0
3
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 | 23 |
This group describes the several data structures implemented in LEMON. |
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| 54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
| 55 | 55 |
in conjunction with other graph representations. |
| 56 | 56 |
|
| 57 | 57 |
You are free to use the graph structure that fit your requirements |
| 58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
| 59 | 59 |
with any graph structure. |
| 60 | 60 |
|
| 61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
| 62 | 62 |
*/ |
| 63 | 63 |
|
| 64 | 64 |
/** |
| 65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
| 66 | 66 |
@ingroup graphs |
| 67 | 67 |
\brief Adaptor classes for digraphs and graphs |
| 68 | 68 |
|
| 69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
| 70 | 70 |
|
| 71 | 71 |
The main parts of LEMON are the different graph structures, generic |
| 72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
| 73 | 73 |
adaptors. While the previous notions are more or less clear, the |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
| 142 | 142 |
@ingroup graphs |
| 143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
| 144 | 144 |
|
| 145 | 145 |
This group describes some graph types between real graphs and graph adaptors. |
| 146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
| 147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
| 148 | 148 |
*/ |
| 149 | 149 |
|
| 150 | 150 |
/** |
| 151 | 151 |
@defgroup maps Maps |
| 152 | 152 |
@ingroup datas |
| 153 | 153 |
\brief Map structures implemented in LEMON. |
| 154 | 154 |
|
| 155 | 155 |
This group describes the map structures implemented in LEMON. |
| 156 | 156 |
|
| 157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 158 | 158 |
new maps from existing ones. |
| 159 | 159 |
|
| 160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 161 | 161 |
*/ |
| 162 | 162 |
|
| 163 | 163 |
/** |
| 164 | 164 |
@defgroup graph_maps Graph Maps |
| 165 | 165 |
@ingroup maps |
| 166 | 166 |
\brief Special graph-related maps. |
| 167 | 167 |
|
| 168 | 168 |
This group describes maps that are specifically designed to assign |
| 169 | 169 |
values to the nodes and arcs/edges of graphs. |
| 170 | 170 |
|
| 171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 173 | 173 |
*/ |
| 174 | 174 |
|
| 175 | 175 |
/** |
| 176 | 176 |
\defgroup map_adaptors Map Adaptors |
| 177 | 177 |
\ingroup maps |
| 178 | 178 |
\brief Tools to create new maps from existing ones |
| 179 | 179 |
|
| 180 | 180 |
This group describes map adaptors that are used to create "implicit" |
| 181 | 181 |
maps from other maps. |
| 182 | 182 |
|
| 183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 184 | 184 |
They can make arithmetic and logical operations between one or two maps |
| 185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 187 | 187 |
|
| 188 | 188 |
The typical usage of this classes is passing implicit maps to |
| 189 | 189 |
algorithms. If a function type algorithm is called then the function |
| 190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
| 191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
| 192 | 192 |
\code |
| 193 | 193 |
Color nodeColor(int deg) {
|
| 194 | 194 |
if (deg >= 2) {
|
| 195 | 195 |
return Color(0.5, 0.0, 0.5); |
| 196 | 196 |
} else if (deg == 1) {
|
| 197 | 197 |
return Color(1.0, 0.5, 1.0); |
| 198 | 198 |
} else {
|
| 199 | 199 |
return Color(0.0, 0.0, 0.0); |
| 200 | 200 |
} |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
| 204 | 204 |
|
| 205 | 205 |
graphToEps(graph, "graph.eps") |
| 206 | 206 |
.coords(coords).scaleToA4().undirected() |
| 207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 208 | 208 |
.run(); |
| 209 | 209 |
\endcode |
| 210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 212 | 212 |
and the previously created map. The composed map is a proper function to |
| 213 | 213 |
get the color of each node. |
| 214 | 214 |
|
| 215 | 215 |
The usage with class type algorithms is little bit harder. In this |
| 216 | 216 |
case the function type map adaptors can not be used, because the |
| 217 | 217 |
function map adaptors give back temporary objects. |
| 218 | 218 |
\code |
| 219 | 219 |
Digraph graph; |
| 220 | 220 |
|
| 221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 222 | 222 |
DoubleArcMap length(graph); |
| 223 | 223 |
DoubleArcMap speed(graph); |
| 224 | 224 |
|
| 225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 226 | 226 |
TimeMap time(length, speed); |
| 227 | 227 |
|
| 228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 229 | 229 |
dijkstra.run(source, target); |
| 230 | 230 |
\endcode |
| 231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
| 233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
| 234 | 234 |
class. We use the implicit minimum time map as the length map of the |
| 235 | 235 |
\c Dijkstra algorithm. |
| 236 | 236 |
*/ |
| 237 | 237 |
|
| 238 | 238 |
/** |
| 239 | 239 |
@defgroup matrices Matrices |
| 240 | 240 |
@ingroup datas |
| 241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
| 242 | 242 |
|
| 243 | 243 |
This group describes two dimensional data storages implemented in LEMON. |
| 244 | 244 |
*/ |
| 245 | 245 |
|
| 246 | 246 |
/** |
| 247 | 247 |
@defgroup paths Path Structures |
| 248 | 248 |
@ingroup datas |
| 249 | 249 |
\brief %Path structures implemented in LEMON. |
| 250 | 250 |
|
| 251 | 251 |
This group describes the path structures implemented in LEMON. |
| 252 | 252 |
|
| 253 | 253 |
LEMON provides flexible data structures to work with paths. |
| 254 | 254 |
All of them have similar interfaces and they can be copied easily with |
| 255 | 255 |
assignment operators and copy constructors. This makes it easy and |
| 256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 257 | 257 |
any kind of path structure. |
| 258 | 258 |
|
| 259 | 259 |
\sa lemon::concepts::Path |
| 260 | 260 |
*/ |
| 261 | 261 |
|
| 262 | 262 |
/** |
| 263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
| 264 | 264 |
@ingroup datas |
| 265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
| 266 | 266 |
|
| 267 | 267 |
This group describes some data structures implemented in LEMON in |
| 268 | 268 |
order to make it easier to implement combinatorial algorithms. |
| 269 | 269 |
*/ |
| 270 | 270 |
|
| 271 | 271 |
/** |
| 272 | 272 |
@defgroup algs Algorithms |
| 273 | 273 |
\brief This group describes the several algorithms |
| 274 | 274 |
implemented in LEMON. |
| 275 | 275 |
|
| 276 | 276 |
This group describes the several algorithms |
| 277 | 277 |
implemented in LEMON. |
| 278 | 278 |
*/ |
| 279 | 279 |
|
| 280 | 280 |
/** |
| 281 | 281 |
@defgroup search Graph Search |
| 282 | 282 |
@ingroup algs |
| 283 | 283 |
\brief Common graph search algorithms. |
| 284 | 284 |
|
| 285 | 285 |
This group describes the common graph search algorithms, namely |
| 286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 287 | 287 |
*/ |
| 288 | 288 |
|
| 289 | 289 |
/** |
| 290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
| 291 | 291 |
@ingroup algs |
| 292 | 292 |
\brief Algorithms for finding shortest paths. |
| 293 | 293 |
|
| 294 | 294 |
This group describes the algorithms for finding shortest paths in digraphs. |
| 295 | 295 |
|
| 296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 297 | 297 |
when all arc lengths are non-negative. |
| 298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
| 300 | 300 |
but the digraph should not contain directed cycles with negative total |
| 301 | 301 |
length. |
| 302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 304 | 304 |
lenghts can be either positive or negative, but the digraph should |
| 305 | 305 |
not contain directed cycles with negative total length. |
| 306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
| 308 | 308 |
*/ |
| 309 | 309 |
|
| 310 | 310 |
/** |
| 311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
| 312 | 312 |
@ingroup algs |
| 313 | 313 |
\brief Algorithms for finding maximum flows. |
| 314 | 314 |
|
| 315 | 315 |
This group describes the algorithms for finding maximum flows and |
| 316 | 316 |
feasible circulations. |
| 317 | 317 |
|
| 318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
|
| 320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
|
| 321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
| 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
|
| 322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
|
| 323 | 323 |
following optimization problem. |
| 324 | 324 |
|
| 325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
|
|
| 326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
|
|
| 327 |
\qquad \forall v\in V\setminus\{s,t\} \f]
|
|
| 328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
| 325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
|
| 326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
|
| 327 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
|
| 328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
| 329 | 329 |
|
| 330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
| 331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 335 | 335 |
|
| 336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 337 | 337 |
fastest method for computing a maximum flow. All implementations |
| 338 | 338 |
provides functions to also query the minimum cut, which is the dual |
| 339 | 339 |
problem of the maximum flow. |
| 340 | 340 |
*/ |
| 341 | 341 |
|
| 342 | 342 |
/** |
| 343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
| 344 | 344 |
@ingroup algs |
| 345 | 345 |
|
| 346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 347 | 347 |
|
| 348 |
This group |
|
| 348 |
This group contains the algorithms for finding minimum cost flows and |
|
| 349 | 349 |
circulations. |
| 350 | 350 |
|
| 351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 |
in a network with capacity constraints and |
|
| 353 |
in a network with capacity constraints (lower and upper bounds) |
|
| 354 |
and arc costs. |
|
| 354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
| 355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
| 356 |
upper bounds for the flow values on the arcs, |
|
| 357 |
upper bounds for the flow values on the arcs, for which |
|
| 358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
| 357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
| 358 |
on the arcs, and |
|
| 359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
|
|
| 360 |
of the nodes. |
|
| 361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
|
|
| 362 |
the |
|
| 360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 361 |
signed supply values of the nodes. |
|
| 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
| 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
| 364 |
\f$-sup(u)\f$ demand. |
|
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution
|
|
| 366 |
of the following optimization problem. |
|
| 363 | 367 |
|
| 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
|
|
| 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
|
|
| 366 |
supply(v) \qquad \forall v\in V \f] |
|
| 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
| 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 370 |
sup(u) \quad \forall u\in V \f] |
|
| 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 368 | 372 |
|
| 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
| 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
| 371 |
|
|
| 373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
|
| 374 |
zero or negative in order to have a feasible solution (since the sum |
|
| 375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
| 376 |
It means that the total demand must be greater or equal to the total |
|
| 377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
| 378 |
but there could be demands that are not satisfied. |
|
| 379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
|
| 380 |
constraints have to be satisfied with equality, i.e. all demands |
|
| 381 |
have to be satisfied and all supplies have to be used. |
|
| 382 |
|
|
| 383 |
If you need the opposite inequalities in the supply/demand constraints |
|
| 384 |
(i.e. the total demand is less than the total supply and all the demands |
|
| 385 |
have to be satisfied while there could be supplies that are not used), |
|
| 386 |
then you could easily transform the problem to the above form by reversing |
|
| 387 |
the direction of the arcs and taking the negative of the supply values |
|
| 388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
| 389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
| 390 |
for the sake of convenience. |
|
| 391 |
|
|
| 392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
| 393 |
|
|
| 394 |
Note that the above formulation is actually more general than the usual |
|
| 395 |
definition of the minimum cost flow problem, in which strict equalities |
|
| 396 |
are required in the supply/demand contraints, i.e. |
|
| 397 |
|
|
| 398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
|
| 399 |
sup(u) \quad \forall u\in V. \f] |
|
| 400 |
|
|
| 401 |
However if the sum of the supply values is zero, then these two problems |
|
| 402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
| 403 |
additional contraint for the algorithms. |
|
| 404 |
|
|
| 405 |
The dual solution of the minimum cost flow problem is represented by node |
|
| 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem
|
|
| 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
|
| 409 |
node potentials the following \e complementary \e slackness optimality |
|
| 410 |
conditions hold. |
|
| 411 |
|
|
| 412 |
- For all \f$uv\in A\f$ arcs: |
|
| 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
| 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
| 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
| 416 |
- For all \f$u\in V\f$: |
|
| 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
|
| 418 |
then \f$\pi(u)=0\f$. |
|
| 419 |
|
|
| 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
| 421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
| 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
| 423 |
|
|
| 424 |
All algorithms provide dual solution (node potentials) as well |
|
| 425 |
if an optimal flow is found. |
|
| 426 |
|
|
| 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
| 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
| 429 |
pivot strategies. |
|
| 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
| 431 |
cost scaling. |
|
| 432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
| 372 | 433 |
capacity scaling. |
| 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
| 374 |
cost scaling. |
|
| 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
| 376 |
pivot strategies. |
|
| 434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
| 436 |
|
|
| 437 |
Most of these implementations support the general inequality form of the |
|
| 438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
| 439 |
only support the equality form due to the primal method they use. |
|
| 440 |
|
|
| 441 |
In general NetworkSimplex is the most efficient implementation, |
|
| 442 |
but in special cases other algorithms could be faster. |
|
| 443 |
For example, if the total supply and/or capacities are rather small, |
|
| 444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
| 377 | 445 |
*/ |
| 378 | 446 |
|
| 379 | 447 |
/** |
| 380 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
| 381 | 449 |
@ingroup algs |
| 382 | 450 |
|
| 383 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
| 384 | 452 |
|
| 385 | 453 |
This group describes the algorithms for finding minimum cut in graphs. |
| 386 | 454 |
|
| 387 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 388 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 389 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 390 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 391 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 392 | 460 |
|
| 393 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 394 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
|
| 395 | 463 |
|
| 396 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
| 397 | 465 |
|
| 398 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 399 | 467 |
in directed graphs. |
| 400 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 401 | 469 |
calculating minimum cut in undirected graphs. |
| 402 | 470 |
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
| 403 | 471 |
all-pairs minimum cut in undirected graphs. |
| 404 | 472 |
|
| 405 | 473 |
If you want to find minimum cut just between two distinict nodes, |
| 406 | 474 |
see the \ref max_flow "maximum flow problem". |
| 407 | 475 |
*/ |
| 408 | 476 |
|
| 409 | 477 |
/** |
| 410 | 478 |
@defgroup graph_prop Connectivity and Other Graph Properties |
| 411 | 479 |
@ingroup algs |
| 412 | 480 |
\brief Algorithms for discovering the graph properties |
| 413 | 481 |
|
| 414 | 482 |
This group describes the algorithms for discovering the graph properties |
| 415 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 416 | 484 |
|
| 417 | 485 |
\image html edge_biconnected_components.png |
| 418 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 419 | 487 |
*/ |
| 420 | 488 |
|
| 421 | 489 |
/** |
| 422 | 490 |
@defgroup planar Planarity Embedding and Drawing |
| 423 | 491 |
@ingroup algs |
| 424 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
| 425 | 493 |
|
| 426 | 494 |
This group describes the algorithms for planarity checking, |
| 427 | 495 |
embedding and drawing. |
| 428 | 496 |
|
| 429 | 497 |
\image html planar.png |
| 430 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 431 | 499 |
*/ |
| 432 | 500 |
|
| 433 | 501 |
/** |
| 434 | 502 |
@defgroup matching Matching Algorithms |
| 435 | 503 |
@ingroup algs |
| 436 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 437 | 505 |
|
| 438 | 506 |
This group contains algorithm objects and functions to calculate |
| 439 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 440 | 508 |
finding a subset of the arcs which does not shares common endpoints. |
| 441 | 509 |
|
| 442 | 510 |
There are several different algorithms for calculate matchings in |
| 443 | 511 |
graphs. The matching problems in bipartite graphs are generally |
| 444 | 512 |
easier than in general graphs. The goal of the matching optimization |
| 445 | 513 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 446 | 514 |
matching. The search can be constrained to find perfect or |
| 447 | 515 |
maximum cardinality matching. |
| 448 | 516 |
|
| 449 | 517 |
The matching algorithms implemented in LEMON: |
| 450 | 518 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 451 | 519 |
for calculating maximum cardinality matching in bipartite graphs. |
| 452 | 520 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 453 | 521 |
for calculating maximum cardinality matching in bipartite graphs. |
| 454 | 522 |
- \ref MaxWeightedBipartiteMatching |
| 455 | 523 |
Successive shortest path algorithm for calculating maximum weighted |
| 456 | 524 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 457 | 525 |
- \ref MinCostMaxBipartiteMatching |
| 458 | 526 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 459 | 527 |
matching in bipartite graphs. |
| 460 | 528 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 461 | 529 |
maximum cardinality matching in general graphs. |
| 462 | 530 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 463 | 531 |
maximum weighted matching in general graphs. |
| 464 | 532 |
- \ref MaxWeightedPerfectMatching |
| 465 | 533 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 466 | 534 |
perfect matching in general graphs. |
| 467 | 535 |
|
| 468 | 536 |
\image html bipartite_matching.png |
| 469 | 537 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 470 | 538 |
*/ |
| 471 | 539 |
|
| 472 | 540 |
/** |
| 473 | 541 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 474 | 542 |
@ingroup algs |
| 475 | 543 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
| 476 | 544 |
|
| 477 | 545 |
This group describes the algorithms for finding a minimum cost spanning |
| 478 | 546 |
tree in a graph. |
| 479 | 547 |
*/ |
| 480 | 548 |
|
| 481 | 549 |
/** |
| 482 | 550 |
@defgroup auxalg Auxiliary Algorithms |
| 483 | 551 |
@ingroup algs |
| 484 | 552 |
\brief Auxiliary algorithms implemented in LEMON. |
| 485 | 553 |
|
| 486 | 554 |
This group describes some algorithms implemented in LEMON |
| 487 | 555 |
in order to make it easier to implement complex algorithms. |
| 488 | 556 |
*/ |
| 489 | 557 |
|
| 490 | 558 |
/** |
| 491 | 559 |
@defgroup approx Approximation Algorithms |
| 492 | 560 |
@ingroup algs |
| 493 | 561 |
\brief Approximation algorithms. |
| 494 | 562 |
|
| 495 | 563 |
This group describes the approximation and heuristic algorithms |
| 496 | 564 |
implemented in LEMON. |
| 497 | 565 |
*/ |
| 498 | 566 |
|
| 499 | 567 |
/** |
| 500 | 568 |
@defgroup gen_opt_group General Optimization Tools |
| 501 | 569 |
\brief This group describes some general optimization frameworks |
| 502 | 570 |
implemented in LEMON. |
| 503 | 571 |
|
| 504 | 572 |
This group describes some general optimization frameworks |
| 505 | 573 |
implemented in LEMON. |
| 506 | 574 |
*/ |
| 507 | 575 |
|
| 508 | 576 |
/** |
| 509 | 577 |
@defgroup lp_group Lp and Mip Solvers |
| 510 | 578 |
@ingroup gen_opt_group |
| 511 | 579 |
\brief Lp and Mip solver interfaces for LEMON. |
| 512 | 580 |
|
| 513 | 581 |
This group describes Lp and Mip solver interfaces for LEMON. The |
| 514 | 582 |
various LP solvers could be used in the same manner with this |
| 515 | 583 |
interface. |
| 516 | 584 |
*/ |
| 517 | 585 |
|
| 518 | 586 |
/** |
| 519 | 587 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 520 | 588 |
@ingroup lp_group |
| 521 | 589 |
\brief Helper tools to the Lp and Mip solvers. |
| 522 | 590 |
|
| 523 | 591 |
This group adds some helper tools to general optimization framework |
| 524 | 592 |
implemented in LEMON. |
| 525 | 593 |
*/ |
| 526 | 594 |
|
| 527 | 595 |
/** |
| 528 | 596 |
@defgroup metah Metaheuristics |
| 529 | 597 |
@ingroup gen_opt_group |
| 530 | 598 |
\brief Metaheuristics for LEMON library. |
| 531 | 599 |
|
| 532 | 600 |
This group describes some metaheuristic optimization tools. |
| 533 | 601 |
*/ |
| 534 | 602 |
|
| 535 | 603 |
/** |
| 536 | 604 |
@defgroup utils Tools and Utilities |
| 537 | 605 |
\brief Tools and utilities for programming in LEMON |
| 538 | 606 |
|
| 539 | 607 |
Tools and utilities for programming in LEMON. |
| 540 | 608 |
*/ |
| 541 | 609 |
|
| 542 | 610 |
/** |
| 543 | 611 |
@defgroup gutils Basic Graph Utilities |
| 544 | 612 |
@ingroup utils |
| 545 | 613 |
\brief Simple basic graph utilities. |
| 546 | 614 |
|
| 547 | 615 |
This group describes some simple basic graph utilities. |
| 548 | 616 |
*/ |
| 549 | 617 |
|
| 550 | 618 |
/** |
| 551 | 619 |
@defgroup misc Miscellaneous Tools |
| 552 | 620 |
@ingroup utils |
| 553 | 621 |
\brief Tools for development, debugging and testing. |
| 554 | 622 |
|
| 555 | 623 |
This group describes several useful tools for development, |
| 556 | 624 |
debugging and testing. |
| 557 | 625 |
*/ |
| 558 | 626 |
|
| 559 | 627 |
/** |
| 560 | 628 |
@defgroup timecount Time Measuring and Counting |
| 561 | 629 |
@ingroup misc |
| 562 | 630 |
\brief Simple tools for measuring the performance of algorithms. |
| 563 | 631 |
|
| 564 | 632 |
This group describes simple tools for measuring the performance |
| 565 | 633 |
of algorithms. |
| 566 | 634 |
*/ |
| 567 | 635 |
|
| 568 | 636 |
/** |
| 569 | 637 |
@defgroup exceptions Exceptions |
| 570 | 638 |
@ingroup utils |
| 571 | 639 |
\brief Exceptions defined in LEMON. |
| 572 | 640 |
|
| 573 | 641 |
This group describes the exceptions defined in LEMON. |
| 574 | 642 |
*/ |
| 575 | 643 |
|
| 576 | 644 |
/** |
| 577 | 645 |
@defgroup io_group Input-Output |
| 578 | 646 |
\brief Graph Input-Output methods |
| 579 | 647 |
|
| 580 | 648 |
This group describes the tools for importing and exporting graphs |
| 581 | 649 |
and graph related data. Now it supports the \ref lgf-format |
| 582 | 650 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 583 | 651 |
postscript (EPS) format. |
| 584 | 652 |
*/ |
| 585 | 653 |
|
| 586 | 654 |
/** |
| 587 | 655 |
@defgroup lemon_io LEMON Graph Format |
| 588 | 656 |
@ingroup io_group |
| 589 | 657 |
\brief Reading and writing LEMON Graph Format. |
| 590 | 658 |
|
| 591 | 659 |
This group describes methods for reading and writing |
| 592 | 660 |
\ref lgf-format "LEMON Graph Format". |
| 593 | 661 |
*/ |
| 594 | 662 |
|
| 595 | 663 |
/** |
| 596 | 664 |
@defgroup eps_io Postscript Exporting |
| 597 | 665 |
@ingroup io_group |
| 598 | 666 |
\brief General \c EPS drawer and graph exporter |
| 599 | 667 |
|
| 600 | 668 |
This group describes general \c EPS drawing methods and special |
| 601 | 669 |
graph exporting tools. |
| 602 | 670 |
*/ |
| 603 | 671 |
|
| 604 | 672 |
/** |
| 605 | 673 |
@defgroup dimacs_group DIMACS format |
| 606 | 674 |
@ingroup io_group |
| 607 | 675 |
\brief Read and write files in DIMACS format |
| 608 | 676 |
|
| 609 | 677 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 610 | 678 |
*/ |
| 611 | 679 |
|
| 612 | 680 |
/** |
| 613 | 681 |
@defgroup nauty_group NAUTY Format |
| 614 | 682 |
@ingroup io_group |
| 615 | 683 |
\brief Read \e Nauty format |
| 616 | 684 |
|
| 617 | 685 |
Tool to read graphs from \e Nauty format data. |
| 618 | 686 |
*/ |
| 619 | 687 |
|
| 620 | 688 |
/** |
| 621 | 689 |
@defgroup concept Concepts |
| 622 | 690 |
\brief Skeleton classes and concept checking classes |
| 623 | 691 |
|
| 624 | 692 |
This group describes the data/algorithm skeletons and concept checking |
| 625 | 693 |
classes implemented in LEMON. |
| 626 | 694 |
|
| 627 | 695 |
The purpose of the classes in this group is fourfold. |
| 628 | 696 |
|
| 629 | 697 |
- These classes contain the documentations of the %concepts. In order |
| 630 | 698 |
to avoid document multiplications, an implementation of a concept |
| 631 | 699 |
simply refers to the corresponding concept class. |
| 632 | 700 |
|
| 633 | 701 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
| 634 | 702 |
implementation of the %concepts should provide, however completely |
| 635 | 703 |
without implementations and real data structures behind the |
| 636 | 704 |
interface. On the other hand they should provide nothing else. All |
| 637 | 705 |
the algorithms working on a data structure meeting a certain concept |
| 638 | 706 |
should compile with these classes. (Though it will not run properly, |
| 639 | 707 |
of course.) In this way it is easily to check if an algorithm |
| 640 | 708 |
doesn't use any extra feature of a certain implementation. |
| 641 | 709 |
|
| 642 | 710 |
- The concept descriptor classes also provide a <em>checker class</em> |
| 643 | 711 |
that makes it possible to check whether a certain implementation of a |
| 644 | 712 |
concept indeed provides all the required features. |
| 645 | 713 |
|
| 646 | 714 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
| 647 | 715 |
*/ |
| 648 | 716 |
|
| 649 | 717 |
/** |
| 650 | 718 |
@defgroup graph_concepts Graph Structure Concepts |
| 651 | 719 |
@ingroup concept |
| 652 | 720 |
\brief Skeleton and concept checking classes for graph structures |
| 653 | 721 |
|
| 654 | 722 |
This group describes the skeletons and concept checking classes of LEMON's |
| 655 | 723 |
graph structures and helper classes used to implement these. |
| 656 | 724 |
*/ |
| 657 | 725 |
|
| 658 | 726 |
/** |
| 659 | 727 |
@defgroup map_concepts Map Concepts |
| 660 | 728 |
@ingroup concept |
| 661 | 729 |
\brief Skeleton and concept checking classes for maps |
| 662 | 730 |
|
| 663 | 731 |
This group describes the skeletons and concept checking classes of maps. |
| 664 | 732 |
*/ |
| 665 | 733 |
|
| 666 | 734 |
/** |
| 667 | 735 |
\anchor demoprograms |
| 668 | 736 |
|
| 669 | 737 |
@defgroup demos Demo Programs |
| 670 | 738 |
|
| 671 | 739 |
Some demo programs are listed here. Their full source codes can be found in |
| 672 | 740 |
the \c demo subdirectory of the source tree. |
| 673 | 741 |
|
| 674 | 742 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
| 675 | 743 |
build the library. |
| 676 | 744 |
*/ |
| 677 | 745 |
|
| 678 | 746 |
/** |
| 679 | 747 |
@defgroup tools Standalone Utility Applications |
| 680 | 748 |
|
| 681 | 749 |
Some utility applications are listed here. |
| 682 | 750 |
|
| 683 | 751 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
| 684 | 752 |
them, as well. |
| 685 | 753 |
*/ |
| 686 | 754 |
|
| 687 | 755 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
| 20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/maps.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 33 | 36 |
|
| 34 | 37 |
namespace lemon {
|
| 35 | 38 |
|
| 36 | 39 |
/// \addtogroup min_cost_flow |
| 37 | 40 |
/// @{
|
| 38 | 41 |
|
| 39 | 42 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 44 |
/// |
| 42 | 45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 46 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 47 |
/// This algorithm is a specialized version of the linear programming |
| 45 | 48 |
/// simplex method directly for the minimum cost flow problem. |
| 46 | 49 |
/// It is one of the most efficient solution methods. |
| 47 | 50 |
/// |
| 48 | 51 |
/// In general this class is the fastest implementation available |
| 49 | 52 |
/// in LEMON for the minimum cost flow problem. |
| 53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
| 54 |
/// constraints. For more information see \ref ProblemType. |
|
| 50 | 55 |
/// |
| 51 | 56 |
/// \tparam GR The digraph type the algorithm runs on. |
| 52 | 57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
| 53 | 58 |
/// and supply values in the algorithm. By default it is \c int. |
| 54 | 59 |
/// \tparam C The value type used for costs and potentials in the |
| 55 | 60 |
/// algorithm. By default it is the same as \c F. |
| 56 | 61 |
/// |
| 57 | 62 |
/// \warning Both value types must be signed and all input data must |
| 58 | 63 |
/// be integer. |
| 59 | 64 |
/// |
| 60 | 65 |
/// \note %NetworkSimplex provides five different pivot rule |
| 61 |
/// implementations |
|
| 66 |
/// implementations, from which the most efficient one is used |
|
| 67 |
/// by default. For more information see \ref PivotRule. |
|
| 62 | 68 |
template <typename GR, typename F = int, typename C = F> |
| 63 | 69 |
class NetworkSimplex |
| 64 | 70 |
{
|
| 65 | 71 |
public: |
| 66 | 72 |
|
| 67 | 73 |
/// The flow type of the algorithm |
| 68 | 74 |
typedef F Flow; |
| 69 | 75 |
/// The cost type of the algorithm |
| 70 | 76 |
typedef C Cost; |
| 77 |
#ifdef DOXYGEN |
|
| 78 |
/// The type of the flow map |
|
| 79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
| 80 |
/// The type of the potential map |
|
| 81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
| 82 |
#else |
|
| 71 | 83 |
/// The type of the flow map |
| 72 | 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
| 73 | 85 |
/// The type of the potential map |
| 74 | 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
| 87 |
#endif |
|
| 75 | 88 |
|
| 76 | 89 |
public: |
| 77 | 90 |
|
| 78 | 91 |
/// \brief Enum type for selecting the pivot rule. |
| 79 | 92 |
/// |
| 80 | 93 |
/// Enum type for selecting the pivot rule for the \ref run() |
| 81 | 94 |
/// function. |
| 82 | 95 |
/// |
| 83 | 96 |
/// \ref NetworkSimplex provides five different pivot rule |
| 84 | 97 |
/// implementations that significantly affect the running time |
| 85 | 98 |
/// of the algorithm. |
| 86 | 99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 87 | 100 |
/// proved to be the most efficient and the most robust on various |
| 88 | 101 |
/// test inputs according to our benchmark tests. |
| 89 | 102 |
/// However another pivot rule can be selected using the \ref run() |
| 90 | 103 |
/// function with the proper parameter. |
| 91 | 104 |
enum PivotRule {
|
| 92 | 105 |
|
| 93 | 106 |
/// The First Eligible pivot rule. |
| 94 | 107 |
/// The next eligible arc is selected in a wraparound fashion |
| 95 | 108 |
/// in every iteration. |
| 96 | 109 |
FIRST_ELIGIBLE, |
| 97 | 110 |
|
| 98 | 111 |
/// The Best Eligible pivot rule. |
| 99 | 112 |
/// The best eligible arc is selected in every iteration. |
| 100 | 113 |
BEST_ELIGIBLE, |
| 101 | 114 |
|
| 102 | 115 |
/// The Block Search pivot rule. |
| 103 | 116 |
/// A specified number of arcs are examined in every iteration |
| 104 | 117 |
/// in a wraparound fashion and the best eligible arc is selected |
| 105 | 118 |
/// from this block. |
| 106 | 119 |
BLOCK_SEARCH, |
| 107 | 120 |
|
| 108 | 121 |
/// The Candidate List pivot rule. |
| 109 | 122 |
/// In a major iteration a candidate list is built from eligible arcs |
| 110 | 123 |
/// in a wraparound fashion and in the following minor iterations |
| 111 | 124 |
/// the best eligible arc is selected from this list. |
| 112 | 125 |
CANDIDATE_LIST, |
| 113 | 126 |
|
| 114 | 127 |
/// The Altering Candidate List pivot rule. |
| 115 | 128 |
/// It is a modified version of the Candidate List method. |
| 116 | 129 |
/// It keeps only the several best eligible arcs from the former |
| 117 | 130 |
/// candidate list and extends this list in every iteration. |
| 118 | 131 |
ALTERING_LIST |
| 119 | 132 |
}; |
| 133 |
|
|
| 134 |
/// \brief Enum type for selecting the problem type. |
|
| 135 |
/// |
|
| 136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
| 137 |
/// the inequalities in the supply/demand constraints of the |
|
| 138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 139 |
/// |
|
| 140 |
/// The default problem type is \c GEQ, since this form is supported |
|
| 141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 142 |
/// algorithm as well. |
|
| 143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
| 144 |
/// function. |
|
| 145 |
/// |
|
| 146 |
/// Note that the equality form is a special case of both problem type. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
|
|
| 149 |
/// This option means that there are "<em>greater or equal</em>" |
|
| 150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 151 |
/// problem is the following. |
|
| 152 |
/** |
|
| 153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 155 |
sup(u) \quad \forall u\in V \f] |
|
| 156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 157 |
*/ |
|
| 158 |
/// It means that the total demand must be greater or equal to the |
|
| 159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 160 |
/// negative) and all the supplies have to be carried out from |
|
| 161 |
/// the supply nodes, but there could be demands that are not |
|
| 162 |
/// satisfied. |
|
| 163 |
GEQ, |
|
| 164 |
/// It is just an alias for the \c GEQ option. |
|
| 165 |
CARRY_SUPPLIES = GEQ, |
|
| 166 |
|
|
| 167 |
/// This option means that there are "<em>less or equal</em>" |
|
| 168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 169 |
/// problem is the following. |
|
| 170 |
/** |
|
| 171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 173 |
sup(u) \quad \forall u\in V \f] |
|
| 174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 175 |
*/ |
|
| 176 |
/// It means that the total demand must be less or equal to the |
|
| 177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 178 |
/// positive) and all the demands have to be satisfied, but there |
|
| 179 |
/// could be supplies that are not carried out from the supply |
|
| 180 |
/// nodes. |
|
| 181 |
LEQ, |
|
| 182 |
/// It is just an alias for the \c LEQ option. |
|
| 183 |
SATISFY_DEMANDS = LEQ |
|
| 184 |
}; |
|
| 120 | 185 |
|
| 121 | 186 |
private: |
| 122 | 187 |
|
| 123 | 188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 124 | 189 |
|
| 125 | 190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
| 126 | 191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
| 127 | 192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
| 128 | 193 |
|
| 129 | 194 |
typedef std::vector<Arc> ArcVector; |
| 130 | 195 |
typedef std::vector<Node> NodeVector; |
| 131 | 196 |
typedef std::vector<int> IntVector; |
| 132 | 197 |
typedef std::vector<bool> BoolVector; |
| 133 | 198 |
typedef std::vector<Flow> FlowVector; |
| 134 | 199 |
typedef std::vector<Cost> CostVector; |
| 135 | 200 |
|
| 136 | 201 |
// State constants for arcs |
| 137 | 202 |
enum ArcStateEnum {
|
| 138 | 203 |
STATE_UPPER = -1, |
| 139 | 204 |
STATE_TREE = 0, |
| 140 | 205 |
STATE_LOWER = 1 |
| 141 | 206 |
}; |
| 142 | 207 |
|
| 143 | 208 |
private: |
| 144 | 209 |
|
| 145 | 210 |
// Data related to the underlying digraph |
| 146 | 211 |
const GR &_graph; |
| 147 | 212 |
int _node_num; |
| 148 | 213 |
int _arc_num; |
| 149 | 214 |
|
| 150 | 215 |
// Parameters of the problem |
| 151 | 216 |
FlowArcMap *_plower; |
| 152 | 217 |
FlowArcMap *_pupper; |
| 153 | 218 |
CostArcMap *_pcost; |
| 154 | 219 |
FlowNodeMap *_psupply; |
| 155 | 220 |
bool _pstsup; |
| 156 | 221 |
Node _psource, _ptarget; |
| 157 | 222 |
Flow _pstflow; |
| 223 |
ProblemType _ptype; |
|
| 158 | 224 |
|
| 159 | 225 |
// Result maps |
| 160 | 226 |
FlowMap *_flow_map; |
| 161 | 227 |
PotentialMap *_potential_map; |
| 162 | 228 |
bool _local_flow; |
| 163 | 229 |
bool _local_potential; |
| 164 | 230 |
|
| 165 | 231 |
// Data structures for storing the digraph |
| 166 | 232 |
IntNodeMap _node_id; |
| 167 | 233 |
ArcVector _arc_ref; |
| 168 | 234 |
IntVector _source; |
| 169 | 235 |
IntVector _target; |
| 170 | 236 |
|
| 171 | 237 |
// Node and arc data |
| 172 | 238 |
FlowVector _cap; |
| 173 | 239 |
CostVector _cost; |
| 174 | 240 |
FlowVector _supply; |
| 175 | 241 |
FlowVector _flow; |
| 176 | 242 |
CostVector _pi; |
| 177 | 243 |
|
| 178 | 244 |
// Data for storing the spanning tree structure |
| 179 | 245 |
IntVector _parent; |
| 180 | 246 |
IntVector _pred; |
| 181 | 247 |
IntVector _thread; |
| 182 | 248 |
IntVector _rev_thread; |
| 183 | 249 |
IntVector _succ_num; |
| 184 | 250 |
IntVector _last_succ; |
| 185 | 251 |
IntVector _dirty_revs; |
| 186 | 252 |
BoolVector _forward; |
| 187 | 253 |
IntVector _state; |
| 188 | 254 |
int _root; |
| 189 | 255 |
|
| 190 | 256 |
// Temporary data used in the current pivot iteration |
| 191 | 257 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 192 | 258 |
int first, second, right, last; |
| 193 | 259 |
int stem, par_stem, new_stem; |
| 194 | 260 |
Flow delta; |
| 195 | 261 |
|
| 196 | 262 |
private: |
| 197 | 263 |
|
| 198 | 264 |
// Implementation of the First Eligible pivot rule |
| 199 | 265 |
class FirstEligiblePivotRule |
| 200 | 266 |
{
|
| 201 | 267 |
private: |
| 202 | 268 |
|
| 203 | 269 |
// References to the NetworkSimplex class |
| 204 | 270 |
const IntVector &_source; |
| 205 | 271 |
const IntVector &_target; |
| 206 | 272 |
const CostVector &_cost; |
| 207 | 273 |
const IntVector &_state; |
| 208 | 274 |
const CostVector &_pi; |
| 209 | 275 |
int &_in_arc; |
| 210 | 276 |
int _arc_num; |
| 211 | 277 |
|
| 212 | 278 |
// Pivot rule data |
| 213 | 279 |
int _next_arc; |
| 214 | 280 |
|
| 215 | 281 |
public: |
| 216 | 282 |
|
| 217 | 283 |
// Constructor |
| 218 | 284 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 219 | 285 |
_source(ns._source), _target(ns._target), |
| 220 | 286 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 221 | 287 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 222 | 288 |
{}
|
| 223 | 289 |
|
| 224 | 290 |
// Find next entering arc |
| 225 | 291 |
bool findEnteringArc() {
|
| 226 | 292 |
Cost c; |
| 227 | 293 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
| 228 | 294 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 229 | 295 |
if (c < 0) {
|
| 230 | 296 |
_in_arc = e; |
| 231 | 297 |
_next_arc = e + 1; |
| 232 | 298 |
return true; |
| 233 | 299 |
} |
| 234 | 300 |
} |
| 235 | 301 |
for (int e = 0; e < _next_arc; ++e) {
|
| 236 | 302 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 237 | 303 |
if (c < 0) {
|
| 238 | 304 |
_in_arc = e; |
| 239 | 305 |
_next_arc = e + 1; |
| 240 | 306 |
return true; |
| 241 | 307 |
} |
| 242 | 308 |
} |
| 243 | 309 |
return false; |
| 244 | 310 |
} |
| 245 | 311 |
|
| 246 | 312 |
}; //class FirstEligiblePivotRule |
| 247 | 313 |
|
| 248 | 314 |
|
| 249 | 315 |
// Implementation of the Best Eligible pivot rule |
| 250 | 316 |
class BestEligiblePivotRule |
| 251 | 317 |
{
|
| 252 | 318 |
private: |
| 253 | 319 |
|
| 254 | 320 |
// References to the NetworkSimplex class |
| 255 | 321 |
const IntVector &_source; |
| 256 | 322 |
const IntVector &_target; |
| 257 | 323 |
const CostVector &_cost; |
| 258 | 324 |
const IntVector &_state; |
| 259 | 325 |
const CostVector &_pi; |
| 260 | 326 |
int &_in_arc; |
| 261 | 327 |
int _arc_num; |
| 262 | 328 |
|
| 263 | 329 |
public: |
| 264 | 330 |
|
| 265 | 331 |
// Constructor |
| 266 | 332 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 267 | 333 |
_source(ns._source), _target(ns._target), |
| 268 | 334 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 269 | 335 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
| 270 | 336 |
{}
|
| 271 | 337 |
|
| 272 | 338 |
// Find next entering arc |
| 273 | 339 |
bool findEnteringArc() {
|
| 274 | 340 |
Cost c, min = 0; |
| 275 | 341 |
for (int e = 0; e < _arc_num; ++e) {
|
| 276 | 342 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 277 | 343 |
if (c < min) {
|
| 278 | 344 |
min = c; |
| 279 | 345 |
_in_arc = e; |
| 280 | 346 |
} |
| 281 | 347 |
} |
| 282 | 348 |
return min < 0; |
| 283 | 349 |
} |
| 284 | 350 |
|
| 285 | 351 |
}; //class BestEligiblePivotRule |
| 286 | 352 |
|
| 287 | 353 |
|
| 288 | 354 |
// Implementation of the Block Search pivot rule |
| 289 | 355 |
class BlockSearchPivotRule |
| 290 | 356 |
{
|
| 291 | 357 |
private: |
| 292 | 358 |
|
| 293 | 359 |
// References to the NetworkSimplex class |
| 294 | 360 |
const IntVector &_source; |
| 295 | 361 |
const IntVector &_target; |
| 296 | 362 |
const CostVector &_cost; |
| 297 | 363 |
const IntVector &_state; |
| 298 | 364 |
const CostVector &_pi; |
| 299 | 365 |
int &_in_arc; |
| 300 | 366 |
int _arc_num; |
| 301 | 367 |
|
| 302 | 368 |
// Pivot rule data |
| 303 | 369 |
int _block_size; |
| 304 | 370 |
int _next_arc; |
| 305 | 371 |
|
| 306 | 372 |
public: |
| 307 | 373 |
|
| 308 | 374 |
// Constructor |
| 309 | 375 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 310 | 376 |
_source(ns._source), _target(ns._target), |
| 311 | 377 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 312 | 378 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 313 | 379 |
{
|
| 314 | 380 |
// The main parameters of the pivot rule |
| 315 | 381 |
const double BLOCK_SIZE_FACTOR = 2.0; |
| 316 | 382 |
const int MIN_BLOCK_SIZE = 10; |
| 317 | 383 |
|
| 318 | 384 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
| 319 | 385 |
MIN_BLOCK_SIZE ); |
| 320 | 386 |
} |
| 321 | 387 |
|
| 322 | 388 |
// Find next entering arc |
| 323 | 389 |
bool findEnteringArc() {
|
| 324 | 390 |
Cost c, min = 0; |
| 325 | 391 |
int cnt = _block_size; |
| 326 | 392 |
int e, min_arc = _next_arc; |
| 327 | 393 |
for (e = _next_arc; e < _arc_num; ++e) {
|
| 328 | 394 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 329 | 395 |
if (c < min) {
|
| 330 | 396 |
min = c; |
| 331 | 397 |
min_arc = e; |
| 332 | 398 |
} |
| 333 | 399 |
if (--cnt == 0) {
|
| 334 | 400 |
if (min < 0) break; |
| 335 | 401 |
cnt = _block_size; |
| 336 | 402 |
} |
| 337 | 403 |
} |
| 338 | 404 |
if (min == 0 || cnt > 0) {
|
| 339 | 405 |
for (e = 0; e < _next_arc; ++e) {
|
| 340 | 406 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 341 | 407 |
if (c < min) {
|
| 342 | 408 |
min = c; |
| 343 | 409 |
min_arc = e; |
| 344 | 410 |
} |
| 345 | 411 |
if (--cnt == 0) {
|
| 346 | 412 |
if (min < 0) break; |
| 347 | 413 |
cnt = _block_size; |
| 348 | 414 |
} |
| 349 | 415 |
} |
| 350 | 416 |
} |
| 351 | 417 |
if (min >= 0) return false; |
| 352 | 418 |
_in_arc = min_arc; |
| 353 | 419 |
_next_arc = e; |
| 354 | 420 |
return true; |
| 355 | 421 |
} |
| 356 | 422 |
|
| 357 | 423 |
}; //class BlockSearchPivotRule |
| 358 | 424 |
|
| 359 | 425 |
|
| 360 | 426 |
// Implementation of the Candidate List pivot rule |
| 361 | 427 |
class CandidateListPivotRule |
| 362 | 428 |
{
|
| 363 | 429 |
private: |
| 364 | 430 |
|
| 365 | 431 |
// References to the NetworkSimplex class |
| 366 | 432 |
const IntVector &_source; |
| 367 | 433 |
const IntVector &_target; |
| 368 | 434 |
const CostVector &_cost; |
| 369 | 435 |
const IntVector &_state; |
| 370 | 436 |
const CostVector &_pi; |
| 371 | 437 |
int &_in_arc; |
| 372 | 438 |
int _arc_num; |
| 373 | 439 |
|
| 374 | 440 |
// Pivot rule data |
| 375 | 441 |
IntVector _candidates; |
| 376 | 442 |
int _list_length, _minor_limit; |
| 377 | 443 |
int _curr_length, _minor_count; |
| 378 | 444 |
int _next_arc; |
| 379 | 445 |
|
| 380 | 446 |
public: |
| 381 | 447 |
|
| 382 | 448 |
/// Constructor |
| 383 | 449 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 384 | 450 |
_source(ns._source), _target(ns._target), |
| 385 | 451 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 386 | 452 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 387 | 453 |
{
|
| 388 | 454 |
// The main parameters of the pivot rule |
| 389 | 455 |
const double LIST_LENGTH_FACTOR = 1.0; |
| 390 | 456 |
const int MIN_LIST_LENGTH = 10; |
| 391 | 457 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 392 | 458 |
const int MIN_MINOR_LIMIT = 3; |
| 393 | 459 |
|
| 394 | 460 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
| 395 | 461 |
MIN_LIST_LENGTH ); |
| 396 | 462 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 397 | 463 |
MIN_MINOR_LIMIT ); |
| 398 | 464 |
_curr_length = _minor_count = 0; |
| 399 | 465 |
_candidates.resize(_list_length); |
| 400 | 466 |
} |
| 401 | 467 |
|
| 402 | 468 |
/// Find next entering arc |
| 403 | 469 |
bool findEnteringArc() {
|
| 404 | 470 |
Cost min, c; |
| 405 | 471 |
int e, min_arc = _next_arc; |
| 406 | 472 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 407 | 473 |
// Minor iteration: select the best eligible arc from the |
| 408 | 474 |
// current candidate list |
| 409 | 475 |
++_minor_count; |
| 410 | 476 |
min = 0; |
| 411 | 477 |
for (int i = 0; i < _curr_length; ++i) {
|
| 412 | 478 |
e = _candidates[i]; |
| 413 | 479 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 414 | 480 |
if (c < min) {
|
| 415 | 481 |
min = c; |
| 416 | 482 |
min_arc = e; |
| 417 | 483 |
} |
| 418 | 484 |
if (c >= 0) {
|
| 419 | 485 |
_candidates[i--] = _candidates[--_curr_length]; |
| 420 | 486 |
} |
| 421 | 487 |
} |
| 422 | 488 |
if (min < 0) {
|
| 423 | 489 |
_in_arc = min_arc; |
| 424 | 490 |
return true; |
| 425 | 491 |
} |
| 426 | 492 |
} |
| 427 | 493 |
|
| 428 | 494 |
// Major iteration: build a new candidate list |
| 429 | 495 |
min = 0; |
| 430 | 496 |
_curr_length = 0; |
| 431 | 497 |
for (e = _next_arc; e < _arc_num; ++e) {
|
| 432 | 498 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 433 | 499 |
if (c < 0) {
|
| 434 | 500 |
_candidates[_curr_length++] = e; |
| 435 | 501 |
if (c < min) {
|
| 436 | 502 |
min = c; |
| 437 | 503 |
min_arc = e; |
| 438 | 504 |
} |
| 439 | 505 |
if (_curr_length == _list_length) break; |
| 440 | 506 |
} |
| 441 | 507 |
} |
| 442 | 508 |
if (_curr_length < _list_length) {
|
| 443 | 509 |
for (e = 0; e < _next_arc; ++e) {
|
| 444 | 510 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 445 | 511 |
if (c < 0) {
|
| 446 | 512 |
_candidates[_curr_length++] = e; |
| 447 | 513 |
if (c < min) {
|
| 448 | 514 |
min = c; |
| 449 | 515 |
min_arc = e; |
| 450 | 516 |
} |
| 451 | 517 |
if (_curr_length == _list_length) break; |
| 452 | 518 |
} |
| 453 | 519 |
} |
| 454 | 520 |
} |
| 455 | 521 |
if (_curr_length == 0) return false; |
| 456 | 522 |
_minor_count = 1; |
| 457 | 523 |
_in_arc = min_arc; |
| 458 | 524 |
_next_arc = e; |
| 459 | 525 |
return true; |
| 460 | 526 |
} |
| 461 | 527 |
|
| 462 | 528 |
}; //class CandidateListPivotRule |
| 463 | 529 |
|
| 464 | 530 |
|
| 465 | 531 |
// Implementation of the Altering Candidate List pivot rule |
| 466 | 532 |
class AlteringListPivotRule |
| 467 | 533 |
{
|
| 468 | 534 |
private: |
| 469 | 535 |
|
| 470 | 536 |
// References to the NetworkSimplex class |
| 471 | 537 |
const IntVector &_source; |
| 472 | 538 |
const IntVector &_target; |
| 473 | 539 |
const CostVector &_cost; |
| 474 | 540 |
const IntVector &_state; |
| 475 | 541 |
const CostVector &_pi; |
| 476 | 542 |
int &_in_arc; |
| 477 | 543 |
int _arc_num; |
| 478 | 544 |
|
| 479 | 545 |
// Pivot rule data |
| 480 | 546 |
int _block_size, _head_length, _curr_length; |
| 481 | 547 |
int _next_arc; |
| 482 | 548 |
IntVector _candidates; |
| 483 | 549 |
CostVector _cand_cost; |
| 484 | 550 |
|
| 485 | 551 |
// Functor class to compare arcs during sort of the candidate list |
| 486 | 552 |
class SortFunc |
| 487 | 553 |
{
|
| 488 | 554 |
private: |
| 489 | 555 |
const CostVector &_map; |
| 490 | 556 |
public: |
| 491 | 557 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 492 | 558 |
bool operator()(int left, int right) {
|
| 493 | 559 |
return _map[left] > _map[right]; |
| 494 | 560 |
} |
| 495 | 561 |
}; |
| 496 | 562 |
|
| 497 | 563 |
SortFunc _sort_func; |
| 498 | 564 |
|
| 499 | 565 |
public: |
| 500 | 566 |
|
| 501 | 567 |
// Constructor |
| 502 | 568 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 503 | 569 |
_source(ns._source), _target(ns._target), |
| 504 | 570 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 505 | 571 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
| 506 | 572 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
| 507 | 573 |
{
|
| 508 | 574 |
// The main parameters of the pivot rule |
| 509 | 575 |
const double BLOCK_SIZE_FACTOR = 1.5; |
| 510 | 576 |
const int MIN_BLOCK_SIZE = 10; |
| 511 | 577 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 512 | 578 |
const int MIN_HEAD_LENGTH = 3; |
| 513 | 579 |
|
| 514 | 580 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
| 515 | 581 |
MIN_BLOCK_SIZE ); |
| 516 | 582 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 517 | 583 |
MIN_HEAD_LENGTH ); |
| 518 | 584 |
_candidates.resize(_head_length + _block_size); |
| 519 | 585 |
_curr_length = 0; |
| 520 | 586 |
} |
| 521 | 587 |
|
| 522 | 588 |
// Find next entering arc |
| 523 | 589 |
bool findEnteringArc() {
|
| 524 | 590 |
// Check the current candidate list |
| 525 | 591 |
int e; |
| 526 | 592 |
for (int i = 0; i < _curr_length; ++i) {
|
| 527 | 593 |
e = _candidates[i]; |
| 528 | 594 |
_cand_cost[e] = _state[e] * |
| 529 | 595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 530 | 596 |
if (_cand_cost[e] >= 0) {
|
| 531 | 597 |
_candidates[i--] = _candidates[--_curr_length]; |
| 532 | 598 |
} |
| 533 | 599 |
} |
| 534 | 600 |
|
| 535 | 601 |
// Extend the list |
| 536 | 602 |
int cnt = _block_size; |
| 537 | 603 |
int last_arc = 0; |
| 538 | 604 |
int limit = _head_length; |
| 539 | 605 |
|
| 540 | 606 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
| 541 | 607 |
_cand_cost[e] = _state[e] * |
| 542 | 608 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 543 | 609 |
if (_cand_cost[e] < 0) {
|
| 544 | 610 |
_candidates[_curr_length++] = e; |
| 545 | 611 |
last_arc = e; |
| 546 | 612 |
} |
| 547 | 613 |
if (--cnt == 0) {
|
| 548 | 614 |
if (_curr_length > limit) break; |
| 549 | 615 |
limit = 0; |
| 550 | 616 |
cnt = _block_size; |
| 551 | 617 |
} |
| 552 | 618 |
} |
| 553 | 619 |
if (_curr_length <= limit) {
|
| 554 | 620 |
for (int e = 0; e < _next_arc; ++e) {
|
| 555 | 621 |
_cand_cost[e] = _state[e] * |
| 556 | 622 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 557 | 623 |
if (_cand_cost[e] < 0) {
|
| 558 | 624 |
_candidates[_curr_length++] = e; |
| 559 | 625 |
last_arc = e; |
| 560 | 626 |
} |
| 561 | 627 |
if (--cnt == 0) {
|
| 562 | 628 |
if (_curr_length > limit) break; |
| 563 | 629 |
limit = 0; |
| 564 | 630 |
cnt = _block_size; |
| 565 | 631 |
} |
| 566 | 632 |
} |
| 567 | 633 |
} |
| 568 | 634 |
if (_curr_length == 0) return false; |
| 569 | 635 |
_next_arc = last_arc + 1; |
| 570 | 636 |
|
| 571 | 637 |
// Make heap of the candidate list (approximating a partial sort) |
| 572 | 638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 573 | 639 |
_sort_func ); |
| 574 | 640 |
|
| 575 | 641 |
// Pop the first element of the heap |
| 576 | 642 |
_in_arc = _candidates[0]; |
| 577 | 643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 578 | 644 |
_sort_func ); |
| 579 | 645 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 580 | 646 |
return true; |
| 581 | 647 |
} |
| 582 | 648 |
|
| 583 | 649 |
}; //class AlteringListPivotRule |
| 584 | 650 |
|
| 585 | 651 |
public: |
| 586 | 652 |
|
| 587 | 653 |
/// \brief Constructor. |
| 588 | 654 |
/// |
| 589 |
/// |
|
| 655 |
/// The constructor of the class. |
|
| 590 | 656 |
/// |
| 591 | 657 |
/// \param graph The digraph the algorithm runs on. |
| 592 | 658 |
NetworkSimplex(const GR& graph) : |
| 593 | 659 |
_graph(graph), |
| 594 | 660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
| 595 |
_psupply(NULL), _pstsup(false), |
|
| 661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
| 596 | 662 |
_flow_map(NULL), _potential_map(NULL), |
| 597 | 663 |
_local_flow(false), _local_potential(false), |
| 598 | 664 |
_node_id(graph) |
| 599 | 665 |
{
|
| 600 | 666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
| 601 | 667 |
std::numeric_limits<Flow>::is_signed, |
| 602 | 668 |
"The flow type of NetworkSimplex must be signed integer"); |
| 603 | 669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
| 604 | 670 |
std::numeric_limits<Cost>::is_signed, |
| 605 | 671 |
"The cost type of NetworkSimplex must be signed integer"); |
| 606 | 672 |
} |
| 607 | 673 |
|
| 608 | 674 |
/// Destructor. |
| 609 | 675 |
~NetworkSimplex() {
|
| 610 | 676 |
if (_local_flow) delete _flow_map; |
| 611 | 677 |
if (_local_potential) delete _potential_map; |
| 612 | 678 |
} |
| 613 | 679 |
|
| 680 |
/// \name Parameters |
|
| 681 |
/// The parameters of the algorithm can be specified using these |
|
| 682 |
/// functions. |
|
| 683 |
|
|
| 684 |
/// @{
|
|
| 685 |
|
|
| 614 | 686 |
/// \brief Set the lower bounds on the arcs. |
| 615 | 687 |
/// |
| 616 | 688 |
/// This function sets the lower bounds on the arcs. |
| 617 | 689 |
/// If neither this function nor \ref boundMaps() is used before |
| 618 | 690 |
/// calling \ref run(), the lower bounds will be set to zero |
| 619 | 691 |
/// on all arcs. |
| 620 | 692 |
/// |
| 621 | 693 |
/// \param map An arc map storing the lower bounds. |
| 622 | 694 |
/// Its \c Value type must be convertible to the \c Flow type |
| 623 | 695 |
/// of the algorithm. |
| 624 | 696 |
/// |
| 625 | 697 |
/// \return <tt>(*this)</tt> |
| 626 | 698 |
template <typename LOWER> |
| 627 | 699 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
| 628 | 700 |
delete _plower; |
| 629 | 701 |
_plower = new FlowArcMap(_graph); |
| 630 | 702 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 631 | 703 |
(*_plower)[a] = map[a]; |
| 632 | 704 |
} |
| 633 | 705 |
return *this; |
| 634 | 706 |
} |
| 635 | 707 |
|
| 636 | 708 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 637 | 709 |
/// |
| 638 | 710 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 639 | 711 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
| 640 | 712 |
/// and \ref boundMaps() is used before calling \ref run(), |
| 641 | 713 |
/// the upper bounds (capacities) will be set to |
| 642 | 714 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
| 643 | 715 |
/// |
| 644 | 716 |
/// \param map An arc map storing the upper bounds. |
| 645 | 717 |
/// Its \c Value type must be convertible to the \c Flow type |
| 646 | 718 |
/// of the algorithm. |
| 647 | 719 |
/// |
| 648 | 720 |
/// \return <tt>(*this)</tt> |
| 649 | 721 |
template<typename UPPER> |
| 650 | 722 |
NetworkSimplex& upperMap(const UPPER& map) {
|
| 651 | 723 |
delete _pupper; |
| 652 | 724 |
_pupper = new FlowArcMap(_graph); |
| 653 | 725 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 654 | 726 |
(*_pupper)[a] = map[a]; |
| 655 | 727 |
} |
| 656 | 728 |
return *this; |
| 657 | 729 |
} |
| 658 | 730 |
|
| 659 | 731 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 660 | 732 |
/// |
| 661 | 733 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 662 | 734 |
/// It is just an alias for \ref upperMap(). |
| 663 | 735 |
/// |
| 664 | 736 |
/// \return <tt>(*this)</tt> |
| 665 | 737 |
template<typename CAP> |
| 666 | 738 |
NetworkSimplex& capacityMap(const CAP& map) {
|
| 667 | 739 |
return upperMap(map); |
| 668 | 740 |
} |
| 669 | 741 |
|
| 670 | 742 |
/// \brief Set the lower and upper bounds on the arcs. |
| 671 | 743 |
/// |
| 672 | 744 |
/// This function sets the lower and upper bounds on the arcs. |
| 673 | 745 |
/// If neither this function nor \ref lowerMap() is used before |
| 674 | 746 |
/// calling \ref run(), the lower bounds will be set to zero |
| 675 | 747 |
/// on all arcs. |
| 676 | 748 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
| 677 | 749 |
/// and \ref boundMaps() is used before calling \ref run(), |
| 678 | 750 |
/// the upper bounds (capacities) will be set to |
| 679 | 751 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
| 680 | 752 |
/// |
| 681 | 753 |
/// \param lower An arc map storing the lower bounds. |
| 682 | 754 |
/// \param upper An arc map storing the upper bounds. |
| 683 | 755 |
/// |
| 684 | 756 |
/// The \c Value type of the maps must be convertible to the |
| 685 | 757 |
/// \c Flow type of the algorithm. |
| 686 | 758 |
/// |
| 687 | 759 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
| 688 | 760 |
/// and \ref upperMap() separately. |
| 689 | 761 |
/// |
| 690 | 762 |
/// \return <tt>(*this)</tt> |
| 691 | 763 |
template <typename LOWER, typename UPPER> |
| 692 | 764 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
| 693 | 765 |
return lowerMap(lower).upperMap(upper); |
| 694 | 766 |
} |
| 695 | 767 |
|
| 696 | 768 |
/// \brief Set the costs of the arcs. |
| 697 | 769 |
/// |
| 698 | 770 |
/// This function sets the costs of the arcs. |
| 699 | 771 |
/// If it is not used before calling \ref run(), the costs |
| 700 | 772 |
/// will be set to \c 1 on all arcs. |
| 701 | 773 |
/// |
| 702 | 774 |
/// \param map An arc map storing the costs. |
| 703 | 775 |
/// Its \c Value type must be convertible to the \c Cost type |
| 704 | 776 |
/// of the algorithm. |
| 705 | 777 |
/// |
| 706 | 778 |
/// \return <tt>(*this)</tt> |
| 707 | 779 |
template<typename COST> |
| 708 | 780 |
NetworkSimplex& costMap(const COST& map) {
|
| 709 | 781 |
delete _pcost; |
| 710 | 782 |
_pcost = new CostArcMap(_graph); |
| 711 | 783 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 712 | 784 |
(*_pcost)[a] = map[a]; |
| 713 | 785 |
} |
| 714 | 786 |
return *this; |
| 715 | 787 |
} |
| 716 | 788 |
|
| 717 | 789 |
/// \brief Set the supply values of the nodes. |
| 718 | 790 |
/// |
| 719 | 791 |
/// This function sets the supply values of the nodes. |
| 720 | 792 |
/// If neither this function nor \ref stSupply() is used before |
| 721 | 793 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 722 | 794 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 723 | 795 |
/// |
| 724 | 796 |
/// \param map A node map storing the supply values. |
| 725 | 797 |
/// Its \c Value type must be convertible to the \c Flow type |
| 726 | 798 |
/// of the algorithm. |
| 727 | 799 |
/// |
| 728 | 800 |
/// \return <tt>(*this)</tt> |
| 729 | 801 |
template<typename SUP> |
| 730 | 802 |
NetworkSimplex& supplyMap(const SUP& map) {
|
| 731 | 803 |
delete _psupply; |
| 732 | 804 |
_pstsup = false; |
| 733 | 805 |
_psupply = new FlowNodeMap(_graph); |
| 734 | 806 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 735 | 807 |
(*_psupply)[n] = map[n]; |
| 736 | 808 |
} |
| 737 | 809 |
return *this; |
| 738 | 810 |
} |
| 739 | 811 |
|
| 740 | 812 |
/// \brief Set single source and target nodes and a supply value. |
| 741 | 813 |
/// |
| 742 | 814 |
/// This function sets a single source node and a single target node |
| 743 | 815 |
/// and the required flow value. |
| 744 | 816 |
/// If neither this function nor \ref supplyMap() is used before |
| 745 | 817 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 746 | 818 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 747 | 819 |
/// |
| 748 | 820 |
/// \param s The source node. |
| 749 | 821 |
/// \param t The target node. |
| 750 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
| 751 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 752 | 824 |
/// |
| 753 | 825 |
/// \return <tt>(*this)</tt> |
| 754 | 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
|
| 755 | 827 |
delete _psupply; |
| 756 | 828 |
_psupply = NULL; |
| 757 | 829 |
_pstsup = true; |
| 758 | 830 |
_psource = s; |
| 759 | 831 |
_ptarget = t; |
| 760 | 832 |
_pstflow = k; |
| 761 | 833 |
return *this; |
| 762 | 834 |
} |
| 835 |
|
|
| 836 |
/// \brief Set the problem type. |
|
| 837 |
/// |
|
| 838 |
/// This function sets the problem type for the algorithm. |
|
| 839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
| 840 |
/// type will be used. |
|
| 841 |
/// |
|
| 842 |
/// For more information see \ref ProblemType. |
|
| 843 |
/// |
|
| 844 |
/// \return <tt>(*this)</tt> |
|
| 845 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
| 846 |
_ptype = problem_type; |
|
| 847 |
return *this; |
|
| 848 |
} |
|
| 763 | 849 |
|
| 764 | 850 |
/// \brief Set the flow map. |
| 765 | 851 |
/// |
| 766 | 852 |
/// This function sets the flow map. |
| 767 | 853 |
/// If it is not used before calling \ref run(), an instance will |
| 768 | 854 |
/// be allocated automatically. The destructor deallocates this |
| 769 | 855 |
/// automatically allocated map, of course. |
| 770 | 856 |
/// |
| 771 | 857 |
/// \return <tt>(*this)</tt> |
| 772 | 858 |
NetworkSimplex& flowMap(FlowMap& map) {
|
| 773 | 859 |
if (_local_flow) {
|
| 774 | 860 |
delete _flow_map; |
| 775 | 861 |
_local_flow = false; |
| 776 | 862 |
} |
| 777 | 863 |
_flow_map = ↦ |
| 778 | 864 |
return *this; |
| 779 | 865 |
} |
| 780 | 866 |
|
| 781 | 867 |
/// \brief Set the potential map. |
| 782 | 868 |
/// |
| 783 | 869 |
/// This function sets the potential map, which is used for storing |
| 784 | 870 |
/// the dual solution. |
| 785 | 871 |
/// If it is not used before calling \ref run(), an instance will |
| 786 | 872 |
/// be allocated automatically. The destructor deallocates this |
| 787 | 873 |
/// automatically allocated map, of course. |
| 788 | 874 |
/// |
| 789 | 875 |
/// \return <tt>(*this)</tt> |
| 790 | 876 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
| 791 | 877 |
if (_local_potential) {
|
| 792 | 878 |
delete _potential_map; |
| 793 | 879 |
_local_potential = false; |
| 794 | 880 |
} |
| 795 | 881 |
_potential_map = ↦ |
| 796 | 882 |
return *this; |
| 797 | 883 |
} |
| 884 |
|
|
| 885 |
/// @} |
|
| 798 | 886 |
|
| 799 | 887 |
/// \name Execution Control |
| 800 | 888 |
/// The algorithm can be executed using \ref run(). |
| 801 | 889 |
|
| 802 | 890 |
/// @{
|
| 803 | 891 |
|
| 804 | 892 |
/// \brief Run the algorithm. |
| 805 | 893 |
/// |
| 806 | 894 |
/// This function runs the algorithm. |
| 807 |
/// The paramters can be specified using \ref lowerMap(), |
|
| 895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 808 | 896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
| 809 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
| 810 |
/// functions. For example, |
|
| 897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
| 899 |
/// For example, |
|
| 811 | 900 |
/// \code |
| 812 | 901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 813 | 902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
| 814 | 903 |
/// .supplyMap(sup).run(); |
| 815 | 904 |
/// \endcode |
| 816 | 905 |
/// |
| 817 | 906 |
/// This function can be called more than once. All the parameters |
| 818 | 907 |
/// that have been given are kept for the next call, unless |
| 819 | 908 |
/// \ref reset() is called, thus only the modified parameters |
| 820 | 909 |
/// have to be set again. See \ref reset() for examples. |
| 821 | 910 |
/// |
| 822 | 911 |
/// \param pivot_rule The pivot rule that will be used during the |
| 823 | 912 |
/// algorithm. For more information see \ref PivotRule. |
| 824 | 913 |
/// |
| 825 | 914 |
/// \return \c true if a feasible flow can be found. |
| 826 | 915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 827 | 916 |
return init() && start(pivot_rule); |
| 828 | 917 |
} |
| 829 | 918 |
|
| 830 | 919 |
/// \brief Reset all the parameters that have been given before. |
| 831 | 920 |
/// |
| 832 | 921 |
/// This function resets all the paramaters that have been given |
| 833 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
| 834 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
| 835 |
/// \ref |
|
| 922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
| 924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
| 925 |
/// \ref flowMap() and \ref potentialMap(). |
|
| 836 | 926 |
/// |
| 837 | 927 |
/// It is useful for multiple run() calls. If this function is not |
| 838 | 928 |
/// used, all the parameters given before are kept for the next |
| 839 | 929 |
/// \ref run() call. |
| 840 | 930 |
/// |
| 841 | 931 |
/// For example, |
| 842 | 932 |
/// \code |
| 843 | 933 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 844 | 934 |
/// |
| 845 | 935 |
/// // First run |
| 846 | 936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
| 847 | 937 |
/// .supplyMap(sup).run(); |
| 848 | 938 |
/// |
| 849 | 939 |
/// // Run again with modified cost map (reset() is not called, |
| 850 | 940 |
/// // so only the cost map have to be set again) |
| 851 | 941 |
/// cost[e] += 100; |
| 852 | 942 |
/// ns.costMap(cost).run(); |
| 853 | 943 |
/// |
| 854 | 944 |
/// // Run again from scratch using reset() |
| 855 | 945 |
/// // (the lower bounds will be set to zero on all arcs) |
| 856 | 946 |
/// ns.reset(); |
| 857 | 947 |
/// ns.capacityMap(cap).costMap(cost) |
| 858 | 948 |
/// .supplyMap(sup).run(); |
| 859 | 949 |
/// \endcode |
| 860 | 950 |
/// |
| 861 | 951 |
/// \return <tt>(*this)</tt> |
| 862 | 952 |
NetworkSimplex& reset() {
|
| 863 | 953 |
delete _plower; |
| 864 | 954 |
delete _pupper; |
| 865 | 955 |
delete _pcost; |
| 866 | 956 |
delete _psupply; |
| 867 | 957 |
_plower = NULL; |
| 868 | 958 |
_pupper = NULL; |
| 869 | 959 |
_pcost = NULL; |
| 870 | 960 |
_psupply = NULL; |
| 871 | 961 |
_pstsup = false; |
| 962 |
_ptype = GEQ; |
|
| 963 |
if (_local_flow) delete _flow_map; |
|
| 964 |
if (_local_potential) delete _potential_map; |
|
| 965 |
_flow_map = NULL; |
|
| 966 |
_potential_map = NULL; |
|
| 967 |
_local_flow = false; |
|
| 968 |
_local_potential = false; |
|
| 969 |
|
|
| 872 | 970 |
return *this; |
| 873 | 971 |
} |
| 874 | 972 |
|
| 875 | 973 |
/// @} |
| 876 | 974 |
|
| 877 | 975 |
/// \name Query Functions |
| 878 | 976 |
/// The results of the algorithm can be obtained using these |
| 879 | 977 |
/// functions.\n |
| 880 | 978 |
/// The \ref run() function must be called before using them. |
| 881 | 979 |
|
| 882 | 980 |
/// @{
|
| 883 | 981 |
|
| 884 | 982 |
/// \brief Return the total cost of the found flow. |
| 885 | 983 |
/// |
| 886 | 984 |
/// This function returns the total cost of the found flow. |
| 887 | 985 |
/// The complexity of the function is O(e). |
| 888 | 986 |
/// |
| 889 | 987 |
/// \note The return type of the function can be specified as a |
| 890 | 988 |
/// template parameter. For example, |
| 891 | 989 |
/// \code |
| 892 | 990 |
/// ns.totalCost<double>(); |
| 893 | 991 |
/// \endcode |
| 894 | 992 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 895 | 993 |
/// type of the algorithm, which is the default return type of the |
| 896 | 994 |
/// function. |
| 897 | 995 |
/// |
| 898 | 996 |
/// \pre \ref run() must be called before using this function. |
| 899 | 997 |
template <typename Num> |
| 900 | 998 |
Num totalCost() const {
|
| 901 | 999 |
Num c = 0; |
| 902 | 1000 |
if (_pcost) {
|
| 903 | 1001 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 904 | 1002 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
| 905 | 1003 |
} else {
|
| 906 | 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 907 | 1005 |
c += (*_flow_map)[e]; |
| 908 | 1006 |
} |
| 909 | 1007 |
return c; |
| 910 | 1008 |
} |
| 911 | 1009 |
|
| 912 | 1010 |
#ifndef DOXYGEN |
| 913 | 1011 |
Cost totalCost() const {
|
| 914 | 1012 |
return totalCost<Cost>(); |
| 915 | 1013 |
} |
| 916 | 1014 |
#endif |
| 917 | 1015 |
|
| 918 | 1016 |
/// \brief Return the flow on the given arc. |
| 919 | 1017 |
/// |
| 920 | 1018 |
/// This function returns the flow on the given arc. |
| 921 | 1019 |
/// |
| 922 | 1020 |
/// \pre \ref run() must be called before using this function. |
| 923 | 1021 |
Flow flow(const Arc& a) const {
|
| 924 | 1022 |
return (*_flow_map)[a]; |
| 925 | 1023 |
} |
| 926 | 1024 |
|
| 927 | 1025 |
/// \brief Return a const reference to the flow map. |
| 928 | 1026 |
/// |
| 929 | 1027 |
/// This function returns a const reference to an arc map storing |
| 930 | 1028 |
/// the found flow. |
| 931 | 1029 |
/// |
| 932 | 1030 |
/// \pre \ref run() must be called before using this function. |
| 933 | 1031 |
const FlowMap& flowMap() const {
|
| 934 | 1032 |
return *_flow_map; |
| 935 | 1033 |
} |
| 936 | 1034 |
|
| 937 | 1035 |
/// \brief Return the potential (dual value) of the given node. |
| 938 | 1036 |
/// |
| 939 | 1037 |
/// This function returns the potential (dual value) of the |
| 940 | 1038 |
/// given node. |
| 941 | 1039 |
/// |
| 942 | 1040 |
/// \pre \ref run() must be called before using this function. |
| 943 | 1041 |
Cost potential(const Node& n) const {
|
| 944 | 1042 |
return (*_potential_map)[n]; |
| 945 | 1043 |
} |
| 946 | 1044 |
|
| 947 | 1045 |
/// \brief Return a const reference to the potential map |
| 948 | 1046 |
/// (the dual solution). |
| 949 | 1047 |
/// |
| 950 | 1048 |
/// This function returns a const reference to a node map storing |
| 951 | 1049 |
/// the found potentials, which form the dual solution of the |
| 952 | 1050 |
/// \ref min_cost_flow "minimum cost flow" problem. |
| 953 | 1051 |
/// |
| 954 | 1052 |
/// \pre \ref run() must be called before using this function. |
| 955 | 1053 |
const PotentialMap& potentialMap() const {
|
| 956 | 1054 |
return *_potential_map; |
| 957 | 1055 |
} |
| 958 | 1056 |
|
| 959 | 1057 |
/// @} |
| 960 | 1058 |
|
| 961 | 1059 |
private: |
| 962 | 1060 |
|
| 963 | 1061 |
// Initialize internal data structures |
| 964 | 1062 |
bool init() {
|
| 965 | 1063 |
// Initialize result maps |
| 966 | 1064 |
if (!_flow_map) {
|
| 967 | 1065 |
_flow_map = new FlowMap(_graph); |
| 968 | 1066 |
_local_flow = true; |
| 969 | 1067 |
} |
| 970 | 1068 |
if (!_potential_map) {
|
| 971 | 1069 |
_potential_map = new PotentialMap(_graph); |
| 972 | 1070 |
_local_potential = true; |
| 973 | 1071 |
} |
| 974 | 1072 |
|
| 975 | 1073 |
// Initialize vectors |
| 976 | 1074 |
_node_num = countNodes(_graph); |
| 977 | 1075 |
_arc_num = countArcs(_graph); |
| 978 | 1076 |
int all_node_num = _node_num + 1; |
| 979 | 1077 |
int all_arc_num = _arc_num + _node_num; |
| 980 | 1078 |
if (_node_num == 0) return false; |
| 981 | 1079 |
|
| 982 | 1080 |
_arc_ref.resize(_arc_num); |
| 983 | 1081 |
_source.resize(all_arc_num); |
| 984 | 1082 |
_target.resize(all_arc_num); |
| 985 | 1083 |
|
| 986 | 1084 |
_cap.resize(all_arc_num); |
| 987 | 1085 |
_cost.resize(all_arc_num); |
| 988 | 1086 |
_supply.resize(all_node_num); |
| 989 | 1087 |
_flow.resize(all_arc_num); |
| 990 | 1088 |
_pi.resize(all_node_num); |
| 991 | 1089 |
|
| 992 | 1090 |
_parent.resize(all_node_num); |
| 993 | 1091 |
_pred.resize(all_node_num); |
| 994 | 1092 |
_forward.resize(all_node_num); |
| 995 | 1093 |
_thread.resize(all_node_num); |
| 996 | 1094 |
_rev_thread.resize(all_node_num); |
| 997 | 1095 |
_succ_num.resize(all_node_num); |
| 998 | 1096 |
_last_succ.resize(all_node_num); |
| 999 | 1097 |
_state.resize(all_arc_num); |
| 1000 | 1098 |
|
| 1001 | 1099 |
// Initialize node related data |
| 1002 | 1100 |
bool valid_supply = true; |
| 1101 |
Flow sum_supply = 0; |
|
| 1003 | 1102 |
if (!_pstsup && !_psupply) {
|
| 1004 | 1103 |
_pstsup = true; |
| 1005 | 1104 |
_psource = _ptarget = NodeIt(_graph); |
| 1006 | 1105 |
_pstflow = 0; |
| 1007 | 1106 |
} |
| 1008 | 1107 |
if (_psupply) {
|
| 1009 |
Flow sum = 0; |
|
| 1010 | 1108 |
int i = 0; |
| 1011 | 1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1012 | 1110 |
_node_id[n] = i; |
| 1013 | 1111 |
_supply[i] = (*_psupply)[n]; |
| 1014 |
|
|
| 1112 |
sum_supply += _supply[i]; |
|
| 1015 | 1113 |
} |
| 1016 |
valid_supply = ( |
|
| 1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
| 1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
| 1017 | 1116 |
} else {
|
| 1018 | 1117 |
int i = 0; |
| 1019 | 1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1020 | 1119 |
_node_id[n] = i; |
| 1021 | 1120 |
_supply[i] = 0; |
| 1022 | 1121 |
} |
| 1023 | 1122 |
_supply[_node_id[_psource]] = _pstflow; |
| 1024 |
_supply[_node_id[_ptarget]] |
|
| 1123 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
| 1025 | 1124 |
} |
| 1026 | 1125 |
if (!valid_supply) return false; |
| 1027 | 1126 |
|
| 1127 |
// Infinite capacity value |
|
| 1128 |
Flow inf_cap = |
|
| 1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1130 |
std::numeric_limits<Flow>::infinity() : |
|
| 1131 |
std::numeric_limits<Flow>::max(); |
|
| 1132 |
|
|
| 1133 |
// Initialize artifical cost |
|
| 1134 |
Cost art_cost; |
|
| 1135 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1137 |
} else {
|
|
| 1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1139 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1141 |
} |
|
| 1142 |
art_cost = (art_cost + 1) * _node_num; |
|
| 1143 |
} |
|
| 1144 |
|
|
| 1145 |
// Run Circulation to check if a feasible solution exists |
|
| 1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
| 1147 |
FlowNodeMap *csup = NULL; |
|
| 1148 |
bool local_csup = false; |
|
| 1149 |
if (_psupply) {
|
|
| 1150 |
csup = _psupply; |
|
| 1151 |
} else {
|
|
| 1152 |
csup = new FlowNodeMap(_graph, 0); |
|
| 1153 |
(*csup)[_psource] = _pstflow; |
|
| 1154 |
(*csup)[_ptarget] = -_pstflow; |
|
| 1155 |
local_csup = true; |
|
| 1156 |
} |
|
| 1157 |
bool circ_result = false; |
|
| 1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
| 1159 |
// GEQ problem type |
|
| 1160 |
if (_plower) {
|
|
| 1161 |
if (_pupper) {
|
|
| 1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
| 1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
| 1164 |
circ_result = circ.run(); |
|
| 1165 |
} else {
|
|
| 1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
| 1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
| 1168 |
circ_result = circ.run(); |
|
| 1169 |
} |
|
| 1170 |
} else {
|
|
| 1171 |
if (_pupper) {
|
|
| 1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
| 1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
| 1174 |
circ_result = circ.run(); |
|
| 1175 |
} else {
|
|
| 1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
| 1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
| 1178 |
circ_result = circ.run(); |
|
| 1179 |
} |
|
| 1180 |
} |
|
| 1181 |
} else {
|
|
| 1182 |
// LEQ problem type |
|
| 1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
| 1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
| 1185 |
RevGraph rgraph(_graph); |
|
| 1186 |
NegNodeMap neg_csup(*csup); |
|
| 1187 |
if (_plower) {
|
|
| 1188 |
if (_pupper) {
|
|
| 1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
| 1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
| 1191 |
circ_result = circ.run(); |
|
| 1192 |
} else {
|
|
| 1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
| 1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
| 1195 |
circ_result = circ.run(); |
|
| 1196 |
} |
|
| 1197 |
} else {
|
|
| 1198 |
if (_pupper) {
|
|
| 1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
| 1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
| 1201 |
circ_result = circ.run(); |
|
| 1202 |
} else {
|
|
| 1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
| 1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
| 1205 |
circ_result = circ.run(); |
|
| 1206 |
} |
|
| 1207 |
} |
|
| 1208 |
} |
|
| 1209 |
if (local_csup) delete csup; |
|
| 1210 |
if (!circ_result) return false; |
|
| 1211 |
|
|
| 1028 | 1212 |
// Set data for the artificial root node |
| 1029 | 1213 |
_root = _node_num; |
| 1030 | 1214 |
_parent[_root] = -1; |
| 1031 | 1215 |
_pred[_root] = -1; |
| 1032 | 1216 |
_thread[_root] = 0; |
| 1033 | 1217 |
_rev_thread[0] = _root; |
| 1034 | 1218 |
_succ_num[_root] = all_node_num; |
| 1035 | 1219 |
_last_succ[_root] = _root - 1; |
| 1036 |
_supply[_root] = 0; |
|
| 1037 |
_pi[_root] = 0; |
|
| 1220 |
_supply[_root] = -sum_supply; |
|
| 1221 |
if (sum_supply < 0) {
|
|
| 1222 |
_pi[_root] = -art_cost; |
|
| 1223 |
} else {
|
|
| 1224 |
_pi[_root] = art_cost; |
|
| 1225 |
} |
|
| 1038 | 1226 |
|
| 1039 | 1227 |
// Store the arcs in a mixed order |
| 1040 | 1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
| 1041 | 1229 |
int i = 0; |
| 1042 | 1230 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1043 | 1231 |
_arc_ref[i] = e; |
| 1044 | 1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
| 1045 | 1233 |
} |
| 1046 | 1234 |
|
| 1047 | 1235 |
// Initialize arc maps |
| 1048 |
Flow inf_cap = |
|
| 1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1050 |
std::numeric_limits<Flow>::infinity() : |
|
| 1051 |
std::numeric_limits<Flow>::max(); |
|
| 1052 | 1236 |
if (_pupper && _pcost) {
|
| 1053 | 1237 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1238 |
Arc e = _arc_ref[i]; |
| 1055 | 1239 |
_source[i] = _node_id[_graph.source(e)]; |
| 1056 | 1240 |
_target[i] = _node_id[_graph.target(e)]; |
| 1057 | 1241 |
_cap[i] = (*_pupper)[e]; |
| 1058 | 1242 |
_cost[i] = (*_pcost)[e]; |
| 1059 | 1243 |
_flow[i] = 0; |
| 1060 | 1244 |
_state[i] = STATE_LOWER; |
| 1061 | 1245 |
} |
| 1062 | 1246 |
} else {
|
| 1063 | 1247 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1064 | 1248 |
Arc e = _arc_ref[i]; |
| 1065 | 1249 |
_source[i] = _node_id[_graph.source(e)]; |
| 1066 | 1250 |
_target[i] = _node_id[_graph.target(e)]; |
| 1067 | 1251 |
_flow[i] = 0; |
| 1068 | 1252 |
_state[i] = STATE_LOWER; |
| 1069 | 1253 |
} |
| 1070 | 1254 |
if (_pupper) {
|
| 1071 | 1255 |
for (int i = 0; i != _arc_num; ++i) |
| 1072 | 1256 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 1073 | 1257 |
} else {
|
| 1074 | 1258 |
for (int i = 0; i != _arc_num; ++i) |
| 1075 | 1259 |
_cap[i] = inf_cap; |
| 1076 | 1260 |
} |
| 1077 | 1261 |
if (_pcost) {
|
| 1078 | 1262 |
for (int i = 0; i != _arc_num; ++i) |
| 1079 | 1263 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
| 1080 | 1264 |
} else {
|
| 1081 | 1265 |
for (int i = 0; i != _arc_num; ++i) |
| 1082 | 1266 |
_cost[i] = 1; |
| 1083 | 1267 |
} |
| 1084 | 1268 |
} |
| 1085 | 1269 |
|
| 1086 |
// Initialize artifical cost |
|
| 1087 |
Cost art_cost; |
|
| 1088 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1090 |
} else {
|
|
| 1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1092 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1094 |
} |
|
| 1095 |
art_cost = (art_cost + 1) * _node_num; |
|
| 1096 |
} |
|
| 1097 |
|
|
| 1098 | 1270 |
// Remove non-zero lower bounds |
| 1099 | 1271 |
if (_plower) {
|
| 1100 | 1272 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1101 | 1273 |
Flow c = (*_plower)[_arc_ref[i]]; |
| 1102 | 1274 |
if (c != 0) {
|
| 1103 | 1275 |
_cap[i] -= c; |
| 1104 | 1276 |
_supply[_source[i]] -= c; |
| 1105 | 1277 |
_supply[_target[i]] += c; |
| 1106 | 1278 |
} |
| 1107 | 1279 |
} |
| 1108 | 1280 |
} |
| 1109 | 1281 |
|
| 1110 | 1282 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1111 | 1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1112 | 1284 |
_thread[u] = u + 1; |
| 1113 | 1285 |
_rev_thread[u + 1] = u; |
| 1114 | 1286 |
_succ_num[u] = 1; |
| 1115 | 1287 |
_last_succ[u] = u; |
| 1116 | 1288 |
_parent[u] = _root; |
| 1117 | 1289 |
_pred[u] = e; |
| 1118 | 1290 |
_cost[e] = art_cost; |
| 1119 | 1291 |
_cap[e] = inf_cap; |
| 1120 | 1292 |
_state[e] = STATE_TREE; |
| 1121 |
if (_supply[u] >= 0) {
|
|
| 1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
|
|
| 1122 | 1294 |
_flow[e] = _supply[u]; |
| 1123 | 1295 |
_forward[u] = true; |
| 1124 |
_pi[u] = -art_cost; |
|
| 1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
| 1125 | 1297 |
} else {
|
| 1126 | 1298 |
_flow[e] = -_supply[u]; |
| 1127 | 1299 |
_forward[u] = false; |
| 1128 |
_pi[u] = art_cost; |
|
| 1300 |
_pi[u] = art_cost + _pi[_root]; |
|
| 1129 | 1301 |
} |
| 1130 | 1302 |
} |
| 1131 | 1303 |
|
| 1132 | 1304 |
return true; |
| 1133 | 1305 |
} |
| 1134 | 1306 |
|
| 1135 | 1307 |
// Find the join node |
| 1136 | 1308 |
void findJoinNode() {
|
| 1137 | 1309 |
int u = _source[in_arc]; |
| 1138 | 1310 |
int v = _target[in_arc]; |
| 1139 | 1311 |
while (u != v) {
|
| 1140 | 1312 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1141 | 1313 |
u = _parent[u]; |
| 1142 | 1314 |
} else {
|
| 1143 | 1315 |
v = _parent[v]; |
| 1144 | 1316 |
} |
| 1145 | 1317 |
} |
| 1146 | 1318 |
join = u; |
| 1147 | 1319 |
} |
| 1148 | 1320 |
|
| 1149 | 1321 |
// Find the leaving arc of the cycle and returns true if the |
| 1150 | 1322 |
// leaving arc is not the same as the entering arc |
| 1151 | 1323 |
bool findLeavingArc() {
|
| 1152 | 1324 |
// Initialize first and second nodes according to the direction |
| 1153 | 1325 |
// of the cycle |
| 1154 | 1326 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1155 | 1327 |
first = _source[in_arc]; |
| 1156 | 1328 |
second = _target[in_arc]; |
| 1157 | 1329 |
} else {
|
| 1158 | 1330 |
first = _target[in_arc]; |
| 1159 | 1331 |
second = _source[in_arc]; |
| 1160 | 1332 |
} |
| 1161 | 1333 |
delta = _cap[in_arc]; |
| 1162 | 1334 |
int result = 0; |
| 1163 | 1335 |
Flow d; |
| 1164 | 1336 |
int e; |
| 1165 | 1337 |
|
| 1166 | 1338 |
// Search the cycle along the path form the first node to the root |
| 1167 | 1339 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1168 | 1340 |
e = _pred[u]; |
| 1169 | 1341 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
| 1170 | 1342 |
if (d < delta) {
|
| 1171 | 1343 |
delta = d; |
| 1172 | 1344 |
u_out = u; |
| 1173 | 1345 |
result = 1; |
| 1174 | 1346 |
} |
| 1175 | 1347 |
} |
| 1176 | 1348 |
// Search the cycle along the path form the second node to the root |
| 1177 | 1349 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1178 | 1350 |
e = _pred[u]; |
| 1179 | 1351 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
| 1180 | 1352 |
if (d <= delta) {
|
| 1181 | 1353 |
delta = d; |
| 1182 | 1354 |
u_out = u; |
| 1183 | 1355 |
result = 2; |
| 1184 | 1356 |
} |
| 1185 | 1357 |
} |
| 1186 | 1358 |
|
| 1187 | 1359 |
if (result == 1) {
|
| 1188 | 1360 |
u_in = first; |
| 1189 | 1361 |
v_in = second; |
| 1190 | 1362 |
} else {
|
| 1191 | 1363 |
u_in = second; |
| 1192 | 1364 |
v_in = first; |
| 1193 | 1365 |
} |
| 1194 | 1366 |
return result != 0; |
| 1195 | 1367 |
} |
| 1196 | 1368 |
|
| 1197 | 1369 |
// Change _flow and _state vectors |
| 1198 | 1370 |
void changeFlow(bool change) {
|
| 1199 | 1371 |
// Augment along the cycle |
| 1200 | 1372 |
if (delta > 0) {
|
| 1201 | 1373 |
Flow val = _state[in_arc] * delta; |
| 1202 | 1374 |
_flow[in_arc] += val; |
| 1203 | 1375 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1204 | 1376 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1205 | 1377 |
} |
| 1206 | 1378 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1207 | 1379 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1208 | 1380 |
} |
| 1209 | 1381 |
} |
| 1210 | 1382 |
// Update the state of the entering and leaving arcs |
| 1211 | 1383 |
if (change) {
|
| 1212 | 1384 |
_state[in_arc] = STATE_TREE; |
| 1213 | 1385 |
_state[_pred[u_out]] = |
| 1214 | 1386 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1215 | 1387 |
} else {
|
| 1216 | 1388 |
_state[in_arc] = -_state[in_arc]; |
| 1217 | 1389 |
} |
| 1218 | 1390 |
} |
| 1219 | 1391 |
|
| 1220 | 1392 |
// Update the tree structure |
| 1221 | 1393 |
void updateTreeStructure() {
|
| 1222 | 1394 |
int u, w; |
| 1223 | 1395 |
int old_rev_thread = _rev_thread[u_out]; |
| 1224 | 1396 |
int old_succ_num = _succ_num[u_out]; |
| 1225 | 1397 |
int old_last_succ = _last_succ[u_out]; |
| 1226 | 1398 |
v_out = _parent[u_out]; |
| 1227 | 1399 |
|
| 1228 | 1400 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1229 | 1401 |
right = _thread[u]; // the node after it |
| 1230 | 1402 |
|
| 1231 | 1403 |
// Handle the case when old_rev_thread equals to v_in |
| 1232 | 1404 |
// (it also means that join and v_out coincide) |
| 1233 | 1405 |
if (old_rev_thread == v_in) {
|
| 1234 | 1406 |
last = _thread[_last_succ[u_out]]; |
| 1235 | 1407 |
} else {
|
| 1236 | 1408 |
last = _thread[v_in]; |
| 1237 | 1409 |
} |
| 1238 | 1410 |
|
| 1239 | 1411 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1240 | 1412 |
// between u_in and u_out, whose parent have to be changed) |
| 1241 | 1413 |
_thread[v_in] = stem = u_in; |
| 1242 | 1414 |
_dirty_revs.clear(); |
| 1243 | 1415 |
_dirty_revs.push_back(v_in); |
| 1244 | 1416 |
par_stem = v_in; |
| 1245 | 1417 |
while (stem != u_out) {
|
| 1246 | 1418 |
// Insert the next stem node into the thread list |
| 1247 | 1419 |
new_stem = _parent[stem]; |
| 1248 | 1420 |
_thread[u] = new_stem; |
| 1249 | 1421 |
_dirty_revs.push_back(u); |
| 1250 | 1422 |
|
| 1251 | 1423 |
// Remove the subtree of stem from the thread list |
| 1252 | 1424 |
w = _rev_thread[stem]; |
| 1253 | 1425 |
_thread[w] = right; |
| 1254 | 1426 |
_rev_thread[right] = w; |
| 1255 | 1427 |
|
| 1256 | 1428 |
// Change the parent node and shift stem nodes |
| 1257 | 1429 |
_parent[stem] = par_stem; |
| 1258 | 1430 |
par_stem = stem; |
| 1259 | 1431 |
stem = new_stem; |
| 1260 | 1432 |
|
| 1261 | 1433 |
// Update u and right |
| 1262 | 1434 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1263 | 1435 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1264 | 1436 |
right = _thread[u]; |
| 1265 | 1437 |
} |
| 1266 | 1438 |
_parent[u_out] = par_stem; |
| 1267 | 1439 |
_thread[u] = last; |
| 1268 | 1440 |
_rev_thread[last] = u; |
| 1269 | 1441 |
_last_succ[u_out] = u; |
| 1270 | 1442 |
|
| 1271 | 1443 |
// Remove the subtree of u_out from the thread list except for |
| 1272 | 1444 |
// the case when old_rev_thread equals to v_in |
| 1273 | 1445 |
// (it also means that join and v_out coincide) |
| 1274 | 1446 |
if (old_rev_thread != v_in) {
|
| 1275 | 1447 |
_thread[old_rev_thread] = right; |
| 1276 | 1448 |
_rev_thread[right] = old_rev_thread; |
| 1277 | 1449 |
} |
| 1278 | 1450 |
|
| 1279 | 1451 |
// Update _rev_thread using the new _thread values |
| 1280 | 1452 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1281 | 1453 |
u = _dirty_revs[i]; |
| 1282 | 1454 |
_rev_thread[_thread[u]] = u; |
| 1283 | 1455 |
} |
| 1284 | 1456 |
|
| 1285 | 1457 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1286 | 1458 |
// stem nodes from u_out to u_in |
| 1287 | 1459 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1288 | 1460 |
u = u_out; |
| 1289 | 1461 |
while (u != u_in) {
|
| 1290 | 1462 |
w = _parent[u]; |
| 1291 | 1463 |
_pred[u] = _pred[w]; |
| 1292 | 1464 |
_forward[u] = !_forward[w]; |
| 1293 | 1465 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1294 | 1466 |
_succ_num[u] = tmp_sc; |
| 1295 | 1467 |
_last_succ[w] = tmp_ls; |
| 1296 | 1468 |
u = w; |
| 1297 | 1469 |
} |
| 1298 | 1470 |
_pred[u_in] = in_arc; |
| 1299 | 1471 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1300 | 1472 |
_succ_num[u_in] = old_succ_num; |
| 1301 | 1473 |
|
| 1302 | 1474 |
// Set limits for updating _last_succ form v_in and v_out |
| 1303 | 1475 |
// towards the root |
| 1304 | 1476 |
int up_limit_in = -1; |
| 1305 | 1477 |
int up_limit_out = -1; |
| 1306 | 1478 |
if (_last_succ[join] == v_in) {
|
| 1307 | 1479 |
up_limit_out = join; |
| 1308 | 1480 |
} else {
|
| 1309 | 1481 |
up_limit_in = join; |
| 1310 | 1482 |
} |
| 1311 | 1483 |
|
| 1312 | 1484 |
// Update _last_succ from v_in towards the root |
| 1313 | 1485 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1314 | 1486 |
u = _parent[u]) {
|
| 1315 | 1487 |
_last_succ[u] = _last_succ[u_out]; |
| 1316 | 1488 |
} |
| 1317 | 1489 |
// Update _last_succ from v_out towards the root |
| 1318 | 1490 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1319 | 1491 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1320 | 1492 |
u = _parent[u]) {
|
| 1321 | 1493 |
_last_succ[u] = old_rev_thread; |
| 1322 | 1494 |
} |
| 1323 | 1495 |
} else {
|
| 1324 | 1496 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1325 | 1497 |
u = _parent[u]) {
|
| 1326 | 1498 |
_last_succ[u] = _last_succ[u_out]; |
| 1327 | 1499 |
} |
| 1328 | 1500 |
} |
| 1329 | 1501 |
|
| 1330 | 1502 |
// Update _succ_num from v_in to join |
| 1331 | 1503 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1332 | 1504 |
_succ_num[u] += old_succ_num; |
| 1333 | 1505 |
} |
| 1334 | 1506 |
// Update _succ_num from v_out to join |
| 1335 | 1507 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1336 | 1508 |
_succ_num[u] -= old_succ_num; |
| 1337 | 1509 |
} |
| 1338 | 1510 |
} |
| 1339 | 1511 |
|
| 1340 | 1512 |
// Update potentials |
| 1341 | 1513 |
void updatePotential() {
|
| 1342 | 1514 |
Cost sigma = _forward[u_in] ? |
| 1343 | 1515 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1344 | 1516 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1345 | 1517 |
// Update potentials in the subtree, which has been moved |
| 1346 | 1518 |
int end = _thread[_last_succ[u_in]]; |
| 1347 | 1519 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1348 | 1520 |
_pi[u] += sigma; |
| 1349 | 1521 |
} |
| 1350 | 1522 |
} |
| 1351 | 1523 |
|
| 1352 | 1524 |
// Execute the algorithm |
| 1353 | 1525 |
bool start(PivotRule pivot_rule) {
|
| 1354 | 1526 |
// Select the pivot rule implementation |
| 1355 | 1527 |
switch (pivot_rule) {
|
| 1356 | 1528 |
case FIRST_ELIGIBLE: |
| 1357 | 1529 |
return start<FirstEligiblePivotRule>(); |
| 1358 | 1530 |
case BEST_ELIGIBLE: |
| 1359 | 1531 |
return start<BestEligiblePivotRule>(); |
| 1360 | 1532 |
case BLOCK_SEARCH: |
| 1361 | 1533 |
return start<BlockSearchPivotRule>(); |
| 1362 | 1534 |
case CANDIDATE_LIST: |
| 1363 | 1535 |
return start<CandidateListPivotRule>(); |
| 1364 | 1536 |
case ALTERING_LIST: |
| 1365 | 1537 |
return start<AlteringListPivotRule>(); |
| 1366 | 1538 |
} |
| 1367 | 1539 |
return false; |
| 1368 | 1540 |
} |
| 1369 | 1541 |
|
| 1370 | 1542 |
template <typename PivotRuleImpl> |
| 1371 | 1543 |
bool start() {
|
| 1372 | 1544 |
PivotRuleImpl pivot(*this); |
| 1373 | 1545 |
|
| 1374 | 1546 |
// Execute the Network Simplex algorithm |
| 1375 | 1547 |
while (pivot.findEnteringArc()) {
|
| 1376 | 1548 |
findJoinNode(); |
| 1377 | 1549 |
bool change = findLeavingArc(); |
| 1378 | 1550 |
changeFlow(change); |
| 1379 | 1551 |
if (change) {
|
| 1380 | 1552 |
updateTreeStructure(); |
| 1381 | 1553 |
updatePotential(); |
| 1382 | 1554 |
} |
| 1383 | 1555 |
} |
| 1384 | 1556 |
|
| 1385 |
// Check if the flow amount equals zero on all the artificial arcs |
|
| 1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
|
|
| 1387 |
if (_flow[e] > 0) return false; |
|
| 1388 |
} |
|
| 1389 |
|
|
| 1390 | 1557 |
// Copy flow values to _flow_map |
| 1391 | 1558 |
if (_plower) {
|
| 1392 | 1559 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1393 | 1560 |
Arc e = _arc_ref[i]; |
| 1394 | 1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
| 1395 | 1562 |
} |
| 1396 | 1563 |
} else {
|
| 1397 | 1564 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1398 | 1565 |
_flow_map->set(_arc_ref[i], _flow[i]); |
| 1399 | 1566 |
} |
| 1400 | 1567 |
} |
| 1401 | 1568 |
// Copy potential values to _potential_map |
| 1402 | 1569 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1403 | 1570 |
_potential_map->set(n, _pi[_node_id[n]]); |
| 1404 | 1571 |
} |
| 1405 | 1572 |
|
| 1406 | 1573 |
return true; |
| 1407 | 1574 |
} |
| 1408 | 1575 |
|
| 1409 | 1576 |
}; //class NetworkSimplex |
| 1410 | 1577 |
|
| 1411 | 1578 |
///@} |
| 1412 | 1579 |
|
| 1413 | 1580 |
} //namespace lemon |
| 1414 | 1581 |
|
| 1415 | 1582 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/list_graph.h> |
| 23 | 23 |
#include <lemon/lgf_reader.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/network_simplex.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/concepts/digraph.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
|
| 30 | 30 |
#include "test_tools.h" |
| 31 | 31 |
|
| 32 | 32 |
using namespace lemon; |
| 33 | 33 |
|
| 34 | 34 |
char test_lgf[] = |
| 35 | 35 |
"@nodes\n" |
| 36 |
"label sup1 sup2 sup3\n" |
|
| 37 |
" 1 20 27 0\n" |
|
| 38 |
" 2 -4 0 0\n" |
|
| 39 |
" 3 0 0 0\n" |
|
| 40 |
" 4 0 0 0\n" |
|
| 41 |
" 5 9 0 0\n" |
|
| 42 |
" 6 -6 0 0\n" |
|
| 43 |
" 7 0 0 0\n" |
|
| 44 |
" 8 0 0 0\n" |
|
| 45 |
" 9 3 0 0\n" |
|
| 46 |
" 10 -2 0 0\n" |
|
| 47 |
" 11 0 0 0\n" |
|
| 48 |
" |
|
| 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
| 37 |
" 1 20 27 0 20 30\n" |
|
| 38 |
" 2 -4 0 0 -8 -3\n" |
|
| 39 |
" 3 0 0 0 0 0\n" |
|
| 40 |
" 4 0 0 0 0 0\n" |
|
| 41 |
" 5 9 0 0 6 11\n" |
|
| 42 |
" 6 -6 0 0 -5 -6\n" |
|
| 43 |
" 7 0 0 0 0 0\n" |
|
| 44 |
" 8 0 0 0 0 3\n" |
|
| 45 |
" 9 3 0 0 0 0\n" |
|
| 46 |
" 10 -2 0 0 -7 -2\n" |
|
| 47 |
" 11 0 0 0 -10 0\n" |
|
| 48 |
" 12 -20 -27 0 -30 -20\n" |
|
| 49 | 49 |
"\n" |
| 50 | 50 |
"@arcs\n" |
| 51 | 51 |
" cost cap low1 low2\n" |
| 52 | 52 |
" 1 2 70 11 0 8\n" |
| 53 | 53 |
" 1 3 150 3 0 1\n" |
| 54 | 54 |
" 1 4 80 15 0 2\n" |
| 55 | 55 |
" 2 8 80 12 0 0\n" |
| 56 | 56 |
" 3 5 140 5 0 3\n" |
| 57 | 57 |
" 4 6 60 10 0 1\n" |
| 58 | 58 |
" 4 7 80 2 0 0\n" |
| 59 | 59 |
" 4 8 110 3 0 0\n" |
| 60 | 60 |
" 5 7 60 14 0 0\n" |
| 61 | 61 |
" 5 11 120 12 0 0\n" |
| 62 | 62 |
" 6 3 0 3 0 0\n" |
| 63 | 63 |
" 6 9 140 4 0 0\n" |
| 64 | 64 |
" 6 10 90 8 0 0\n" |
| 65 | 65 |
" 7 1 30 5 0 0\n" |
| 66 | 66 |
" 8 12 60 16 0 4\n" |
| 67 | 67 |
" 9 12 50 6 0 0\n" |
| 68 | 68 |
"10 12 70 13 0 5\n" |
| 69 | 69 |
"10 2 100 7 0 0\n" |
| 70 | 70 |
"10 7 60 10 0 0\n" |
| 71 | 71 |
"11 10 20 14 0 6\n" |
| 72 | 72 |
"12 11 30 10 0 0\n" |
| 73 | 73 |
"\n" |
| 74 | 74 |
"@attributes\n" |
| 75 | 75 |
"source 1\n" |
| 76 | 76 |
"target 12\n"; |
| 77 | 77 |
|
| 78 | 78 |
|
| 79 |
enum ProblemType {
|
|
| 80 |
EQ, |
|
| 81 |
GEQ, |
|
| 82 |
LEQ |
|
| 83 |
}; |
|
| 84 |
|
|
| 79 | 85 |
// Check the interface of an MCF algorithm |
| 80 | 86 |
template <typename GR, typename Flow, typename Cost> |
| 81 | 87 |
class McfClassConcept |
| 82 | 88 |
{
|
| 83 | 89 |
public: |
| 84 | 90 |
|
| 85 | 91 |
template <typename MCF> |
| 86 | 92 |
struct Constraints {
|
| 87 | 93 |
void constraints() {
|
| 88 | 94 |
checkConcept<concepts::Digraph, GR>(); |
| 89 | 95 |
|
| 90 | 96 |
MCF mcf(g); |
| 91 | 97 |
|
| 92 | 98 |
b = mcf.reset() |
| 93 | 99 |
.lowerMap(lower) |
| 94 | 100 |
.upperMap(upper) |
| 95 | 101 |
.capacityMap(upper) |
| 96 | 102 |
.boundMaps(lower, upper) |
| 97 | 103 |
.costMap(cost) |
| 98 | 104 |
.supplyMap(sup) |
| 99 | 105 |
.stSupply(n, n, k) |
| 106 |
.flowMap(flow) |
|
| 107 |
.potentialMap(pot) |
|
| 100 | 108 |
.run(); |
| 109 |
|
|
| 110 |
const MCF& const_mcf = mcf; |
|
| 101 | 111 |
|
| 102 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
| 103 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
| 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
| 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
| 104 | 114 |
|
| 105 |
v = mcf.totalCost(); |
|
| 106 |
double x = mcf.template totalCost<double>(); |
|
| 107 |
v = mcf.flow(a); |
|
| 108 |
v = mcf.potential(n); |
|
| 109 |
mcf.flowMap(flow); |
|
| 110 |
mcf.potentialMap(pot); |
|
| 115 |
v = const_mcf.totalCost(); |
|
| 116 |
double x = const_mcf.template totalCost<double>(); |
|
| 117 |
v = const_mcf.flow(a); |
|
| 118 |
v = const_mcf.potential(n); |
|
| 111 | 119 |
|
| 112 | 120 |
ignore_unused_variable_warning(fm); |
| 113 | 121 |
ignore_unused_variable_warning(pm); |
| 114 | 122 |
ignore_unused_variable_warning(x); |
| 115 | 123 |
} |
| 116 | 124 |
|
| 117 | 125 |
typedef typename GR::Node Node; |
| 118 | 126 |
typedef typename GR::Arc Arc; |
| 119 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
| 120 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
| 121 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 122 | 130 |
|
| 123 | 131 |
const GR &g; |
| 124 | 132 |
const FAM &lower; |
| 125 | 133 |
const FAM &upper; |
| 126 | 134 |
const CAM &cost; |
| 127 | 135 |
const NM ⊃ |
| 128 | 136 |
const Node &n; |
| 129 | 137 |
const Arc &a; |
| 130 | 138 |
const Flow &k; |
| 131 | 139 |
Flow v; |
| 132 | 140 |
bool b; |
| 133 | 141 |
|
| 134 | 142 |
typename MCF::FlowMap &flow; |
| 135 | 143 |
typename MCF::PotentialMap &pot; |
| 136 | 144 |
}; |
| 137 | 145 |
|
| 138 | 146 |
}; |
| 139 | 147 |
|
| 140 | 148 |
|
| 141 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
| 142 | 150 |
template < typename GR, typename LM, typename UM, |
| 143 | 151 |
typename SM, typename FM > |
| 144 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 145 |
const SM& supply, const FM& flow |
|
| 153 |
const SM& supply, const FM& flow, |
|
| 154 |
ProblemType type = EQ ) |
|
| 146 | 155 |
{
|
| 147 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 148 | 157 |
|
| 149 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 150 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 151 | 160 |
} |
| 152 | 161 |
|
| 153 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 154 | 163 |
typename SM::Value sum = 0; |
| 155 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 156 | 165 |
sum += flow[e]; |
| 157 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 158 | 167 |
sum -= flow[e]; |
| 159 |
|
|
| 168 |
bool b = (type == EQ && sum == supply[n]) || |
|
| 169 |
(type == GEQ && sum >= supply[n]) || |
|
| 170 |
(type == LEQ && sum <= supply[n]); |
|
| 171 |
if (!b) return false; |
|
| 160 | 172 |
} |
| 161 | 173 |
|
| 162 | 174 |
return true; |
| 163 | 175 |
} |
| 164 | 176 |
|
| 165 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
| 166 | 178 |
// using the "Complementary Slackness" optimality condition |
| 167 | 179 |
template < typename GR, typename LM, typename UM, |
| 168 |
typename CM, typename FM, typename PM > |
|
| 180 |
typename CM, typename SM, typename FM, typename PM > |
|
| 169 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 170 |
const CM& cost, const FM& flow, |
|
| 182 |
const CM& cost, const SM& supply, const FM& flow, |
|
| 183 |
const PM& pi ) |
|
| 171 | 184 |
{
|
| 172 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 173 | 186 |
|
| 174 | 187 |
bool opt = true; |
| 175 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 176 | 189 |
typename CM::Value red_cost = |
| 177 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 178 | 191 |
opt = red_cost == 0 || |
| 179 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 180 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
| 181 | 194 |
} |
| 195 |
|
|
| 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
|
| 197 |
typename SM::Value sum = 0; |
|
| 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
| 199 |
sum += flow[e]; |
|
| 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
| 201 |
sum -= flow[e]; |
|
| 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
| 203 |
} |
|
| 204 |
|
|
| 182 | 205 |
return opt; |
| 183 | 206 |
} |
| 184 | 207 |
|
| 185 | 208 |
// Run a minimum cost flow algorithm and check the results |
| 186 | 209 |
template < typename MCF, typename GR, |
| 187 | 210 |
typename LM, typename UM, |
| 188 | 211 |
typename CM, typename SM > |
| 189 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
| 190 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
| 191 | 214 |
const CM& cost, const SM& supply, |
| 192 | 215 |
bool result, typename CM::Value total, |
| 193 |
const std::string &test_id = "" |
|
| 216 |
const std::string &test_id = "", |
|
| 217 |
ProblemType type = EQ ) |
|
| 194 | 218 |
{
|
| 195 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
| 196 | 220 |
if (result) {
|
| 197 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
| 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
| 198 | 222 |
"The flow is not feasible " + test_id); |
| 199 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 200 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
| 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
| 201 | 225 |
mcf.potentialMap()), |
| 202 | 226 |
"Wrong potentials " + test_id); |
| 203 | 227 |
} |
| 204 | 228 |
} |
| 205 | 229 |
|
| 206 | 230 |
int main() |
| 207 | 231 |
{
|
| 208 | 232 |
// Check the interfaces |
| 209 | 233 |
{
|
| 210 | 234 |
typedef int Flow; |
| 211 | 235 |
typedef int Cost; |
| 212 | 236 |
// TODO: This typedef should be enabled if the standard maps are |
| 213 | 237 |
// reference maps in the graph concepts (See #190). |
| 214 | 238 |
/**/ |
| 215 | 239 |
//typedef concepts::Digraph GR; |
| 216 | 240 |
typedef ListDigraph GR; |
| 217 | 241 |
/**/ |
| 218 | 242 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
| 219 | 243 |
NetworkSimplex<GR, Flow, Cost> >(); |
| 220 | 244 |
} |
| 221 | 245 |
|
| 222 | 246 |
// Run various MCF tests |
| 223 | 247 |
typedef ListDigraph Digraph; |
| 224 | 248 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 225 | 249 |
|
| 226 | 250 |
// Read the test digraph |
| 227 | 251 |
Digraph gr; |
| 228 | 252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 229 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
| 253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
| 230 | 254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 231 | 255 |
Node v, w; |
| 232 | 256 |
|
| 233 | 257 |
std::istringstream input(test_lgf); |
| 234 | 258 |
DigraphReader<Digraph>(gr, input) |
| 235 | 259 |
.arcMap("cost", c)
|
| 236 | 260 |
.arcMap("cap", u)
|
| 237 | 261 |
.arcMap("low1", l1)
|
| 238 | 262 |
.arcMap("low2", l2)
|
| 239 | 263 |
.nodeMap("sup1", s1)
|
| 240 | 264 |
.nodeMap("sup2", s2)
|
| 241 | 265 |
.nodeMap("sup3", s3)
|
| 266 |
.nodeMap("sup4", s4)
|
|
| 267 |
.nodeMap("sup5", s5)
|
|
| 242 | 268 |
.node("source", v)
|
| 243 | 269 |
.node("target", w)
|
| 244 | 270 |
.run(); |
| 245 | 271 |
|
| 246 | 272 |
// A. Test NetworkSimplex with the default pivot rule |
| 247 | 273 |
{
|
| 248 | 274 |
NetworkSimplex<Digraph> mcf(gr); |
| 249 | 275 |
|
| 276 |
// Check the equality form |
|
| 250 | 277 |
mcf.upperMap(u).costMap(c); |
| 251 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 252 | 279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
| 253 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 254 | 281 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
| 255 | 282 |
mcf.lowerMap(l2); |
| 256 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 257 | 284 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
| 258 | 285 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 259 | 286 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
| 260 | 287 |
mcf.reset(); |
| 261 | 288 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 262 | 289 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
| 263 | 290 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 264 | 291 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
| 265 | 292 |
mcf.reset(); |
| 266 | 293 |
checkMcf(mcf, mcf.run(), |
| 267 | 294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
| 268 | 295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
| 269 | 296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
| 297 |
|
|
| 298 |
// Check the GEQ form |
|
| 299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
| 300 |
checkMcf(mcf, mcf.run(), |
|
| 301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
| 302 |
mcf.problemType(mcf.GEQ); |
|
| 303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
| 305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
| 306 |
checkMcf(mcf, mcf.run(), |
|
| 307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
| 308 |
|
|
| 309 |
// Check the LEQ form |
|
| 310 |
mcf.reset().problemType(mcf.LEQ); |
|
| 311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
| 312 |
checkMcf(mcf, mcf.run(), |
|
| 313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
| 314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
| 316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
| 317 |
checkMcf(mcf, mcf.run(), |
|
| 318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
| 270 | 319 |
} |
| 271 | 320 |
|
| 272 | 321 |
// B. Test NetworkSimplex with each pivot rule |
| 273 | 322 |
{
|
| 274 | 323 |
NetworkSimplex<Digraph> mcf(gr); |
| 275 | 324 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
| 276 | 325 |
|
| 277 | 326 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 278 | 327 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
| 279 | 328 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 280 | 329 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
| 281 | 330 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 282 | 331 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
| 283 | 332 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 284 | 333 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
| 285 | 334 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 286 | 335 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
| 287 | 336 |
} |
| 288 | 337 |
|
| 289 | 338 |
return 0; |
| 290 | 339 |
} |
0 comments (0 inline)