |
33 | 53 |
COIN_CLP_LIBRARY |
34 | 54 |
COIN_COIN_UTILS_LIBRARY |
35 | 55 |
COIN_OSI_LIBRARY |
36 | 56 |
COIN_OSI_CBC_LIBRARY |
37 | 57 |
COIN_OSI_CLP_LIBRARY |
38 | 58 |
COIN_OSI_VOL_LIBRARY |
39 | 59 |
COIN_VOL_LIBRARY |
40 | 60 |
) |
41 | 61 |
|
42 | 62 |
IF(COIN_FOUND) |
43 | 63 |
SET(COIN_INCLUDE_DIRS ${COIN_INCLUDE_DIR}) |
44 | 64 |
SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY};${COIN_OSI_VOL_LIBRARY};${COIN_VOL_LIBRARY}") |
45 | 65 |
SET(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY}") |
46 | 66 |
SET(COIN_CBC_LIBRARIES ${COIN_LIBRARIES}) |
47 | 67 |
ENDIF(COIN_FOUND) |
48 | 68 |
|
49 | 69 |
MARK_AS_ADVANCED( |
50 | 70 |
COIN_INCLUDE_DIR |
51 | 71 |
COIN_CBC_LIBRARY |
52 | 72 |
COIN_CBC_SOLVER_LIBRARY |
53 | 73 |
COIN_CGL_LIBRARY |
54 | 74 |
COIN_CLP_LIBRARY |
55 | 75 |
COIN_COIN_UTILS_LIBRARY |
56 | 76 |
COIN_OSI_LIBRARY |
57 | 77 |
COIN_OSI_CBC_LIBRARY |
58 | 78 |
COIN_OSI_CLP_LIBRARY |
59 | 79 |
COIN_OSI_VOL_LIBRARY |
60 | 80 |
COIN_VOL_LIBRARY |
61 | 81 |
) |
62 | 82 |
|
63 | 83 |
IF(COIN_FOUND) |
64 | 84 |
SET(LEMON_HAVE_LP TRUE) |
65 | 85 |
SET(LEMON_HAVE_MIP TRUE) |
66 | 86 |
SET(LEMON_HAVE_CLP TRUE) |
67 | 87 |
SET(LEMON_HAVE_CBC TRUE) |
68 | 88 |
ENDIF(COIN_FOUND) |
1 |
SET(CPLEX_ROOT_DIR "" CACHE PATH "CPLEX root directory") |
|
2 |
|
|
1 | 3 |
FIND_PATH(CPLEX_INCLUDE_DIR |
2 | 4 |
ilcplex/cplex.h |
3 |
PATHS "C:/ILOG/CPLEX91/include") |
|
4 |
|
|
5 |
PATHS "C:/ILOG/CPLEX91/include" |
|
6 |
PATHS "/opt/ilog/cplex91/include" |
|
7 |
HINTS ${CPLEX_ROOT_DIR}/include |
|
8 |
) |
|
5 | 9 |
FIND_LIBRARY(CPLEX_LIBRARY |
6 |
NAMES cplex91 |
|
7 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda") |
|
10 |
cplex91 |
|
11 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda" |
|
12 |
PATHS "/opt/ilog/cplex91/bin" |
|
13 |
HINTS ${CPLEX_ROOT_DIR}/bin |
|
14 |
) |
|
8 | 15 |
|
9 | 16 |
INCLUDE(FindPackageHandleStandardArgs) |
10 | 17 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(CPLEX DEFAULT_MSG CPLEX_LIBRARY CPLEX_INCLUDE_DIR) |
11 | 18 |
|
12 | 19 |
FIND_PATH(CPLEX_BIN_DIR |
13 | 20 |
cplex91.dll |
14 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
21 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
22 |
) |
|
15 | 23 |
|
16 | 24 |
IF(CPLEX_FOUND) |
17 | 25 |
SET(CPLEX_INCLUDE_DIRS ${CPLEX_INCLUDE_DIR}) |
18 | 26 |
SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY}) |
27 |
IF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
28 |
SET(CPLEX_LIBRARIES "${CPLEX_LIBRARIES};m;pthread") |
|
29 |
ENDIF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
19 | 30 |
ENDIF(CPLEX_FOUND) |
20 | 31 |
|
21 | 32 |
MARK_AS_ADVANCED(CPLEX_LIBRARY CPLEX_INCLUDE_DIR CPLEX_BIN_DIR) |
22 | 33 |
|
23 | 34 |
IF(CPLEX_FOUND) |
24 | 35 |
SET(LEMON_HAVE_LP TRUE) |
25 | 36 |
SET(LEMON_HAVE_MIP TRUE) |
26 | 37 |
SET(LEMON_HAVE_CPLEX TRUE) |
27 | 38 |
ENDIF(CPLEX_FOUND) |
1 |
SET(GLPK_ROOT_DIR "" CACHE PATH "GLPK root directory") |
|
2 |
|
|
1 | 3 |
SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]") |
2 | 4 |
GET_FILENAME_COMPONENT(GLPK_ROOT_PATH ${GLPK_REGKEY} ABSOLUTE) |
3 | 5 |
|
4 | 6 |
FIND_PATH(GLPK_INCLUDE_DIR |
5 | 7 |
glpk.h |
6 |
PATHS ${GLPK_REGKEY}/include |
|
8 |
PATHS ${GLPK_REGKEY}/include |
|
9 |
HINTS ${GLPK_ROOT_DIR}/include |
|
10 |
) |
|
11 |
FIND_LIBRARY(GLPK_LIBRARY |
|
12 |
glpk |
|
13 |
PATHS ${GLPK_REGKEY}/lib |
|
14 |
HINTS ${GLPK_ROOT_DIR}/lib |
|
15 |
) |
|
7 | 16 |
|
8 |
FIND_LIBRARY(GLPK_LIBRARY |
|
9 |
NAMES glpk |
|
10 |
|
|
17 |
IF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
18 |
FILE(READ ${GLPK_INCLUDE_DIR}/glpk.h GLPK_GLPK_H) |
|
19 |
|
|
20 |
STRING(REGEX MATCH "define[ ]+GLP_MAJOR_VERSION[ ]+[0-9]+" GLPK_MAJOR_VERSION_LINE "${GLPK_GLPK_H}") |
|
21 |
STRING(REGEX REPLACE "define[ ]+GLP_MAJOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MAJOR "${GLPK_MAJOR_VERSION_LINE}") |
|
22 |
|
|
23 |
STRING(REGEX MATCH "define[ ]+GLP_MINOR_VERSION[ ]+[0-9]+" GLPK_MINOR_VERSION_LINE "${GLPK_GLPK_H}") |
|
24 |
STRING(REGEX REPLACE "define[ ]+GLP_MINOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MINOR "${GLPK_MINOR_VERSION_LINE}") |
|
25 |
|
|
26 |
SET(GLPK_VERSION_STRING "${GLPK_VERSION_MAJOR}.${GLPK_VERSION_MINOR}") |
|
27 |
|
|
28 |
IF(GLPK_FIND_VERSION) |
|
29 |
IF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
30 |
MESSAGE(SEND_ERROR "unexpected version string") |
|
31 |
ENDIF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
32 |
|
|
33 |
MATH(EXPR GLPK_REQUESTED_VERSION "${GLPK_FIND_VERSION_MAJOR}*100 + ${GLPK_FIND_VERSION_MINOR}") |
|
34 |
MATH(EXPR GLPK_FOUND_VERSION "${GLPK_VERSION_MAJOR}*100 + ${GLPK_VERSION_MINOR}") |
|
35 |
|
|
36 |
IF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
37 |
SET(GLPK_PROPER_VERSION_FOUND FALSE) |
|
38 |
ELSE(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
39 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
40 |
ENDIF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
41 |
ELSE(GLPK_FIND_VERSION) |
|
42 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
43 |
ENDIF(GLPK_FIND_VERSION) |
|
44 |
ENDIF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
11 | 45 |
|
12 | 46 |
INCLUDE(FindPackageHandleStandardArgs) |
13 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR) |
|
47 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_PROPER_VERSION_FOUND) |
|
14 | 48 |
|
15 | 49 |
IF(GLPK_FOUND) |
16 | 50 |
SET(GLPK_INCLUDE_DIRS ${GLPK_INCLUDE_DIR}) |
17 | 51 |
SET(GLPK_LIBRARIES ${GLPK_LIBRARY}) |
18 | 52 |
SET(GLPK_BIN_DIR ${GLPK_ROOT_PATH}/bin) |
19 | 53 |
ENDIF(GLPK_FOUND) |
20 | 54 |
|
21 | 55 |
MARK_AS_ADVANCED(GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_BIN_DIR) |
22 | 56 |
|
23 | 57 |
IF(GLPK_FOUND) |
24 | 58 |
SET(LEMON_HAVE_LP TRUE) |
25 | 59 |
SET(LEMON_HAVE_MIP TRUE) |
26 | 60 |
SET(LEMON_HAVE_GLPK TRUE) |
27 | 61 |
ENDIF(GLPK_FOUND) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group contains some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group contains the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group contains maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group contains map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group contains the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group contains some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group contains the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group contains the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group contains the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group contains the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 | 320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 | 322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 | 325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
326 | 326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
327 | 327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
328 | 328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 | 353 |
in a network with capacity constraints (lower and upper bounds) |
354 | 354 |
and arc costs. |
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
357 | 357 |
upper bounds for the flow values on the arcs, for which |
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
360 |
|
|
358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 | 361 |
signed supply values of the nodes. |
362 | 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
363 | 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
364 | 364 |
\f$-sup(u)\f$ demand. |
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z} |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
366 | 366 |
of the following optimization problem. |
367 | 367 |
|
368 | 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
369 | 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
370 | 370 |
sup(u) \quad \forall u\in V \f] |
371 | 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
372 | 372 |
|
373 | 373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
374 | 374 |
zero or negative in order to have a feasible solution (since the sum |
375 | 375 |
of the expressions on the left-hand side of the inequalities is zero). |
376 | 376 |
It means that the total demand must be greater or equal to the total |
377 | 377 |
supply and all the supplies have to be carried out from the supply nodes, |
378 | 378 |
but there could be demands that are not satisfied. |
379 | 379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
380 | 380 |
constraints have to be satisfied with equality, i.e. all demands |
381 | 381 |
have to be satisfied and all supplies have to be used. |
382 | 382 |
|
383 | 383 |
If you need the opposite inequalities in the supply/demand constraints |
384 | 384 |
(i.e. the total demand is less than the total supply and all the demands |
385 | 385 |
have to be satisfied while there could be supplies that are not used), |
386 | 386 |
then you could easily transform the problem to the above form by reversing |
387 | 387 |
the direction of the arcs and taking the negative of the supply values |
388 | 388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
389 | 389 |
However \ref NetworkSimplex algorithm also supports this form directly |
390 | 390 |
for the sake of convenience. |
391 | 391 |
|
392 | 392 |
A feasible solution for this problem can be found using \ref Circulation. |
393 | 393 |
|
394 | 394 |
Note that the above formulation is actually more general than the usual |
395 | 395 |
definition of the minimum cost flow problem, in which strict equalities |
396 | 396 |
are required in the supply/demand contraints, i.e. |
397 | 397 |
|
398 | 398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
399 | 399 |
sup(u) \quad \forall u\in V. \f] |
400 | 400 |
|
401 | 401 |
However if the sum of the supply values is zero, then these two problems |
402 | 402 |
are equivalent. So if you need the equality form, you have to ensure this |
403 | 403 |
additional contraint for the algorithms. |
404 | 404 |
|
405 | 405 |
The dual solution of the minimum cost flow problem is represented by node |
406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
407 |
An \f$f: A\rightarrow\mathbf{Z} |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
409 | 409 |
node potentials the following \e complementary \e slackness optimality |
410 | 410 |
conditions hold. |
411 | 411 |
|
412 | 412 |
- For all \f$uv\in A\f$ arcs: |
413 | 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
414 | 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
416 |
- For all \f$u\in V\f$: |
|
416 |
- For all \f$u\in V\f$ nodes: |
|
417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
418 | 418 |
then \f$\pi(u)=0\f$. |
419 | 419 |
|
420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
421 |
\f$uv\in A\f$ with respect to the |
|
421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
423 | 423 |
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
424 |
All algorithms provide dual solution (node potentials) as well, |
|
425 | 425 |
if an optimal flow is found. |
426 | 426 |
|
427 | 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
428 | 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
429 | 429 |
pivot strategies. |
430 | 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
431 | 431 |
cost scaling. |
432 | 432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
433 | 433 |
capacity scaling. |
434 | 434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
435 | 435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
436 | 436 |
|
437 | 437 |
Most of these implementations support the general inequality form of the |
438 | 438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
439 | 439 |
only support the equality form due to the primal method they use. |
440 | 440 |
|
441 | 441 |
In general NetworkSimplex is the most efficient implementation, |
442 | 442 |
but in special cases other algorithms could be faster. |
443 | 443 |
For example, if the total supply and/or capacities are rather small, |
444 | 444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
445 | 445 |
*/ |
446 | 446 |
|
447 | 447 |
/** |
448 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
449 | 449 |
@ingroup algs |
450 | 450 |
|
451 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
452 | 452 |
|
453 | 453 |
This group contains the algorithms for finding minimum cut in graphs. |
454 | 454 |
|
455 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
456 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
457 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
458 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
459 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
460 | 460 |
|
461 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
462 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
463 | 463 |
|
464 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
465 | 465 |
|
466 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
467 | 467 |
in directed graphs. |
468 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
469 | 469 |
calculating minimum cut in undirected graphs. |
470 | 470 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
471 | 471 |
all-pairs minimum cut in undirected graphs. |
472 | 472 |
|
473 | 473 |
If you want to find minimum cut just between two distinict nodes, |
474 | 474 |
see the \ref max_flow "maximum flow problem". |
475 | 475 |
*/ |
476 | 476 |
|
477 | 477 |
/** |
478 | 478 |
@defgroup graph_properties Connectivity and Other Graph Properties |
479 | 479 |
@ingroup algs |
480 | 480 |
\brief Algorithms for discovering the graph properties |
481 | 481 |
|
482 | 482 |
This group contains the algorithms for discovering the graph properties |
483 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
484 | 484 |
|
485 | 485 |
\image html edge_biconnected_components.png |
486 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
487 | 487 |
*/ |
488 | 488 |
|
489 | 489 |
/** |
490 | 490 |
@defgroup planar Planarity Embedding and Drawing |
491 | 491 |
@ingroup algs |
492 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
493 | 493 |
|
494 | 494 |
This group contains the algorithms for planarity checking, |
495 | 495 |
embedding and drawing. |
496 | 496 |
|
497 | 497 |
\image html planar.png |
498 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
499 | 499 |
*/ |
500 | 500 |
|
501 | 501 |
/** |
502 | 502 |
@defgroup matching Matching Algorithms |
503 | 503 |
@ingroup algs |
504 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
505 | 505 |
|
506 | 506 |
This group contains the algorithms for calculating |
507 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
508 | 508 |
finding a subset of the edges for which each node has at most one incident |
509 | 509 |
edge. |
510 | 510 |
|
511 | 511 |
There are several different algorithms for calculate matchings in |
512 | 512 |
graphs. The matching problems in bipartite graphs are generally |
513 | 513 |
easier than in general graphs. The goal of the matching optimization |
514 | 514 |
can be finding maximum cardinality, maximum weight or minimum cost |
515 | 515 |
matching. The search can be constrained to find perfect or |
516 | 516 |
maximum cardinality matching. |
517 | 517 |
|
518 | 518 |
The matching algorithms implemented in LEMON: |
519 | 519 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
520 | 520 |
for calculating maximum cardinality matching in bipartite graphs. |
521 | 521 |
- \ref PrBipartiteMatching Push-relabel algorithm |
522 | 522 |
for calculating maximum cardinality matching in bipartite graphs. |
523 | 523 |
- \ref MaxWeightedBipartiteMatching |
524 | 524 |
Successive shortest path algorithm for calculating maximum weighted |
525 | 525 |
matching and maximum weighted bipartite matching in bipartite graphs. |
526 | 526 |
- \ref MinCostMaxBipartiteMatching |
527 | 527 |
Successive shortest path algorithm for calculating minimum cost maximum |
528 | 528 |
matching in bipartite graphs. |
529 | 529 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
530 | 530 |
maximum cardinality matching in general graphs. |
531 | 531 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
532 | 532 |
maximum weighted matching in general graphs. |
533 | 533 |
- \ref MaxWeightedPerfectMatching |
534 | 534 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
535 | 535 |
perfect matching in general graphs. |
536 | 536 |
|
537 | 537 |
\image html bipartite_matching.png |
538 | 538 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
539 | 539 |
*/ |
540 | 540 |
|
541 | 541 |
/** |
542 | 542 |
@defgroup spantree Minimum Spanning Tree Algorithms |
543 | 543 |
@ingroup algs |
544 | 544 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
545 | 545 |
|
546 | 546 |
This group contains the algorithms for finding a minimum cost spanning |
547 | 547 |
tree in a graph. |
548 | 548 |
*/ |
549 | 549 |
|
550 | 550 |
/** |
551 | 551 |
@defgroup auxalg Auxiliary Algorithms |
552 | 552 |
@ingroup algs |
553 | 553 |
\brief Auxiliary algorithms implemented in LEMON. |
554 | 554 |
|
555 | 555 |
This group contains some algorithms implemented in LEMON |
556 | 556 |
in order to make it easier to implement complex algorithms. |
557 | 557 |
*/ |
558 | 558 |
|
559 | 559 |
/** |
560 | 560 |
@defgroup approx Approximation Algorithms |
561 | 561 |
@ingroup algs |
562 | 562 |
\brief Approximation algorithms. |
563 | 563 |
|
564 | 564 |
This group contains the approximation and heuristic algorithms |
565 | 565 |
implemented in LEMON. |
566 | 566 |
*/ |
567 | 567 |
|
568 | 568 |
/** |
569 | 569 |
@defgroup gen_opt_group General Optimization Tools |
570 | 570 |
\brief This group contains some general optimization frameworks |
571 | 571 |
implemented in LEMON. |
572 | 572 |
|
573 | 573 |
This group contains some general optimization frameworks |
574 | 574 |
implemented in LEMON. |
575 | 575 |
*/ |
576 | 576 |
|
577 | 577 |
/** |
578 | 578 |
@defgroup lp_group Lp and Mip Solvers |
579 | 579 |
@ingroup gen_opt_group |
580 | 580 |
\brief Lp and Mip solver interfaces for LEMON. |
581 | 581 |
|
582 | 582 |
This group contains Lp and Mip solver interfaces for LEMON. The |
583 | 583 |
various LP solvers could be used in the same manner with this |
584 | 584 |
interface. |
585 | 585 |
*/ |
586 | 586 |
|
587 | 587 |
/** |
588 | 588 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
589 | 589 |
@ingroup lp_group |
590 | 590 |
\brief Helper tools to the Lp and Mip solvers. |
591 | 591 |
|
592 | 592 |
This group adds some helper tools to general optimization framework |
593 | 593 |
implemented in LEMON. |
594 | 594 |
*/ |
595 | 595 |
|
596 | 596 |
/** |
597 | 597 |
@defgroup metah Metaheuristics |
598 | 598 |
@ingroup gen_opt_group |
599 | 599 |
\brief Metaheuristics for LEMON library. |
600 | 600 |
|
601 | 601 |
This group contains some metaheuristic optimization tools. |
602 | 602 |
*/ |
603 | 603 |
|
604 | 604 |
/** |
605 | 605 |
@defgroup utils Tools and Utilities |
606 | 606 |
\brief Tools and utilities for programming in LEMON |
607 | 607 |
|
608 | 608 |
Tools and utilities for programming in LEMON. |
609 | 609 |
*/ |
610 | 610 |
|
611 | 611 |
/** |
612 | 612 |
@defgroup gutils Basic Graph Utilities |
613 | 613 |
@ingroup utils |
614 | 614 |
\brief Simple basic graph utilities. |
615 | 615 |
|
616 | 616 |
This group contains some simple basic graph utilities. |
617 | 617 |
*/ |
618 | 618 |
|
619 | 619 |
/** |
620 | 620 |
@defgroup misc Miscellaneous Tools |
621 | 621 |
@ingroup utils |
622 | 622 |
\brief Tools for development, debugging and testing. |
623 | 623 |
|
624 | 624 |
This group contains several useful tools for development, |
625 | 625 |
debugging and testing. |
626 | 626 |
*/ |
627 | 627 |
|
628 | 628 |
/** |
629 | 629 |
@defgroup timecount Time Measuring and Counting |
630 | 630 |
@ingroup misc |
631 | 631 |
\brief Simple tools for measuring the performance of algorithms. |
632 | 632 |
|
633 | 633 |
This group contains simple tools for measuring the performance |
634 | 634 |
of algorithms. |
635 | 635 |
*/ |
636 | 636 |
|
637 | 637 |
/** |
638 | 638 |
@defgroup exceptions Exceptions |
639 | 639 |
@ingroup utils |
640 | 640 |
\brief Exceptions defined in LEMON. |
641 | 641 |
|
642 | 642 |
This group contains the exceptions defined in LEMON. |
643 | 643 |
*/ |
644 | 644 |
|
645 | 645 |
/** |
646 | 646 |
@defgroup io_group Input-Output |
647 | 647 |
\brief Graph Input-Output methods |
648 | 648 |
|
649 | 649 |
This group contains the tools for importing and exporting graphs |
650 | 650 |
and graph related data. Now it supports the \ref lgf-format |
651 | 651 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
652 | 652 |
postscript (EPS) format. |
653 | 653 |
*/ |
654 | 654 |
|
655 | 655 |
/** |
656 | 656 |
@defgroup lemon_io LEMON Graph Format |
657 | 657 |
@ingroup io_group |
658 | 658 |
\brief Reading and writing LEMON Graph Format. |
659 | 659 |
|
660 | 660 |
This group contains methods for reading and writing |
661 | 661 |
\ref lgf-format "LEMON Graph Format". |
662 | 662 |
*/ |
663 | 663 |
|
664 | 664 |
/** |
665 | 665 |
@defgroup eps_io Postscript Exporting |
666 | 666 |
@ingroup io_group |
667 | 667 |
\brief General \c EPS drawer and graph exporter |
668 | 668 |
|
669 | 669 |
This group contains general \c EPS drawing methods and special |
670 | 670 |
graph exporting tools. |
671 | 671 |
*/ |
672 | 672 |
|
673 | 673 |
/** |
674 | 674 |
@defgroup dimacs_group DIMACS format |
675 | 675 |
@ingroup io_group |
676 | 676 |
\brief Read and write files in DIMACS format |
677 | 677 |
|
678 | 678 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
679 | 679 |
*/ |
680 | 680 |
|
681 | 681 |
/** |
682 | 682 |
@defgroup nauty_group NAUTY Format |
683 | 683 |
@ingroup io_group |
684 | 684 |
\brief Read \e Nauty format |
685 | 685 |
|
686 | 686 |
Tool to read graphs from \e Nauty format data. |
687 | 687 |
*/ |
688 | 688 |
|
689 | 689 |
/** |
690 | 690 |
@defgroup concept Concepts |
691 | 691 |
\brief Skeleton classes and concept checking classes |
692 | 692 |
|
693 | 693 |
This group contains the data/algorithm skeletons and concept checking |
694 | 694 |
classes implemented in LEMON. |
695 | 695 |
|
696 | 696 |
The purpose of the classes in this group is fourfold. |
697 | 697 |
|
698 | 698 |
- These classes contain the documentations of the %concepts. In order |
699 | 699 |
to avoid document multiplications, an implementation of a concept |
700 | 700 |
simply refers to the corresponding concept class. |
701 | 701 |
|
702 | 702 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
703 | 703 |
implementation of the %concepts should provide, however completely |
704 | 704 |
without implementations and real data structures behind the |
705 | 705 |
interface. On the other hand they should provide nothing else. All |
706 | 706 |
the algorithms working on a data structure meeting a certain concept |
707 | 707 |
should compile with these classes. (Though it will not run properly, |
708 | 708 |
of course.) In this way it is easily to check if an algorithm |
709 | 709 |
doesn't use any extra feature of a certain implementation. |
710 | 710 |
|
711 | 711 |
- The concept descriptor classes also provide a <em>checker class</em> |
712 | 712 |
that makes it possible to check whether a certain implementation of a |
713 | 713 |
concept indeed provides all the required features. |
714 | 714 |
|
715 | 715 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
716 | 716 |
*/ |
717 | 717 |
|
718 | 718 |
/** |
719 | 719 |
@defgroup graph_concepts Graph Structure Concepts |
720 | 720 |
@ingroup concept |
721 | 721 |
\brief Skeleton and concept checking classes for graph structures |
722 | 722 |
|
723 | 723 |
This group contains the skeletons and concept checking classes of LEMON's |
724 | 724 |
graph structures and helper classes used to implement these. |
725 | 725 |
*/ |
726 | 726 |
|
727 | 727 |
/** |
728 | 728 |
@defgroup map_concepts Map Concepts |
729 | 729 |
@ingroup concept |
730 | 730 |
\brief Skeleton and concept checking classes for maps |
731 | 731 |
|
732 | 732 |
This group contains the skeletons and concept checking classes of maps. |
733 | 733 |
*/ |
734 | 734 |
|
735 | 735 |
/** |
736 | 736 |
\anchor demoprograms |
737 | 737 |
|
738 | 738 |
@defgroup demos Demo Programs |
739 | 739 |
|
740 | 740 |
Some demo programs are listed here. Their full source codes can be found in |
741 | 741 |
the \c demo subdirectory of the source tree. |
742 | 742 |
|
743 | 743 |
In order to compile them, use the <tt>make demo</tt> or the |
744 | 744 |
<tt>make check</tt> commands. |
745 | 745 |
*/ |
746 | 746 |
|
747 | 747 |
/** |
748 | 748 |
@defgroup tools Standalone Utility Applications |
749 | 749 |
|
750 | 750 |
Some utility applications are listed here. |
751 | 751 |
|
752 | 752 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
753 | 753 |
them, as well. |
754 | 754 |
*/ |
755 | 755 |
|
756 | 756 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt |
4 | 4 |
|
5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
6 | 6 |
|
7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
8 | 8 |
|
9 | 9 |
lemon_libemon_la_SOURCES = \ |
10 | 10 |
lemon/arg_parser.cc \ |
11 | 11 |
lemon/base.cc \ |
12 | 12 |
lemon/color.cc \ |
13 | 13 |
lemon/lp_base.cc \ |
14 | 14 |
lemon/lp_skeleton.cc \ |
15 | 15 |
lemon/random.cc \ |
16 | 16 |
lemon/bits/windows.cc |
17 | 17 |
|
18 |
|
|
18 |
nodist_lemon_HEADERS = lemon/config.h |
|
19 |
|
|
19 | 20 |
lemon_libemon_la_CXXFLAGS = \ |
20 | 21 |
$(AM_CXXFLAGS) \ |
21 | 22 |
$(GLPK_CFLAGS) \ |
22 | 23 |
$(CPLEX_CFLAGS) \ |
23 | 24 |
$(SOPLEX_CXXFLAGS) \ |
24 | 25 |
$(CLP_CXXFLAGS) \ |
25 | 26 |
$(CBC_CXXFLAGS) |
26 | 27 |
|
27 | 28 |
lemon_libemon_la_LDFLAGS = \ |
28 | 29 |
$(GLPK_LIBS) \ |
29 | 30 |
$(CPLEX_LIBS) \ |
30 | 31 |
$(SOPLEX_LIBS) \ |
31 | 32 |
$(CLP_LIBS) \ |
32 | 33 |
$(CBC_LIBS) |
33 | 34 |
|
34 | 35 |
if HAVE_GLPK |
35 | 36 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
36 | 37 |
endif |
37 | 38 |
|
38 | 39 |
if HAVE_CPLEX |
39 | 40 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
40 | 41 |
endif |
41 | 42 |
|
42 | 43 |
if HAVE_SOPLEX |
43 | 44 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
44 | 45 |
endif |
45 | 46 |
|
46 | 47 |
if HAVE_CLP |
47 | 48 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
48 | 49 |
endif |
49 | 50 |
|
50 | 51 |
if HAVE_CBC |
51 | 52 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
52 | 53 |
endif |
53 | 54 |
|
54 | 55 |
lemon_HEADERS += \ |
55 | 56 |
lemon/adaptors.h \ |
56 | 57 |
lemon/arg_parser.h \ |
57 | 58 |
lemon/assert.h \ |
58 | 59 |
lemon/bfs.h \ |
59 | 60 |
lemon/bin_heap.h \ |
61 |
lemon/cbc.h \ |
|
60 | 62 |
lemon/circulation.h \ |
61 | 63 |
lemon/clp.h \ |
62 | 64 |
lemon/color.h \ |
63 | 65 |
lemon/concept_check.h \ |
64 |
lemon/config.h \ |
|
65 | 66 |
lemon/connectivity.h \ |
66 | 67 |
lemon/counter.h \ |
67 | 68 |
lemon/core.h \ |
68 | 69 |
lemon/cplex.h \ |
69 | 70 |
lemon/dfs.h \ |
70 | 71 |
lemon/dijkstra.h \ |
71 | 72 |
lemon/dim2.h \ |
72 | 73 |
lemon/dimacs.h \ |
73 | 74 |
lemon/edge_set.h \ |
74 | 75 |
lemon/elevator.h \ |
75 | 76 |
lemon/error.h \ |
76 | 77 |
lemon/euler.h \ |
77 | 78 |
lemon/full_graph.h \ |
78 | 79 |
lemon/glpk.h \ |
79 | 80 |
lemon/gomory_hu.h \ |
80 | 81 |
lemon/graph_to_eps.h \ |
81 | 82 |
lemon/grid_graph.h \ |
82 | 83 |
lemon/hypercube_graph.h \ |
83 | 84 |
lemon/kruskal.h \ |
84 | 85 |
lemon/hao_orlin.h \ |
85 | 86 |
lemon/lgf_reader.h \ |
86 | 87 |
lemon/lgf_writer.h \ |
87 | 88 |
lemon/list_graph.h \ |
88 | 89 |
lemon/lp.h \ |
89 | 90 |
lemon/lp_base.h \ |
90 | 91 |
lemon/lp_skeleton.h \ |
91 | 92 |
lemon/list_graph.h \ |
92 | 93 |
lemon/maps.h \ |
93 | 94 |
lemon/matching.h \ |
94 | 95 |
lemon/math.h \ |
95 | 96 |
lemon/min_cost_arborescence.h \ |
96 | 97 |
lemon/nauty_reader.h \ |
97 | 98 |
lemon/network_simplex.h \ |
98 | 99 |
lemon/path.h \ |
99 | 100 |
lemon/preflow.h \ |
100 | 101 |
lemon/radix_sort.h \ |
101 | 102 |
lemon/random.h \ |
102 | 103 |
lemon/smart_graph.h \ |
103 | 104 |
lemon/soplex.h \ |
104 | 105 |
lemon/suurballe.h \ |
105 | 106 |
lemon/time_measure.h \ |
106 | 107 |
lemon/tolerance.h \ |
107 | 108 |
lemon/unionfind.h \ |
108 | 109 |
lemon/bits/windows.h |
109 | 110 |
|
110 | 111 |
bits_HEADERS += \ |
111 | 112 |
lemon/bits/alteration_notifier.h \ |
112 | 113 |
lemon/bits/array_map.h \ |
113 | 114 |
lemon/bits/base_extender.h \ |
114 | 115 |
lemon/bits/bezier.h \ |
115 | 116 |
lemon/bits/default_map.h \ |
116 | 117 |
lemon/bits/edge_set_extender.h \ |
117 | 118 |
lemon/bits/enable_if.h \ |
118 | 119 |
lemon/bits/graph_adaptor_extender.h \ |
119 | 120 |
lemon/bits/graph_extender.h \ |
120 | 121 |
lemon/bits/map_extender.h \ |
121 | 122 |
lemon/bits/path_dump.h \ |
122 | 123 |
lemon/bits/solver_bits.h \ |
123 | 124 |
lemon/bits/traits.h \ |
124 | 125 |
lemon/bits/variant.h \ |
125 | 126 |
lemon/bits/vector_map.h |
126 | 127 |
|
127 | 128 |
concept_HEADERS += \ |
128 | 129 |
lemon/concepts/digraph.h \ |
129 | 130 |
lemon/concepts/graph.h \ |
130 | 131 |
lemon/concepts/graph_components.h \ |
131 | 132 |
lemon/concepts/heap.h \ |
132 | 133 |
lemon/concepts/maps.h \ |
133 | 134 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 |
/// \brief The type of the flow values. |
|
68 |
typedef typename SupplyMap::Value Flow; |
|
67 |
/// \brief The type of the flow and supply values. |
|
68 |
typedef typename SupplyMap::Value Value; |
|
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
typedef typename Digraph::template ArcMap< |
|
75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
76 | 76 |
|
77 | 77 |
/// \brief Instantiates a FlowMap. |
78 | 78 |
/// |
79 | 79 |
/// This function instantiates a \ref FlowMap. |
80 | 80 |
/// \param digraph The digraph for which we would like to define |
81 | 81 |
/// the flow map. |
82 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 83 |
return new FlowMap(digraph); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
/// \brief The elevator type used by the algorithm. |
87 | 87 |
/// |
88 | 88 |
/// The elevator type used by the algorithm. |
89 | 89 |
/// |
90 | 90 |
/// \sa Elevator |
91 | 91 |
/// \sa LinkedElevator |
92 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
93 | 93 |
|
94 | 94 |
/// \brief Instantiates an Elevator. |
95 | 95 |
/// |
96 | 96 |
/// This function instantiates an \ref Elevator. |
97 | 97 |
/// \param digraph The digraph for which we would like to define |
98 | 98 |
/// the elevator. |
99 | 99 |
/// \param max_level The maximum level of the elevator. |
100 | 100 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 101 |
return new Elevator(digraph, max_level); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
/// \brief The tolerance used by the algorithm |
105 | 105 |
/// |
106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 |
typedef lemon::Tolerance< |
|
107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
108 | 108 |
|
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
/** |
112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 113 |
|
114 | 114 |
\ingroup max_flow |
115 | 115 |
This class implements a push-relabel algorithm for the \e network |
116 | 116 |
\e circulation problem. |
117 | 117 |
It is to find a feasible circulation when lower and upper bounds |
118 | 118 |
are given for the flow values on the arcs and lower bounds are |
119 | 119 |
given for the difference between the outgoing and incoming flow |
120 | 120 |
at the nodes. |
121 | 121 |
|
122 | 122 |
The exact formulation of this problem is the following. |
123 | 123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 127 |
denotes the signed supply values of the nodes. |
128 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 130 |
\f$-sup(u)\f$ demand. |
131 | 131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 132 |
solution of the following problem. |
133 | 133 |
|
134 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 137 |
|
138 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 139 |
zero or negative in order to have a feasible solution (since the sum |
140 | 140 |
of the expressions on the left-hand side of the inequalities is zero). |
141 | 141 |
It means that the total demand must be greater or equal to the total |
142 | 142 |
supply and all the supplies have to be carried out from the supply nodes, |
143 | 143 |
but there could be demands that are not satisfied. |
144 | 144 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
145 | 145 |
constraints have to be satisfied with equality, i.e. all demands |
146 | 146 |
have to be satisfied and all supplies have to be used. |
147 | 147 |
|
148 | 148 |
If you need the opposite inequalities in the supply/demand constraints |
149 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
150 | 150 |
have to be satisfied while there could be supplies that are not used), |
151 | 151 |
then you could easily transform the problem to the above form by reversing |
152 | 152 |
the direction of the arcs and taking the negative of the supply values |
153 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
154 | 154 |
|
155 | 155 |
This algorithm either calculates a feasible circulation, or provides |
156 | 156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
157 | 157 |
cannot exist. |
158 | 158 |
|
159 | 159 |
Note that this algorithm also provides a feasible solution for the |
160 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
161 | 161 |
|
162 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
163 | 163 |
\tparam LM The type of the lower bound map. The default |
164 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
165 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
166 | 166 |
The default map type is \c LM. |
167 | 167 |
\tparam SM The type of the supply map. The default map type is |
168 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
169 | 169 |
*/ |
170 | 170 |
#ifdef DOXYGEN |
171 | 171 |
template< typename GR, |
172 | 172 |
typename LM, |
173 | 173 |
typename UM, |
174 | 174 |
typename SM, |
175 | 175 |
typename TR > |
176 | 176 |
#else |
177 | 177 |
template< typename GR, |
178 | 178 |
typename LM = typename GR::template ArcMap<int>, |
179 | 179 |
typename UM = LM, |
180 | 180 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
181 | 181 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
182 | 182 |
#endif |
183 | 183 |
class Circulation { |
184 | 184 |
public: |
185 | 185 |
|
186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
187 | 187 |
typedef TR Traits; |
188 | 188 |
///The type of the digraph the algorithm runs on. |
189 | 189 |
typedef typename Traits::Digraph Digraph; |
190 |
///The type of the flow values. |
|
191 |
typedef typename Traits::Flow Flow; |
|
190 |
///The type of the flow and supply values. |
|
191 |
typedef typename Traits::Value Value; |
|
192 | 192 |
|
193 | 193 |
///The type of the lower bound map. |
194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
195 | 195 |
///The type of the upper bound (capacity) map. |
196 | 196 |
typedef typename Traits::UpperMap UpperMap; |
197 | 197 |
///The type of the supply map. |
198 | 198 |
typedef typename Traits::SupplyMap SupplyMap; |
199 | 199 |
///The type of the flow map. |
200 | 200 |
typedef typename Traits::FlowMap FlowMap; |
201 | 201 |
|
202 | 202 |
///The type of the elevator. |
203 | 203 |
typedef typename Traits::Elevator Elevator; |
204 | 204 |
///The type of the tolerance. |
205 | 205 |
typedef typename Traits::Tolerance Tolerance; |
206 | 206 |
|
207 | 207 |
private: |
208 | 208 |
|
209 | 209 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
210 | 210 |
|
211 | 211 |
const Digraph &_g; |
212 | 212 |
int _node_num; |
213 | 213 |
|
214 | 214 |
const LowerMap *_lo; |
215 | 215 |
const UpperMap *_up; |
216 | 216 |
const SupplyMap *_supply; |
217 | 217 |
|
218 | 218 |
FlowMap *_flow; |
219 | 219 |
bool _local_flow; |
220 | 220 |
|
221 | 221 |
Elevator* _level; |
222 | 222 |
bool _local_level; |
223 | 223 |
|
224 |
typedef typename Digraph::template NodeMap< |
|
224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
225 | 225 |
ExcessMap* _excess; |
226 | 226 |
|
227 | 227 |
Tolerance _tol; |
228 | 228 |
int _el; |
229 | 229 |
|
230 | 230 |
public: |
231 | 231 |
|
232 | 232 |
typedef Circulation Create; |
233 | 233 |
|
234 | 234 |
///\name Named Template Parameters |
235 | 235 |
|
236 | 236 |
///@{ |
237 | 237 |
|
238 | 238 |
template <typename T> |
239 | 239 |
struct SetFlowMapTraits : public Traits { |
240 | 240 |
typedef T FlowMap; |
241 | 241 |
static FlowMap *createFlowMap(const Digraph&) { |
242 | 242 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
243 | 243 |
return 0; // ignore warnings |
244 | 244 |
} |
245 | 245 |
}; |
246 | 246 |
|
247 | 247 |
/// \brief \ref named-templ-param "Named parameter" for setting |
248 | 248 |
/// FlowMap type |
249 | 249 |
/// |
250 | 250 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
251 | 251 |
/// type. |
252 | 252 |
template <typename T> |
253 | 253 |
struct SetFlowMap |
254 | 254 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
255 | 255 |
SetFlowMapTraits<T> > { |
256 | 256 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
257 | 257 |
SetFlowMapTraits<T> > Create; |
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
template <typename T> |
261 | 261 |
struct SetElevatorTraits : public Traits { |
262 | 262 |
typedef T Elevator; |
263 | 263 |
static Elevator *createElevator(const Digraph&, int) { |
264 | 264 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
265 | 265 |
return 0; // ignore warnings |
266 | 266 |
} |
267 | 267 |
}; |
268 | 268 |
|
269 | 269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
270 | 270 |
/// Elevator type |
271 | 271 |
/// |
272 | 272 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
273 | 273 |
/// type. If this named parameter is used, then an external |
274 | 274 |
/// elevator object must be passed to the algorithm using the |
275 | 275 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
276 | 276 |
/// \ref run() or \ref init(). |
277 | 277 |
/// \sa SetStandardElevator |
278 | 278 |
template <typename T> |
279 | 279 |
struct SetElevator |
280 | 280 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
281 | 281 |
SetElevatorTraits<T> > { |
282 | 282 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
283 | 283 |
SetElevatorTraits<T> > Create; |
284 | 284 |
}; |
285 | 285 |
|
286 | 286 |
template <typename T> |
287 | 287 |
struct SetStandardElevatorTraits : public Traits { |
288 | 288 |
typedef T Elevator; |
289 | 289 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
290 | 290 |
return new Elevator(digraph, max_level); |
291 | 291 |
} |
292 | 292 |
}; |
293 | 293 |
|
294 | 294 |
/// \brief \ref named-templ-param "Named parameter" for setting |
295 | 295 |
/// Elevator type with automatic allocation |
296 | 296 |
/// |
297 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
298 | 298 |
/// type with automatic allocation. |
299 | 299 |
/// The Elevator should have standard constructor interface to be |
300 | 300 |
/// able to automatically created by the algorithm (i.e. the |
301 | 301 |
/// digraph and the maximum level should be passed to it). |
302 | 302 |
/// However an external elevator object could also be passed to the |
303 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
304 | 304 |
/// before calling \ref run() or \ref init(). |
305 | 305 |
/// \sa SetElevator |
306 | 306 |
template <typename T> |
307 | 307 |
struct SetStandardElevator |
308 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
309 | 309 |
SetStandardElevatorTraits<T> > { |
310 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
311 | 311 |
SetStandardElevatorTraits<T> > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
/// @} |
315 | 315 |
|
316 | 316 |
protected: |
317 | 317 |
|
318 | 318 |
Circulation() {} |
319 | 319 |
|
320 | 320 |
public: |
321 | 321 |
|
322 | 322 |
/// Constructor. |
323 | 323 |
|
324 | 324 |
/// The constructor of the class. |
325 | 325 |
/// |
326 | 326 |
/// \param graph The digraph the algorithm runs on. |
327 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
328 | 328 |
/// \param upper The upper bounds (capacities) for the flow values |
329 | 329 |
/// on the arcs. |
330 | 330 |
/// \param supply The signed supply values of the nodes. |
331 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
332 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
333 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
334 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
335 | 335 |
_excess(NULL) {} |
336 | 336 |
|
337 | 337 |
/// Destructor. |
338 | 338 |
~Circulation() { |
339 | 339 |
destroyStructures(); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
|
343 | 343 |
private: |
344 | 344 |
|
345 | 345 |
bool checkBoundMaps() { |
346 | 346 |
for (ArcIt e(_g);e!=INVALID;++e) { |
347 | 347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
348 | 348 |
} |
349 | 349 |
return true; |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
void createStructures() { |
353 | 353 |
_node_num = _el = countNodes(_g); |
354 | 354 |
|
355 | 355 |
if (!_flow) { |
356 | 356 |
_flow = Traits::createFlowMap(_g); |
357 | 357 |
_local_flow = true; |
358 | 358 |
} |
359 | 359 |
if (!_level) { |
360 | 360 |
_level = Traits::createElevator(_g, _node_num); |
361 | 361 |
_local_level = true; |
362 | 362 |
} |
363 | 363 |
if (!_excess) { |
364 | 364 |
_excess = new ExcessMap(_g); |
365 | 365 |
} |
366 | 366 |
} |
367 | 367 |
|
368 | 368 |
void destroyStructures() { |
369 | 369 |
if (_local_flow) { |
370 | 370 |
delete _flow; |
371 | 371 |
} |
372 | 372 |
if (_local_level) { |
373 | 373 |
delete _level; |
374 | 374 |
} |
375 | 375 |
if (_excess) { |
376 | 376 |
delete _excess; |
377 | 377 |
} |
378 | 378 |
} |
379 | 379 |
|
380 | 380 |
public: |
381 | 381 |
|
382 | 382 |
/// Sets the lower bound map. |
383 | 383 |
|
384 | 384 |
/// Sets the lower bound map. |
385 | 385 |
/// \return <tt>(*this)</tt> |
386 | 386 |
Circulation& lowerMap(const LowerMap& map) { |
387 | 387 |
_lo = ↦ |
388 | 388 |
return *this; |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
/// Sets the upper bound (capacity) map. |
392 | 392 |
|
393 | 393 |
/// Sets the upper bound (capacity) map. |
394 | 394 |
/// \return <tt>(*this)</tt> |
395 | 395 |
Circulation& upperMap(const UpperMap& map) { |
396 | 396 |
_up = ↦ |
397 | 397 |
return *this; |
398 | 398 |
} |
399 | 399 |
|
400 | 400 |
/// Sets the supply map. |
401 | 401 |
|
402 | 402 |
/// Sets the supply map. |
403 | 403 |
/// \return <tt>(*this)</tt> |
404 | 404 |
Circulation& supplyMap(const SupplyMap& map) { |
405 | 405 |
_supply = ↦ |
406 | 406 |
return *this; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
/// \brief Sets the flow map. |
410 | 410 |
/// |
411 | 411 |
/// Sets the flow map. |
412 | 412 |
/// If you don't use this function before calling \ref run() or |
413 | 413 |
/// \ref init(), an instance will be allocated automatically. |
414 | 414 |
/// The destructor deallocates this automatically allocated map, |
415 | 415 |
/// of course. |
416 | 416 |
/// \return <tt>(*this)</tt> |
417 | 417 |
Circulation& flowMap(FlowMap& map) { |
418 | 418 |
if (_local_flow) { |
419 | 419 |
delete _flow; |
420 | 420 |
_local_flow = false; |
421 | 421 |
} |
422 | 422 |
_flow = ↦ |
423 | 423 |
return *this; |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
/// \brief Sets the elevator used by algorithm. |
427 | 427 |
/// |
428 | 428 |
/// Sets the elevator used by algorithm. |
429 | 429 |
/// If you don't use this function before calling \ref run() or |
430 | 430 |
/// \ref init(), an instance will be allocated automatically. |
431 | 431 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 432 |
/// of course. |
433 | 433 |
/// \return <tt>(*this)</tt> |
434 | 434 |
Circulation& elevator(Elevator& elevator) { |
435 | 435 |
if (_local_level) { |
436 | 436 |
delete _level; |
437 | 437 |
_local_level = false; |
438 | 438 |
} |
439 | 439 |
_level = &elevator; |
440 | 440 |
return *this; |
441 | 441 |
} |
442 | 442 |
|
443 | 443 |
/// \brief Returns a const reference to the elevator. |
444 | 444 |
/// |
445 | 445 |
/// Returns a const reference to the elevator. |
446 | 446 |
/// |
447 | 447 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 448 |
/// using this function. |
449 | 449 |
const Elevator& elevator() const { |
450 | 450 |
return *_level; |
451 | 451 |
} |
452 | 452 |
|
453 | 453 |
/// \brief Sets the tolerance used by algorithm. |
454 | 454 |
/// |
455 | 455 |
/// Sets the tolerance used by algorithm. |
456 | 456 |
Circulation& tolerance(const Tolerance& tolerance) const { |
457 | 457 |
_tol = tolerance; |
458 | 458 |
return *this; |
459 | 459 |
} |
460 | 460 |
|
461 | 461 |
/// \brief Returns a const reference to the tolerance. |
462 | 462 |
/// |
463 | 463 |
/// Returns a const reference to the tolerance. |
464 | 464 |
const Tolerance& tolerance() const { |
465 | 465 |
return tolerance; |
466 | 466 |
} |
467 | 467 |
|
468 | 468 |
/// \name Execution Control |
469 | 469 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 | 470 |
/// If you need more control on the initial solution or the execution, |
471 | 471 |
/// first you have to call one of the \ref init() functions, then |
472 | 472 |
/// the \ref start() function. |
473 | 473 |
|
474 | 474 |
///@{ |
475 | 475 |
|
476 | 476 |
/// Initializes the internal data structures. |
477 | 477 |
|
478 | 478 |
/// Initializes the internal data structures and sets all flow values |
479 | 479 |
/// to the lower bound. |
480 | 480 |
void init() |
481 | 481 |
{ |
482 | 482 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 483 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 484 |
|
485 | 485 |
createStructures(); |
486 | 486 |
|
487 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 488 |
(*_excess)[n] = (*_supply)[n]; |
489 | 489 |
} |
490 | 490 |
|
491 | 491 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 492 |
_flow->set(e, (*_lo)[e]); |
493 | 493 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 494 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 495 |
} |
496 | 496 |
|
497 | 497 |
// global relabeling tested, but in general case it provides |
498 | 498 |
// worse performance for random digraphs |
499 | 499 |
_level->initStart(); |
500 | 500 |
for(NodeIt n(_g);n!=INVALID;++n) |
501 | 501 |
_level->initAddItem(n); |
502 | 502 |
_level->initFinish(); |
503 | 503 |
for(NodeIt n(_g);n!=INVALID;++n) |
504 | 504 |
if(_tol.positive((*_excess)[n])) |
505 | 505 |
_level->activate(n); |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
/// Initializes the internal data structures using a greedy approach. |
509 | 509 |
|
510 | 510 |
/// Initializes the internal data structures using a greedy approach |
511 | 511 |
/// to construct the initial solution. |
512 | 512 |
void greedyInit() |
513 | 513 |
{ |
514 | 514 |
LEMON_DEBUG(checkBoundMaps(), |
515 | 515 |
"Upper bounds must be greater or equal to the lower bounds"); |
516 | 516 |
|
517 | 517 |
createStructures(); |
518 | 518 |
|
519 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) { |
520 | 520 |
(*_excess)[n] = (*_supply)[n]; |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) { |
524 | 524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
525 | 525 |
_flow->set(e, (*_up)[e]); |
526 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
529 | 529 |
_flow->set(e, (*_lo)[e]); |
530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
532 | 532 |
} else { |
533 |
|
|
533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
534 | 534 |
_flow->set(e, fc); |
535 | 535 |
(*_excess)[_g.target(e)] = 0; |
536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
537 | 537 |
} |
538 | 538 |
} |
539 | 539 |
|
540 | 540 |
_level->initStart(); |
541 | 541 |
for(NodeIt n(_g);n!=INVALID;++n) |
542 | 542 |
_level->initAddItem(n); |
543 | 543 |
_level->initFinish(); |
544 | 544 |
for(NodeIt n(_g);n!=INVALID;++n) |
545 | 545 |
if(_tol.positive((*_excess)[n])) |
546 | 546 |
_level->activate(n); |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
///Executes the algorithm |
550 | 550 |
|
551 | 551 |
///This function executes the algorithm. |
552 | 552 |
/// |
553 | 553 |
///\return \c true if a feasible circulation is found. |
554 | 554 |
/// |
555 | 555 |
///\sa barrier() |
556 | 556 |
///\sa barrierMap() |
557 | 557 |
bool start() |
558 | 558 |
{ |
559 | 559 |
|
560 | 560 |
Node act; |
561 | 561 |
Node bact=INVALID; |
562 | 562 |
Node last_activated=INVALID; |
563 | 563 |
while((act=_level->highestActive())!=INVALID) { |
564 | 564 |
int actlevel=(*_level)[act]; |
565 | 565 |
int mlevel=_node_num; |
566 |
|
|
566 |
Value exc=(*_excess)[act]; |
|
567 | 567 |
|
568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
569 | 569 |
Node v = _g.target(e); |
570 |
|
|
570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
571 | 571 |
if(!_tol.positive(fc)) continue; |
572 | 572 |
if((*_level)[v]<actlevel) { |
573 | 573 |
if(!_tol.less(fc, exc)) { |
574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
575 | 575 |
(*_excess)[v] += exc; |
576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
577 | 577 |
_level->activate(v); |
578 | 578 |
(*_excess)[act] = 0; |
579 | 579 |
_level->deactivate(act); |
580 | 580 |
goto next_l; |
581 | 581 |
} |
582 | 582 |
else { |
583 | 583 |
_flow->set(e, (*_up)[e]); |
584 | 584 |
(*_excess)[v] += fc; |
585 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
586 | 586 |
_level->activate(v); |
587 | 587 |
exc-=fc; |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
591 | 591 |
} |
592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
593 | 593 |
Node v = _g.source(e); |
594 |
|
|
594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
595 | 595 |
if(!_tol.positive(fc)) continue; |
596 | 596 |
if((*_level)[v]<actlevel) { |
597 | 597 |
if(!_tol.less(fc, exc)) { |
598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
599 | 599 |
(*_excess)[v] += exc; |
600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
601 | 601 |
_level->activate(v); |
602 | 602 |
(*_excess)[act] = 0; |
603 | 603 |
_level->deactivate(act); |
604 | 604 |
goto next_l; |
605 | 605 |
} |
606 | 606 |
else { |
607 | 607 |
_flow->set(e, (*_lo)[e]); |
608 | 608 |
(*_excess)[v] += fc; |
609 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
610 | 610 |
_level->activate(v); |
611 | 611 |
exc-=fc; |
612 | 612 |
} |
613 | 613 |
} |
614 | 614 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
615 | 615 |
} |
616 | 616 |
|
617 | 617 |
(*_excess)[act] = exc; |
618 | 618 |
if(!_tol.positive(exc)) _level->deactivate(act); |
619 | 619 |
else if(mlevel==_node_num) { |
620 | 620 |
_level->liftHighestActiveToTop(); |
621 | 621 |
_el = _node_num; |
622 | 622 |
return false; |
623 | 623 |
} |
624 | 624 |
else { |
625 | 625 |
_level->liftHighestActive(mlevel+1); |
626 | 626 |
if(_level->onLevel(actlevel)==0) { |
627 | 627 |
_el = actlevel; |
628 | 628 |
return false; |
629 | 629 |
} |
630 | 630 |
} |
631 | 631 |
next_l: |
632 | 632 |
; |
633 | 633 |
} |
634 | 634 |
return true; |
635 | 635 |
} |
636 | 636 |
|
637 | 637 |
/// Runs the algorithm. |
638 | 638 |
|
639 | 639 |
/// This function runs the algorithm. |
640 | 640 |
/// |
641 | 641 |
/// \return \c true if a feasible circulation is found. |
642 | 642 |
/// |
643 | 643 |
/// \note Apart from the return value, c.run() is just a shortcut of |
644 | 644 |
/// the following code. |
645 | 645 |
/// \code |
646 | 646 |
/// c.greedyInit(); |
647 | 647 |
/// c.start(); |
648 | 648 |
/// \endcode |
649 | 649 |
bool run() { |
650 | 650 |
greedyInit(); |
651 | 651 |
return start(); |
652 | 652 |
} |
653 | 653 |
|
654 | 654 |
/// @} |
655 | 655 |
|
656 | 656 |
/// \name Query Functions |
657 | 657 |
/// The results of the circulation algorithm can be obtained using |
658 | 658 |
/// these functions.\n |
659 | 659 |
/// Either \ref run() or \ref start() should be called before |
660 | 660 |
/// using them. |
661 | 661 |
|
662 | 662 |
///@{ |
663 | 663 |
|
664 |
/// \brief Returns the flow on the given arc. |
|
664 |
/// \brief Returns the flow value on the given arc. |
|
665 | 665 |
/// |
666 |
/// Returns the flow on the given arc. |
|
666 |
/// Returns the flow value on the given arc. |
|
667 | 667 |
/// |
668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
669 | 669 |
/// using this function. |
670 |
|
|
670 |
Value flow(const Arc& arc) const { |
|
671 | 671 |
return (*_flow)[arc]; |
672 | 672 |
} |
673 | 673 |
|
674 | 674 |
/// \brief Returns a const reference to the flow map. |
675 | 675 |
/// |
676 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
677 | 677 |
/// |
678 | 678 |
/// \pre Either \ref run() or \ref init() must be called before |
679 | 679 |
/// using this function. |
680 | 680 |
const FlowMap& flowMap() const { |
681 | 681 |
return *_flow; |
682 | 682 |
} |
683 | 683 |
|
684 | 684 |
/** |
685 | 685 |
\brief Returns \c true if the given node is in a barrier. |
686 | 686 |
|
687 | 687 |
Barrier is a set \e B of nodes for which |
688 | 688 |
|
689 | 689 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
690 | 690 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
691 | 691 |
|
692 | 692 |
holds. The existence of a set with this property prooves that a |
693 | 693 |
feasible circualtion cannot exist. |
694 | 694 |
|
695 | 695 |
This function returns \c true if the given node is in the found |
696 | 696 |
barrier. If a feasible circulation is found, the function |
697 | 697 |
gives back \c false for every node. |
698 | 698 |
|
699 | 699 |
\pre Either \ref run() or \ref init() must be called before |
700 | 700 |
using this function. |
701 | 701 |
|
702 | 702 |
\sa barrierMap() |
703 | 703 |
\sa checkBarrier() |
704 | 704 |
*/ |
705 | 705 |
bool barrier(const Node& node) const |
706 | 706 |
{ |
707 | 707 |
return (*_level)[node] >= _el; |
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
/// \brief Gives back a barrier. |
711 | 711 |
/// |
712 | 712 |
/// This function sets \c bar to the characteristic vector of the |
713 | 713 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
714 | 714 |
/// node map with \c bool (or convertible) value type. |
715 | 715 |
/// |
716 | 716 |
/// If a feasible circulation is found, the function gives back an |
717 | 717 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
718 | 718 |
/// |
719 | 719 |
/// \note This function calls \ref barrier() for each node, |
720 | 720 |
/// so it runs in O(n) time. |
721 | 721 |
/// |
722 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
723 | 723 |
/// using this function. |
724 | 724 |
/// |
725 | 725 |
/// \sa barrier() |
726 | 726 |
/// \sa checkBarrier() |
727 | 727 |
template<class BarrierMap> |
728 | 728 |
void barrierMap(BarrierMap &bar) const |
729 | 729 |
{ |
730 | 730 |
for(NodeIt n(_g);n!=INVALID;++n) |
731 | 731 |
bar.set(n, (*_level)[n] >= _el); |
732 | 732 |
} |
733 | 733 |
|
734 | 734 |
/// @} |
735 | 735 |
|
736 | 736 |
/// \name Checker Functions |
737 | 737 |
/// The feasibility of the results can be checked using |
738 | 738 |
/// these functions.\n |
739 | 739 |
/// Either \ref run() or \ref start() should be called before |
740 | 740 |
/// using them. |
741 | 741 |
|
742 | 742 |
///@{ |
743 | 743 |
|
744 | 744 |
///Check if the found flow is a feasible circulation |
745 | 745 |
|
746 | 746 |
///Check if the found flow is a feasible circulation, |
747 | 747 |
/// |
748 | 748 |
bool checkFlow() const { |
749 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 752 |
{ |
753 |
|
|
753 |
Value dif=-(*_supply)[n]; |
|
754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
756 | 756 |
if(_tol.negative(dif)) return false; |
757 | 757 |
} |
758 | 758 |
return true; |
759 | 759 |
} |
760 | 760 |
|
761 | 761 |
///Check whether or not the last execution provides a barrier |
762 | 762 |
|
763 | 763 |
///Check whether or not the last execution provides a barrier. |
764 | 764 |
///\sa barrier() |
765 | 765 |
///\sa barrierMap() |
766 | 766 |
bool checkBarrier() const |
767 | 767 |
{ |
768 |
Flow delta=0; |
|
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
768 |
Value delta=0; |
|
769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
770 |
std::numeric_limits<Value>::infinity() : |
|
771 |
std::numeric_limits<Value>::max(); |
|
772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
773 | 773 |
if(barrier(n)) |
774 | 774 |
delta-=(*_supply)[n]; |
775 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
776 | 776 |
{ |
777 | 777 |
Node s=_g.source(e); |
778 | 778 |
Node t=_g.target(e); |
779 | 779 |
if(barrier(s)&&!barrier(t)) { |
780 | 780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
781 | 781 |
delta+=(*_up)[e]; |
782 | 782 |
} |
783 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
784 | 784 |
} |
785 | 785 |
return _tol.negative(delta); |
786 | 786 |
} |
787 | 787 |
|
788 | 788 |
/// @} |
789 | 789 |
|
790 | 790 |
}; |
791 | 791 |
|
792 | 792 |
} |
793 | 793 |
|
794 | 794 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CORE_H |
20 | 20 |
#define LEMON_CORE_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 |
#include <lemon/ |
|
25 |
#include <lemon/config.h> |
|
26 | 26 |
#include <lemon/bits/enable_if.h> |
27 | 27 |
#include <lemon/bits/traits.h> |
28 | 28 |
#include <lemon/assert.h> |
29 | 29 |
|
30 | 30 |
///\file |
31 | 31 |
///\brief LEMON core utilities. |
32 | 32 |
/// |
33 | 33 |
///This header file contains core utilities for LEMON. |
34 | 34 |
///It is automatically included by all graph types, therefore it usually |
35 | 35 |
///do not have to be included directly. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Dummy type to make it easier to create invalid iterators. |
40 | 40 |
/// |
41 | 41 |
/// Dummy type to make it easier to create invalid iterators. |
42 | 42 |
/// See \ref INVALID for the usage. |
43 | 43 |
struct Invalid { |
44 | 44 |
public: |
45 | 45 |
bool operator==(Invalid) { return true; } |
46 | 46 |
bool operator!=(Invalid) { return false; } |
47 | 47 |
bool operator< (Invalid) { return false; } |
48 | 48 |
}; |
49 | 49 |
|
50 | 50 |
/// \brief Invalid iterators. |
51 | 51 |
/// |
52 | 52 |
/// \ref Invalid is a global type that converts to each iterator |
53 | 53 |
/// in such a way that the value of the target iterator will be invalid. |
54 | 54 |
#ifdef LEMON_ONLY_TEMPLATES |
55 | 55 |
const Invalid INVALID = Invalid(); |
56 | 56 |
#else |
57 | 57 |
extern const Invalid INVALID; |
58 | 58 |
#endif |
59 | 59 |
|
60 | 60 |
/// \addtogroup gutils |
61 | 61 |
/// @{ |
62 | 62 |
|
63 | 63 |
///Create convenience typedefs for the digraph types and iterators |
64 | 64 |
|
65 | 65 |
///This \c \#define creates convenient type definitions for the following |
66 | 66 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
67 | 67 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
68 | 68 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
69 | 69 |
/// |
70 | 70 |
///\note If the graph type is a dependent type, ie. the graph type depend |
71 | 71 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
72 | 72 |
///macro. |
73 | 73 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
74 | 74 |
typedef Digraph::Node Node; \ |
75 | 75 |
typedef Digraph::NodeIt NodeIt; \ |
76 | 76 |
typedef Digraph::Arc Arc; \ |
77 | 77 |
typedef Digraph::ArcIt ArcIt; \ |
78 | 78 |
typedef Digraph::InArcIt InArcIt; \ |
79 | 79 |
typedef Digraph::OutArcIt OutArcIt; \ |
80 | 80 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
81 | 81 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
82 | 82 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
83 | 83 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
84 | 84 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
85 | 85 |
typedef Digraph::ArcMap<double> DoubleArcMap |
86 | 86 |
|
87 | 87 |
///Create convenience typedefs for the digraph types and iterators |
88 | 88 |
|
89 | 89 |
///\see DIGRAPH_TYPEDEFS |
90 | 90 |
/// |
91 | 91 |
///\note Use this macro, if the graph type is a dependent type, |
92 | 92 |
///ie. the graph type depend on a template parameter. |
93 | 93 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
94 | 94 |
typedef typename Digraph::Node Node; \ |
95 | 95 |
typedef typename Digraph::NodeIt NodeIt; \ |
96 | 96 |
typedef typename Digraph::Arc Arc; \ |
97 | 97 |
typedef typename Digraph::ArcIt ArcIt; \ |
98 | 98 |
typedef typename Digraph::InArcIt InArcIt; \ |
99 | 99 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
100 | 100 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
101 | 101 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
102 | 102 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
103 | 103 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
104 | 104 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
105 | 105 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
106 | 106 |
|
107 | 107 |
///Create convenience typedefs for the graph types and iterators |
108 | 108 |
|
109 | 109 |
///This \c \#define creates the same convenient type definitions as defined |
110 | 110 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
111 | 111 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
112 | 112 |
///\c DoubleEdgeMap. |
113 | 113 |
/// |
114 | 114 |
///\note If the graph type is a dependent type, ie. the graph type depend |
115 | 115 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
116 | 116 |
///macro. |
117 | 117 |
#define GRAPH_TYPEDEFS(Graph) \ |
118 | 118 |
DIGRAPH_TYPEDEFS(Graph); \ |
119 | 119 |
typedef Graph::Edge Edge; \ |
120 | 120 |
typedef Graph::EdgeIt EdgeIt; \ |
121 | 121 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
122 | 122 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
123 | 123 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
124 | 124 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
125 | 125 |
|
126 | 126 |
///Create convenience typedefs for the graph types and iterators |
127 | 127 |
|
128 | 128 |
///\see GRAPH_TYPEDEFS |
129 | 129 |
/// |
130 | 130 |
///\note Use this macro, if the graph type is a dependent type, |
131 | 131 |
///ie. the graph type depend on a template parameter. |
132 | 132 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
134 | 134 |
typedef typename Graph::Edge Edge; \ |
135 | 135 |
typedef typename Graph::EdgeIt EdgeIt; \ |
136 | 136 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
137 | 137 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
138 | 138 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
139 | 139 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
140 | 140 |
|
141 | 141 |
/// \brief Function to count the items in a graph. |
142 | 142 |
/// |
143 | 143 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
144 | 144 |
/// The complexity of the function is linear because |
145 | 145 |
/// it iterates on all of the items. |
146 | 146 |
template <typename Graph, typename Item> |
147 | 147 |
inline int countItems(const Graph& g) { |
148 | 148 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
149 | 149 |
int num = 0; |
150 | 150 |
for (ItemIt it(g); it != INVALID; ++it) { |
151 | 151 |
++num; |
152 | 152 |
} |
153 | 153 |
return num; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
// Node counting: |
157 | 157 |
|
158 | 158 |
namespace _core_bits { |
159 | 159 |
|
160 | 160 |
template <typename Graph, typename Enable = void> |
161 | 161 |
struct CountNodesSelector { |
162 | 162 |
static int count(const Graph &g) { |
163 | 163 |
return countItems<Graph, typename Graph::Node>(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
template <typename Graph> |
168 | 168 |
struct CountNodesSelector< |
169 | 169 |
Graph, typename |
170 | 170 |
enable_if<typename Graph::NodeNumTag, void>::type> |
171 | 171 |
{ |
172 | 172 |
static int count(const Graph &g) { |
173 | 173 |
return g.nodeNum(); |
174 | 174 |
} |
175 | 175 |
}; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief Function to count the nodes in the graph. |
179 | 179 |
/// |
180 | 180 |
/// This function counts the nodes in the graph. |
181 | 181 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
182 | 182 |
/// graph structures it is specialized to run in <em>O</em>(1). |
183 | 183 |
/// |
184 | 184 |
/// \note If the graph contains a \c nodeNum() member function and a |
185 | 185 |
/// \c NodeNumTag tag then this function calls directly the member |
186 | 186 |
/// function to query the cardinality of the node set. |
187 | 187 |
template <typename Graph> |
188 | 188 |
inline int countNodes(const Graph& g) { |
189 | 189 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
// Arc counting: |
193 | 193 |
|
194 | 194 |
namespace _core_bits { |
195 | 195 |
|
196 | 196 |
template <typename Graph, typename Enable = void> |
197 | 197 |
struct CountArcsSelector { |
198 | 198 |
static int count(const Graph &g) { |
199 | 199 |
return countItems<Graph, typename Graph::Arc>(g); |
200 | 200 |
} |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
template <typename Graph> |
204 | 204 |
struct CountArcsSelector< |
205 | 205 |
Graph, |
206 | 206 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
207 | 207 |
{ |
208 | 208 |
static int count(const Graph &g) { |
209 | 209 |
return g.arcNum(); |
210 | 210 |
} |
211 | 211 |
}; |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
/// \brief Function to count the arcs in the graph. |
215 | 215 |
/// |
216 | 216 |
/// This function counts the arcs in the graph. |
217 | 217 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
218 | 218 |
/// graph structures it is specialized to run in <em>O</em>(1). |
219 | 219 |
/// |
220 | 220 |
/// \note If the graph contains a \c arcNum() member function and a |
221 | 221 |
/// \c ArcNumTag tag then this function calls directly the member |
222 | 222 |
/// function to query the cardinality of the arc set. |
223 | 223 |
template <typename Graph> |
224 | 224 |
inline int countArcs(const Graph& g) { |
225 | 225 |
return _core_bits::CountArcsSelector<Graph>::count(g); |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
// Edge counting: |
229 | 229 |
|
230 | 230 |
namespace _core_bits { |
231 | 231 |
|
232 | 232 |
template <typename Graph, typename Enable = void> |
233 | 233 |
struct CountEdgesSelector { |
234 | 234 |
static int count(const Graph &g) { |
235 | 235 |
return countItems<Graph, typename Graph::Edge>(g); |
236 | 236 |
} |
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <typename Graph> |
240 | 240 |
struct CountEdgesSelector< |
241 | 241 |
Graph, |
242 | 242 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
243 | 243 |
{ |
244 | 244 |
static int count(const Graph &g) { |
245 | 245 |
return g.edgeNum(); |
246 | 246 |
} |
247 | 247 |
}; |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
/// \brief Function to count the edges in the graph. |
251 | 251 |
/// |
252 | 252 |
/// This function counts the edges in the graph. |
253 | 253 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
254 | 254 |
/// graph structures it is specialized to run in <em>O</em>(1). |
255 | 255 |
/// |
256 | 256 |
/// \note If the graph contains a \c edgeNum() member function and a |
257 | 257 |
/// \c EdgeNumTag tag then this function calls directly the member |
258 | 258 |
/// function to query the cardinality of the edge set. |
259 | 259 |
template <typename Graph> |
260 | 260 |
inline int countEdges(const Graph& g) { |
261 | 261 |
return _core_bits::CountEdgesSelector<Graph>::count(g); |
262 | 262 |
|
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
|
266 | 266 |
template <typename Graph, typename DegIt> |
267 | 267 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
268 | 268 |
int num = 0; |
269 | 269 |
for (DegIt it(_g, _n); it != INVALID; ++it) { |
270 | 270 |
++num; |
271 | 271 |
} |
272 | 272 |
return num; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
/// \brief Function to count the number of the out-arcs from node \c n. |
276 | 276 |
/// |
277 | 277 |
/// This function counts the number of the out-arcs from node \c n |
278 | 278 |
/// in the graph \c g. |
279 | 279 |
template <typename Graph> |
280 | 280 |
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) { |
281 | 281 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n); |
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
/// \brief Function to count the number of the in-arcs to node \c n. |
285 | 285 |
/// |
286 | 286 |
/// This function counts the number of the in-arcs to node \c n |
287 | 287 |
/// in the graph \c g. |
288 | 288 |
template <typename Graph> |
289 | 289 |
inline int countInArcs(const Graph& g, const typename Graph::Node& n) { |
290 | 290 |
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Function to count the number of the inc-edges to node \c n. |
294 | 294 |
/// |
295 | 295 |
/// This function counts the number of the inc-edges to node \c n |
296 | 296 |
/// in the undirected graph \c g. |
297 | 297 |
template <typename Graph> |
298 | 298 |
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) { |
299 | 299 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n); |
300 | 300 |
} |
301 | 301 |
|
302 | 302 |
namespace _core_bits { |
303 | 303 |
|
304 | 304 |
template <typename Digraph, typename Item, typename RefMap> |
305 | 305 |
class MapCopyBase { |
306 | 306 |
public: |
307 | 307 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
308 | 308 |
|
309 | 309 |
virtual ~MapCopyBase() {} |
310 | 310 |
}; |
311 | 311 |
|
312 | 312 |
template <typename Digraph, typename Item, typename RefMap, |
313 | 313 |
typename FromMap, typename ToMap> |
314 | 314 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
315 | 315 |
public: |
316 | 316 |
|
317 | 317 |
MapCopy(const FromMap& map, ToMap& tmap) |
318 | 318 |
: _map(map), _tmap(tmap) {} |
319 | 319 |
|
320 | 320 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
321 | 321 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
322 | 322 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
323 | 323 |
_tmap.set(refMap[it], _map[it]); |
324 | 324 |
} |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
private: |
328 | 328 |
const FromMap& _map; |
329 | 329 |
ToMap& _tmap; |
330 | 330 |
}; |
331 | 331 |
|
332 | 332 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
333 | 333 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
334 | 334 |
public: |
335 | 335 |
|
336 | 336 |
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {} |
337 | 337 |
|
338 | 338 |
virtual void copy(const Digraph&, const RefMap& refMap) { |
339 | 339 |
_it = refMap[_item]; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
private: |
343 | 343 |
Item _item; |
344 | 344 |
It& _it; |
345 | 345 |
}; |
346 | 346 |
|
347 | 347 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
348 | 348 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
349 | 349 |
public: |
350 | 350 |
|
351 | 351 |
RefCopy(Ref& map) : _map(map) {} |
352 | 352 |
|
353 | 353 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
354 | 354 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
355 | 355 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
356 | 356 |
_map.set(it, refMap[it]); |
357 | 357 |
} |
358 | 358 |
} |
359 | 359 |
|
360 | 360 |
private: |
361 | 361 |
Ref& _map; |
362 | 362 |
}; |
363 | 363 |
|
364 | 364 |
template <typename Digraph, typename Item, typename RefMap, |
365 | 365 |
typename CrossRef> |
366 | 366 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
367 | 367 |
public: |
368 | 368 |
|
369 | 369 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
370 | 370 |
|
371 | 371 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
372 | 372 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
373 | 373 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
374 | 374 |
_cmap.set(refMap[it], it); |
375 | 375 |
} |
376 | 376 |
} |
377 | 377 |
|
378 | 378 |
private: |
379 | 379 |
CrossRef& _cmap; |
380 | 380 |
}; |
381 | 381 |
|
382 | 382 |
template <typename Digraph, typename Enable = void> |
383 | 383 |
struct DigraphCopySelector { |
384 | 384 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
385 | 385 |
static void copy(const From& from, Digraph &to, |
386 | 386 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
387 | 387 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
388 | 388 |
nodeRefMap[it] = to.addNode(); |
389 | 389 |
} |
390 | 390 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
391 | 391 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
392 | 392 |
nodeRefMap[from.target(it)]); |
393 | 393 |
} |
394 | 394 |
} |
395 | 395 |
}; |
396 | 396 |
|
397 | 397 |
template <typename Digraph> |
398 | 398 |
struct DigraphCopySelector< |
399 | 399 |
Digraph, |
400 | 400 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
401 | 401 |
{ |
402 | 402 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
403 | 403 |
static void copy(const From& from, Digraph &to, |
404 | 404 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
405 | 405 |
to.build(from, nodeRefMap, arcRefMap); |
406 | 406 |
} |
407 | 407 |
}; |
408 | 408 |
|
409 | 409 |
template <typename Graph, typename Enable = void> |
410 | 410 |
struct GraphCopySelector { |
411 | 411 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
412 | 412 |
static void copy(const From& from, Graph &to, |
413 | 413 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
414 | 414 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
415 | 415 |
nodeRefMap[it] = to.addNode(); |
416 | 416 |
} |
417 | 417 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
418 | 418 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
419 | 419 |
nodeRefMap[from.v(it)]); |
420 | 420 |
} |
421 | 421 |
} |
422 | 422 |
}; |
423 | 423 |
|
424 | 424 |
template <typename Graph> |
425 | 425 |
struct GraphCopySelector< |
426 | 426 |
Graph, |
427 | 427 |
typename enable_if<typename Graph::BuildTag, void>::type> |
428 | 428 |
{ |
429 | 429 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
430 | 430 |
static void copy(const From& from, Graph &to, |
431 | 431 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
432 | 432 |
to.build(from, nodeRefMap, edgeRefMap); |
433 | 433 |
} |
434 | 434 |
}; |
435 | 435 |
|
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
/// \brief Class to copy a digraph. |
439 | 439 |
/// |
440 | 440 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
441 | 441 |
/// simplest way of using it is through the \c digraphCopy() function. |
442 | 442 |
/// |
443 | 443 |
/// This class not only make a copy of a digraph, but it can create |
444 | 444 |
/// references and cross references between the nodes and arcs of |
445 | 445 |
/// the two digraphs, and it can copy maps to use with the newly created |
446 | 446 |
/// digraph. |
447 | 447 |
/// |
448 | 448 |
/// To make a copy from a digraph, first an instance of DigraphCopy |
449 | 449 |
/// should be created, then the data belongs to the digraph should |
450 | 450 |
/// assigned to copy. In the end, the \c run() member should be |
451 | 451 |
/// called. |
452 | 452 |
/// |
453 | 453 |
/// The next code copies a digraph with several data: |
454 | 454 |
///\code |
455 | 455 |
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
456 | 456 |
/// // Create references for the nodes |
457 | 457 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
458 | 458 |
/// cg.nodeRef(nr); |
459 | 459 |
/// // Create cross references (inverse) for the arcs |
460 | 460 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
461 | 461 |
/// cg.arcCrossRef(acr); |
462 | 462 |
/// // Copy an arc map |
463 | 463 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
464 | 464 |
/// NewGraph::ArcMap<double> namap(new_graph); |
465 | 465 |
/// cg.arcMap(oamap, namap); |
466 | 466 |
/// // Copy a node |
467 | 467 |
/// OrigGraph::Node on; |
468 | 468 |
/// NewGraph::Node nn; |
469 | 469 |
/// cg.node(on, nn); |
470 | 470 |
/// // Execute copying |
471 | 471 |
/// cg.run(); |
472 | 472 |
///\endcode |
473 | 473 |
template <typename From, typename To> |
474 | 474 |
class DigraphCopy { |
475 | 475 |
private: |
476 | 476 |
|
477 | 477 |
typedef typename From::Node Node; |
478 | 478 |
typedef typename From::NodeIt NodeIt; |
479 | 479 |
typedef typename From::Arc Arc; |
480 | 480 |
typedef typename From::ArcIt ArcIt; |
481 | 481 |
|
482 | 482 |
typedef typename To::Node TNode; |
483 | 483 |
typedef typename To::Arc TArc; |
484 | 484 |
|
485 | 485 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
486 | 486 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
487 | 487 |
|
488 | 488 |
public: |
489 | 489 |
|
490 | 490 |
/// \brief Constructor of DigraphCopy. |
491 | 491 |
/// |
492 | 492 |
/// Constructor of DigraphCopy for copying the content of the |
493 | 493 |
/// \c from digraph into the \c to digraph. |
494 | 494 |
DigraphCopy(const From& from, To& to) |
495 | 495 |
: _from(from), _to(to) {} |
496 | 496 |
|
497 | 497 |
/// \brief Destructor of DigraphCopy |
498 | 498 |
/// |
499 | 499 |
/// Destructor of DigraphCopy. |
500 | 500 |
~DigraphCopy() { |
501 | 501 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
502 | 502 |
delete _node_maps[i]; |
503 | 503 |
} |
504 | 504 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
505 | 505 |
delete _arc_maps[i]; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
/// \brief Copy the node references into the given map. |
511 | 511 |
/// |
512 | 512 |
/// This function copies the node references into the given map. |
513 | 513 |
/// The parameter should be a map, whose key type is the Node type of |
514 | 514 |
/// the source digraph, while the value type is the Node type of the |
515 | 515 |
/// destination digraph. |
516 | 516 |
template <typename NodeRef> |
517 | 517 |
DigraphCopy& nodeRef(NodeRef& map) { |
518 | 518 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
519 | 519 |
NodeRefMap, NodeRef>(map)); |
520 | 520 |
return *this; |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// \brief Copy the node cross references into the given map. |
524 | 524 |
/// |
525 | 525 |
/// This function copies the node cross references (reverse references) |
526 | 526 |
/// into the given map. The parameter should be a map, whose key type |
527 | 527 |
/// is the Node type of the destination digraph, while the value type is |
528 | 528 |
/// the Node type of the source digraph. |
529 | 529 |
template <typename NodeCrossRef> |
530 | 530 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
531 | 531 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
532 | 532 |
NodeRefMap, NodeCrossRef>(map)); |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
|
536 | 536 |
/// \brief Make a copy of the given node map. |
537 | 537 |
/// |
538 | 538 |
/// This function makes a copy of the given node map for the newly |
539 | 539 |
/// created digraph. |
540 | 540 |
/// The key type of the new map \c tmap should be the Node type of the |
541 | 541 |
/// destination digraph, and the key type of the original map \c map |
542 | 542 |
/// should be the Node type of the source digraph. |
543 | 543 |
template <typename FromMap, typename ToMap> |
544 | 544 |
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
545 | 545 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
546 | 546 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
547 | 547 |
return *this; |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
/// \brief Make a copy of the given node. |
551 | 551 |
/// |
552 | 552 |
/// This function makes a copy of the given node. |
553 | 553 |
DigraphCopy& node(const Node& node, TNode& tnode) { |
554 | 554 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
555 | 555 |
NodeRefMap, TNode>(node, tnode)); |
556 | 556 |
return *this; |
557 | 557 |
} |
558 | 558 |
|
559 | 559 |
/// \brief Copy the arc references into the given map. |
560 | 560 |
/// |
561 | 561 |
/// This function copies the arc references into the given map. |
562 | 562 |
/// The parameter should be a map, whose key type is the Arc type of |
563 | 563 |
/// the source digraph, while the value type is the Arc type of the |
564 | 564 |
/// destination digraph. |
565 | 565 |
template <typename ArcRef> |
566 | 566 |
DigraphCopy& arcRef(ArcRef& map) { |
567 | 567 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
568 | 568 |
ArcRefMap, ArcRef>(map)); |
569 | 569 |
return *this; |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
/// \brief Copy the arc cross references into the given map. |
573 | 573 |
/// |
574 | 574 |
/// This function copies the arc cross references (reverse references) |
575 | 575 |
/// into the given map. The parameter should be a map, whose key type |
576 | 576 |
/// is the Arc type of the destination digraph, while the value type is |
577 | 577 |
/// the Arc type of the source digraph. |
578 | 578 |
template <typename ArcCrossRef> |
579 | 579 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
580 | 580 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
581 | 581 |
ArcRefMap, ArcCrossRef>(map)); |
582 | 582 |
return *this; |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
/// \brief Make a copy of the given arc map. |
586 | 586 |
/// |
587 | 587 |
/// This function makes a copy of the given arc map for the newly |
588 | 588 |
/// created digraph. |
589 | 589 |
/// The key type of the new map \c tmap should be the Arc type of the |
590 | 590 |
/// destination digraph, and the key type of the original map \c map |
591 | 591 |
/// should be the Arc type of the source digraph. |
592 | 592 |
template <typename FromMap, typename ToMap> |
593 | 593 |
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
594 | 594 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
595 | 595 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
596 | 596 |
return *this; |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
/// \brief Make a copy of the given arc. |
600 | 600 |
/// |
601 | 601 |
/// This function makes a copy of the given arc. |
602 | 602 |
DigraphCopy& arc(const Arc& arc, TArc& tarc) { |
603 | 603 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
604 | 604 |
ArcRefMap, TArc>(arc, tarc)); |
605 | 605 |
return *this; |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
/// \brief Execute copying. |
609 | 609 |
/// |
610 | 610 |
/// This function executes the copying of the digraph along with the |
611 | 611 |
/// copying of the assigned data. |
612 | 612 |
void run() { |
613 | 613 |
NodeRefMap nodeRefMap(_from); |
614 | 614 |
ArcRefMap arcRefMap(_from); |
615 | 615 |
_core_bits::DigraphCopySelector<To>:: |
616 | 616 |
copy(_from, _to, nodeRefMap, arcRefMap); |
617 | 617 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
618 | 618 |
_node_maps[i]->copy(_from, nodeRefMap); |
619 | 619 |
} |
620 | 620 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
621 | 621 |
_arc_maps[i]->copy(_from, arcRefMap); |
622 | 622 |
} |
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
protected: |
626 | 626 |
|
627 | 627 |
const From& _from; |
628 | 628 |
To& _to; |
629 | 629 |
|
630 | 630 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
631 | 631 |
_node_maps; |
632 | 632 |
|
633 | 633 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
634 | 634 |
_arc_maps; |
635 | 635 |
|
636 | 636 |
}; |
637 | 637 |
|
638 | 638 |
/// \brief Copy a digraph to another digraph. |
639 | 639 |
/// |
640 | 640 |
/// This function copies a digraph to another digraph. |
641 | 641 |
/// The complete usage of it is detailed in the DigraphCopy class, but |
642 | 642 |
/// a short example shows a basic work: |
643 | 643 |
///\code |
644 | 644 |
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); |
645 | 645 |
///\endcode |
646 | 646 |
/// |
647 | 647 |
/// After the copy the \c nr map will contain the mapping from the |
648 | 648 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
649 | 649 |
/// \c acr will contain the mapping from the arcs of the \c to digraph |
650 | 650 |
/// to the arcs of the \c from digraph. |
651 | 651 |
/// |
652 | 652 |
/// \see DigraphCopy |
653 | 653 |
template <typename From, typename To> |
654 | 654 |
DigraphCopy<From, To> digraphCopy(const From& from, To& to) { |
655 | 655 |
return DigraphCopy<From, To>(from, to); |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// \brief Class to copy a graph. |
659 | 659 |
/// |
660 | 660 |
/// Class to copy a graph to another graph (duplicate a graph). The |
661 | 661 |
/// simplest way of using it is through the \c graphCopy() function. |
662 | 662 |
/// |
663 | 663 |
/// This class not only make a copy of a graph, but it can create |
664 | 664 |
/// references and cross references between the nodes, edges and arcs of |
665 | 665 |
/// the two graphs, and it can copy maps for using with the newly created |
666 | 666 |
/// graph. |
667 | 667 |
/// |
668 | 668 |
/// To make a copy from a graph, first an instance of GraphCopy |
669 | 669 |
/// should be created, then the data belongs to the graph should |
670 | 670 |
/// assigned to copy. In the end, the \c run() member should be |
671 | 671 |
/// called. |
672 | 672 |
/// |
673 | 673 |
/// The next code copies a graph with several data: |
674 | 674 |
///\code |
675 | 675 |
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
676 | 676 |
/// // Create references for the nodes |
677 | 677 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
678 | 678 |
/// cg.nodeRef(nr); |
679 | 679 |
/// // Create cross references (inverse) for the edges |
680 | 680 |
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
681 | 681 |
/// cg.edgeCrossRef(ecr); |
682 | 682 |
/// // Copy an edge map |
683 | 683 |
/// OrigGraph::EdgeMap<double> oemap(orig_graph); |
684 | 684 |
/// NewGraph::EdgeMap<double> nemap(new_graph); |
685 | 685 |
/// cg.edgeMap(oemap, nemap); |
686 | 686 |
/// // Copy a node |
687 | 687 |
/// OrigGraph::Node on; |
688 | 688 |
/// NewGraph::Node nn; |
689 | 689 |
/// cg.node(on, nn); |
690 | 690 |
/// // Execute copying |
691 | 691 |
/// cg.run(); |
692 | 692 |
///\endcode |
693 | 693 |
template <typename From, typename To> |
694 | 694 |
class GraphCopy { |
695 | 695 |
private: |
696 | 696 |
|
697 | 697 |
typedef typename From::Node Node; |
698 | 698 |
typedef typename From::NodeIt NodeIt; |
699 | 699 |
typedef typename From::Arc Arc; |
700 | 700 |
typedef typename From::ArcIt ArcIt; |
701 | 701 |
typedef typename From::Edge Edge; |
702 | 702 |
typedef typename From::EdgeIt EdgeIt; |
703 | 703 |
|
704 | 704 |
typedef typename To::Node TNode; |
705 | 705 |
typedef typename To::Arc TArc; |
706 | 706 |
typedef typename To::Edge TEdge; |
707 | 707 |
|
708 | 708 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
709 | 709 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
710 | 710 |
|
711 | 711 |
struct ArcRefMap { |
712 | 712 |
ArcRefMap(const From& from, const To& to, |
713 | 713 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
714 | 714 |
: _from(from), _to(to), |
715 | 715 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
716 | 716 |
|
717 | 717 |
typedef typename From::Arc Key; |
718 | 718 |
typedef typename To::Arc Value; |
719 | 719 |
|
720 | 720 |
Value operator[](const Key& key) const { |
721 | 721 |
bool forward = _from.u(key) != _from.v(key) ? |
722 | 722 |
_node_ref[_from.source(key)] == |
723 | 723 |
_to.source(_to.direct(_edge_ref[key], true)) : |
724 | 724 |
_from.direction(key); |
725 | 725 |
return _to.direct(_edge_ref[key], forward); |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
const From& _from; |
729 | 729 |
const To& _to; |
730 | 730 |
const EdgeRefMap& _edge_ref; |
731 | 731 |
const NodeRefMap& _node_ref; |
732 | 732 |
}; |
733 | 733 |
|
734 | 734 |
public: |
735 | 735 |
|
736 | 736 |
/// \brief Constructor of GraphCopy. |
737 | 737 |
/// |
738 | 738 |
/// Constructor of GraphCopy for copying the content of the |
739 | 739 |
/// \c from graph into the \c to graph. |
740 | 740 |
GraphCopy(const From& from, To& to) |
741 | 741 |
: _from(from), _to(to) {} |
742 | 742 |
|
743 | 743 |
/// \brief Destructor of GraphCopy |
744 | 744 |
/// |
745 | 745 |
/// Destructor of GraphCopy. |
746 | 746 |
~GraphCopy() { |
747 | 747 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
748 | 748 |
delete _node_maps[i]; |
749 | 749 |
} |
750 | 750 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
751 | 751 |
delete _arc_maps[i]; |
752 | 752 |
} |
753 | 753 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
754 | 754 |
delete _edge_maps[i]; |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
|
758 | 758 |
/// \brief Copy the node references into the given map. |
759 | 759 |
/// |
760 | 760 |
/// This function copies the node references into the given map. |
761 | 761 |
/// The parameter should be a map, whose key type is the Node type of |
762 | 762 |
/// the source graph, while the value type is the Node type of the |
763 | 763 |
/// destination graph. |
764 | 764 |
template <typename NodeRef> |
765 | 765 |
GraphCopy& nodeRef(NodeRef& map) { |
766 | 766 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
767 | 767 |
NodeRefMap, NodeRef>(map)); |
768 | 768 |
return *this; |
769 | 769 |
} |
770 | 770 |
|
771 | 771 |
/// \brief Copy the node cross references into the given map. |
772 | 772 |
/// |
773 | 773 |
/// This function copies the node cross references (reverse references) |
774 | 774 |
/// into the given map. The parameter should be a map, whose key type |
775 | 775 |
/// is the Node type of the destination graph, while the value type is |
776 | 776 |
/// the Node type of the source graph. |
777 | 777 |
template <typename NodeCrossRef> |
778 | 778 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
779 | 779 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
780 | 780 |
NodeRefMap, NodeCrossRef>(map)); |
781 | 781 |
return *this; |
782 | 782 |
} |
783 | 783 |
|
784 | 784 |
/// \brief Make a copy of the given node map. |
785 | 785 |
/// |
786 | 786 |
/// This function makes a copy of the given node map for the newly |
787 | 787 |
/// created graph. |
788 | 788 |
/// The key type of the new map \c tmap should be the Node type of the |
789 | 789 |
/// destination graph, and the key type of the original map \c map |
790 | 790 |
/// should be the Node type of the source graph. |
791 | 791 |
template <typename FromMap, typename ToMap> |
792 | 792 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
793 | 793 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
794 | 794 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
795 | 795 |
return *this; |
796 | 796 |
} |
797 | 797 |
|
798 | 798 |
/// \brief Make a copy of the given node. |
799 | 799 |
/// |
800 | 800 |
/// This function makes a copy of the given node. |
801 | 801 |
GraphCopy& node(const Node& node, TNode& tnode) { |
802 | 802 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
803 | 803 |
NodeRefMap, TNode>(node, tnode)); |
804 | 804 |
return *this; |
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
/// \brief Copy the arc references into the given map. |
808 | 808 |
/// |
809 | 809 |
/// This function copies the arc references into the given map. |
810 | 810 |
/// The parameter should be a map, whose key type is the Arc type of |
811 | 811 |
/// the source graph, while the value type is the Arc type of the |
812 | 812 |
/// destination graph. |
813 | 813 |
template <typename ArcRef> |
814 | 814 |
GraphCopy& arcRef(ArcRef& map) { |
815 | 815 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
816 | 816 |
ArcRefMap, ArcRef>(map)); |
817 | 817 |
return *this; |
818 | 818 |
} |
819 | 819 |
|
820 | 820 |
/// \brief Copy the arc cross references into the given map. |
821 | 821 |
/// |
822 | 822 |
/// This function copies the arc cross references (reverse references) |
823 | 823 |
/// into the given map. The parameter should be a map, whose key type |
824 | 824 |
/// is the Arc type of the destination graph, while the value type is |
825 | 825 |
/// the Arc type of the source graph. |
826 | 826 |
template <typename ArcCrossRef> |
827 | 827 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
828 | 828 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
829 | 829 |
ArcRefMap, ArcCrossRef>(map)); |
830 | 830 |
return *this; |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
/// \brief Make a copy of the given arc map. |
834 | 834 |
/// |
835 | 835 |
/// This function makes a copy of the given arc map for the newly |
836 | 836 |
/// created graph. |
837 | 837 |
/// The key type of the new map \c tmap should be the Arc type of the |
838 | 838 |
/// destination graph, and the key type of the original map \c map |
839 | 839 |
/// should be the Arc type of the source graph. |
840 | 840 |
template <typename FromMap, typename ToMap> |
841 | 841 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
842 | 842 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
843 | 843 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
844 | 844 |
return *this; |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
/// \brief Make a copy of the given arc. |
848 | 848 |
/// |
849 | 849 |
/// This function makes a copy of the given arc. |
850 | 850 |
GraphCopy& arc(const Arc& arc, TArc& tarc) { |
851 | 851 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
852 | 852 |
ArcRefMap, TArc>(arc, tarc)); |
853 | 853 |
return *this; |
854 | 854 |
} |
855 | 855 |
|
856 | 856 |
/// \brief Copy the edge references into the given map. |
857 | 857 |
/// |
858 | 858 |
/// This function copies the edge references into the given map. |
859 | 859 |
/// The parameter should be a map, whose key type is the Edge type of |
860 | 860 |
/// the source graph, while the value type is the Edge type of the |
861 | 861 |
/// destination graph. |
862 | 862 |
template <typename EdgeRef> |
863 | 863 |
GraphCopy& edgeRef(EdgeRef& map) { |
864 | 864 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
865 | 865 |
EdgeRefMap, EdgeRef>(map)); |
866 | 866 |
return *this; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
/// \brief Copy the edge cross references into the given map. |
870 | 870 |
/// |
871 | 871 |
/// This function copies the edge cross references (reverse references) |
872 | 872 |
/// into the given map. The parameter should be a map, whose key type |
873 | 873 |
/// is the Edge type of the destination graph, while the value type is |
874 | 874 |
/// the Edge type of the source graph. |
875 | 875 |
template <typename EdgeCrossRef> |
876 | 876 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
877 | 877 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
878 | 878 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
879 | 879 |
return *this; |
880 | 880 |
} |
881 | 881 |
|
882 | 882 |
/// \brief Make a copy of the given edge map. |
883 | 883 |
/// |
884 | 884 |
/// This function makes a copy of the given edge map for the newly |
885 | 885 |
/// created graph. |
886 | 886 |
/// The key type of the new map \c tmap should be the Edge type of the |
887 | 887 |
/// destination graph, and the key type of the original map \c map |
888 | 888 |
/// should be the Edge type of the source graph. |
889 | 889 |
template <typename FromMap, typename ToMap> |
890 | 890 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
891 | 891 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
892 | 892 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
893 | 893 |
return *this; |
894 | 894 |
} |
895 | 895 |
|
896 | 896 |
/// \brief Make a copy of the given edge. |
897 | 897 |
/// |
898 | 898 |
/// This function makes a copy of the given edge. |
899 | 899 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
900 | 900 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
901 | 901 |
EdgeRefMap, TEdge>(edge, tedge)); |
902 | 902 |
return *this; |
903 | 903 |
} |
904 | 904 |
|
905 | 905 |
/// \brief Execute copying. |
906 | 906 |
/// |
907 | 907 |
/// This function executes the copying of the graph along with the |
908 | 908 |
/// copying of the assigned data. |
909 | 909 |
void run() { |
910 | 910 |
NodeRefMap nodeRefMap(_from); |
911 | 911 |
EdgeRefMap edgeRefMap(_from); |
912 | 912 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
913 | 913 |
_core_bits::GraphCopySelector<To>:: |
914 | 914 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
915 | 915 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
916 | 916 |
_node_maps[i]->copy(_from, nodeRefMap); |
917 | 917 |
} |
918 | 918 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
919 | 919 |
_edge_maps[i]->copy(_from, edgeRefMap); |
920 | 920 |
} |
921 | 921 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
922 | 922 |
_arc_maps[i]->copy(_from, arcRefMap); |
923 | 923 |
} |
924 | 924 |
} |
925 | 925 |
|
926 | 926 |
private: |
927 | 927 |
|
928 | 928 |
const From& _from; |
929 | 929 |
To& _to; |
930 | 930 |
|
931 | 931 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
932 | 932 |
_node_maps; |
933 | 933 |
|
934 | 934 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
935 | 935 |
_arc_maps; |
936 | 936 |
|
937 | 937 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
938 | 938 |
_edge_maps; |
939 | 939 |
|
940 | 940 |
}; |
941 | 941 |
|
942 | 942 |
/// \brief Copy a graph to another graph. |
943 | 943 |
/// |
944 | 944 |
/// This function copies a graph to another graph. |
945 | 945 |
/// The complete usage of it is detailed in the GraphCopy class, |
946 | 946 |
/// but a short example shows a basic work: |
947 | 947 |
///\code |
948 | 948 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
949 | 949 |
///\endcode |
950 | 950 |
/// |
951 | 951 |
/// After the copy the \c nr map will contain the mapping from the |
952 | 952 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
953 | 953 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
954 | 954 |
/// to the edges of the \c from graph. |
955 | 955 |
/// |
956 | 956 |
/// \see GraphCopy |
957 | 957 |
template <typename From, typename To> |
958 | 958 |
GraphCopy<From, To> |
959 | 959 |
graphCopy(const From& from, To& to) { |
960 | 960 |
return GraphCopy<From, To>(from, to); |
961 | 961 |
} |
962 | 962 |
|
963 | 963 |
namespace _core_bits { |
964 | 964 |
|
965 | 965 |
template <typename Graph, typename Enable = void> |
966 | 966 |
struct FindArcSelector { |
967 | 967 |
typedef typename Graph::Node Node; |
968 | 968 |
typedef typename Graph::Arc Arc; |
969 | 969 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
970 | 970 |
if (e == INVALID) { |
971 | 971 |
g.firstOut(e, u); |
972 | 972 |
} else { |
973 | 973 |
g.nextOut(e); |
974 | 974 |
} |
975 | 975 |
while (e != INVALID && g.target(e) != v) { |
976 | 976 |
g.nextOut(e); |
977 | 977 |
} |
978 | 978 |
return e; |
979 | 979 |
} |
980 | 980 |
}; |
981 | 981 |
|
982 | 982 |
template <typename Graph> |
983 | 983 |
struct FindArcSelector< |
984 | 984 |
Graph, |
985 | 985 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
986 | 986 |
{ |
987 | 987 |
typedef typename Graph::Node Node; |
988 | 988 |
typedef typename Graph::Arc Arc; |
989 | 989 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
990 | 990 |
return g.findArc(u, v, prev); |
991 | 991 |
} |
992 | 992 |
}; |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
/// \brief Find an arc between two nodes of a digraph. |
996 | 996 |
/// |
997 | 997 |
/// This function finds an arc from node \c u to node \c v in the |
998 | 998 |
/// digraph \c g. |
999 | 999 |
/// |
1000 | 1000 |
/// If \c prev is \ref INVALID (this is the default value), then |
1001 | 1001 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1002 | 1002 |
/// the next arc from \c u to \c v after \c prev. |
1003 | 1003 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1004 | 1004 |
/// |
1005 | 1005 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1006 | 1006 |
///\code |
1007 | 1007 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1008 | 1008 |
/// ... |
1009 | 1009 |
/// } |
1010 | 1010 |
///\endcode |
1011 | 1011 |
/// |
1012 | 1012 |
/// \note \ref ConArcIt provides iterator interface for the same |
1013 | 1013 |
/// functionality. |
1014 | 1014 |
/// |
1015 | 1015 |
///\sa ConArcIt |
1016 | 1016 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1017 | 1017 |
template <typename Graph> |
1018 | 1018 |
inline typename Graph::Arc |
1019 | 1019 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1020 | 1020 |
typename Graph::Arc prev = INVALID) { |
1021 | 1021 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1022 | 1022 |
} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1025 | 1025 |
/// |
1026 | 1026 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1027 | 1027 |
/// a higher level interface for the \ref findArc() function. You can |
1028 | 1028 |
/// use it the following way: |
1029 | 1029 |
///\code |
1030 | 1030 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1031 | 1031 |
/// ... |
1032 | 1032 |
/// } |
1033 | 1033 |
///\endcode |
1034 | 1034 |
/// |
1035 | 1035 |
///\sa findArc() |
1036 | 1036 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1037 | 1037 |
template <typename GR> |
1038 | 1038 |
class ConArcIt : public GR::Arc { |
1039 | 1039 |
typedef typename GR::Arc Parent; |
1040 | 1040 |
|
1041 | 1041 |
public: |
1042 | 1042 |
|
1043 | 1043 |
typedef typename GR::Arc Arc; |
1044 | 1044 |
typedef typename GR::Node Node; |
1045 | 1045 |
|
1046 | 1046 |
/// \brief Constructor. |
1047 | 1047 |
/// |
1048 | 1048 |
/// Construct a new ConArcIt iterating on the arcs that |
1049 | 1049 |
/// connects nodes \c u and \c v. |
1050 | 1050 |
ConArcIt(const GR& g, Node u, Node v) : _graph(g) { |
1051 | 1051 |
Parent::operator=(findArc(_graph, u, v)); |
1052 | 1052 |
} |
1053 | 1053 |
|
1054 | 1054 |
/// \brief Constructor. |
1055 | 1055 |
/// |
1056 | 1056 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1057 | 1057 |
ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {} |
1058 | 1058 |
|
1059 | 1059 |
/// \brief Increment operator. |
1060 | 1060 |
/// |
1061 | 1061 |
/// It increments the iterator and gives back the next arc. |
1062 | 1062 |
ConArcIt& operator++() { |
1063 | 1063 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1064 | 1064 |
_graph.target(*this), *this)); |
1065 | 1065 |
return *this; |
1066 | 1066 |
} |
1067 | 1067 |
private: |
1068 | 1068 |
const GR& _graph; |
1069 | 1069 |
}; |
1070 | 1070 |
|
1071 | 1071 |
namespace _core_bits { |
1072 | 1072 |
|
1073 | 1073 |
template <typename Graph, typename Enable = void> |
1074 | 1074 |
struct FindEdgeSelector { |
1075 | 1075 |
typedef typename Graph::Node Node; |
1076 | 1076 |
typedef typename Graph::Edge Edge; |
1077 | 1077 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1078 | 1078 |
bool b; |
1079 | 1079 |
if (u != v) { |
1080 | 1080 |
if (e == INVALID) { |
1081 | 1081 |
g.firstInc(e, b, u); |
1082 | 1082 |
} else { |
1083 | 1083 |
b = g.u(e) == u; |
1084 | 1084 |
g.nextInc(e, b); |
1085 | 1085 |
} |
1086 | 1086 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1087 | 1087 |
g.nextInc(e, b); |
1088 | 1088 |
} |
1089 | 1089 |
} else { |
1090 | 1090 |
if (e == INVALID) { |
1091 | 1091 |
g.firstInc(e, b, u); |
1092 | 1092 |
} else { |
1093 | 1093 |
b = true; |
1094 | 1094 |
g.nextInc(e, b); |
1095 | 1095 |
} |
1096 | 1096 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1097 | 1097 |
g.nextInc(e, b); |
1098 | 1098 |
} |
1099 | 1099 |
} |
1100 | 1100 |
return e; |
1101 | 1101 |
} |
1102 | 1102 |
}; |
1103 | 1103 |
|
1104 | 1104 |
template <typename Graph> |
1105 | 1105 |
struct FindEdgeSelector< |
1106 | 1106 |
Graph, |
1107 | 1107 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1108 | 1108 |
{ |
1109 | 1109 |
typedef typename Graph::Node Node; |
1110 | 1110 |
typedef typename Graph::Edge Edge; |
1111 | 1111 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1112 | 1112 |
return g.findEdge(u, v, prev); |
1113 | 1113 |
} |
1114 | 1114 |
}; |
1115 | 1115 |
} |
1116 | 1116 |
|
1117 | 1117 |
/// \brief Find an edge between two nodes of a graph. |
1118 | 1118 |
/// |
1119 | 1119 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1120 | 1120 |
/// If node \c u and node \c v is equal then each loop edge |
1121 | 1121 |
/// will be enumerated once. |
1122 | 1122 |
/// |
1123 | 1123 |
/// If \c prev is \ref INVALID (this is the default value), then |
1124 | 1124 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1125 | 1125 |
/// the next edge from \c u to \c v after \c prev. |
1126 | 1126 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1127 | 1127 |
/// |
1128 | 1128 |
/// Thus you can iterate through each edge between \c u and \c v |
1129 | 1129 |
/// as it follows. |
1130 | 1130 |
///\code |
1131 | 1131 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1132 | 1132 |
/// ... |
1133 | 1133 |
/// } |
1134 | 1134 |
///\endcode |
1135 | 1135 |
/// |
1136 | 1136 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1137 | 1137 |
/// functionality. |
1138 | 1138 |
/// |
1139 | 1139 |
///\sa ConEdgeIt |
1140 | 1140 |
template <typename Graph> |
1141 | 1141 |
inline typename Graph::Edge |
1142 | 1142 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1143 | 1143 |
typename Graph::Edge p = INVALID) { |
1144 | 1144 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1145 | 1145 |
} |
1146 | 1146 |
|
1147 | 1147 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1148 | 1148 |
/// |
1149 | 1149 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1150 | 1150 |
/// It is a higher level interface for the findEdge() function. You can |
1151 | 1151 |
/// use it the following way: |
1152 | 1152 |
///\code |
1153 | 1153 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1154 | 1154 |
/// ... |
1155 | 1155 |
/// } |
1156 | 1156 |
///\endcode |
1157 | 1157 |
/// |
1158 | 1158 |
///\sa findEdge() |
1159 | 1159 |
template <typename GR> |
1160 | 1160 |
class ConEdgeIt : public GR::Edge { |
1161 | 1161 |
typedef typename GR::Edge Parent; |
1162 | 1162 |
|
1163 | 1163 |
public: |
1164 | 1164 |
|
1165 | 1165 |
typedef typename GR::Edge Edge; |
1166 | 1166 |
typedef typename GR::Node Node; |
1167 | 1167 |
|
1168 | 1168 |
/// \brief Constructor. |
1169 | 1169 |
/// |
1170 | 1170 |
/// Construct a new ConEdgeIt iterating on the edges that |
1171 | 1171 |
/// connects nodes \c u and \c v. |
1172 | 1172 |
ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
1173 | 1173 |
Parent::operator=(findEdge(_graph, _u, _v)); |
1174 | 1174 |
} |
1175 | 1175 |
|
1176 | 1176 |
/// \brief Constructor. |
1177 | 1177 |
/// |
1178 | 1178 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1179 | 1179 |
ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {} |
1180 | 1180 |
|
1181 | 1181 |
/// \brief Increment operator. |
1182 | 1182 |
/// |
1183 | 1183 |
/// It increments the iterator and gives back the next edge. |
1184 | 1184 |
ConEdgeIt& operator++() { |
1185 | 1185 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
1186 | 1186 |
return *this; |
1187 | 1187 |
} |
1188 | 1188 |
private: |
1189 | 1189 |
const GR& _graph; |
1190 | 1190 |
Node _u, _v; |
1191 | 1191 |
}; |
1192 | 1192 |
|
1193 | 1193 |
|
1194 | 1194 |
///Dynamic arc look-up between given endpoints. |
1195 | 1195 |
|
1196 | 1196 |
///Using this class, you can find an arc in a digraph from a given |
1197 | 1197 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1198 | 1198 |
///where <em>d</em> is the out-degree of the source node. |
1199 | 1199 |
/// |
1200 | 1200 |
///It is possible to find \e all parallel arcs between two nodes with |
1201 | 1201 |
///the \c operator() member. |
1202 | 1202 |
/// |
1203 | 1203 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1204 | 1204 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1205 | 1205 |
/// |
1206 | 1206 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1207 | 1207 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1208 | 1208 |
///time bound for arc look-ups. This class also guarantees the |
1209 | 1209 |
///optimal time bound in a constant factor for any distribution of |
1210 | 1210 |
///queries. |
1211 | 1211 |
/// |
1212 | 1212 |
///\tparam GR The type of the underlying digraph. |
1213 | 1213 |
/// |
1214 | 1214 |
///\sa ArcLookUp |
1215 | 1215 |
///\sa AllArcLookUp |
1216 | 1216 |
template <typename GR> |
1217 | 1217 |
class DynArcLookUp |
1218 | 1218 |
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
1219 | 1219 |
{ |
1220 | 1220 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
1221 | 1221 |
::ItemNotifier::ObserverBase Parent; |
1222 | 1222 |
|
1223 | 1223 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1224 | 1224 |
|
1225 | 1225 |
public: |
1226 | 1226 |
|
1227 | 1227 |
/// The Digraph type |
1228 | 1228 |
typedef GR Digraph; |
1229 | 1229 |
|
1230 | 1230 |
protected: |
1231 | 1231 |
|
1232 | 1232 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type { |
1233 | 1233 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
1234 | 1234 |
|
1235 | 1235 |
public: |
1236 | 1236 |
|
1237 | 1237 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
1238 | 1238 |
|
1239 | 1239 |
virtual void add(const Node& node) { |
1240 | 1240 |
Parent::add(node); |
1241 | 1241 |
Parent::set(node, INVALID); |
1242 | 1242 |
} |
1243 | 1243 |
|
1244 | 1244 |
virtual void add(const std::vector<Node>& nodes) { |
1245 | 1245 |
Parent::add(nodes); |
1246 | 1246 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1247 | 1247 |
Parent::set(nodes[i], INVALID); |
1248 | 1248 |
} |
1249 | 1249 |
} |
1250 | 1250 |
|
1251 | 1251 |
virtual void build() { |
1252 | 1252 |
Parent::build(); |
1253 | 1253 |
Node it; |
1254 | 1254 |
typename Parent::Notifier* nf = Parent::notifier(); |
1255 | 1255 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1256 | 1256 |
Parent::set(it, INVALID); |
1257 | 1257 |
} |
1258 | 1258 |
} |
1259 | 1259 |
}; |
1260 | 1260 |
|
1261 | 1261 |
class ArcLess { |
1262 | 1262 |
const Digraph &g; |
1263 | 1263 |
public: |
1264 | 1264 |
ArcLess(const Digraph &_g) : g(_g) {} |
1265 | 1265 |
bool operator()(Arc a,Arc b) const |
1266 | 1266 |
{ |
1267 | 1267 |
return g.target(a)<g.target(b); |
1268 | 1268 |
} |
1269 | 1269 |
}; |
1270 | 1270 |
|
1271 | 1271 |
protected: |
1272 | 1272 |
|
1273 | 1273 |
const Digraph &_g; |
1274 | 1274 |
AutoNodeMap _head; |
1275 | 1275 |
typename Digraph::template ArcMap<Arc> _parent; |
1276 | 1276 |
typename Digraph::template ArcMap<Arc> _left; |
1277 | 1277 |
typename Digraph::template ArcMap<Arc> _right; |
1278 | 1278 |
|
1279 | 1279 |
public: |
1280 | 1280 |
|
1281 | 1281 |
///Constructor |
1282 | 1282 |
|
1283 | 1283 |
///Constructor. |
1284 | 1284 |
/// |
1285 | 1285 |
///It builds up the search database. |
1286 | 1286 |
DynArcLookUp(const Digraph &g) |
1287 | 1287 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1288 | 1288 |
{ |
1289 | 1289 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1290 | 1290 |
refresh(); |
1291 | 1291 |
} |
1292 | 1292 |
|
1293 | 1293 |
protected: |
1294 | 1294 |
|
1295 | 1295 |
virtual void add(const Arc& arc) { |
1296 | 1296 |
insert(arc); |
1297 | 1297 |
} |
1298 | 1298 |
|
1299 | 1299 |
virtual void add(const std::vector<Arc>& arcs) { |
1300 | 1300 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1301 | 1301 |
insert(arcs[i]); |
1302 | 1302 |
} |
1303 | 1303 |
} |
1304 | 1304 |
|
1305 | 1305 |
virtual void erase(const Arc& arc) { |
1306 | 1306 |
remove(arc); |
1307 | 1307 |
} |
1308 | 1308 |
|
1309 | 1309 |
virtual void erase(const std::vector<Arc>& arcs) { |
1310 | 1310 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1311 | 1311 |
remove(arcs[i]); |
1312 | 1312 |
} |
1313 | 1313 |
} |
1314 | 1314 |
|
1315 | 1315 |
virtual void build() { |
1316 | 1316 |
refresh(); |
1317 | 1317 |
} |
1318 | 1318 |
|
1319 | 1319 |
virtual void clear() { |
1320 | 1320 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1321 | 1321 |
_head[n] = INVALID; |
1322 | 1322 |
} |
1323 | 1323 |
} |
1324 | 1324 |
|
1325 | 1325 |
void insert(Arc arc) { |
1326 | 1326 |
Node s = _g.source(arc); |
1327 | 1327 |
Node t = _g.target(arc); |
1328 | 1328 |
_left[arc] = INVALID; |
1329 | 1329 |
_right[arc] = INVALID; |
1330 | 1330 |
|
1331 | 1331 |
Arc e = _head[s]; |
1332 | 1332 |
if (e == INVALID) { |
1333 | 1333 |
_head[s] = arc; |
1334 | 1334 |
_parent[arc] = INVALID; |
1335 | 1335 |
return; |
1336 | 1336 |
} |
1337 | 1337 |
while (true) { |
1338 | 1338 |
if (t < _g.target(e)) { |
1339 | 1339 |
if (_left[e] == INVALID) { |
1340 | 1340 |
_left[e] = arc; |
1341 | 1341 |
_parent[arc] = e; |
1342 | 1342 |
splay(arc); |
1343 | 1343 |
return; |
1344 | 1344 |
} else { |
1345 | 1345 |
e = _left[e]; |
1346 | 1346 |
} |
1347 | 1347 |
} else { |
1348 | 1348 |
if (_right[e] == INVALID) { |
1349 | 1349 |
_right[e] = arc; |
1350 | 1350 |
_parent[arc] = e; |
1351 | 1351 |
splay(arc); |
1352 | 1352 |
return; |
1353 | 1353 |
} else { |
1354 | 1354 |
e = _right[e]; |
1355 | 1355 |
} |
1356 | 1356 |
} |
1357 | 1357 |
} |
1358 | 1358 |
} |
1359 | 1359 |
|
1360 | 1360 |
void remove(Arc arc) { |
1361 | 1361 |
if (_left[arc] == INVALID) { |
1362 | 1362 |
if (_right[arc] != INVALID) { |
1363 | 1363 |
_parent[_right[arc]] = _parent[arc]; |
1364 | 1364 |
} |
1365 | 1365 |
if (_parent[arc] != INVALID) { |
1366 | 1366 |
if (_left[_parent[arc]] == arc) { |
1367 | 1367 |
_left[_parent[arc]] = _right[arc]; |
1368 | 1368 |
} else { |
1369 | 1369 |
_right[_parent[arc]] = _right[arc]; |
1370 | 1370 |
} |
1371 | 1371 |
} else { |
1372 | 1372 |
_head[_g.source(arc)] = _right[arc]; |
1373 | 1373 |
} |
1374 | 1374 |
} else if (_right[arc] == INVALID) { |
1375 | 1375 |
_parent[_left[arc]] = _parent[arc]; |
1376 | 1376 |
if (_parent[arc] != INVALID) { |
1377 | 1377 |
if (_left[_parent[arc]] == arc) { |
1378 | 1378 |
_left[_parent[arc]] = _left[arc]; |
1379 | 1379 |
} else { |
1380 | 1380 |
_right[_parent[arc]] = _left[arc]; |
1381 | 1381 |
} |
1382 | 1382 |
} else { |
1383 | 1383 |
_head[_g.source(arc)] = _left[arc]; |
1384 | 1384 |
} |
1385 | 1385 |
} else { |
1386 | 1386 |
Arc e = _left[arc]; |
1387 | 1387 |
if (_right[e] != INVALID) { |
1388 | 1388 |
e = _right[e]; |
1389 | 1389 |
while (_right[e] != INVALID) { |
1390 | 1390 |
e = _right[e]; |
1391 | 1391 |
} |
1392 | 1392 |
Arc s = _parent[e]; |
1393 | 1393 |
_right[_parent[e]] = _left[e]; |
1394 | 1394 |
if (_left[e] != INVALID) { |
1395 | 1395 |
_parent[_left[e]] = _parent[e]; |
1396 | 1396 |
} |
1397 | 1397 |
|
1398 | 1398 |
_left[e] = _left[arc]; |
1399 | 1399 |
_parent[_left[arc]] = e; |
1400 | 1400 |
_right[e] = _right[arc]; |
1401 | 1401 |
_parent[_right[arc]] = e; |
1402 | 1402 |
|
1403 | 1403 |
_parent[e] = _parent[arc]; |
1404 | 1404 |
if (_parent[arc] != INVALID) { |
1405 | 1405 |
if (_left[_parent[arc]] == arc) { |
1406 | 1406 |
_left[_parent[arc]] = e; |
1407 | 1407 |
} else { |
1408 | 1408 |
_right[_parent[arc]] = e; |
1409 | 1409 |
} |
1410 | 1410 |
} |
1411 | 1411 |
splay(s); |
1412 | 1412 |
} else { |
1413 | 1413 |
_right[e] = _right[arc]; |
1414 | 1414 |
_parent[_right[arc]] = e; |
1415 | 1415 |
_parent[e] = _parent[arc]; |
1416 | 1416 |
|
1417 | 1417 |
if (_parent[arc] != INVALID) { |
1418 | 1418 |
if (_left[_parent[arc]] == arc) { |
1419 | 1419 |
_left[_parent[arc]] = e; |
1420 | 1420 |
} else { |
1421 | 1421 |
_right[_parent[arc]] = e; |
1422 | 1422 |
} |
1423 | 1423 |
} else { |
1424 | 1424 |
_head[_g.source(arc)] = e; |
1425 | 1425 |
} |
1426 | 1426 |
} |
1427 | 1427 |
} |
1428 | 1428 |
} |
1429 | 1429 |
|
1430 | 1430 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1431 | 1431 |
{ |
1432 | 1432 |
int m=(a+b)/2; |
1433 | 1433 |
Arc me=v[m]; |
1434 | 1434 |
if (a < m) { |
1435 | 1435 |
Arc left = refreshRec(v,a,m-1); |
1436 | 1436 |
_left[me] = left; |
1437 | 1437 |
_parent[left] = me; |
1438 | 1438 |
} else { |
1439 | 1439 |
_left[me] = INVALID; |
1440 | 1440 |
} |
1441 | 1441 |
if (m < b) { |
1442 | 1442 |
Arc right = refreshRec(v,m+1,b); |
1443 | 1443 |
_right[me] = right; |
1444 | 1444 |
_parent[right] = me; |
1445 | 1445 |
} else { |
1446 | 1446 |
_right[me] = INVALID; |
1447 | 1447 |
} |
1448 | 1448 |
return me; |
1449 | 1449 |
} |
1450 | 1450 |
|
1451 | 1451 |
void refresh() { |
1452 | 1452 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1453 | 1453 |
std::vector<Arc> v; |
1454 | 1454 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
1455 | 1455 |
if (!v.empty()) { |
1456 | 1456 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1457 | 1457 |
Arc head = refreshRec(v,0,v.size()-1); |
1458 | 1458 |
_head[n] = head; |
1459 | 1459 |
_parent[head] = INVALID; |
1460 | 1460 |
} |
1461 | 1461 |
else _head[n] = INVALID; |
1462 | 1462 |
} |
1463 | 1463 |
} |
1464 | 1464 |
|
1465 | 1465 |
void zig(Arc v) { |
1466 | 1466 |
Arc w = _parent[v]; |
1467 | 1467 |
_parent[v] = _parent[w]; |
1468 | 1468 |
_parent[w] = v; |
1469 | 1469 |
_left[w] = _right[v]; |
1470 | 1470 |
_right[v] = w; |
1471 | 1471 |
if (_parent[v] != INVALID) { |
1472 | 1472 |
if (_right[_parent[v]] == w) { |
1473 | 1473 |
_right[_parent[v]] = v; |
1474 | 1474 |
} else { |
1475 | 1475 |
_left[_parent[v]] = v; |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
if (_left[w] != INVALID){ |
1479 | 1479 |
_parent[_left[w]] = w; |
1480 | 1480 |
} |
1481 | 1481 |
} |
1482 | 1482 |
|
1483 | 1483 |
void zag(Arc v) { |
1484 | 1484 |
Arc w = _parent[v]; |
1485 | 1485 |
_parent[v] = _parent[w]; |
1486 | 1486 |
_parent[w] = v; |
1487 | 1487 |
_right[w] = _left[v]; |
1488 | 1488 |
_left[v] = w; |
1489 | 1489 |
if (_parent[v] != INVALID){ |
1490 | 1490 |
if (_left[_parent[v]] == w) { |
1491 | 1491 |
_left[_parent[v]] = v; |
1492 | 1492 |
} else { |
1493 | 1493 |
_right[_parent[v]] = v; |
1494 | 1494 |
} |
1495 | 1495 |
} |
1496 | 1496 |
if (_right[w] != INVALID){ |
1497 | 1497 |
_parent[_right[w]] = w; |
1498 | 1498 |
} |
1499 | 1499 |
} |
1500 | 1500 |
|
1501 | 1501 |
void splay(Arc v) { |
1502 | 1502 |
while (_parent[v] != INVALID) { |
1503 | 1503 |
if (v == _left[_parent[v]]) { |
1504 | 1504 |
if (_parent[_parent[v]] == INVALID) { |
1505 | 1505 |
zig(v); |
1506 | 1506 |
} else { |
1507 | 1507 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1508 | 1508 |
zig(_parent[v]); |
1509 | 1509 |
zig(v); |
1510 | 1510 |
} else { |
1511 | 1511 |
zig(v); |
1512 | 1512 |
zag(v); |
1513 | 1513 |
} |
1514 | 1514 |
} |
1515 | 1515 |
} else { |
1516 | 1516 |
if (_parent[_parent[v]] == INVALID) { |
1517 | 1517 |
zag(v); |
1518 | 1518 |
} else { |
1519 | 1519 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1520 | 1520 |
zag(v); |
1521 | 1521 |
zig(v); |
1522 | 1522 |
} else { |
1523 | 1523 |
zag(_parent[v]); |
1524 | 1524 |
zag(v); |
1525 | 1525 |
} |
1526 | 1526 |
} |
1527 | 1527 |
} |
1528 | 1528 |
} |
1529 | 1529 |
_head[_g.source(v)] = v; |
1530 | 1530 |
} |
1531 | 1531 |
|
1532 | 1532 |
|
1533 | 1533 |
public: |
1534 | 1534 |
|
1535 | 1535 |
///Find an arc between two nodes. |
1536 | 1536 |
|
1537 | 1537 |
///Find an arc between two nodes. |
1538 | 1538 |
///\param s The source node. |
1539 | 1539 |
///\param t The target node. |
1540 | 1540 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1541 | 1541 |
///not given, the operator finds the first appropriate arc. |
1542 | 1542 |
///\return An arc from \c s to \c t after \c p or |
1543 | 1543 |
///\ref INVALID if there is no more. |
1544 | 1544 |
/// |
1545 | 1545 |
///For example, you can count the number of arcs from \c u to \c v in the |
1546 | 1546 |
///following way. |
1547 | 1547 |
///\code |
1548 | 1548 |
///DynArcLookUp<ListDigraph> ae(g); |
1549 | 1549 |
///... |
1550 | 1550 |
///int n = 0; |
1551 | 1551 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1552 | 1552 |
///\endcode |
1553 | 1553 |
/// |
1554 | 1554 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1555 | 1555 |
///amortized time, specifically, the time complexity of the lookups |
1556 | 1556 |
///is equal to the optimal search tree implementation for the |
1557 | 1557 |
///current query distribution in a constant factor. |
1558 | 1558 |
/// |
1559 | 1559 |
///\note This is a dynamic data structure, therefore the data |
1560 | 1560 |
///structure is updated after each graph alteration. Thus although |
1561 | 1561 |
///this data structure is theoretically faster than \ref ArcLookUp |
1562 | 1562 |
///and \ref AllArcLookUp, it often provides worse performance than |
1563 | 1563 |
///them. |
1564 | 1564 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1565 | 1565 |
if (p == INVALID) { |
1566 | 1566 |
Arc a = _head[s]; |
1567 | 1567 |
if (a == INVALID) return INVALID; |
1568 | 1568 |
Arc r = INVALID; |
1569 | 1569 |
while (true) { |
1570 | 1570 |
if (_g.target(a) < t) { |
1571 | 1571 |
if (_right[a] == INVALID) { |
1572 | 1572 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1573 | 1573 |
return r; |
1574 | 1574 |
} else { |
1575 | 1575 |
a = _right[a]; |
1576 | 1576 |
} |
1577 | 1577 |
} else { |
1578 | 1578 |
if (_g.target(a) == t) { |
1579 | 1579 |
r = a; |
1580 | 1580 |
} |
1581 | 1581 |
if (_left[a] == INVALID) { |
1582 | 1582 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1583 | 1583 |
return r; |
1584 | 1584 |
} else { |
1585 | 1585 |
a = _left[a]; |
1586 | 1586 |
} |
1587 | 1587 |
} |
1588 | 1588 |
} |
1589 | 1589 |
} else { |
1590 | 1590 |
Arc a = p; |
1591 | 1591 |
if (_right[a] != INVALID) { |
1592 | 1592 |
a = _right[a]; |
1593 | 1593 |
while (_left[a] != INVALID) { |
1594 | 1594 |
a = _left[a]; |
1595 | 1595 |
} |
1596 | 1596 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1597 | 1597 |
} else { |
1598 | 1598 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1599 | 1599 |
a = _parent[a]; |
1600 | 1600 |
} |
1601 | 1601 |
if (_parent[a] == INVALID) { |
1602 | 1602 |
return INVALID; |
1603 | 1603 |
} else { |
1604 | 1604 |
a = _parent[a]; |
1605 | 1605 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1606 | 1606 |
} |
1607 | 1607 |
} |
1608 | 1608 |
if (_g.target(a) == t) return a; |
1609 | 1609 |
else return INVALID; |
1610 | 1610 |
} |
1611 | 1611 |
} |
1612 | 1612 |
|
1613 | 1613 |
}; |
1614 | 1614 |
|
1615 | 1615 |
///Fast arc look-up between given endpoints. |
1616 | 1616 |
|
1617 | 1617 |
///Using this class, you can find an arc in a digraph from a given |
1618 | 1618 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
1619 | 1619 |
///where <em>d</em> is the out-degree of the source node. |
1620 | 1620 |
/// |
1621 | 1621 |
///It is not possible to find \e all parallel arcs between two nodes. |
1622 | 1622 |
///Use \ref AllArcLookUp for this purpose. |
1623 | 1623 |
/// |
1624 | 1624 |
///\warning This class is static, so you should call refresh() (or at |
1625 | 1625 |
///least refresh(Node)) to refresh this data structure whenever the |
1626 | 1626 |
///digraph changes. This is a time consuming (superlinearly proportional |
1627 | 1627 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1628 | 1628 |
/// |
1629 | 1629 |
///\tparam GR The type of the underlying digraph. |
1630 | 1630 |
/// |
1631 | 1631 |
///\sa DynArcLookUp |
1632 | 1632 |
///\sa AllArcLookUp |
1633 | 1633 |
template<class GR> |
1634 | 1634 |
class ArcLookUp |
1635 | 1635 |
{ |
1636 | 1636 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1637 | 1637 |
|
1638 | 1638 |
public: |
1639 | 1639 |
|
1640 | 1640 |
/// The Digraph type |
1641 | 1641 |
typedef GR Digraph; |
1642 | 1642 |
|
1643 | 1643 |
protected: |
1644 | 1644 |
const Digraph &_g; |
1645 | 1645 |
typename Digraph::template NodeMap<Arc> _head; |
1646 | 1646 |
typename Digraph::template ArcMap<Arc> _left; |
1647 | 1647 |
typename Digraph::template ArcMap<Arc> _right; |
1648 | 1648 |
|
1649 | 1649 |
class ArcLess { |
1650 | 1650 |
const Digraph &g; |
1651 | 1651 |
public: |
1652 | 1652 |
ArcLess(const Digraph &_g) : g(_g) {} |
1653 | 1653 |
bool operator()(Arc a,Arc b) const |
1654 | 1654 |
{ |
1655 | 1655 |
return g.target(a)<g.target(b); |
1656 | 1656 |
} |
1657 | 1657 |
}; |
1658 | 1658 |
|
1659 | 1659 |
public: |
1660 | 1660 |
|
1661 | 1661 |
///Constructor |
1662 | 1662 |
|
1663 | 1663 |
///Constructor. |
1664 | 1664 |
/// |
1665 | 1665 |
///It builds up the search database, which remains valid until the digraph |
1666 | 1666 |
///changes. |
1667 | 1667 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1668 | 1668 |
|
1669 | 1669 |
private: |
1670 | 1670 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1671 | 1671 |
{ |
1672 | 1672 |
int m=(a+b)/2; |
1673 | 1673 |
Arc me=v[m]; |
1674 | 1674 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1675 | 1675 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1676 | 1676 |
return me; |
1677 | 1677 |
} |
1678 | 1678 |
public: |
1679 | 1679 |
///Refresh the search data structure at a node. |
1680 | 1680 |
|
1681 | 1681 |
///Build up the search database of node \c n. |
1682 | 1682 |
/// |
1683 | 1683 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1684 | 1684 |
///is the number of the outgoing arcs of \c n. |
1685 | 1685 |
void refresh(Node n) |
1686 | 1686 |
{ |
1687 | 1687 |
std::vector<Arc> v; |
1688 | 1688 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1689 | 1689 |
if(v.size()) { |
1690 | 1690 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1691 | 1691 |
_head[n]=refreshRec(v,0,v.size()-1); |
1692 | 1692 |
} |
1693 | 1693 |
else _head[n]=INVALID; |
1694 | 1694 |
} |
1695 | 1695 |
///Refresh the full data structure. |
1696 | 1696 |
|
1697 | 1697 |
///Build up the full search database. In fact, it simply calls |
1698 | 1698 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1699 | 1699 |
/// |
1700 | 1700 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1701 | 1701 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1702 | 1702 |
///out-degree of the digraph. |
1703 | 1703 |
void refresh() |
1704 | 1704 |
{ |
1705 | 1705 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1706 | 1706 |
} |
1707 | 1707 |
|
1708 | 1708 |
///Find an arc between two nodes. |
1709 | 1709 |
|
1710 | 1710 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
1711 | 1711 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
1712 | 1712 |
///\param s The source node. |
1713 | 1713 |
///\param t The target node. |
1714 | 1714 |
///\return An arc from \c s to \c t if there exists, |
1715 | 1715 |
///\ref INVALID otherwise. |
1716 | 1716 |
/// |
1717 | 1717 |
///\warning If you change the digraph, refresh() must be called before using |
1718 | 1718 |
///this operator. If you change the outgoing arcs of |
1719 | 1719 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1720 | 1720 |
Arc operator()(Node s, Node t) const |
1721 | 1721 |
{ |
1722 | 1722 |
Arc e; |
1723 | 1723 |
for(e=_head[s]; |
1724 | 1724 |
e!=INVALID&&_g.target(e)!=t; |
1725 | 1725 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1726 | 1726 |
return e; |
1727 | 1727 |
} |
1728 | 1728 |
|
1729 | 1729 |
}; |
1730 | 1730 |
|
1731 | 1731 |
///Fast look-up of all arcs between given endpoints. |
1732 | 1732 |
|
1733 | 1733 |
///This class is the same as \ref ArcLookUp, with the addition |
1734 | 1734 |
///that it makes it possible to find all parallel arcs between given |
1735 | 1735 |
///endpoints. |
1736 | 1736 |
/// |
1737 | 1737 |
///\warning This class is static, so you should call refresh() (or at |
1738 | 1738 |
///least refresh(Node)) to refresh this data structure whenever the |
1739 | 1739 |
///digraph changes. This is a time consuming (superlinearly proportional |
1740 | 1740 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1741 | 1741 |
/// |
1742 | 1742 |
///\tparam GR The type of the underlying digraph. |
1743 | 1743 |
/// |
1744 | 1744 |
///\sa DynArcLookUp |
1745 | 1745 |
///\sa ArcLookUp |
1746 | 1746 |
template<class GR> |
1747 | 1747 |
class AllArcLookUp : public ArcLookUp<GR> |
1748 | 1748 |
{ |
1749 | 1749 |
using ArcLookUp<GR>::_g; |
1750 | 1750 |
using ArcLookUp<GR>::_right; |
1751 | 1751 |
using ArcLookUp<GR>::_left; |
1752 | 1752 |
using ArcLookUp<GR>::_head; |
1753 | 1753 |
|
1754 | 1754 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1755 | 1755 |
|
1756 | 1756 |
typename GR::template ArcMap<Arc> _next; |
1757 | 1757 |
|
1758 | 1758 |
Arc refreshNext(Arc head,Arc next=INVALID) |
1759 | 1759 |
{ |
1760 | 1760 |
if(head==INVALID) return next; |
1761 | 1761 |
else { |
1762 | 1762 |
next=refreshNext(_right[head],next); |
1763 | 1763 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
1764 | 1764 |
? next : INVALID; |
1765 | 1765 |
return refreshNext(_left[head],head); |
1766 | 1766 |
} |
1767 | 1767 |
} |
1768 | 1768 |
|
1769 | 1769 |
void refreshNext() |
1770 | 1770 |
{ |
1771 | 1771 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
1772 | 1772 |
} |
1773 | 1773 |
|
1774 | 1774 |
public: |
1775 | 1775 |
|
1776 | 1776 |
/// The Digraph type |
1777 | 1777 |
typedef GR Digraph; |
1778 | 1778 |
|
1779 | 1779 |
///Constructor |
1780 | 1780 |
|
1781 | 1781 |
///Constructor. |
1782 | 1782 |
/// |
1783 | 1783 |
///It builds up the search database, which remains valid until the digraph |
1784 | 1784 |
///changes. |
1785 | 1785 |
AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();} |
1786 | 1786 |
|
1787 | 1787 |
///Refresh the data structure at a node. |
1788 | 1788 |
|
1789 | 1789 |
///Build up the search database of node \c n. |
1790 | 1790 |
/// |
1791 | 1791 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1792 | 1792 |
///the number of the outgoing arcs of \c n. |
1793 | 1793 |
void refresh(Node n) |
1794 | 1794 |
{ |
1795 | 1795 |
ArcLookUp<GR>::refresh(n); |
1796 | 1796 |
refreshNext(_head[n]); |
1797 | 1797 |
} |
1798 | 1798 |
|
1799 | 1799 |
///Refresh the full data structure. |
1800 | 1800 |
|
1801 | 1801 |
///Build up the full search database. In fact, it simply calls |
1802 | 1802 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1803 | 1803 |
/// |
1804 | 1804 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1805 | 1805 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1806 | 1806 |
///out-degree of the digraph. |
1807 | 1807 |
void refresh() |
1808 | 1808 |
{ |
1809 | 1809 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
///Find an arc between two nodes. |
1813 | 1813 |
|
1814 | 1814 |
///Find an arc between two nodes. |
1815 | 1815 |
///\param s The source node. |
1816 | 1816 |
///\param t The target node. |
1817 | 1817 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1818 | 1818 |
///not given, the operator finds the first appropriate arc. |
1819 | 1819 |
///\return An arc from \c s to \c t after \c prev or |
1820 | 1820 |
///\ref INVALID if there is no more. |
1821 | 1821 |
/// |
1822 | 1822 |
///For example, you can count the number of arcs from \c u to \c v in the |
1823 | 1823 |
///following way. |
1824 | 1824 |
///\code |
1825 | 1825 |
///AllArcLookUp<ListDigraph> ae(g); |
1826 | 1826 |
///... |
1827 | 1827 |
///int n = 0; |
1828 | 1828 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1829 | 1829 |
///\endcode |
1830 | 1830 |
/// |
1831 | 1831 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
1832 | 1832 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
1833 | 1833 |
///consecutive arcs are found in constant time. |
1834 | 1834 |
/// |
1835 | 1835 |
///\warning If you change the digraph, refresh() must be called before using |
1836 | 1836 |
///this operator. If you change the outgoing arcs of |
1837 | 1837 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1838 | 1838 |
/// |
1839 | 1839 |
#ifdef DOXYGEN |
1840 | 1840 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1841 | 1841 |
#else |
1842 | 1842 |
using ArcLookUp<GR>::operator() ; |
1843 | 1843 |
Arc operator()(Node s, Node t, Arc prev) const |
1844 | 1844 |
{ |
1845 | 1845 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1846 | 1846 |
} |
1847 | 1847 |
#endif |
1848 | 1848 |
|
1849 | 1849 |
}; |
1850 | 1850 |
|
1851 | 1851 |
/// @} |
1852 | 1852 |
|
1853 | 1853 |
} //namespace lemon |
1854 | 1854 |
|
1855 | 1855 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 | 33 |
|
37 | 34 |
namespace lemon { |
38 | 35 |
|
39 | 36 |
/// \addtogroup min_cost_flow |
40 | 37 |
/// @{ |
41 | 38 |
|
42 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
43 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 41 |
/// |
45 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
46 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
47 | 44 |
/// This algorithm is a specialized version of the linear programming |
48 | 45 |
/// simplex method directly for the minimum cost flow problem. |
49 | 46 |
/// It is one of the most efficient solution methods. |
50 | 47 |
/// |
51 | 48 |
/// In general this class is the fastest implementation available |
52 | 49 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
51 |
/// constraints. For more information see \ref SupplyType. |
|
52 |
/// |
|
53 |
/// Most of the parameters of the problem (except for the digraph) |
|
54 |
/// can be given using separate functions, and the algorithm can be |
|
55 |
/// executed using the \ref run() function. If some parameters are not |
|
56 |
/// specified, then default values will be used. |
|
55 | 57 |
/// |
56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
57 |
/// \tparam |
|
59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
58 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
59 | 61 |
/// \tparam C The value type used for costs and potentials in the |
60 |
/// algorithm. By default it is the same as \c |
|
62 |
/// algorithm. By default it is the same as \c V. |
|
61 | 63 |
/// |
62 | 64 |
/// \warning Both value types must be signed and all input data must |
63 | 65 |
/// be integer. |
64 | 66 |
/// |
65 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
66 | 68 |
/// implementations, from which the most efficient one is used |
67 | 69 |
/// by default. For more information see \ref PivotRule. |
68 |
template <typename GR, typename |
|
70 |
template <typename GR, typename V = int, typename C = V> |
|
69 | 71 |
class NetworkSimplex |
70 | 72 |
{ |
71 | 73 |
public: |
72 | 74 |
|
73 |
/// The flow type of the algorithm |
|
74 |
typedef F Flow; |
|
75 |
/// The |
|
75 |
/// The type of the flow amounts, capacity bounds and supply values |
|
76 |
typedef V Value; |
|
77 |
/// The type of the arc costs |
|
76 | 78 |
typedef C Cost; |
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
83 |
/// The type of the flow map |
|
84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
85 |
/// The type of the potential map |
|
86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
87 |
#endif |
|
88 | 79 |
|
89 | 80 |
public: |
90 | 81 |
|
91 |
/// \brief |
|
82 |
/// \brief Problem type constants for the \c run() function. |
|
92 | 83 |
/// |
93 |
/// Enum type |
|
84 |
/// Enum type containing the problem type constants that can be |
|
85 |
/// returned by the \ref run() function of the algorithm. |
|
86 |
enum ProblemType { |
|
87 |
/// The problem has no feasible solution (flow). |
|
88 |
INFEASIBLE, |
|
89 |
/// The problem has optimal solution (i.e. it is feasible and |
|
90 |
/// bounded), and the algorithm has found optimal flow and node |
|
91 |
/// potentials (primal and dual solutions). |
|
92 |
OPTIMAL, |
|
93 |
/// The objective function of the problem is unbounded, i.e. |
|
94 |
/// there is a directed cycle having negative total cost and |
|
95 |
/// infinite upper bound. |
|
96 |
UNBOUNDED |
|
97 |
}; |
|
98 |
|
|
99 |
/// \brief Constants for selecting the type of the supply constraints. |
|
100 |
/// |
|
101 |
/// Enum type containing constants for selecting the supply type, |
|
102 |
/// i.e. the direction of the inequalities in the supply/demand |
|
103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
104 |
/// |
|
105 |
/// The default supply type is \c GEQ, since this form is supported |
|
106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
107 |
/// algorithm, as well. |
|
108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
94 | 109 |
/// function. |
95 | 110 |
/// |
111 |
/// Note that the equality form is a special case of both supply types. |
|
112 |
enum SupplyType { |
|
113 |
|
|
114 |
/// This option means that there are <em>"greater or equal"</em> |
|
115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
116 |
/// formulation of the problem is the following. |
|
117 |
/** |
|
118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
120 |
sup(u) \quad \forall u\in V \f] |
|
121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
122 |
*/ |
|
123 |
/// It means that the total demand must be greater or equal to the |
|
124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
125 |
/// negative) and all the supplies have to be carried out from |
|
126 |
/// the supply nodes, but there could be demands that are not |
|
127 |
/// satisfied. |
|
128 |
GEQ, |
|
129 |
/// It is just an alias for the \c GEQ option. |
|
130 |
CARRY_SUPPLIES = GEQ, |
|
131 |
|
|
132 |
/// This option means that there are <em>"less or equal"</em> |
|
133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
134 |
/// formulation of the problem is the following. |
|
135 |
/** |
|
136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
138 |
sup(u) \quad \forall u\in V \f] |
|
139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
140 |
*/ |
|
141 |
/// It means that the total demand must be less or equal to the |
|
142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
143 |
/// positive) and all the demands have to be satisfied, but there |
|
144 |
/// could be supplies that are not carried out from the supply |
|
145 |
/// nodes. |
|
146 |
LEQ, |
|
147 |
/// It is just an alias for the \c LEQ option. |
|
148 |
SATISFY_DEMANDS = LEQ |
|
149 |
}; |
|
150 |
|
|
151 |
/// \brief Constants for selecting the pivot rule. |
|
152 |
/// |
|
153 |
/// Enum type containing constants for selecting the pivot rule for |
|
154 |
/// the \ref run() function. |
|
155 |
/// |
|
96 | 156 |
/// \ref NetworkSimplex provides five different pivot rule |
97 | 157 |
/// implementations that significantly affect the running time |
98 | 158 |
/// of the algorithm. |
99 | 159 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
100 | 160 |
/// proved to be the most efficient and the most robust on various |
101 | 161 |
/// test inputs according to our benchmark tests. |
102 | 162 |
/// However another pivot rule can be selected using the \ref run() |
103 | 163 |
/// function with the proper parameter. |
104 | 164 |
enum PivotRule { |
105 | 165 |
|
106 | 166 |
/// The First Eligible pivot rule. |
107 | 167 |
/// The next eligible arc is selected in a wraparound fashion |
108 | 168 |
/// in every iteration. |
109 | 169 |
FIRST_ELIGIBLE, |
110 | 170 |
|
111 | 171 |
/// The Best Eligible pivot rule. |
112 | 172 |
/// The best eligible arc is selected in every iteration. |
113 | 173 |
BEST_ELIGIBLE, |
114 | 174 |
|
115 | 175 |
/// The Block Search pivot rule. |
116 | 176 |
/// A specified number of arcs are examined in every iteration |
117 | 177 |
/// in a wraparound fashion and the best eligible arc is selected |
118 | 178 |
/// from this block. |
119 | 179 |
BLOCK_SEARCH, |
120 | 180 |
|
121 | 181 |
/// The Candidate List pivot rule. |
122 | 182 |
/// In a major iteration a candidate list is built from eligible arcs |
123 | 183 |
/// in a wraparound fashion and in the following minor iterations |
124 | 184 |
/// the best eligible arc is selected from this list. |
125 | 185 |
CANDIDATE_LIST, |
126 | 186 |
|
127 | 187 |
/// The Altering Candidate List pivot rule. |
128 | 188 |
/// It is a modified version of the Candidate List method. |
129 | 189 |
/// It keeps only the several best eligible arcs from the former |
130 | 190 |
/// candidate list and extends this list in every iteration. |
131 | 191 |
ALTERING_LIST |
132 | 192 |
}; |
133 | 193 |
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 | 194 |
private: |
187 | 195 |
|
188 | 196 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
189 | 197 |
|
190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
193 |
|
|
194 | 198 |
typedef std::vector<Arc> ArcVector; |
195 | 199 |
typedef std::vector<Node> NodeVector; |
196 | 200 |
typedef std::vector<int> IntVector; |
197 | 201 |
typedef std::vector<bool> BoolVector; |
198 |
typedef std::vector< |
|
202 |
typedef std::vector<Value> ValueVector; |
|
199 | 203 |
typedef std::vector<Cost> CostVector; |
200 | 204 |
|
201 | 205 |
// State constants for arcs |
202 | 206 |
enum ArcStateEnum { |
203 | 207 |
STATE_UPPER = -1, |
204 | 208 |
STATE_TREE = 0, |
205 | 209 |
STATE_LOWER = 1 |
206 | 210 |
}; |
207 | 211 |
|
208 | 212 |
private: |
209 | 213 |
|
210 | 214 |
// Data related to the underlying digraph |
211 | 215 |
const GR &_graph; |
212 | 216 |
int _node_num; |
213 | 217 |
int _arc_num; |
214 | 218 |
|
215 | 219 |
// Parameters of the problem |
216 |
FlowArcMap *_plower; |
|
217 |
FlowArcMap *_pupper; |
|
218 |
CostArcMap *_pcost; |
|
219 |
FlowNodeMap *_psupply; |
|
220 |
bool _pstsup; |
|
221 |
Node _psource, _ptarget; |
|
222 |
Flow _pstflow; |
|
223 |
ProblemType _ptype; |
|
224 |
|
|
225 |
// Result maps |
|
226 |
FlowMap *_flow_map; |
|
227 |
PotentialMap *_potential_map; |
|
228 |
bool _local_flow; |
|
229 |
bool _local_potential; |
|
220 |
bool _have_lower; |
|
221 |
SupplyType _stype; |
|
222 |
Value _sum_supply; |
|
230 | 223 |
|
231 | 224 |
// Data structures for storing the digraph |
232 | 225 |
IntNodeMap _node_id; |
233 |
|
|
226 |
IntArcMap _arc_id; |
|
234 | 227 |
IntVector _source; |
235 | 228 |
IntVector _target; |
236 | 229 |
|
237 | 230 |
// Node and arc data |
238 |
|
|
231 |
ValueVector _lower; |
|
232 |
ValueVector _upper; |
|
233 |
ValueVector _cap; |
|
239 | 234 |
CostVector _cost; |
240 |
FlowVector _supply; |
|
241 |
FlowVector _flow; |
|
235 |
ValueVector _supply; |
|
236 |
ValueVector _flow; |
|
242 | 237 |
CostVector _pi; |
243 | 238 |
|
244 | 239 |
// Data for storing the spanning tree structure |
245 | 240 |
IntVector _parent; |
246 | 241 |
IntVector _pred; |
247 | 242 |
IntVector _thread; |
248 | 243 |
IntVector _rev_thread; |
249 | 244 |
IntVector _succ_num; |
250 | 245 |
IntVector _last_succ; |
251 | 246 |
IntVector _dirty_revs; |
252 | 247 |
BoolVector _forward; |
253 | 248 |
IntVector _state; |
254 | 249 |
int _root; |
255 | 250 |
|
256 | 251 |
// Temporary data used in the current pivot iteration |
257 | 252 |
int in_arc, join, u_in, v_in, u_out, v_out; |
258 | 253 |
int first, second, right, last; |
259 | 254 |
int stem, par_stem, new_stem; |
260 |
|
|
255 |
Value delta; |
|
256 |
|
|
257 |
public: |
|
258 |
|
|
259 |
/// \brief Constant for infinite upper bounds (capacities). |
|
260 |
/// |
|
261 |
/// Constant for infinite upper bounds (capacities). |
|
262 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
263 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
264 |
const Value INF; |
|
261 | 265 |
|
262 | 266 |
private: |
263 | 267 |
|
264 | 268 |
// Implementation of the First Eligible pivot rule |
265 | 269 |
class FirstEligiblePivotRule |
266 | 270 |
{ |
267 | 271 |
private: |
268 | 272 |
|
269 | 273 |
// References to the NetworkSimplex class |
270 | 274 |
const IntVector &_source; |
271 | 275 |
const IntVector &_target; |
272 | 276 |
const CostVector &_cost; |
273 | 277 |
const IntVector &_state; |
274 | 278 |
const CostVector &_pi; |
275 | 279 |
int &_in_arc; |
276 | 280 |
int _arc_num; |
277 | 281 |
|
278 | 282 |
// Pivot rule data |
279 | 283 |
int _next_arc; |
280 | 284 |
|
281 | 285 |
public: |
282 | 286 |
|
283 | 287 |
// Constructor |
284 | 288 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
285 | 289 |
_source(ns._source), _target(ns._target), |
286 | 290 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
287 | 291 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
288 | 292 |
{} |
289 | 293 |
|
290 | 294 |
// Find next entering arc |
291 | 295 |
bool findEnteringArc() { |
292 | 296 |
Cost c; |
293 | 297 |
for (int e = _next_arc; e < _arc_num; ++e) { |
294 | 298 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
295 | 299 |
if (c < 0) { |
296 | 300 |
_in_arc = e; |
297 | 301 |
_next_arc = e + 1; |
298 | 302 |
return true; |
299 | 303 |
} |
300 | 304 |
} |
301 | 305 |
for (int e = 0; e < _next_arc; ++e) { |
302 | 306 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
303 | 307 |
if (c < 0) { |
304 | 308 |
_in_arc = e; |
305 | 309 |
_next_arc = e + 1; |
306 | 310 |
return true; |
307 | 311 |
} |
308 | 312 |
} |
309 | 313 |
return false; |
310 | 314 |
} |
311 | 315 |
|
312 | 316 |
}; //class FirstEligiblePivotRule |
313 | 317 |
|
314 | 318 |
|
315 | 319 |
// Implementation of the Best Eligible pivot rule |
316 | 320 |
class BestEligiblePivotRule |
317 | 321 |
{ |
318 | 322 |
private: |
319 | 323 |
|
320 | 324 |
// References to the NetworkSimplex class |
321 | 325 |
const IntVector &_source; |
322 | 326 |
const IntVector &_target; |
323 | 327 |
const CostVector &_cost; |
324 | 328 |
const IntVector &_state; |
325 | 329 |
const CostVector &_pi; |
326 | 330 |
int &_in_arc; |
327 | 331 |
int _arc_num; |
328 | 332 |
|
329 | 333 |
public: |
330 | 334 |
|
331 | 335 |
// Constructor |
332 | 336 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
333 | 337 |
_source(ns._source), _target(ns._target), |
334 | 338 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
335 | 339 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
336 | 340 |
{} |
337 | 341 |
|
338 | 342 |
// Find next entering arc |
339 | 343 |
bool findEnteringArc() { |
340 | 344 |
Cost c, min = 0; |
341 | 345 |
for (int e = 0; e < _arc_num; ++e) { |
342 | 346 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
343 | 347 |
if (c < min) { |
344 | 348 |
min = c; |
345 | 349 |
_in_arc = e; |
346 | 350 |
} |
347 | 351 |
} |
348 | 352 |
return min < 0; |
349 | 353 |
} |
350 | 354 |
|
351 | 355 |
}; //class BestEligiblePivotRule |
352 | 356 |
|
353 | 357 |
|
354 | 358 |
// Implementation of the Block Search pivot rule |
355 | 359 |
class BlockSearchPivotRule |
356 | 360 |
{ |
357 | 361 |
private: |
358 | 362 |
|
359 | 363 |
// References to the NetworkSimplex class |
360 | 364 |
const IntVector &_source; |
361 | 365 |
const IntVector &_target; |
362 | 366 |
const CostVector &_cost; |
363 | 367 |
const IntVector &_state; |
364 | 368 |
const CostVector &_pi; |
365 | 369 |
int &_in_arc; |
366 | 370 |
int _arc_num; |
367 | 371 |
|
368 | 372 |
// Pivot rule data |
369 | 373 |
int _block_size; |
370 | 374 |
int _next_arc; |
371 | 375 |
|
372 | 376 |
public: |
373 | 377 |
|
374 | 378 |
// Constructor |
375 | 379 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
376 | 380 |
_source(ns._source), _target(ns._target), |
377 | 381 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
378 | 382 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
379 | 383 |
{ |
380 | 384 |
// The main parameters of the pivot rule |
381 | 385 |
const double BLOCK_SIZE_FACTOR = 2.0; |
382 | 386 |
const int MIN_BLOCK_SIZE = 10; |
383 | 387 |
|
384 | 388 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
385 | 389 |
std::sqrt(double(_arc_num))), |
386 | 390 |
MIN_BLOCK_SIZE ); |
387 | 391 |
} |
388 | 392 |
|
389 | 393 |
// Find next entering arc |
390 | 394 |
bool findEnteringArc() { |
391 | 395 |
Cost c, min = 0; |
392 | 396 |
int cnt = _block_size; |
393 | 397 |
int e, min_arc = _next_arc; |
394 | 398 |
for (e = _next_arc; e < _arc_num; ++e) { |
395 | 399 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
396 | 400 |
if (c < min) { |
397 | 401 |
min = c; |
398 | 402 |
min_arc = e; |
399 | 403 |
} |
400 | 404 |
if (--cnt == 0) { |
401 | 405 |
if (min < 0) break; |
402 | 406 |
cnt = _block_size; |
403 | 407 |
} |
404 | 408 |
} |
405 | 409 |
if (min == 0 || cnt > 0) { |
406 | 410 |
for (e = 0; e < _next_arc; ++e) { |
407 | 411 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
408 | 412 |
if (c < min) { |
409 | 413 |
min = c; |
410 | 414 |
min_arc = e; |
411 | 415 |
} |
412 | 416 |
if (--cnt == 0) { |
413 | 417 |
if (min < 0) break; |
414 | 418 |
cnt = _block_size; |
415 | 419 |
} |
416 | 420 |
} |
417 | 421 |
} |
418 | 422 |
if (min >= 0) return false; |
419 | 423 |
_in_arc = min_arc; |
420 | 424 |
_next_arc = e; |
421 | 425 |
return true; |
422 | 426 |
} |
423 | 427 |
|
424 | 428 |
}; //class BlockSearchPivotRule |
425 | 429 |
|
426 | 430 |
|
427 | 431 |
// Implementation of the Candidate List pivot rule |
428 | 432 |
class CandidateListPivotRule |
429 | 433 |
{ |
430 | 434 |
private: |
431 | 435 |
|
432 | 436 |
// References to the NetworkSimplex class |
433 | 437 |
const IntVector &_source; |
434 | 438 |
const IntVector &_target; |
435 | 439 |
const CostVector &_cost; |
436 | 440 |
const IntVector &_state; |
437 | 441 |
const CostVector &_pi; |
438 | 442 |
int &_in_arc; |
439 | 443 |
int _arc_num; |
440 | 444 |
|
441 | 445 |
// Pivot rule data |
442 | 446 |
IntVector _candidates; |
443 | 447 |
int _list_length, _minor_limit; |
444 | 448 |
int _curr_length, _minor_count; |
445 | 449 |
int _next_arc; |
446 | 450 |
|
447 | 451 |
public: |
448 | 452 |
|
449 | 453 |
/// Constructor |
450 | 454 |
CandidateListPivotRule(NetworkSimplex &ns) : |
451 | 455 |
_source(ns._source), _target(ns._target), |
452 | 456 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
453 | 457 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
454 | 458 |
{ |
455 | 459 |
// The main parameters of the pivot rule |
456 | 460 |
const double LIST_LENGTH_FACTOR = 1.0; |
457 | 461 |
const int MIN_LIST_LENGTH = 10; |
458 | 462 |
const double MINOR_LIMIT_FACTOR = 0.1; |
459 | 463 |
const int MIN_MINOR_LIMIT = 3; |
460 | 464 |
|
461 | 465 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
462 | 466 |
std::sqrt(double(_arc_num))), |
463 | 467 |
MIN_LIST_LENGTH ); |
464 | 468 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
465 | 469 |
MIN_MINOR_LIMIT ); |
466 | 470 |
_curr_length = _minor_count = 0; |
467 | 471 |
_candidates.resize(_list_length); |
468 | 472 |
} |
469 | 473 |
|
470 | 474 |
/// Find next entering arc |
471 | 475 |
bool findEnteringArc() { |
472 | 476 |
Cost min, c; |
473 | 477 |
int e, min_arc = _next_arc; |
474 | 478 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
475 | 479 |
// Minor iteration: select the best eligible arc from the |
476 | 480 |
// current candidate list |
477 | 481 |
++_minor_count; |
478 | 482 |
min = 0; |
479 | 483 |
for (int i = 0; i < _curr_length; ++i) { |
480 | 484 |
e = _candidates[i]; |
481 | 485 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
482 | 486 |
if (c < min) { |
483 | 487 |
min = c; |
484 | 488 |
min_arc = e; |
485 | 489 |
} |
486 | 490 |
if (c >= 0) { |
487 | 491 |
_candidates[i--] = _candidates[--_curr_length]; |
488 | 492 |
} |
489 | 493 |
} |
490 | 494 |
if (min < 0) { |
491 | 495 |
_in_arc = min_arc; |
492 | 496 |
return true; |
493 | 497 |
} |
494 | 498 |
} |
495 | 499 |
|
496 | 500 |
// Major iteration: build a new candidate list |
497 | 501 |
min = 0; |
498 | 502 |
_curr_length = 0; |
499 | 503 |
for (e = _next_arc; e < _arc_num; ++e) { |
500 | 504 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
501 | 505 |
if (c < 0) { |
502 | 506 |
_candidates[_curr_length++] = e; |
503 | 507 |
if (c < min) { |
504 | 508 |
min = c; |
505 | 509 |
min_arc = e; |
506 | 510 |
} |
507 | 511 |
if (_curr_length == _list_length) break; |
508 | 512 |
} |
509 | 513 |
} |
510 | 514 |
if (_curr_length < _list_length) { |
511 | 515 |
for (e = 0; e < _next_arc; ++e) { |
512 | 516 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
513 | 517 |
if (c < 0) { |
514 | 518 |
_candidates[_curr_length++] = e; |
515 | 519 |
if (c < min) { |
516 | 520 |
min = c; |
517 | 521 |
min_arc = e; |
518 | 522 |
} |
519 | 523 |
if (_curr_length == _list_length) break; |
520 | 524 |
} |
521 | 525 |
} |
522 | 526 |
} |
523 | 527 |
if (_curr_length == 0) return false; |
524 | 528 |
_minor_count = 1; |
525 | 529 |
_in_arc = min_arc; |
526 | 530 |
_next_arc = e; |
527 | 531 |
return true; |
528 | 532 |
} |
529 | 533 |
|
530 | 534 |
}; //class CandidateListPivotRule |
531 | 535 |
|
532 | 536 |
|
533 | 537 |
// Implementation of the Altering Candidate List pivot rule |
534 | 538 |
class AlteringListPivotRule |
535 | 539 |
{ |
536 | 540 |
private: |
537 | 541 |
|
538 | 542 |
// References to the NetworkSimplex class |
539 | 543 |
const IntVector &_source; |
540 | 544 |
const IntVector &_target; |
541 | 545 |
const CostVector &_cost; |
542 | 546 |
const IntVector &_state; |
543 | 547 |
const CostVector &_pi; |
544 | 548 |
int &_in_arc; |
545 | 549 |
int _arc_num; |
546 | 550 |
|
547 | 551 |
// Pivot rule data |
548 | 552 |
int _block_size, _head_length, _curr_length; |
549 | 553 |
int _next_arc; |
550 | 554 |
IntVector _candidates; |
551 | 555 |
CostVector _cand_cost; |
552 | 556 |
|
553 | 557 |
// Functor class to compare arcs during sort of the candidate list |
554 | 558 |
class SortFunc |
555 | 559 |
{ |
556 | 560 |
private: |
557 | 561 |
const CostVector &_map; |
558 | 562 |
public: |
559 | 563 |
SortFunc(const CostVector &map) : _map(map) {} |
560 | 564 |
bool operator()(int left, int right) { |
561 | 565 |
return _map[left] > _map[right]; |
562 | 566 |
} |
563 | 567 |
}; |
564 | 568 |
|
565 | 569 |
SortFunc _sort_func; |
566 | 570 |
|
567 | 571 |
public: |
568 | 572 |
|
569 | 573 |
// Constructor |
570 | 574 |
AlteringListPivotRule(NetworkSimplex &ns) : |
571 | 575 |
_source(ns._source), _target(ns._target), |
572 | 576 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
573 | 577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
574 | 578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
575 | 579 |
{ |
576 | 580 |
// The main parameters of the pivot rule |
577 | 581 |
const double BLOCK_SIZE_FACTOR = 1.5; |
578 | 582 |
const int MIN_BLOCK_SIZE = 10; |
579 | 583 |
const double HEAD_LENGTH_FACTOR = 0.1; |
580 | 584 |
const int MIN_HEAD_LENGTH = 3; |
581 | 585 |
|
582 | 586 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
583 | 587 |
std::sqrt(double(_arc_num))), |
584 | 588 |
MIN_BLOCK_SIZE ); |
585 | 589 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
586 | 590 |
MIN_HEAD_LENGTH ); |
587 | 591 |
_candidates.resize(_head_length + _block_size); |
588 | 592 |
_curr_length = 0; |
589 | 593 |
} |
590 | 594 |
|
591 | 595 |
// Find next entering arc |
592 | 596 |
bool findEnteringArc() { |
593 | 597 |
// Check the current candidate list |
594 | 598 |
int e; |
595 | 599 |
for (int i = 0; i < _curr_length; ++i) { |
596 | 600 |
e = _candidates[i]; |
597 | 601 |
_cand_cost[e] = _state[e] * |
598 | 602 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
599 | 603 |
if (_cand_cost[e] >= 0) { |
600 | 604 |
_candidates[i--] = _candidates[--_curr_length]; |
601 | 605 |
} |
602 | 606 |
} |
603 | 607 |
|
604 | 608 |
// Extend the list |
605 | 609 |
int cnt = _block_size; |
606 | 610 |
int last_arc = 0; |
607 | 611 |
int limit = _head_length; |
608 | 612 |
|
609 | 613 |
for (int e = _next_arc; e < _arc_num; ++e) { |
610 | 614 |
_cand_cost[e] = _state[e] * |
611 | 615 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
612 | 616 |
if (_cand_cost[e] < 0) { |
613 | 617 |
_candidates[_curr_length++] = e; |
614 | 618 |
last_arc = e; |
615 | 619 |
} |
616 | 620 |
if (--cnt == 0) { |
617 | 621 |
if (_curr_length > limit) break; |
618 | 622 |
limit = 0; |
619 | 623 |
cnt = _block_size; |
620 | 624 |
} |
621 | 625 |
} |
622 | 626 |
if (_curr_length <= limit) { |
623 | 627 |
for (int e = 0; e < _next_arc; ++e) { |
624 | 628 |
_cand_cost[e] = _state[e] * |
625 | 629 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
626 | 630 |
if (_cand_cost[e] < 0) { |
627 | 631 |
_candidates[_curr_length++] = e; |
628 | 632 |
last_arc = e; |
629 | 633 |
} |
630 | 634 |
if (--cnt == 0) { |
631 | 635 |
if (_curr_length > limit) break; |
632 | 636 |
limit = 0; |
633 | 637 |
cnt = _block_size; |
634 | 638 |
} |
635 | 639 |
} |
636 | 640 |
} |
637 | 641 |
if (_curr_length == 0) return false; |
638 | 642 |
_next_arc = last_arc + 1; |
639 | 643 |
|
640 | 644 |
// Make heap of the candidate list (approximating a partial sort) |
641 | 645 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
642 | 646 |
_sort_func ); |
643 | 647 |
|
644 | 648 |
// Pop the first element of the heap |
645 | 649 |
_in_arc = _candidates[0]; |
646 | 650 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
647 | 651 |
_sort_func ); |
648 | 652 |
_curr_length = std::min(_head_length, _curr_length - 1); |
649 | 653 |
return true; |
650 | 654 |
} |
651 | 655 |
|
652 | 656 |
}; //class AlteringListPivotRule |
653 | 657 |
|
654 | 658 |
public: |
655 | 659 |
|
656 | 660 |
/// \brief Constructor. |
657 | 661 |
/// |
658 | 662 |
/// The constructor of the class. |
659 | 663 |
/// |
660 | 664 |
/// \param graph The digraph the algorithm runs on. |
661 | 665 |
NetworkSimplex(const GR& graph) : |
662 |
_graph(graph), |
|
663 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
664 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
665 |
_flow_map(NULL), _potential_map(NULL), |
|
666 |
_local_flow(false), _local_potential(false), |
|
667 |
_node_id(graph) |
|
666 |
_graph(graph), _node_id(graph), _arc_id(graph), |
|
667 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
668 |
std::numeric_limits<Value>::infinity() : |
|
669 |
std::numeric_limits<Value>::max()) |
|
668 | 670 |
{ |
669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
670 |
std::numeric_limits<Flow>::is_signed, |
|
671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
673 |
std::numeric_limits<Cost>::is_signed, |
|
674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
675 |
|
|
671 |
// Check the value types |
|
672 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
673 |
"The flow type of NetworkSimplex must be signed"); |
|
674 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
675 |
"The cost type of NetworkSimplex must be signed"); |
|
676 |
|
|
677 |
// Resize vectors |
|
678 |
_node_num = countNodes(_graph); |
|
679 |
_arc_num = countArcs(_graph); |
|
680 |
int all_node_num = _node_num + 1; |
|
681 |
int all_arc_num = _arc_num + _node_num; |
|
676 | 682 |
|
677 |
/// Destructor. |
|
678 |
~NetworkSimplex() { |
|
679 |
if (_local_flow) delete _flow_map; |
|
680 |
if (_local_potential) delete _potential_map; |
|
683 |
_source.resize(all_arc_num); |
|
684 |
_target.resize(all_arc_num); |
|
685 |
|
|
686 |
_lower.resize(all_arc_num); |
|
687 |
_upper.resize(all_arc_num); |
|
688 |
_cap.resize(all_arc_num); |
|
689 |
_cost.resize(all_arc_num); |
|
690 |
_supply.resize(all_node_num); |
|
691 |
_flow.resize(all_arc_num); |
|
692 |
_pi.resize(all_node_num); |
|
693 |
|
|
694 |
_parent.resize(all_node_num); |
|
695 |
_pred.resize(all_node_num); |
|
696 |
_forward.resize(all_node_num); |
|
697 |
_thread.resize(all_node_num); |
|
698 |
_rev_thread.resize(all_node_num); |
|
699 |
_succ_num.resize(all_node_num); |
|
700 |
_last_succ.resize(all_node_num); |
|
701 |
_state.resize(all_arc_num); |
|
702 |
|
|
703 |
// Copy the graph (store the arcs in a mixed order) |
|
704 |
int i = 0; |
|
705 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
706 |
_node_id[n] = i; |
|
707 |
} |
|
708 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
709 |
i = 0; |
|
710 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
711 |
_arc_id[a] = i; |
|
712 |
_source[i] = _node_id[_graph.source(a)]; |
|
713 |
_target[i] = _node_id[_graph.target(a)]; |
|
714 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
715 |
} |
|
716 |
|
|
717 |
// Initialize maps |
|
718 |
for (int i = 0; i != _node_num; ++i) { |
|
719 |
_supply[i] = 0; |
|
720 |
} |
|
721 |
for (int i = 0; i != _arc_num; ++i) { |
|
722 |
_lower[i] = 0; |
|
723 |
_upper[i] = INF; |
|
724 |
_cost[i] = 1; |
|
725 |
} |
|
726 |
_have_lower = false; |
|
727 |
_stype = GEQ; |
|
681 | 728 |
} |
682 | 729 |
|
683 | 730 |
/// \name Parameters |
684 | 731 |
/// The parameters of the algorithm can be specified using these |
685 | 732 |
/// functions. |
686 | 733 |
|
687 | 734 |
/// @{ |
688 | 735 |
|
689 | 736 |
/// \brief Set the lower bounds on the arcs. |
690 | 737 |
/// |
691 | 738 |
/// This function sets the lower bounds on the arcs. |
692 |
/// If neither this function nor \ref boundMaps() is used before |
|
693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
694 |
/// |
|
739 |
/// If it is not used before calling \ref run(), the lower bounds |
|
740 |
/// will be set to zero on all arcs. |
|
695 | 741 |
/// |
696 | 742 |
/// \param map An arc map storing the lower bounds. |
697 |
/// Its \c Value type must be convertible to the \c |
|
743 |
/// Its \c Value type must be convertible to the \c Value type |
|
698 | 744 |
/// of the algorithm. |
699 | 745 |
/// |
700 | 746 |
/// \return <tt>(*this)</tt> |
701 |
template <typename LOWER> |
|
702 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
703 |
delete _plower; |
|
704 |
_plower = new FlowArcMap(_graph); |
|
747 |
template <typename LowerMap> |
|
748 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
|
749 |
_have_lower = true; |
|
705 | 750 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
706 |
|
|
751 |
_lower[_arc_id[a]] = map[a]; |
|
707 | 752 |
} |
708 | 753 |
return *this; |
709 | 754 |
} |
710 | 755 |
|
711 | 756 |
/// \brief Set the upper bounds (capacities) on the arcs. |
712 | 757 |
/// |
713 | 758 |
/// This function sets the upper bounds (capacities) on the arcs. |
714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
716 |
/// the upper bounds (capacities) will be set to |
|
717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
759 |
/// If it is not used before calling \ref run(), the upper bounds |
|
760 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
761 |
/// unbounded from above on each arc). |
|
718 | 762 |
/// |
719 | 763 |
/// \param map An arc map storing the upper bounds. |
720 |
/// Its \c Value type must be convertible to the \c |
|
764 |
/// Its \c Value type must be convertible to the \c Value type |
|
721 | 765 |
/// of the algorithm. |
722 | 766 |
/// |
723 | 767 |
/// \return <tt>(*this)</tt> |
724 |
template<typename UPPER> |
|
725 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
726 |
delete _pupper; |
|
727 |
_pupper = new FlowArcMap(_graph); |
|
768 |
template<typename UpperMap> |
|
769 |
NetworkSimplex& upperMap(const UpperMap& map) { |
|
728 | 770 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
729 |
|
|
771 |
_upper[_arc_id[a]] = map[a]; |
|
730 | 772 |
} |
731 | 773 |
return *this; |
732 | 774 |
} |
733 | 775 |
|
734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
735 |
/// |
|
736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
737 |
/// It is just an alias for \ref upperMap(). |
|
738 |
/// |
|
739 |
/// \return <tt>(*this)</tt> |
|
740 |
template<typename CAP> |
|
741 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
742 |
return upperMap(map); |
|
743 |
} |
|
744 |
|
|
745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
746 |
/// |
|
747 |
/// This function sets the lower and upper bounds on the arcs. |
|
748 |
/// If neither this function nor \ref lowerMap() is used before |
|
749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
750 |
/// on all arcs. |
|
751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
753 |
/// the upper bounds (capacities) will be set to |
|
754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
755 |
/// |
|
756 |
/// \param lower An arc map storing the lower bounds. |
|
757 |
/// \param upper An arc map storing the upper bounds. |
|
758 |
/// |
|
759 |
/// The \c Value type of the maps must be convertible to the |
|
760 |
/// \c Flow type of the algorithm. |
|
761 |
/// |
|
762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
763 |
/// and \ref upperMap() separately. |
|
764 |
/// |
|
765 |
/// \return <tt>(*this)</tt> |
|
766 |
template <typename LOWER, typename UPPER> |
|
767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
768 |
return lowerMap(lower).upperMap(upper); |
|
769 |
} |
|
770 |
|
|
771 | 776 |
/// \brief Set the costs of the arcs. |
772 | 777 |
/// |
773 | 778 |
/// This function sets the costs of the arcs. |
774 | 779 |
/// If it is not used before calling \ref run(), the costs |
775 | 780 |
/// will be set to \c 1 on all arcs. |
776 | 781 |
/// |
777 | 782 |
/// \param map An arc map storing the costs. |
778 | 783 |
/// Its \c Value type must be convertible to the \c Cost type |
779 | 784 |
/// of the algorithm. |
780 | 785 |
/// |
781 | 786 |
/// \return <tt>(*this)</tt> |
782 |
template<typename COST> |
|
783 |
NetworkSimplex& costMap(const COST& map) { |
|
784 |
delete _pcost; |
|
785 |
_pcost = new CostArcMap(_graph); |
|
787 |
template<typename CostMap> |
|
788 |
NetworkSimplex& costMap(const CostMap& map) { |
|
786 | 789 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
787 |
|
|
790 |
_cost[_arc_id[a]] = map[a]; |
|
788 | 791 |
} |
789 | 792 |
return *this; |
790 | 793 |
} |
791 | 794 |
|
792 | 795 |
/// \brief Set the supply values of the nodes. |
793 | 796 |
/// |
794 | 797 |
/// This function sets the supply values of the nodes. |
795 | 798 |
/// If neither this function nor \ref stSupply() is used before |
796 | 799 |
/// calling \ref run(), the supply of each node will be set to zero. |
797 | 800 |
/// (It makes sense only if non-zero lower bounds are given.) |
798 | 801 |
/// |
799 | 802 |
/// \param map A node map storing the supply values. |
800 |
/// Its \c Value type must be convertible to the \c |
|
803 |
/// Its \c Value type must be convertible to the \c Value type |
|
801 | 804 |
/// of the algorithm. |
802 | 805 |
/// |
803 | 806 |
/// \return <tt>(*this)</tt> |
804 |
template<typename SUP> |
|
805 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
806 |
delete _psupply; |
|
807 |
_pstsup = false; |
|
808 |
|
|
807 |
template<typename SupplyMap> |
|
808 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
|
809 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
810 |
|
|
810 |
_supply[_node_id[n]] = map[n]; |
|
811 | 811 |
} |
812 | 812 |
return *this; |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
/// \brief Set single source and target nodes and a supply value. |
816 | 816 |
/// |
817 | 817 |
/// This function sets a single source node and a single target node |
818 | 818 |
/// and the required flow value. |
819 | 819 |
/// If neither this function nor \ref supplyMap() is used before |
820 | 820 |
/// calling \ref run(), the supply of each node will be set to zero. |
821 | 821 |
/// (It makes sense only if non-zero lower bounds are given.) |
822 | 822 |
/// |
823 |
/// Using this function has the same effect as using \ref supplyMap() |
|
824 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
825 |
/// assigned to \c t and all other nodes have zero supply value. |
|
826 |
/// |
|
823 | 827 |
/// \param s The source node. |
824 | 828 |
/// \param t The target node. |
825 | 829 |
/// \param k The required amount of flow from node \c s to node \c t |
826 | 830 |
/// (i.e. the supply of \c s and the demand of \c t). |
827 | 831 |
/// |
828 | 832 |
/// \return <tt>(*this)</tt> |
829 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
|
830 |
delete _psupply; |
|
831 |
_psupply = NULL; |
|
832 |
_pstsup = true; |
|
833 |
_psource = s; |
|
834 |
_ptarget = t; |
|
835 |
|
|
833 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|
834 |
for (int i = 0; i != _node_num; ++i) { |
|
835 |
_supply[i] = 0; |
|
836 |
} |
|
837 |
_supply[_node_id[s]] = k; |
|
838 |
_supply[_node_id[t]] = -k; |
|
836 | 839 |
return *this; |
837 | 840 |
} |
838 | 841 |
|
839 |
/// \brief Set the |
|
842 |
/// \brief Set the type of the supply constraints. |
|
840 | 843 |
/// |
841 |
/// This function sets the problem type for the algorithm. |
|
842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
844 |
/// This function sets the type of the supply/demand constraints. |
|
845 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
843 | 846 |
/// type will be used. |
844 | 847 |
/// |
845 |
/// For more information see \ref |
|
848 |
/// For more information see \ref SupplyType. |
|
846 | 849 |
/// |
847 | 850 |
/// \return <tt>(*this)</tt> |
848 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
849 |
_ptype = problem_type; |
|
851 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
|
852 |
_stype = supply_type; |
|
850 | 853 |
return *this; |
851 | 854 |
} |
852 | 855 |
|
853 |
/// \brief Set the flow map. |
|
854 |
/// |
|
855 |
/// This function sets the flow map. |
|
856 |
/// If it is not used before calling \ref run(), an instance will |
|
857 |
/// be allocated automatically. The destructor deallocates this |
|
858 |
/// automatically allocated map, of course. |
|
859 |
/// |
|
860 |
/// \return <tt>(*this)</tt> |
|
861 |
NetworkSimplex& flowMap(FlowMap& map) { |
|
862 |
if (_local_flow) { |
|
863 |
delete _flow_map; |
|
864 |
_local_flow = false; |
|
865 |
} |
|
866 |
_flow_map = ↦ |
|
867 |
return *this; |
|
868 |
} |
|
869 |
|
|
870 |
/// \brief Set the potential map. |
|
871 |
/// |
|
872 |
/// This function sets the potential map, which is used for storing |
|
873 |
/// the dual solution. |
|
874 |
/// If it is not used before calling \ref run(), an instance will |
|
875 |
/// be allocated automatically. The destructor deallocates this |
|
876 |
/// automatically allocated map, of course. |
|
877 |
/// |
|
878 |
/// \return <tt>(*this)</tt> |
|
879 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
|
880 |
if (_local_potential) { |
|
881 |
delete _potential_map; |
|
882 |
_local_potential = false; |
|
883 |
} |
|
884 |
_potential_map = ↦ |
|
885 |
return *this; |
|
886 |
} |
|
887 |
|
|
888 | 856 |
/// @} |
889 | 857 |
|
890 | 858 |
/// \name Execution Control |
891 | 859 |
/// The algorithm can be executed using \ref run(). |
892 | 860 |
|
893 | 861 |
/// @{ |
894 | 862 |
|
895 | 863 |
/// \brief Run the algorithm. |
896 | 864 |
/// |
897 | 865 |
/// This function runs the algorithm. |
898 | 866 |
/// The paramters can be specified using functions \ref lowerMap(), |
899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
901 |
/// \ref |
|
867 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
868 |
/// \ref supplyType(). |
|
902 | 869 |
/// For example, |
903 | 870 |
/// \code |
904 | 871 |
/// NetworkSimplex<ListDigraph> ns(graph); |
905 |
/// ns. |
|
872 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
906 | 873 |
/// .supplyMap(sup).run(); |
907 | 874 |
/// \endcode |
908 | 875 |
/// |
909 | 876 |
/// This function can be called more than once. All the parameters |
910 | 877 |
/// that have been given are kept for the next call, unless |
911 | 878 |
/// \ref reset() is called, thus only the modified parameters |
912 | 879 |
/// have to be set again. See \ref reset() for examples. |
880 |
/// However the underlying digraph must not be modified after this |
|
881 |
/// class have been constructed, since it copies and extends the graph. |
|
913 | 882 |
/// |
914 | 883 |
/// \param pivot_rule The pivot rule that will be used during the |
915 | 884 |
/// algorithm. For more information see \ref PivotRule. |
916 | 885 |
/// |
917 |
/// \return \c true if a feasible flow can be found. |
|
918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
919 |
|
|
886 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
887 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
888 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
889 |
/// optimal flow and node potentials (primal and dual solutions), |
|
890 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
891 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
892 |
/// cost and infinite upper bound. |
|
893 |
/// |
|
894 |
/// \see ProblemType, PivotRule |
|
895 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
896 |
if (!init()) return INFEASIBLE; |
|
897 |
return start(pivot_rule); |
|
920 | 898 |
} |
921 | 899 |
|
922 | 900 |
/// \brief Reset all the parameters that have been given before. |
923 | 901 |
/// |
924 | 902 |
/// This function resets all the paramaters that have been given |
925 | 903 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
928 |
/// \ref |
|
904 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|
929 | 905 |
/// |
930 | 906 |
/// It is useful for multiple run() calls. If this function is not |
931 | 907 |
/// used, all the parameters given before are kept for the next |
932 | 908 |
/// \ref run() call. |
909 |
/// However the underlying digraph must not be modified after this |
|
910 |
/// class have been constructed, since it copies and extends the graph. |
|
933 | 911 |
/// |
934 | 912 |
/// For example, |
935 | 913 |
/// \code |
936 | 914 |
/// NetworkSimplex<ListDigraph> ns(graph); |
937 | 915 |
/// |
938 | 916 |
/// // First run |
939 |
/// ns.lowerMap(lower). |
|
917 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
940 | 918 |
/// .supplyMap(sup).run(); |
941 | 919 |
/// |
942 | 920 |
/// // Run again with modified cost map (reset() is not called, |
943 | 921 |
/// // so only the cost map have to be set again) |
944 | 922 |
/// cost[e] += 100; |
945 | 923 |
/// ns.costMap(cost).run(); |
946 | 924 |
/// |
947 | 925 |
/// // Run again from scratch using reset() |
948 | 926 |
/// // (the lower bounds will be set to zero on all arcs) |
949 | 927 |
/// ns.reset(); |
950 |
/// ns. |
|
928 |
/// ns.upperMap(capacity).costMap(cost) |
|
951 | 929 |
/// .supplyMap(sup).run(); |
952 | 930 |
/// \endcode |
953 | 931 |
/// |
954 | 932 |
/// \return <tt>(*this)</tt> |
955 | 933 |
NetworkSimplex& reset() { |
956 |
delete _plower; |
|
957 |
delete _pupper; |
|
958 |
delete _pcost; |
|
959 |
delete _psupply; |
|
960 |
_plower = NULL; |
|
961 |
_pupper = NULL; |
|
962 |
_pcost = NULL; |
|
963 |
_psupply = NULL; |
|
964 |
_pstsup = false; |
|
965 |
_ptype = GEQ; |
|
966 |
if (_local_flow) delete _flow_map; |
|
967 |
if (_local_potential) delete _potential_map; |
|
968 |
_flow_map = NULL; |
|
969 |
_potential_map = NULL; |
|
970 |
_local_flow = false; |
|
971 |
_local_potential = false; |
|
972 |
|
|
934 |
for (int i = 0; i != _node_num; ++i) { |
|
935 |
_supply[i] = 0; |
|
936 |
} |
|
937 |
for (int i = 0; i != _arc_num; ++i) { |
|
938 |
_lower[i] = 0; |
|
939 |
_upper[i] = INF; |
|
940 |
_cost[i] = 1; |
|
941 |
} |
|
942 |
_have_lower = false; |
|
943 |
_stype = GEQ; |
|
973 | 944 |
return *this; |
974 | 945 |
} |
975 | 946 |
|
976 | 947 |
/// @} |
977 | 948 |
|
978 | 949 |
/// \name Query Functions |
979 | 950 |
/// The results of the algorithm can be obtained using these |
980 | 951 |
/// functions.\n |
981 | 952 |
/// The \ref run() function must be called before using them. |
982 | 953 |
|
983 | 954 |
/// @{ |
984 | 955 |
|
985 | 956 |
/// \brief Return the total cost of the found flow. |
986 | 957 |
/// |
987 | 958 |
/// This function returns the total cost of the found flow. |
988 |
/// |
|
959 |
/// Its complexity is O(e). |
|
989 | 960 |
/// |
990 | 961 |
/// \note The return type of the function can be specified as a |
991 | 962 |
/// template parameter. For example, |
992 | 963 |
/// \code |
993 | 964 |
/// ns.totalCost<double>(); |
994 | 965 |
/// \endcode |
995 | 966 |
/// It is useful if the total cost cannot be stored in the \c Cost |
996 | 967 |
/// type of the algorithm, which is the default return type of the |
997 | 968 |
/// function. |
998 | 969 |
/// |
999 | 970 |
/// \pre \ref run() must be called before using this function. |
1000 |
template <typename Num> |
|
1001 |
Num totalCost() const { |
|
1002 |
Num c = 0; |
|
1003 |
if (_pcost) { |
|
1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
1006 |
} else { |
|
1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1008 |
|
|
971 |
template <typename Number> |
|
972 |
Number totalCost() const { |
|
973 |
Number c = 0; |
|
974 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
975 |
int i = _arc_id[a]; |
|
976 |
c += Number(_flow[i]) * Number(_cost[i]); |
|
1009 | 977 |
} |
1010 | 978 |
return c; |
1011 | 979 |
} |
1012 | 980 |
|
1013 | 981 |
#ifndef DOXYGEN |
1014 | 982 |
Cost totalCost() const { |
1015 | 983 |
return totalCost<Cost>(); |
1016 | 984 |
} |
1017 | 985 |
#endif |
1018 | 986 |
|
1019 | 987 |
/// \brief Return the flow on the given arc. |
1020 | 988 |
/// |
1021 | 989 |
/// This function returns the flow on the given arc. |
1022 | 990 |
/// |
1023 | 991 |
/// \pre \ref run() must be called before using this function. |
1024 |
Flow flow(const Arc& a) const { |
|
1025 |
return (*_flow_map)[a]; |
|
992 |
Value flow(const Arc& a) const { |
|
993 |
return _flow[_arc_id[a]]; |
|
1026 | 994 |
} |
1027 | 995 |
|
1028 |
/// \brief Return |
|
996 |
/// \brief Return the flow map (the primal solution). |
|
1029 | 997 |
/// |
1030 |
/// This function returns a const reference to an arc map storing |
|
1031 |
/// the found flow. |
|
998 |
/// This function copies the flow value on each arc into the given |
|
999 |
/// map. The \c Value type of the algorithm must be convertible to |
|
1000 |
/// the \c Value type of the map. |
|
1032 | 1001 |
/// |
1033 | 1002 |
/// \pre \ref run() must be called before using this function. |
1034 |
const FlowMap& flowMap() const { |
|
1035 |
return *_flow_map; |
|
1003 |
template <typename FlowMap> |
|
1004 |
void flowMap(FlowMap &map) const { |
|
1005 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
1006 |
map.set(a, _flow[_arc_id[a]]); |
|
1007 |
} |
|
1036 | 1008 |
} |
1037 | 1009 |
|
1038 | 1010 |
/// \brief Return the potential (dual value) of the given node. |
1039 | 1011 |
/// |
1040 | 1012 |
/// This function returns the potential (dual value) of the |
1041 | 1013 |
/// given node. |
1042 | 1014 |
/// |
1043 | 1015 |
/// \pre \ref run() must be called before using this function. |
1044 | 1016 |
Cost potential(const Node& n) const { |
1045 |
return |
|
1017 |
return _pi[_node_id[n]]; |
|
1046 | 1018 |
} |
1047 | 1019 |
|
1048 |
/// \brief Return a const reference to the potential map |
|
1049 |
/// (the dual solution). |
|
1020 |
/// \brief Return the potential map (the dual solution). |
|
1050 | 1021 |
/// |
1051 |
/// This function returns a const reference to a node map storing |
|
1052 |
/// the found potentials, which form the dual solution of the |
|
1053 |
/// |
|
1022 |
/// This function copies the potential (dual value) of each node |
|
1023 |
/// into the given map. |
|
1024 |
/// The \c Cost type of the algorithm must be convertible to the |
|
1025 |
/// \c Value type of the map. |
|
1054 | 1026 |
/// |
1055 | 1027 |
/// \pre \ref run() must be called before using this function. |
1056 |
const PotentialMap& potentialMap() const { |
|
1057 |
return *_potential_map; |
|
1028 |
template <typename PotentialMap> |
|
1029 |
void potentialMap(PotentialMap &map) const { |
|
1030 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1031 |
map.set(n, _pi[_node_id[n]]); |
|
1032 |
} |
|
1058 | 1033 |
} |
1059 | 1034 |
|
1060 | 1035 |
/// @} |
1061 | 1036 |
|
1062 | 1037 |
private: |
1063 | 1038 |
|
1064 | 1039 |
// Initialize internal data structures |
1065 | 1040 |
bool init() { |
1066 |
// Initialize result maps |
|
1067 |
if (!_flow_map) { |
|
1068 |
_flow_map = new FlowMap(_graph); |
|
1069 |
_local_flow = true; |
|
1041 |
if (_node_num == 0) return false; |
|
1042 |
|
|
1043 |
// Check the sum of supply values |
|
1044 |
_sum_supply = 0; |
|
1045 |
for (int i = 0; i != _node_num; ++i) { |
|
1046 |
_sum_supply += _supply[i]; |
|
1070 | 1047 |
} |
1071 |
if (!_potential_map) { |
|
1072 |
_potential_map = new PotentialMap(_graph); |
|
1073 |
|
|
1048 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
|
1049 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
|
1050 |
|
|
1051 |
// Remove non-zero lower bounds |
|
1052 |
if (_have_lower) { |
|
1053 |
for (int i = 0; i != _arc_num; ++i) { |
|
1054 |
Value c = _lower[i]; |
|
1055 |
if (c >= 0) { |
|
1056 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|
1057 |
} else { |
|
1058 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|
1059 |
} |
|
1060 |
_supply[_source[i]] -= c; |
|
1061 |
_supply[_target[i]] += c; |
|
1062 |
} |
|
1063 |
} else { |
|
1064 |
for (int i = 0; i != _arc_num; ++i) { |
|
1065 |
_cap[i] = _upper[i]; |
|
1066 |
} |
|
1074 | 1067 |
} |
1075 | 1068 |
|
1076 |
// Initialize vectors |
|
1077 |
_node_num = countNodes(_graph); |
|
1078 |
_arc_num = countArcs(_graph); |
|
1079 |
int all_node_num = _node_num + 1; |
|
1080 |
int all_arc_num = _arc_num + _node_num; |
|
1081 |
if (_node_num == 0) return false; |
|
1082 |
|
|
1083 |
_arc_ref.resize(_arc_num); |
|
1084 |
_source.resize(all_arc_num); |
|
1085 |
_target.resize(all_arc_num); |
|
1086 |
|
|
1087 |
_cap.resize(all_arc_num); |
|
1088 |
_cost.resize(all_arc_num); |
|
1089 |
_supply.resize(all_node_num); |
|
1090 |
_flow.resize(all_arc_num); |
|
1091 |
_pi.resize(all_node_num); |
|
1092 |
|
|
1093 |
_parent.resize(all_node_num); |
|
1094 |
_pred.resize(all_node_num); |
|
1095 |
_forward.resize(all_node_num); |
|
1096 |
_thread.resize(all_node_num); |
|
1097 |
_rev_thread.resize(all_node_num); |
|
1098 |
_succ_num.resize(all_node_num); |
|
1099 |
_last_succ.resize(all_node_num); |
|
1100 |
_state.resize(all_arc_num); |
|
1101 |
|
|
1102 |
// Initialize node related data |
|
1103 |
bool valid_supply = true; |
|
1104 |
Flow sum_supply = 0; |
|
1105 |
if (!_pstsup && !_psupply) { |
|
1106 |
_pstsup = true; |
|
1107 |
_psource = _ptarget = NodeIt(_graph); |
|
1108 |
_pstflow = 0; |
|
1109 |
} |
|
1110 |
if (_psupply) { |
|
1111 |
int i = 0; |
|
1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1113 |
_node_id[n] = i; |
|
1114 |
_supply[i] = (*_psupply)[n]; |
|
1115 |
sum_supply += _supply[i]; |
|
1069 |
// Initialize artifical cost |
|
1070 |
Cost ART_COST; |
|
1071 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1072 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1073 |
} else { |
|
1074 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
1075 |
for (int i = 0; i != _arc_num; ++i) { |
|
1076 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
1116 | 1077 |
} |
1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
1119 |
} else { |
|
1120 |
int i = 0; |
|
1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1122 |
_node_id[n] = i; |
|
1123 |
_supply[i] = 0; |
|
1124 |
} |
|
1125 |
_supply[_node_id[_psource]] = _pstflow; |
|
1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1127 |
} |
|
1128 |
if (!valid_supply) return false; |
|
1129 |
|
|
1130 |
// Infinite capacity value |
|
1131 |
Flow inf_cap = |
|
1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
1133 |
std::numeric_limits<Flow>::infinity() : |
|
1134 |
std::numeric_limits<Flow>::max(); |
|
1135 |
|
|
1136 |
// Initialize artifical cost |
|
1137 |
Cost art_cost; |
|
1138 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1140 |
} else { |
|
1141 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1142 |
for (int i = 0; i != _arc_num; ++i) { |
|
1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1144 |
} |
|
1145 |
|
|
1078 |
ART_COST = (ART_COST + 1) * _node_num; |
|
1146 | 1079 |
} |
1147 | 1080 |
|
1148 |
// Run Circulation to check if a feasible solution exists |
|
1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1151 |
FlowNodeMap *csup = NULL; |
|
1152 |
bool local_csup = false; |
|
1153 |
if (_psupply) { |
|
1154 |
csup = _psupply; |
|
1155 |
} else { |
|
1156 |
csup = new FlowNodeMap(_graph, 0); |
|
1157 |
(*csup)[_psource] = _pstflow; |
|
1158 |
(*csup)[_ptarget] = -_pstflow; |
|
1159 |
local_csup = true; |
|
1081 |
// Initialize arc maps |
|
1082 |
for (int i = 0; i != _arc_num; ++i) { |
|
1083 |
_flow[i] = 0; |
|
1084 |
_state[i] = STATE_LOWER; |
|
1160 | 1085 |
} |
1161 |
bool circ_result = false; |
|
1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1163 |
// GEQ problem type |
|
1164 |
if (_plower) { |
|
1165 |
if (_pupper) { |
|
1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} else { |
|
1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1172 |
circ_result = circ.run(); |
|
1173 |
} |
|
1174 |
} else { |
|
1175 |
if (_pupper) { |
|
1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} else { |
|
1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1182 |
circ_result = circ.run(); |
|
1183 |
} |
|
1184 |
} |
|
1185 |
} else { |
|
1186 |
// LEQ problem type |
|
1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1189 |
RevGraph rgraph(_graph); |
|
1190 |
NegNodeMap neg_csup(*csup); |
|
1191 |
if (_plower) { |
|
1192 |
if (_pupper) { |
|
1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} else { |
|
1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1199 |
circ_result = circ.run(); |
|
1200 |
} |
|
1201 |
} else { |
|
1202 |
if (_pupper) { |
|
1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} else { |
|
1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1209 |
circ_result = circ.run(); |
|
1210 |
} |
|
1211 |
} |
|
1212 |
} |
|
1213 |
if (local_csup) delete csup; |
|
1214 |
if (!circ_result) return false; |
|
1215 |
|
|
1086 |
|
|
1216 | 1087 |
// Set data for the artificial root node |
1217 | 1088 |
_root = _node_num; |
1218 | 1089 |
_parent[_root] = -1; |
1219 | 1090 |
_pred[_root] = -1; |
1220 | 1091 |
_thread[_root] = 0; |
1221 | 1092 |
_rev_thread[0] = _root; |
1222 |
_succ_num[_root] = |
|
1093 |
_succ_num[_root] = _node_num + 1; |
|
1223 | 1094 |
_last_succ[_root] = _root - 1; |
1224 |
_supply[_root] = -sum_supply; |
|
1225 |
if (sum_supply < 0) { |
|
1226 |
_pi[_root] = -art_cost; |
|
1227 |
} else { |
|
1228 |
_pi[_root] = art_cost; |
|
1229 |
} |
|
1230 |
|
|
1231 |
// Store the arcs in a mixed order |
|
1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
1233 |
int i = 0; |
|
1234 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1235 |
_arc_ref[i] = e; |
|
1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
1237 |
} |
|
1238 |
|
|
1239 |
// Initialize arc maps |
|
1240 |
if (_pupper && _pcost) { |
|
1241 |
for (int i = 0; i != _arc_num; ++i) { |
|
1242 |
Arc e = _arc_ref[i]; |
|
1243 |
_source[i] = _node_id[_graph.source(e)]; |
|
1244 |
_target[i] = _node_id[_graph.target(e)]; |
|
1245 |
_cap[i] = (*_pupper)[e]; |
|
1246 |
_cost[i] = (*_pcost)[e]; |
|
1247 |
_flow[i] = 0; |
|
1248 |
_state[i] = STATE_LOWER; |
|
1249 |
} |
|
1250 |
} else { |
|
1251 |
for (int i = 0; i != _arc_num; ++i) { |
|
1252 |
Arc e = _arc_ref[i]; |
|
1253 |
_source[i] = _node_id[_graph.source(e)]; |
|
1254 |
_target[i] = _node_id[_graph.target(e)]; |
|
1255 |
_flow[i] = 0; |
|
1256 |
_state[i] = STATE_LOWER; |
|
1257 |
} |
|
1258 |
if (_pupper) { |
|
1259 |
for (int i = 0; i != _arc_num; ++i) |
|
1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
1261 |
} else { |
|
1262 |
for (int i = 0; i != _arc_num; ++i) |
|
1263 |
_cap[i] = inf_cap; |
|
1264 |
} |
|
1265 |
if (_pcost) { |
|
1266 |
for (int i = 0; i != _arc_num; ++i) |
|
1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
1268 |
} else { |
|
1269 |
for (int i = 0; i != _arc_num; ++i) |
|
1270 |
_cost[i] = 1; |
|
1271 |
} |
|
1272 |
} |
|
1273 |
|
|
1274 |
// Remove non-zero lower bounds |
|
1275 |
if (_plower) { |
|
1276 |
for (int i = 0; i != _arc_num; ++i) { |
|
1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
1278 |
if (c != 0) { |
|
1279 |
_cap[i] -= c; |
|
1280 |
_supply[_source[i]] -= c; |
|
1281 |
_supply[_target[i]] += c; |
|
1282 |
} |
|
1283 |
} |
|
1284 |
|
|
1095 |
_supply[_root] = -_sum_supply; |
|
1096 |
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST; |
|
1285 | 1097 |
|
1286 | 1098 |
// Add artificial arcs and initialize the spanning tree data structure |
1287 | 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1100 |
_parent[u] = _root; |
|
1101 |
_pred[u] = e; |
|
1288 | 1102 |
_thread[u] = u + 1; |
1289 | 1103 |
_rev_thread[u + 1] = u; |
1290 | 1104 |
_succ_num[u] = 1; |
1291 | 1105 |
_last_succ[u] = u; |
1292 |
_parent[u] = _root; |
|
1293 |
_pred[u] = e; |
|
1294 |
_cost[e] = art_cost; |
|
1295 |
_cap[e] = inf_cap; |
|
1106 |
_cost[e] = ART_COST; |
|
1107 |
_cap[e] = INF; |
|
1296 | 1108 |
_state[e] = STATE_TREE; |
1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1298 | 1110 |
_flow[e] = _supply[u]; |
1299 | 1111 |
_forward[u] = true; |
1300 |
_pi[u] = - |
|
1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1301 | 1113 |
} else { |
1302 | 1114 |
_flow[e] = -_supply[u]; |
1303 | 1115 |
_forward[u] = false; |
1304 |
_pi[u] = |
|
1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
1305 | 1117 |
} |
1306 | 1118 |
} |
1307 | 1119 |
|
1308 | 1120 |
return true; |
1309 | 1121 |
} |
1310 | 1122 |
|
1311 | 1123 |
// Find the join node |
1312 | 1124 |
void findJoinNode() { |
1313 | 1125 |
int u = _source[in_arc]; |
1314 | 1126 |
int v = _target[in_arc]; |
1315 | 1127 |
while (u != v) { |
1316 | 1128 |
if (_succ_num[u] < _succ_num[v]) { |
1317 | 1129 |
u = _parent[u]; |
1318 | 1130 |
} else { |
1319 | 1131 |
v = _parent[v]; |
1320 | 1132 |
} |
1321 | 1133 |
} |
1322 | 1134 |
join = u; |
1323 | 1135 |
} |
1324 | 1136 |
|
1325 | 1137 |
// Find the leaving arc of the cycle and returns true if the |
1326 | 1138 |
// leaving arc is not the same as the entering arc |
1327 | 1139 |
bool findLeavingArc() { |
1328 | 1140 |
// Initialize first and second nodes according to the direction |
1329 | 1141 |
// of the cycle |
1330 | 1142 |
if (_state[in_arc] == STATE_LOWER) { |
1331 | 1143 |
first = _source[in_arc]; |
1332 | 1144 |
second = _target[in_arc]; |
1333 | 1145 |
} else { |
1334 | 1146 |
first = _target[in_arc]; |
1335 | 1147 |
second = _source[in_arc]; |
1336 | 1148 |
} |
1337 | 1149 |
delta = _cap[in_arc]; |
1338 | 1150 |
int result = 0; |
1339 |
|
|
1151 |
Value d; |
|
1340 | 1152 |
int e; |
1341 | 1153 |
|
1342 | 1154 |
// Search the cycle along the path form the first node to the root |
1343 | 1155 |
for (int u = first; u != join; u = _parent[u]) { |
1344 | 1156 |
e = _pred[u]; |
1345 |
d = _forward[u] ? |
|
1157 |
d = _forward[u] ? |
|
1158 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
1346 | 1159 |
if (d < delta) { |
1347 | 1160 |
delta = d; |
1348 | 1161 |
u_out = u; |
1349 | 1162 |
result = 1; |
1350 | 1163 |
} |
1351 | 1164 |
} |
1352 | 1165 |
// Search the cycle along the path form the second node to the root |
1353 | 1166 |
for (int u = second; u != join; u = _parent[u]) { |
1354 | 1167 |
e = _pred[u]; |
1355 |
d = _forward[u] ? |
|
1168 |
d = _forward[u] ? |
|
1169 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1356 | 1170 |
if (d <= delta) { |
1357 | 1171 |
delta = d; |
1358 | 1172 |
u_out = u; |
1359 | 1173 |
result = 2; |
1360 | 1174 |
} |
1361 | 1175 |
} |
1362 | 1176 |
|
1363 | 1177 |
if (result == 1) { |
1364 | 1178 |
u_in = first; |
1365 | 1179 |
v_in = second; |
1366 | 1180 |
} else { |
1367 | 1181 |
u_in = second; |
1368 | 1182 |
v_in = first; |
1369 | 1183 |
} |
1370 | 1184 |
return result != 0; |
1371 | 1185 |
} |
1372 | 1186 |
|
1373 | 1187 |
// Change _flow and _state vectors |
1374 | 1188 |
void changeFlow(bool change) { |
1375 | 1189 |
// Augment along the cycle |
1376 | 1190 |
if (delta > 0) { |
1377 |
|
|
1191 |
Value val = _state[in_arc] * delta; |
|
1378 | 1192 |
_flow[in_arc] += val; |
1379 | 1193 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1380 | 1194 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1381 | 1195 |
} |
1382 | 1196 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1383 | 1197 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1384 | 1198 |
} |
1385 | 1199 |
} |
1386 | 1200 |
// Update the state of the entering and leaving arcs |
1387 | 1201 |
if (change) { |
1388 | 1202 |
_state[in_arc] = STATE_TREE; |
1389 | 1203 |
_state[_pred[u_out]] = |
1390 | 1204 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1391 | 1205 |
} else { |
1392 | 1206 |
_state[in_arc] = -_state[in_arc]; |
1393 | 1207 |
} |
1394 | 1208 |
} |
1395 | 1209 |
|
1396 | 1210 |
// Update the tree structure |
1397 | 1211 |
void updateTreeStructure() { |
1398 | 1212 |
int u, w; |
1399 | 1213 |
int old_rev_thread = _rev_thread[u_out]; |
1400 | 1214 |
int old_succ_num = _succ_num[u_out]; |
1401 | 1215 |
int old_last_succ = _last_succ[u_out]; |
1402 | 1216 |
v_out = _parent[u_out]; |
1403 | 1217 |
|
1404 | 1218 |
u = _last_succ[u_in]; // the last successor of u_in |
1405 | 1219 |
right = _thread[u]; // the node after it |
1406 | 1220 |
|
1407 | 1221 |
// Handle the case when old_rev_thread equals to v_in |
1408 | 1222 |
// (it also means that join and v_out coincide) |
1409 | 1223 |
if (old_rev_thread == v_in) { |
1410 | 1224 |
last = _thread[_last_succ[u_out]]; |
1411 | 1225 |
} else { |
1412 | 1226 |
last = _thread[v_in]; |
1413 | 1227 |
} |
1414 | 1228 |
|
1415 | 1229 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1416 | 1230 |
// between u_in and u_out, whose parent have to be changed) |
1417 | 1231 |
_thread[v_in] = stem = u_in; |
1418 | 1232 |
_dirty_revs.clear(); |
1419 | 1233 |
_dirty_revs.push_back(v_in); |
1420 | 1234 |
par_stem = v_in; |
1421 | 1235 |
while (stem != u_out) { |
1422 | 1236 |
// Insert the next stem node into the thread list |
1423 | 1237 |
new_stem = _parent[stem]; |
1424 | 1238 |
_thread[u] = new_stem; |
1425 | 1239 |
_dirty_revs.push_back(u); |
1426 | 1240 |
|
1427 | 1241 |
// Remove the subtree of stem from the thread list |
1428 | 1242 |
w = _rev_thread[stem]; |
1429 | 1243 |
_thread[w] = right; |
1430 | 1244 |
_rev_thread[right] = w; |
1431 | 1245 |
|
1432 | 1246 |
// Change the parent node and shift stem nodes |
1433 | 1247 |
_parent[stem] = par_stem; |
1434 | 1248 |
par_stem = stem; |
1435 | 1249 |
stem = new_stem; |
1436 | 1250 |
|
1437 | 1251 |
// Update u and right |
1438 | 1252 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1439 | 1253 |
_rev_thread[par_stem] : _last_succ[stem]; |
1440 | 1254 |
right = _thread[u]; |
1441 | 1255 |
} |
1442 | 1256 |
_parent[u_out] = par_stem; |
1443 | 1257 |
_thread[u] = last; |
1444 | 1258 |
_rev_thread[last] = u; |
1445 | 1259 |
_last_succ[u_out] = u; |
1446 | 1260 |
|
1447 | 1261 |
// Remove the subtree of u_out from the thread list except for |
1448 | 1262 |
// the case when old_rev_thread equals to v_in |
1449 | 1263 |
// (it also means that join and v_out coincide) |
1450 | 1264 |
if (old_rev_thread != v_in) { |
1451 | 1265 |
_thread[old_rev_thread] = right; |
1452 | 1266 |
_rev_thread[right] = old_rev_thread; |
1453 | 1267 |
} |
1454 | 1268 |
|
1455 | 1269 |
// Update _rev_thread using the new _thread values |
1456 | 1270 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1457 | 1271 |
u = _dirty_revs[i]; |
1458 | 1272 |
_rev_thread[_thread[u]] = u; |
1459 | 1273 |
} |
1460 | 1274 |
|
1461 | 1275 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1462 | 1276 |
// stem nodes from u_out to u_in |
1463 | 1277 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1464 | 1278 |
u = u_out; |
1465 | 1279 |
while (u != u_in) { |
1466 | 1280 |
w = _parent[u]; |
1467 | 1281 |
_pred[u] = _pred[w]; |
1468 | 1282 |
_forward[u] = !_forward[w]; |
1469 | 1283 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1470 | 1284 |
_succ_num[u] = tmp_sc; |
1471 | 1285 |
_last_succ[w] = tmp_ls; |
1472 | 1286 |
u = w; |
1473 | 1287 |
} |
1474 | 1288 |
_pred[u_in] = in_arc; |
1475 | 1289 |
_forward[u_in] = (u_in == _source[in_arc]); |
1476 | 1290 |
_succ_num[u_in] = old_succ_num; |
1477 | 1291 |
|
1478 | 1292 |
// Set limits for updating _last_succ form v_in and v_out |
1479 | 1293 |
// towards the root |
1480 | 1294 |
int up_limit_in = -1; |
1481 | 1295 |
int up_limit_out = -1; |
1482 | 1296 |
if (_last_succ[join] == v_in) { |
1483 | 1297 |
up_limit_out = join; |
1484 | 1298 |
} else { |
1485 | 1299 |
up_limit_in = join; |
1486 | 1300 |
} |
1487 | 1301 |
|
1488 | 1302 |
// Update _last_succ from v_in towards the root |
1489 | 1303 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1490 | 1304 |
u = _parent[u]) { |
1491 | 1305 |
_last_succ[u] = _last_succ[u_out]; |
1492 | 1306 |
} |
1493 | 1307 |
// Update _last_succ from v_out towards the root |
1494 | 1308 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1495 | 1309 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1496 | 1310 |
u = _parent[u]) { |
1497 | 1311 |
_last_succ[u] = old_rev_thread; |
1498 | 1312 |
} |
1499 | 1313 |
} else { |
1500 | 1314 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1501 | 1315 |
u = _parent[u]) { |
1502 | 1316 |
_last_succ[u] = _last_succ[u_out]; |
1503 | 1317 |
} |
1504 | 1318 |
} |
1505 | 1319 |
|
1506 | 1320 |
// Update _succ_num from v_in to join |
1507 | 1321 |
for (u = v_in; u != join; u = _parent[u]) { |
1508 | 1322 |
_succ_num[u] += old_succ_num; |
1509 | 1323 |
} |
1510 | 1324 |
// Update _succ_num from v_out to join |
1511 | 1325 |
for (u = v_out; u != join; u = _parent[u]) { |
1512 | 1326 |
_succ_num[u] -= old_succ_num; |
1513 | 1327 |
} |
1514 | 1328 |
} |
1515 | 1329 |
|
1516 | 1330 |
// Update potentials |
1517 | 1331 |
void updatePotential() { |
1518 | 1332 |
Cost sigma = _forward[u_in] ? |
1519 | 1333 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1520 | 1334 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1521 | 1335 |
// Update potentials in the subtree, which has been moved |
1522 | 1336 |
int end = _thread[_last_succ[u_in]]; |
1523 | 1337 |
for (int u = u_in; u != end; u = _thread[u]) { |
1524 | 1338 |
_pi[u] += sigma; |
1525 | 1339 |
} |
1526 | 1340 |
} |
1527 | 1341 |
|
1528 | 1342 |
// Execute the algorithm |
1529 |
|
|
1343 |
ProblemType start(PivotRule pivot_rule) { |
|
1530 | 1344 |
// Select the pivot rule implementation |
1531 | 1345 |
switch (pivot_rule) { |
1532 | 1346 |
case FIRST_ELIGIBLE: |
1533 | 1347 |
return start<FirstEligiblePivotRule>(); |
1534 | 1348 |
case BEST_ELIGIBLE: |
1535 | 1349 |
return start<BestEligiblePivotRule>(); |
1536 | 1350 |
case BLOCK_SEARCH: |
1537 | 1351 |
return start<BlockSearchPivotRule>(); |
1538 | 1352 |
case CANDIDATE_LIST: |
1539 | 1353 |
return start<CandidateListPivotRule>(); |
1540 | 1354 |
case ALTERING_LIST: |
1541 | 1355 |
return start<AlteringListPivotRule>(); |
1542 | 1356 |
} |
1543 |
return |
|
1357 |
return INFEASIBLE; // avoid warning |
|
1544 | 1358 |
} |
1545 | 1359 |
|
1546 | 1360 |
template <typename PivotRuleImpl> |
1547 |
|
|
1361 |
ProblemType start() { |
|
1548 | 1362 |
PivotRuleImpl pivot(*this); |
1549 | 1363 |
|
1550 | 1364 |
// Execute the Network Simplex algorithm |
1551 | 1365 |
while (pivot.findEnteringArc()) { |
1552 | 1366 |
findJoinNode(); |
1553 | 1367 |
bool change = findLeavingArc(); |
1368 |
if (delta >= INF) return UNBOUNDED; |
|
1554 | 1369 |
changeFlow(change); |
1555 | 1370 |
if (change) { |
1556 | 1371 |
updateTreeStructure(); |
1557 | 1372 |
updatePotential(); |
1558 | 1373 |
} |
1559 | 1374 |
} |
1560 |
|
|
1561 |
// Copy flow values to _flow_map |
|
1562 |
if (_plower) { |
|
1563 |
for (int i = 0; i != _arc_num; ++i) { |
|
1564 |
Arc e = _arc_ref[i]; |
|
1565 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
1566 |
} |
|
1567 |
} else { |
|
1568 |
for (int i = 0; i != _arc_num; ++i) { |
|
1569 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
1375 |
|
|
1376 |
// Check feasibility |
|
1377 |
if (_sum_supply < 0) { |
|
1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1570 | 1380 |
} |
1571 | 1381 |
} |
1572 |
// Copy potential values to _potential_map |
|
1573 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1574 |
|
|
1382 |
else if (_sum_supply > 0) { |
|
1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1385 |
} |
|
1386 |
} |
|
1387 |
else { |
|
1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1390 |
} |
|
1575 | 1391 |
} |
1576 | 1392 |
|
1577 |
|
|
1393 |
// Transform the solution and the supply map to the original form |
|
1394 |
if (_have_lower) { |
|
1395 |
for (int i = 0; i != _arc_num; ++i) { |
|
1396 |
Value c = _lower[i]; |
|
1397 |
if (c != 0) { |
|
1398 |
_flow[i] += c; |
|
1399 |
_supply[_source[i]] += c; |
|
1400 |
_supply[_target[i]] -= c; |
|
1401 |
} |
|
1402 |
} |
|
1403 |
} |
|
1404 |
|
|
1405 |
return OPTIMAL; |
|
1578 | 1406 |
} |
1579 | 1407 |
|
1580 | 1408 |
}; //class NetworkSimplex |
1581 | 1409 |
|
1582 | 1410 |
///@} |
1583 | 1411 |
|
1584 | 1412 |
} //namespace lemon |
1585 | 1413 |
|
1586 | 1414 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Value; |
|
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Instantiates a FlowMap. |
58 | 58 |
/// |
59 | 59 |
/// This function instantiates a \ref FlowMap. |
60 | 60 |
/// \param digraph The digraph for which we would like to define |
61 | 61 |
/// the flow map. |
62 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 63 |
return new FlowMap(digraph); |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 67 |
/// |
68 | 68 |
/// The elevator type used by Preflow algorithm. |
69 | 69 |
/// |
70 | 70 |
/// \sa Elevator |
71 | 71 |
/// \sa LinkedElevator |
72 | 72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
73 | 73 |
|
74 | 74 |
/// \brief Instantiates an Elevator. |
75 | 75 |
/// |
76 | 76 |
/// This function instantiates an \ref Elevator. |
77 | 77 |
/// \param digraph The digraph for which we would like to define |
78 | 78 |
/// the elevator. |
79 | 79 |
/// \param max_level The maximum level of the elevator. |
80 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 81 |
return new Elevator(digraph, max_level); |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
/// \brief The tolerance used by the algorithm |
85 | 85 |
/// |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
|
92 | 92 |
/// \ingroup max_flow |
93 | 93 |
/// |
94 | 94 |
/// \brief %Preflow algorithm class. |
95 | 95 |
/// |
96 | 96 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 97 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 98 |
/// "flow of maximum value" in a digraph. |
99 | 99 |
/// The preflow algorithms are the fastest known maximum |
100 | 100 |
/// flow algorithms. The current implementation use a mixture of the |
101 | 101 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 102 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 103 |
/// |
104 | 104 |
/// The algorithm consists of two phases. After the first phase |
105 | 105 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 106 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 107 |
/// |
108 | 108 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 109 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 110 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 111 |
#ifdef DOXYGEN |
112 | 112 |
template <typename GR, typename CAP, typename TR> |
113 | 113 |
#else |
114 | 114 |
template <typename GR, |
115 | 115 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 116 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 117 |
#endif |
118 | 118 |
class Preflow { |
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
122 | 122 |
typedef TR Traits; |
123 | 123 |
///The type of the digraph the algorithm runs on. |
124 | 124 |
typedef typename Traits::Digraph Digraph; |
125 | 125 |
///The type of the capacity map. |
126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Value Value; |
|
129 | 129 |
|
130 | 130 |
///The type of the flow map. |
131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
132 | 132 |
///The type of the elevator. |
133 | 133 |
typedef typename Traits::Elevator Elevator; |
134 | 134 |
///The type of the tolerance. |
135 | 135 |
typedef typename Traits::Tolerance Tolerance; |
136 | 136 |
|
137 | 137 |
private: |
138 | 138 |
|
139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
140 | 140 |
|
141 | 141 |
const Digraph& _graph; |
142 | 142 |
const CapacityMap* _capacity; |
143 | 143 |
|
144 | 144 |
int _node_num; |
145 | 145 |
|
146 | 146 |
Node _source, _target; |
147 | 147 |
|
148 | 148 |
FlowMap* _flow; |
149 | 149 |
bool _local_flow; |
150 | 150 |
|
151 | 151 |
Elevator* _level; |
152 | 152 |
bool _local_level; |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
156 | 156 |
|
157 | 157 |
Tolerance _tolerance; |
158 | 158 |
|
159 | 159 |
bool _phase; |
160 | 160 |
|
161 | 161 |
|
162 | 162 |
void createStructures() { |
163 | 163 |
_node_num = countNodes(_graph); |
164 | 164 |
|
165 | 165 |
if (!_flow) { |
166 | 166 |
_flow = Traits::createFlowMap(_graph); |
167 | 167 |
_local_flow = true; |
168 | 168 |
} |
169 | 169 |
if (!_level) { |
170 | 170 |
_level = Traits::createElevator(_graph, _node_num); |
171 | 171 |
_local_level = true; |
172 | 172 |
} |
173 | 173 |
if (!_excess) { |
174 | 174 |
_excess = new ExcessMap(_graph); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void destroyStructures() { |
179 | 179 |
if (_local_flow) { |
180 | 180 |
delete _flow; |
181 | 181 |
} |
182 | 182 |
if (_local_level) { |
183 | 183 |
delete _level; |
184 | 184 |
} |
185 | 185 |
if (_excess) { |
186 | 186 |
delete _excess; |
187 | 187 |
} |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
public: |
191 | 191 |
|
192 | 192 |
typedef Preflow Create; |
193 | 193 |
|
194 | 194 |
///\name Named Template Parameters |
195 | 195 |
|
196 | 196 |
///@{ |
197 | 197 |
|
198 | 198 |
template <typename T> |
199 | 199 |
struct SetFlowMapTraits : public Traits { |
200 | 200 |
typedef T FlowMap; |
201 | 201 |
static FlowMap *createFlowMap(const Digraph&) { |
202 | 202 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
203 | 203 |
return 0; // ignore warnings |
204 | 204 |
} |
205 | 205 |
}; |
206 | 206 |
|
207 | 207 |
/// \brief \ref named-templ-param "Named parameter" for setting |
208 | 208 |
/// FlowMap type |
209 | 209 |
/// |
210 | 210 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
211 | 211 |
/// type. |
212 | 212 |
template <typename T> |
213 | 213 |
struct SetFlowMap |
214 | 214 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > { |
215 | 215 |
typedef Preflow<Digraph, CapacityMap, |
216 | 216 |
SetFlowMapTraits<T> > Create; |
217 | 217 |
}; |
218 | 218 |
|
219 | 219 |
template <typename T> |
220 | 220 |
struct SetElevatorTraits : public Traits { |
221 | 221 |
typedef T Elevator; |
222 | 222 |
static Elevator *createElevator(const Digraph&, int) { |
223 | 223 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
224 | 224 |
return 0; // ignore warnings |
225 | 225 |
} |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief \ref named-templ-param "Named parameter" for setting |
229 | 229 |
/// Elevator type |
230 | 230 |
/// |
231 | 231 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
232 | 232 |
/// type. If this named parameter is used, then an external |
233 | 233 |
/// elevator object must be passed to the algorithm using the |
234 | 234 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
235 | 235 |
/// \ref run() or \ref init(). |
236 | 236 |
/// \sa SetStandardElevator |
237 | 237 |
template <typename T> |
238 | 238 |
struct SetElevator |
239 | 239 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
240 | 240 |
typedef Preflow<Digraph, CapacityMap, |
241 | 241 |
SetElevatorTraits<T> > Create; |
242 | 242 |
}; |
243 | 243 |
|
244 | 244 |
template <typename T> |
245 | 245 |
struct SetStandardElevatorTraits : public Traits { |
246 | 246 |
typedef T Elevator; |
247 | 247 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
248 | 248 |
return new Elevator(digraph, max_level); |
249 | 249 |
} |
250 | 250 |
}; |
251 | 251 |
|
252 | 252 |
/// \brief \ref named-templ-param "Named parameter" for setting |
253 | 253 |
/// Elevator type with automatic allocation |
254 | 254 |
/// |
255 | 255 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
256 | 256 |
/// type with automatic allocation. |
257 | 257 |
/// The Elevator should have standard constructor interface to be |
258 | 258 |
/// able to automatically created by the algorithm (i.e. the |
259 | 259 |
/// digraph and the maximum level should be passed to it). |
260 | 260 |
/// However an external elevator object could also be passed to the |
261 | 261 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
262 | 262 |
/// before calling \ref run() or \ref init(). |
263 | 263 |
/// \sa SetElevator |
264 | 264 |
template <typename T> |
265 | 265 |
struct SetStandardElevator |
266 | 266 |
: public Preflow<Digraph, CapacityMap, |
267 | 267 |
SetStandardElevatorTraits<T> > { |
268 | 268 |
typedef Preflow<Digraph, CapacityMap, |
269 | 269 |
SetStandardElevatorTraits<T> > Create; |
270 | 270 |
}; |
271 | 271 |
|
272 | 272 |
/// @} |
273 | 273 |
|
274 | 274 |
protected: |
275 | 275 |
|
276 | 276 |
Preflow() {} |
277 | 277 |
|
278 | 278 |
public: |
279 | 279 |
|
280 | 280 |
|
281 | 281 |
/// \brief The constructor of the class. |
282 | 282 |
/// |
283 | 283 |
/// The constructor of the class. |
284 | 284 |
/// \param digraph The digraph the algorithm runs on. |
285 | 285 |
/// \param capacity The capacity of the arcs. |
286 | 286 |
/// \param source The source node. |
287 | 287 |
/// \param target The target node. |
288 | 288 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
289 | 289 |
Node source, Node target) |
290 | 290 |
: _graph(digraph), _capacity(&capacity), |
291 | 291 |
_node_num(0), _source(source), _target(target), |
292 | 292 |
_flow(0), _local_flow(false), |
293 | 293 |
_level(0), _local_level(false), |
294 | 294 |
_excess(0), _tolerance(), _phase() {} |
295 | 295 |
|
296 | 296 |
/// \brief Destructor. |
297 | 297 |
/// |
298 | 298 |
/// Destructor. |
299 | 299 |
~Preflow() { |
300 | 300 |
destroyStructures(); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// \brief Sets the capacity map. |
304 | 304 |
/// |
305 | 305 |
/// Sets the capacity map. |
306 | 306 |
/// \return <tt>(*this)</tt> |
307 | 307 |
Preflow& capacityMap(const CapacityMap& map) { |
308 | 308 |
_capacity = ↦ |
309 | 309 |
return *this; |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
/// \brief Sets the flow map. |
313 | 313 |
/// |
314 | 314 |
/// Sets the flow map. |
315 | 315 |
/// If you don't use this function before calling \ref run() or |
316 | 316 |
/// \ref init(), an instance will be allocated automatically. |
317 | 317 |
/// The destructor deallocates this automatically allocated map, |
318 | 318 |
/// of course. |
319 | 319 |
/// \return <tt>(*this)</tt> |
320 | 320 |
Preflow& flowMap(FlowMap& map) { |
321 | 321 |
if (_local_flow) { |
322 | 322 |
delete _flow; |
323 | 323 |
_local_flow = false; |
324 | 324 |
} |
325 | 325 |
_flow = ↦ |
326 | 326 |
return *this; |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
/// \brief Sets the source node. |
330 | 330 |
/// |
331 | 331 |
/// Sets the source node. |
332 | 332 |
/// \return <tt>(*this)</tt> |
333 | 333 |
Preflow& source(const Node& node) { |
334 | 334 |
_source = node; |
335 | 335 |
return *this; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
/// \brief Sets the target node. |
339 | 339 |
/// |
340 | 340 |
/// Sets the target node. |
341 | 341 |
/// \return <tt>(*this)</tt> |
342 | 342 |
Preflow& target(const Node& node) { |
343 | 343 |
_target = node; |
344 | 344 |
return *this; |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief Sets the elevator used by algorithm. |
348 | 348 |
/// |
349 | 349 |
/// Sets the elevator used by algorithm. |
350 | 350 |
/// If you don't use this function before calling \ref run() or |
351 | 351 |
/// \ref init(), an instance will be allocated automatically. |
352 | 352 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 353 |
/// of course. |
354 | 354 |
/// \return <tt>(*this)</tt> |
355 | 355 |
Preflow& elevator(Elevator& elevator) { |
356 | 356 |
if (_local_level) { |
357 | 357 |
delete _level; |
358 | 358 |
_local_level = false; |
359 | 359 |
} |
360 | 360 |
_level = &elevator; |
361 | 361 |
return *this; |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
/// \brief Returns a const reference to the elevator. |
365 | 365 |
/// |
366 | 366 |
/// Returns a const reference to the elevator. |
367 | 367 |
/// |
368 | 368 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 369 |
/// using this function. |
370 | 370 |
const Elevator& elevator() const { |
371 | 371 |
return *_level; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
375 | 375 |
/// |
376 | 376 |
/// Sets the tolerance used by algorithm. |
377 | 377 |
Preflow& tolerance(const Tolerance& tolerance) const { |
378 | 378 |
_tolerance = tolerance; |
379 | 379 |
return *this; |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Returns a const reference to the tolerance. |
383 | 383 |
/// |
384 | 384 |
/// Returns a const reference to the tolerance. |
385 | 385 |
const Tolerance& tolerance() const { |
386 | 386 |
return tolerance; |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
/// \name Execution Control |
390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 391 |
/// \ref run() or \ref runMinCut().\n |
392 | 392 |
/// If you need more control on the initial solution or the execution, |
393 | 393 |
/// first you have to call one of the \ref init() functions, then |
394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 395 |
|
396 | 396 |
///@{ |
397 | 397 |
|
398 | 398 |
/// \brief Initializes the internal data structures. |
399 | 399 |
/// |
400 | 400 |
/// Initializes the internal data structures and sets the initial |
401 | 401 |
/// flow to zero on each arc. |
402 | 402 |
void init() { |
403 | 403 |
createStructures(); |
404 | 404 |
|
405 | 405 |
_phase = true; |
406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 407 |
(*_excess)[n] = 0; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 411 |
_flow->set(e, 0); |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 415 |
|
416 | 416 |
_level->initStart(); |
417 | 417 |
_level->initAddItem(_target); |
418 | 418 |
|
419 | 419 |
std::vector<Node> queue; |
420 | 420 |
reached[_source] = true; |
421 | 421 |
|
422 | 422 |
queue.push_back(_target); |
423 | 423 |
reached[_target] = true; |
424 | 424 |
while (!queue.empty()) { |
425 | 425 |
_level->initNewLevel(); |
426 | 426 |
std::vector<Node> nqueue; |
427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 428 |
Node n = queue[i]; |
429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 430 |
Node u = _graph.source(e); |
431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 432 |
reached[u] = true; |
433 | 433 |
_level->initAddItem(u); |
434 | 434 |
nqueue.push_back(u); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
queue.swap(nqueue); |
439 | 439 |
} |
440 | 440 |
_level->initFinish(); |
441 | 441 |
|
442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 443 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 444 |
Node u = _graph.target(e); |
445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 446 |
_flow->set(e, (*_capacity)[e]); |
447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 448 |
if (u != _target && !_level->active(u)) { |
449 | 449 |
_level->activate(u); |
450 | 450 |
} |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
/// \brief Initializes the internal data structures using the |
456 | 456 |
/// given flow map. |
457 | 457 |
/// |
458 | 458 |
/// Initializes the internal data structures and sets the initial |
459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
461 | 461 |
/// source node the incoming flow should greater or equal to the |
462 | 462 |
/// outgoing flow. |
463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
464 | 464 |
template <typename FlowMap> |
465 | 465 |
bool init(const FlowMap& flowMap) { |
466 | 466 |
createStructures(); |
467 | 467 |
|
468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 469 |
_flow->set(e, flowMap[e]); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Value excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 478 |
excess -= (*_flow)[e]; |
479 | 479 |
} |
480 | 480 |
if (excess < 0 && n != _source) return false; |
481 | 481 |
(*_excess)[n] = excess; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
485 | 485 |
|
486 | 486 |
_level->initStart(); |
487 | 487 |
_level->initAddItem(_target); |
488 | 488 |
|
489 | 489 |
std::vector<Node> queue; |
490 | 490 |
reached[_source] = true; |
491 | 491 |
|
492 | 492 |
queue.push_back(_target); |
493 | 493 |
reached[_target] = true; |
494 | 494 |
while (!queue.empty()) { |
495 | 495 |
_level->initNewLevel(); |
496 | 496 |
std::vector<Node> nqueue; |
497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) { |
498 | 498 |
Node n = queue[i]; |
499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
500 | 500 |
Node u = _graph.source(e); |
501 | 501 |
if (!reached[u] && |
502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
503 | 503 |
reached[u] = true; |
504 | 504 |
_level->initAddItem(u); |
505 | 505 |
nqueue.push_back(u); |
506 | 506 |
} |
507 | 507 |
} |
508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 509 |
Node v = _graph.target(e); |
510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 511 |
reached[v] = true; |
512 | 512 |
_level->initAddItem(v); |
513 | 513 |
nqueue.push_back(v); |
514 | 514 |
} |
515 | 515 |
} |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 | 528 |
if (u != _target && !_level->active(u)) { |
529 | 529 |
_level->activate(u); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Value rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 538 |
_flow->set(e, 0); |
539 | 539 |
(*_excess)[v] += rem; |
540 | 540 |
if (v != _target && !_level->active(v)) { |
541 | 541 |
_level->activate(v); |
542 | 542 |
} |
543 | 543 |
} |
544 | 544 |
} |
545 | 545 |
return true; |
546 | 546 |
} |
547 | 547 |
|
548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 549 |
/// |
550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 551 |
/// the first phase. After the first phase the maximum flow value |
552 | 552 |
/// and a minimum value cut can already be computed, although a |
553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 555 |
/// minCut() returns a minimum cut. |
556 | 556 |
/// \pre One of the \ref init() functions must be called before |
557 | 557 |
/// using this function. |
558 | 558 |
void startFirstPhase() { |
559 | 559 |
_phase = true; |
560 | 560 |
|
561 | 561 |
Node n = _level->highestActive(); |
562 | 562 |
int level = _level->highestActiveLevel(); |
563 | 563 |
while (n != INVALID) { |
564 | 564 |
int num = _node_num; |
565 | 565 |
|
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Value excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
569 | 569 |
|
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
573 | 573 |
Node v = _graph.target(e); |
574 | 574 |
if ((*_level)[v] < level) { |
575 | 575 |
if (!_level->active(v) && v != _target) { |
576 | 576 |
_level->activate(v); |
577 | 577 |
} |
578 | 578 |
if (!_tolerance.less(rem, excess)) { |
579 | 579 |
_flow->set(e, (*_flow)[e] + excess); |
580 | 580 |
(*_excess)[v] += excess; |
581 | 581 |
excess = 0; |
582 | 582 |
goto no_more_push_1; |
583 | 583 |
} else { |
584 | 584 |
excess -= rem; |
585 | 585 |
(*_excess)[v] += rem; |
586 | 586 |
_flow->set(e, (*_capacity)[e]); |
587 | 587 |
} |
588 | 588 |
} else if (new_level > (*_level)[v]) { |
589 | 589 |
new_level = (*_level)[v]; |
590 | 590 |
} |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Value rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
596 | 596 |
Node v = _graph.source(e); |
597 | 597 |
if ((*_level)[v] < level) { |
598 | 598 |
if (!_level->active(v) && v != _target) { |
599 | 599 |
_level->activate(v); |
600 | 600 |
} |
601 | 601 |
if (!_tolerance.less(rem, excess)) { |
602 | 602 |
_flow->set(e, (*_flow)[e] - excess); |
603 | 603 |
(*_excess)[v] += excess; |
604 | 604 |
excess = 0; |
605 | 605 |
goto no_more_push_1; |
606 | 606 |
} else { |
607 | 607 |
excess -= rem; |
608 | 608 |
(*_excess)[v] += rem; |
609 | 609 |
_flow->set(e, 0); |
610 | 610 |
} |
611 | 611 |
} else if (new_level > (*_level)[v]) { |
612 | 612 |
new_level = (*_level)[v]; |
613 | 613 |
} |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
no_more_push_1: |
617 | 617 |
|
618 | 618 |
(*_excess)[n] = excess; |
619 | 619 |
|
620 | 620 |
if (excess != 0) { |
621 | 621 |
if (new_level + 1 < _level->maxLevel()) { |
622 | 622 |
_level->liftHighestActive(new_level + 1); |
623 | 623 |
} else { |
624 | 624 |
_level->liftHighestActiveToTop(); |
625 | 625 |
} |
626 | 626 |
if (_level->emptyLevel(level)) { |
627 | 627 |
_level->liftToTop(level); |
628 | 628 |
} |
629 | 629 |
} else { |
630 | 630 |
_level->deactivate(n); |
631 | 631 |
} |
632 | 632 |
|
633 | 633 |
n = _level->highestActive(); |
634 | 634 |
level = _level->highestActiveLevel(); |
635 | 635 |
--num; |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
num = _node_num * 20; |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Value excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
642 | 642 |
|
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
646 | 646 |
Node v = _graph.target(e); |
647 | 647 |
if ((*_level)[v] < level) { |
648 | 648 |
if (!_level->active(v) && v != _target) { |
649 | 649 |
_level->activate(v); |
650 | 650 |
} |
651 | 651 |
if (!_tolerance.less(rem, excess)) { |
652 | 652 |
_flow->set(e, (*_flow)[e] + excess); |
653 | 653 |
(*_excess)[v] += excess; |
654 | 654 |
excess = 0; |
655 | 655 |
goto no_more_push_2; |
656 | 656 |
} else { |
657 | 657 |
excess -= rem; |
658 | 658 |
(*_excess)[v] += rem; |
659 | 659 |
_flow->set(e, (*_capacity)[e]); |
660 | 660 |
} |
661 | 661 |
} else if (new_level > (*_level)[v]) { |
662 | 662 |
new_level = (*_level)[v]; |
663 | 663 |
} |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Value rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
669 | 669 |
Node v = _graph.source(e); |
670 | 670 |
if ((*_level)[v] < level) { |
671 | 671 |
if (!_level->active(v) && v != _target) { |
672 | 672 |
_level->activate(v); |
673 | 673 |
} |
674 | 674 |
if (!_tolerance.less(rem, excess)) { |
675 | 675 |
_flow->set(e, (*_flow)[e] - excess); |
676 | 676 |
(*_excess)[v] += excess; |
677 | 677 |
excess = 0; |
678 | 678 |
goto no_more_push_2; |
679 | 679 |
} else { |
680 | 680 |
excess -= rem; |
681 | 681 |
(*_excess)[v] += rem; |
682 | 682 |
_flow->set(e, 0); |
683 | 683 |
} |
684 | 684 |
} else if (new_level > (*_level)[v]) { |
685 | 685 |
new_level = (*_level)[v]; |
686 | 686 |
} |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
no_more_push_2: |
690 | 690 |
|
691 | 691 |
(*_excess)[n] = excess; |
692 | 692 |
|
693 | 693 |
if (excess != 0) { |
694 | 694 |
if (new_level + 1 < _level->maxLevel()) { |
695 | 695 |
_level->liftActiveOn(level, new_level + 1); |
696 | 696 |
} else { |
697 | 697 |
_level->liftActiveToTop(level); |
698 | 698 |
} |
699 | 699 |
if (_level->emptyLevel(level)) { |
700 | 700 |
_level->liftToTop(level); |
701 | 701 |
} |
702 | 702 |
} else { |
703 | 703 |
_level->deactivate(n); |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
while (level >= 0 && _level->activeFree(level)) { |
707 | 707 |
--level; |
708 | 708 |
} |
709 | 709 |
if (level == -1) { |
710 | 710 |
n = _level->highestActive(); |
711 | 711 |
level = _level->highestActiveLevel(); |
712 | 712 |
} else { |
713 | 713 |
n = _level->activeOn(level); |
714 | 714 |
} |
715 | 715 |
--num; |
716 | 716 |
} |
717 | 717 |
} |
718 | 718 |
} |
719 | 719 |
|
720 | 720 |
/// \brief Starts the second phase of the preflow algorithm. |
721 | 721 |
/// |
722 | 722 |
/// The preflow algorithm consists of two phases, this method runs |
723 | 723 |
/// the second phase. After calling one of the \ref init() functions |
724 | 724 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
725 | 725 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
726 | 726 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
727 | 727 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
728 | 728 |
/// must be called before using this function. |
729 | 729 |
void startSecondPhase() { |
730 | 730 |
_phase = false; |
731 | 731 |
|
732 | 732 |
typename Digraph::template NodeMap<bool> reached(_graph); |
733 | 733 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
734 | 734 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
735 | 735 |
} |
736 | 736 |
|
737 | 737 |
_level->initStart(); |
738 | 738 |
_level->initAddItem(_source); |
739 | 739 |
|
740 | 740 |
std::vector<Node> queue; |
741 | 741 |
queue.push_back(_source); |
742 | 742 |
reached[_source] = true; |
743 | 743 |
|
744 | 744 |
while (!queue.empty()) { |
745 | 745 |
_level->initNewLevel(); |
746 | 746 |
std::vector<Node> nqueue; |
747 | 747 |
for (int i = 0; i < int(queue.size()); ++i) { |
748 | 748 |
Node n = queue[i]; |
749 | 749 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
750 | 750 |
Node v = _graph.target(e); |
751 | 751 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
752 | 752 |
reached[v] = true; |
753 | 753 |
_level->initAddItem(v); |
754 | 754 |
nqueue.push_back(v); |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
758 | 758 |
Node u = _graph.source(e); |
759 | 759 |
if (!reached[u] && |
760 | 760 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
761 | 761 |
reached[u] = true; |
762 | 762 |
_level->initAddItem(u); |
763 | 763 |
nqueue.push_back(u); |
764 | 764 |
} |
765 | 765 |
} |
766 | 766 |
} |
767 | 767 |
queue.swap(nqueue); |
768 | 768 |
} |
769 | 769 |
_level->initFinish(); |
770 | 770 |
|
771 | 771 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
772 | 772 |
if (!reached[n]) { |
773 | 773 |
_level->dirtyTopButOne(n); |
774 | 774 |
} else if ((*_excess)[n] > 0 && _target != n) { |
775 | 775 |
_level->activate(n); |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
|
779 | 779 |
Node n; |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Value excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
783 | 783 |
int new_level = _level->maxLevel(); |
784 | 784 |
|
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
788 | 788 |
Node v = _graph.target(e); |
789 | 789 |
if ((*_level)[v] < level) { |
790 | 790 |
if (!_level->active(v) && v != _source) { |
791 | 791 |
_level->activate(v); |
792 | 792 |
} |
793 | 793 |
if (!_tolerance.less(rem, excess)) { |
794 | 794 |
_flow->set(e, (*_flow)[e] + excess); |
795 | 795 |
(*_excess)[v] += excess; |
796 | 796 |
excess = 0; |
797 | 797 |
goto no_more_push; |
798 | 798 |
} else { |
799 | 799 |
excess -= rem; |
800 | 800 |
(*_excess)[v] += rem; |
801 | 801 |
_flow->set(e, (*_capacity)[e]); |
802 | 802 |
} |
803 | 803 |
} else if (new_level > (*_level)[v]) { |
804 | 804 |
new_level = (*_level)[v]; |
805 | 805 |
} |
806 | 806 |
} |
807 | 807 |
|
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Value rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
811 | 811 |
Node v = _graph.source(e); |
812 | 812 |
if ((*_level)[v] < level) { |
813 | 813 |
if (!_level->active(v) && v != _source) { |
814 | 814 |
_level->activate(v); |
815 | 815 |
} |
816 | 816 |
if (!_tolerance.less(rem, excess)) { |
817 | 817 |
_flow->set(e, (*_flow)[e] - excess); |
818 | 818 |
(*_excess)[v] += excess; |
819 | 819 |
excess = 0; |
820 | 820 |
goto no_more_push; |
821 | 821 |
} else { |
822 | 822 |
excess -= rem; |
823 | 823 |
(*_excess)[v] += rem; |
824 | 824 |
_flow->set(e, 0); |
825 | 825 |
} |
826 | 826 |
} else if (new_level > (*_level)[v]) { |
827 | 827 |
new_level = (*_level)[v]; |
828 | 828 |
} |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
no_more_push: |
832 | 832 |
|
833 | 833 |
(*_excess)[n] = excess; |
834 | 834 |
|
835 | 835 |
if (excess != 0) { |
836 | 836 |
if (new_level + 1 < _level->maxLevel()) { |
837 | 837 |
_level->liftHighestActive(new_level + 1); |
838 | 838 |
} else { |
839 | 839 |
// Calculation error |
840 | 840 |
_level->liftHighestActiveToTop(); |
841 | 841 |
} |
842 | 842 |
if (_level->emptyLevel(level)) { |
843 | 843 |
// Calculation error |
844 | 844 |
_level->liftToTop(level); |
845 | 845 |
} |
846 | 846 |
} else { |
847 | 847 |
_level->deactivate(n); |
848 | 848 |
} |
849 | 849 |
|
850 | 850 |
} |
851 | 851 |
} |
852 | 852 |
|
853 | 853 |
/// \brief Runs the preflow algorithm. |
854 | 854 |
/// |
855 | 855 |
/// Runs the preflow algorithm. |
856 | 856 |
/// \note pf.run() is just a shortcut of the following code. |
857 | 857 |
/// \code |
858 | 858 |
/// pf.init(); |
859 | 859 |
/// pf.startFirstPhase(); |
860 | 860 |
/// pf.startSecondPhase(); |
861 | 861 |
/// \endcode |
862 | 862 |
void run() { |
863 | 863 |
init(); |
864 | 864 |
startFirstPhase(); |
865 | 865 |
startSecondPhase(); |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
869 | 869 |
/// |
870 | 870 |
/// Runs the preflow algorithm to compute the minimum cut. |
871 | 871 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
872 | 872 |
/// \code |
873 | 873 |
/// pf.init(); |
874 | 874 |
/// pf.startFirstPhase(); |
875 | 875 |
/// \endcode |
876 | 876 |
void runMinCut() { |
877 | 877 |
init(); |
878 | 878 |
startFirstPhase(); |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
/// @} |
882 | 882 |
|
883 | 883 |
/// \name Query Functions |
884 | 884 |
/// The results of the preflow algorithm can be obtained using these |
885 | 885 |
/// functions.\n |
886 | 886 |
/// Either one of the \ref run() "run*()" functions or one of the |
887 | 887 |
/// \ref startFirstPhase() "start*()" functions should be called |
888 | 888 |
/// before using them. |
889 | 889 |
|
890 | 890 |
///@{ |
891 | 891 |
|
892 | 892 |
/// \brief Returns the value of the maximum flow. |
893 | 893 |
/// |
894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
895 | 895 |
/// of the target node. This value equals to the value of |
896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
897 | 897 |
/// |
898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Value flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
902 | 902 |
} |
903 | 903 |
|
904 |
/// \brief Returns the flow on the given arc. |
|
904 |
/// \brief Returns the flow value on the given arc. |
|
905 | 905 |
/// |
906 |
/// Returns the flow on the given arc. This method can |
|
906 |
/// Returns the flow value on the given arc. This method can |
|
907 | 907 |
/// be called after the second phase of the algorithm. |
908 | 908 |
/// |
909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Value flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
913 | 913 |
} |
914 | 914 |
|
915 | 915 |
/// \brief Returns a const reference to the flow map. |
916 | 916 |
/// |
917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
918 | 918 |
/// This method can be called after the second phase of the algorithm. |
919 | 919 |
/// |
920 | 920 |
/// \pre Either \ref run() or \ref init() must be called before |
921 | 921 |
/// using this function. |
922 | 922 |
const FlowMap& flowMap() const { |
923 | 923 |
return *_flow; |
924 | 924 |
} |
925 | 925 |
|
926 | 926 |
/// \brief Returns \c true when the node is on the source side of the |
927 | 927 |
/// minimum cut. |
928 | 928 |
/// |
929 | 929 |
/// Returns true when the node is on the source side of the found |
930 | 930 |
/// minimum cut. This method can be called both after running \ref |
931 | 931 |
/// startFirstPhase() and \ref startSecondPhase(). |
932 | 932 |
/// |
933 | 933 |
/// \pre Either \ref run() or \ref init() must be called before |
934 | 934 |
/// using this function. |
935 | 935 |
bool minCut(const Node& node) const { |
936 | 936 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
/// \brief Gives back a minimum value cut. |
940 | 940 |
/// |
941 | 941 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
942 | 942 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
943 | 943 |
/// node map with \c bool (or convertible) value type. |
944 | 944 |
/// |
945 | 945 |
/// This method can be called both after running \ref startFirstPhase() |
946 | 946 |
/// and \ref startSecondPhase(). The result after the second phase |
947 | 947 |
/// could be slightly different if inexact computation is used. |
948 | 948 |
/// |
949 | 949 |
/// \note This function calls \ref minCut() for each node, so it runs in |
950 | 950 |
/// O(n) time. |
951 | 951 |
/// |
952 | 952 |
/// \pre Either \ref run() or \ref init() must be called before |
953 | 953 |
/// using this function. |
954 | 954 |
template <typename CutMap> |
955 | 955 |
void minCutMap(CutMap& cutMap) const { |
956 | 956 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
957 | 957 |
cutMap.set(n, minCut(n)); |
958 | 958 |
} |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
/// @} |
962 | 962 |
}; |
963 | 963 |
} |
964 | 964 |
|
965 | 965 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <sstream> |
20 | 20 |
#include <lemon/lp_skeleton.h> |
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
|
24 |
#ifdef HAVE_CONFIG_H |
|
25 | 24 |
#include <lemon/config.h> |
26 |
#endif |
|
27 | 25 |
|
28 | 26 |
#ifdef LEMON_HAVE_GLPK |
29 | 27 |
#include <lemon/glpk.h> |
30 | 28 |
#endif |
31 | 29 |
|
32 | 30 |
#ifdef LEMON_HAVE_CPLEX |
33 | 31 |
#include <lemon/cplex.h> |
34 | 32 |
#endif |
35 | 33 |
|
36 | 34 |
#ifdef LEMON_HAVE_SOPLEX |
37 | 35 |
#include <lemon/soplex.h> |
38 | 36 |
#endif |
39 | 37 |
|
40 | 38 |
#ifdef LEMON_HAVE_CLP |
41 | 39 |
#include <lemon/clp.h> |
42 | 40 |
#endif |
43 | 41 |
|
44 | 42 |
using namespace lemon; |
45 | 43 |
|
46 | 44 |
void lpTest(LpSolver& lp) |
47 | 45 |
{ |
48 | 46 |
|
49 | 47 |
typedef LpSolver LP; |
50 | 48 |
|
51 | 49 |
std::vector<LP::Col> x(10); |
52 | 50 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol()); |
53 | 51 |
lp.addColSet(x); |
54 | 52 |
lp.colLowerBound(x,1); |
55 | 53 |
lp.colUpperBound(x,1); |
56 | 54 |
lp.colBounds(x,1,2); |
57 | 55 |
|
58 | 56 |
std::vector<LP::Col> y(10); |
59 | 57 |
lp.addColSet(y); |
60 | 58 |
|
61 | 59 |
lp.colLowerBound(y,1); |
62 | 60 |
lp.colUpperBound(y,1); |
63 | 61 |
lp.colBounds(y,1,2); |
64 | 62 |
|
65 | 63 |
std::map<int,LP::Col> z; |
66 | 64 |
|
67 | 65 |
z.insert(std::make_pair(12,INVALID)); |
68 | 66 |
z.insert(std::make_pair(2,INVALID)); |
69 | 67 |
z.insert(std::make_pair(7,INVALID)); |
70 | 68 |
z.insert(std::make_pair(5,INVALID)); |
71 | 69 |
|
72 | 70 |
lp.addColSet(z); |
73 | 71 |
|
74 | 72 |
lp.colLowerBound(z,1); |
75 | 73 |
lp.colUpperBound(z,1); |
76 | 74 |
lp.colBounds(z,1,2); |
77 | 75 |
|
78 | 76 |
{ |
79 | 77 |
LP::Expr e,f,g; |
80 | 78 |
LP::Col p1,p2,p3,p4,p5; |
81 | 79 |
LP::Constr c; |
82 | 80 |
|
83 | 81 |
p1=lp.addCol(); |
84 | 82 |
p2=lp.addCol(); |
85 | 83 |
p3=lp.addCol(); |
86 | 84 |
p4=lp.addCol(); |
87 | 85 |
p5=lp.addCol(); |
88 | 86 |
|
89 | 87 |
e[p1]=2; |
90 | 88 |
*e=12; |
91 | 89 |
e[p1]+=2; |
92 | 90 |
*e+=12; |
93 | 91 |
e[p1]-=2; |
94 | 92 |
*e-=12; |
95 | 93 |
|
96 | 94 |
e=2; |
97 | 95 |
e=2.2; |
98 | 96 |
e=p1; |
99 | 97 |
e=f; |
100 | 98 |
|
101 | 99 |
e+=2; |
102 | 100 |
e+=2.2; |
103 | 101 |
e+=p1; |
104 | 102 |
e+=f; |
105 | 103 |
|
106 | 104 |
e-=2; |
107 | 105 |
e-=2.2; |
108 | 106 |
e-=p1; |
109 | 107 |
e-=f; |
110 | 108 |
|
111 | 109 |
e*=2; |
112 | 110 |
e*=2.2; |
113 | 111 |
e/=2; |
114 | 112 |
e/=2.2; |
115 | 113 |
|
116 | 114 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ |
117 | 115 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ |
118 | 116 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ |
119 | 117 |
2.2*f+f*2.2+f/2.2+ |
120 | 118 |
2*f+f*2+f/2+ |
121 | 119 |
2.2*p1+p1*2.2+p1/2.2+ |
122 | 120 |
2*p1+p1*2+p1/2 |
123 | 121 |
); |
124 | 122 |
|
125 | 123 |
|
126 | 124 |
c = (e <= f ); |
127 | 125 |
c = (e <= 2.2); |
128 | 126 |
c = (e <= 2 ); |
129 | 127 |
c = (e <= p1 ); |
130 | 128 |
c = (2.2<= f ); |
131 | 129 |
c = (2 <= f ); |
132 | 130 |
c = (p1 <= f ); |
133 | 131 |
c = (p1 <= p2 ); |
134 | 132 |
c = (p1 <= 2.2); |
135 | 133 |
c = (p1 <= 2 ); |
136 | 134 |
c = (2.2<= p2 ); |
137 | 135 |
c = (2 <= p2 ); |
138 | 136 |
|
139 | 137 |
c = (e >= f ); |
140 | 138 |
c = (e >= 2.2); |
141 | 139 |
c = (e >= 2 ); |
142 | 140 |
c = (e >= p1 ); |
143 | 141 |
c = (2.2>= f ); |
144 | 142 |
c = (2 >= f ); |
145 | 143 |
c = (p1 >= f ); |
146 | 144 |
c = (p1 >= p2 ); |
147 | 145 |
c = (p1 >= 2.2); |
148 | 146 |
c = (p1 >= 2 ); |
149 | 147 |
c = (2.2>= p2 ); |
150 | 148 |
c = (2 >= p2 ); |
151 | 149 |
|
152 | 150 |
c = (e == f ); |
153 | 151 |
c = (e == 2.2); |
154 | 152 |
c = (e == 2 ); |
155 | 153 |
c = (e == p1 ); |
156 | 154 |
c = (2.2== f ); |
157 | 155 |
c = (2 == f ); |
158 | 156 |
c = (p1 == f ); |
159 | 157 |
//c = (p1 == p2 ); |
160 | 158 |
c = (p1 == 2.2); |
161 | 159 |
c = (p1 == 2 ); |
162 | 160 |
c = (2.2== p2 ); |
163 | 161 |
c = (2 == p2 ); |
164 | 162 |
|
165 | 163 |
c = ((2 <= e) <= 3); |
166 | 164 |
c = ((2 <= p1) <= 3); |
167 | 165 |
|
168 | 166 |
c = ((2 >= e) >= 3); |
169 | 167 |
c = ((2 >= p1) >= 3); |
170 | 168 |
|
171 | 169 |
e[x[3]]=2; |
172 | 170 |
e[x[3]]=4; |
173 | 171 |
e[x[3]]=1; |
174 | 172 |
*e=12; |
175 | 173 |
|
176 | 174 |
lp.addRow(-LP::INF,e,23); |
177 | 175 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); |
178 | 176 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); |
179 | 177 |
|
180 | 178 |
lp.addRow(x[1]+x[3]<=x[5]-3); |
181 | 179 |
lp.addRow((-7<=x[1]+x[3]-12)<=3); |
182 | 180 |
lp.addRow(x[1]<=x[5]); |
183 | 181 |
|
184 | 182 |
std::ostringstream buf; |
185 | 183 |
|
186 | 184 |
|
187 | 185 |
e=((p1+p2)+(p1-0.99*p2)); |
188 | 186 |
//e.prettyPrint(std::cout); |
189 | 187 |
//(e<=2).prettyPrint(std::cout); |
190 | 188 |
double tolerance=0.001; |
191 | 189 |
e.simplify(tolerance); |
192 | 190 |
buf << "Coeff. of p2 should be 0.01"; |
193 | 191 |
check(e[p2]>0, buf.str()); |
194 | 192 |
|
195 | 193 |
tolerance=0.02; |
196 | 194 |
e.simplify(tolerance); |
197 | 195 |
buf << "Coeff. of p2 should be 0"; |
198 | 196 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str()); |
199 | 197 |
|
200 | 198 |
//Test for clone/new |
201 | 199 |
LP* lpnew = lp.newSolver(); |
202 | 200 |
LP* lpclone = lp.cloneSolver(); |
203 | 201 |
delete lpnew; |
204 | 202 |
delete lpclone; |
205 | 203 |
|
206 | 204 |
} |
207 | 205 |
|
208 | 206 |
{ |
209 | 207 |
LP::DualExpr e,f,g; |
210 | 208 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, |
211 | 209 |
p4 = INVALID, p5 = INVALID; |
212 | 210 |
|
213 | 211 |
e[p1]=2; |
214 | 212 |
e[p1]+=2; |
215 | 213 |
e[p1]-=2; |
216 | 214 |
|
217 | 215 |
e=p1; |
218 | 216 |
e=f; |
219 | 217 |
|
220 | 218 |
e+=p1; |
221 | 219 |
e+=f; |
222 | 220 |
|
223 | 221 |
e-=p1; |
224 | 222 |
e-=f; |
225 | 223 |
|
226 | 224 |
e*=2; |
227 | 225 |
e*=2.2; |
228 | 226 |
e/=2; |
229 | 227 |
e/=2.2; |
230 | 228 |
|
231 | 229 |
e=((p1+p2)+(p1-p2)+ |
232 | 230 |
(p1+f)+(f+p1)+(f+g)+ |
233 | 231 |
(p1-f)+(f-p1)+(f-g)+ |
234 | 232 |
2.2*f+f*2.2+f/2.2+ |
235 | 233 |
2*f+f*2+f/2+ |
236 | 234 |
2.2*p1+p1*2.2+p1/2.2+ |
237 | 235 |
2*p1+p1*2+p1/2 |
238 | 236 |
); |
239 | 237 |
} |
240 | 238 |
|
241 | 239 |
} |
242 | 240 |
|
243 | 241 |
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat, |
244 | 242 |
double exp_opt) { |
245 | 243 |
using std::string; |
246 | 244 |
lp.solve(); |
247 | 245 |
|
248 | 246 |
std::ostringstream buf; |
249 | 247 |
buf << "PrimalType should be: " << int(stat) << int(lp.primalType()); |
250 | 248 |
|
251 | 249 |
check(lp.primalType()==stat, buf.str()); |
252 | 250 |
|
253 | 251 |
if (stat == LpSolver::OPTIMAL) { |
254 | 252 |
std::ostringstream sbuf; |
255 | 253 |
sbuf << "Wrong optimal value (" << lp.primal() <<") with " |
256 | 254 |
<< lp.solverName() <<"\n the right optimum is " << exp_opt; |
257 | 255 |
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str()); |
258 | 256 |
} |
259 | 257 |
} |
260 | 258 |
|
261 | 259 |
void aTest(LpSolver & lp) |
262 | 260 |
{ |
263 | 261 |
typedef LpSolver LP; |
264 | 262 |
|
265 | 263 |
//The following example is very simple |
266 | 264 |
|
267 | 265 |
typedef LpSolver::Row Row; |
268 | 266 |
typedef LpSolver::Col Col; |
269 | 267 |
|
270 | 268 |
|
271 | 269 |
Col x1 = lp.addCol(); |
272 | 270 |
Col x2 = lp.addCol(); |
273 | 271 |
|
274 | 272 |
|
275 | 273 |
//Constraints |
276 | 274 |
Row upright=lp.addRow(x1+2*x2 <=1); |
277 | 275 |
lp.addRow(x1+x2 >=-1); |
278 | 276 |
lp.addRow(x1-x2 <=1); |
279 | 277 |
lp.addRow(x1-x2 >=-1); |
280 | 278 |
//Nonnegativity of the variables |
281 | 279 |
lp.colLowerBound(x1, 0); |
282 | 280 |
lp.colLowerBound(x2, 0); |
283 | 281 |
//Objective function |
284 | 282 |
lp.obj(x1+x2); |
285 | 283 |
|
286 | 284 |
lp.sense(lp.MAX); |
287 | 285 |
|
288 | 286 |
//Testing the problem retrieving routines |
289 | 287 |
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
290 | 288 |
check(lp.sense() == lp.MAX,"This is a maximization!"); |
291 | 289 |
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!"); |
292 | 290 |
check(lp.colLowerBound(x1)==0, |
293 | 291 |
"The lower bound for variable x1 should be 0."); |
294 | 292 |
check(lp.colUpperBound(x1)==LpSolver::INF, |
295 | 293 |
"The upper bound for variable x1 should be infty."); |
296 | 294 |
check(lp.rowLowerBound(upright) == -LpSolver::INF, |
297 | 295 |
"The lower bound for the first row should be -infty."); |
298 | 296 |
check(lp.rowUpperBound(upright)==1, |
299 | 297 |
"The upper bound for the first row should be 1."); |
300 | 298 |
LpSolver::Expr e = lp.row(upright); |
301 | 299 |
check(e[x1] == 1, "The first coefficient should 1."); |
302 | 300 |
check(e[x2] == 2, "The second coefficient should 1."); |
303 | 301 |
|
304 | 302 |
lp.row(upright, x1+x2 <=1); |
305 | 303 |
e = lp.row(upright); |
306 | 304 |
check(e[x1] == 1, "The first coefficient should 1."); |
307 | 305 |
check(e[x2] == 1, "The second coefficient should 1."); |
308 | 306 |
|
309 | 307 |
LpSolver::DualExpr de = lp.col(x1); |
310 | 308 |
check( de[upright] == 1, "The first coefficient should 1."); |
311 | 309 |
|
312 | 310 |
LpSolver* clp = lp.cloneSolver(); |
313 | 311 |
|
314 | 312 |
//Testing the problem retrieving routines |
315 | 313 |
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
316 | 314 |
check(clp->sense() == clp->MAX,"This is a maximization!"); |
317 | 315 |
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!"); |
318 | 316 |
// std::cout<<lp.colLowerBound(x1)<<std::endl; |
319 | 317 |
check(clp->colLowerBound(x1)==0, |
320 | 318 |
"The lower bound for variable x1 should be 0."); |
321 | 319 |
check(clp->colUpperBound(x1)==LpSolver::INF, |
322 | 320 |
"The upper bound for variable x1 should be infty."); |
323 | 321 |
|
324 | 322 |
check(lp.rowLowerBound(upright)==-LpSolver::INF, |
325 | 323 |
"The lower bound for the first row should be -infty."); |
326 | 324 |
check(lp.rowUpperBound(upright)==1, |
327 | 325 |
"The upper bound for the first row should be 1."); |
328 | 326 |
e = clp->row(upright); |
329 | 327 |
check(e[x1] == 1, "The first coefficient should 1."); |
330 | 328 |
check(e[x2] == 1, "The second coefficient should 1."); |
331 | 329 |
|
332 | 330 |
de = clp->col(x1); |
333 | 331 |
check(de[upright] == 1, "The first coefficient should 1."); |
334 | 332 |
|
335 | 333 |
delete clp; |
336 | 334 |
|
337 | 335 |
//Maximization of x1+x2 |
338 | 336 |
//over the triangle with vertices (0,0) (0,1) (1,0) |
339 | 337 |
double expected_opt=1; |
340 | 338 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
341 | 339 |
|
342 | 340 |
//Minimization |
343 | 341 |
lp.sense(lp.MIN); |
344 | 342 |
expected_opt=0; |
345 | 343 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
346 | 344 |
|
347 | 345 |
//Vertex (-1,0) instead of (0,0) |
348 | 346 |
lp.colLowerBound(x1, -LpSolver::INF); |
349 | 347 |
expected_opt=-1; |
350 | 348 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
351 | 349 |
|
352 | 350 |
//Erase one constraint and return to maximization |
353 | 351 |
lp.erase(upright); |
354 | 352 |
lp.sense(lp.MAX); |
355 | 353 |
expected_opt=LpSolver::INF; |
356 | 354 |
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt); |
357 | 355 |
|
358 | 356 |
//Infeasibilty |
359 | 357 |
lp.addRow(x1+x2 <=-2); |
360 | 358 |
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt); |
361 | 359 |
|
362 | 360 |
} |
363 | 361 |
|
364 | 362 |
template<class LP> |
365 | 363 |
void cloneTest() |
366 | 364 |
{ |
367 | 365 |
//Test for clone/new |
368 | 366 |
|
369 | 367 |
LP* lp = new LP(); |
370 | 368 |
LP* lpnew = lp->newSolver(); |
371 | 369 |
LP* lpclone = lp->cloneSolver(); |
372 | 370 |
delete lp; |
373 | 371 |
delete lpnew; |
374 | 372 |
delete lpclone; |
375 | 373 |
} |
376 | 374 |
|
377 | 375 |
int main() |
378 | 376 |
{ |
379 | 377 |
LpSkeleton lp_skel; |
380 | 378 |
lpTest(lp_skel); |
381 | 379 |
|
382 | 380 |
#ifdef LEMON_HAVE_GLPK |
383 | 381 |
{ |
384 | 382 |
GlpkLp lp_glpk1,lp_glpk2; |
385 | 383 |
lpTest(lp_glpk1); |
386 | 384 |
aTest(lp_glpk2); |
387 | 385 |
cloneTest<GlpkLp>(); |
388 | 386 |
} |
389 | 387 |
#endif |
390 | 388 |
|
391 | 389 |
#ifdef LEMON_HAVE_CPLEX |
392 | 390 |
try { |
393 | 391 |
CplexLp lp_cplex1,lp_cplex2; |
394 | 392 |
lpTest(lp_cplex1); |
395 | 393 |
aTest(lp_cplex2); |
396 | 394 |
cloneTest<CplexLp>(); |
397 | 395 |
} catch (CplexEnv::LicenseError& error) { |
398 | 396 |
check(false, error.what()); |
399 | 397 |
} |
400 | 398 |
#endif |
401 | 399 |
|
402 | 400 |
#ifdef LEMON_HAVE_SOPLEX |
403 | 401 |
{ |
404 | 402 |
SoplexLp lp_soplex1,lp_soplex2; |
405 | 403 |
lpTest(lp_soplex1); |
406 | 404 |
aTest(lp_soplex2); |
407 | 405 |
cloneTest<SoplexLp>(); |
408 | 406 |
} |
409 | 407 |
#endif |
410 | 408 |
|
411 | 409 |
#ifdef LEMON_HAVE_CLP |
412 | 410 |
{ |
413 | 411 |
ClpLp lp_clp1,lp_clp2; |
414 | 412 |
lpTest(lp_clp1); |
415 | 413 |
aTest(lp_clp2); |
416 | 414 |
cloneTest<ClpLp>(); |
417 | 415 |
} |
418 | 416 |
#endif |
419 | 417 |
|
420 | 418 |
return 0; |
421 | 419 |
} |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)