0
3
0
| ... | ... |
@@ -322,10 +322,10 @@ |
| 322 | 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 323 | 323 |
following optimization problem. |
| 324 | 324 |
|
| 325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
|
|
| 326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
|
|
| 327 |
\qquad \forall v\in V\setminus\{s,t\} \f]
|
|
| 328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
| 325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
|
| 326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
|
| 327 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
|
| 328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
| 329 | 329 |
|
| 330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
| 331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| ... | ... |
@@ -345,35 +345,103 @@ |
| 345 | 345 |
|
| 346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 347 | 347 |
|
| 348 |
This group |
|
| 348 |
This group contains the algorithms for finding minimum cost flows and |
|
| 349 | 349 |
circulations. |
| 350 | 350 |
|
| 351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 |
in a network with capacity constraints and |
|
| 353 |
in a network with capacity constraints (lower and upper bounds) |
|
| 354 |
and arc costs. |
|
| 354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
| 355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
| 356 |
upper bounds for the flow values on the arcs, |
|
| 357 |
upper bounds for the flow values on the arcs, for which |
|
| 358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
| 357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
| 358 |
on the arcs, and |
|
| 359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
|
|
| 360 |
of the nodes. |
|
| 361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
|
|
| 362 |
the |
|
| 360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 361 |
signed supply values of the nodes. |
|
| 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
| 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
| 364 |
\f$-sup(u)\f$ demand. |
|
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution
|
|
| 366 |
of the following optimization problem. |
|
| 363 | 367 |
|
| 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
|
|
| 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
|
|
| 366 |
supply(v) \qquad \forall v\in V \f] |
|
| 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
| 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 370 |
sup(u) \quad \forall u\in V \f] |
|
| 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 368 | 372 |
|
| 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
| 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
| 371 |
|
|
| 373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
|
| 374 |
zero or negative in order to have a feasible solution (since the sum |
|
| 375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
| 376 |
It means that the total demand must be greater or equal to the total |
|
| 377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
| 378 |
but there could be demands that are not satisfied. |
|
| 379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
|
| 380 |
constraints have to be satisfied with equality, i.e. all demands |
|
| 381 |
have to be satisfied and all supplies have to be used. |
|
| 382 |
|
|
| 383 |
If you need the opposite inequalities in the supply/demand constraints |
|
| 384 |
(i.e. the total demand is less than the total supply and all the demands |
|
| 385 |
have to be satisfied while there could be supplies that are not used), |
|
| 386 |
then you could easily transform the problem to the above form by reversing |
|
| 387 |
the direction of the arcs and taking the negative of the supply values |
|
| 388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
| 389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
| 390 |
for the sake of convenience. |
|
| 391 |
|
|
| 392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
| 393 |
|
|
| 394 |
Note that the above formulation is actually more general than the usual |
|
| 395 |
definition of the minimum cost flow problem, in which strict equalities |
|
| 396 |
are required in the supply/demand contraints, i.e. |
|
| 397 |
|
|
| 398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
|
| 399 |
sup(u) \quad \forall u\in V. \f] |
|
| 400 |
|
|
| 401 |
However if the sum of the supply values is zero, then these two problems |
|
| 402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
| 403 |
additional contraint for the algorithms. |
|
| 404 |
|
|
| 405 |
The dual solution of the minimum cost flow problem is represented by node |
|
| 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem
|
|
| 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
|
| 409 |
node potentials the following \e complementary \e slackness optimality |
|
| 410 |
conditions hold. |
|
| 411 |
|
|
| 412 |
- For all \f$uv\in A\f$ arcs: |
|
| 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
| 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
| 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
| 416 |
- For all \f$u\in V\f$: |
|
| 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
|
| 418 |
then \f$\pi(u)=0\f$. |
|
| 419 |
|
|
| 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
| 421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
| 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
| 423 |
|
|
| 424 |
All algorithms provide dual solution (node potentials) as well |
|
| 425 |
if an optimal flow is found. |
|
| 426 |
|
|
| 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
| 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
| 429 |
pivot strategies. |
|
| 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
| 431 |
cost scaling. |
|
| 432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
| 372 | 433 |
capacity scaling. |
| 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
| 374 |
cost scaling. |
|
| 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
| 376 |
pivot strategies. |
|
| 434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
| 436 |
|
|
| 437 |
Most of these implementations support the general inequality form of the |
|
| 438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
| 439 |
only support the equality form due to the primal method they use. |
|
| 440 |
|
|
| 441 |
In general NetworkSimplex is the most efficient implementation, |
|
| 442 |
but in special cases other algorithms could be faster. |
|
| 443 |
For example, if the total supply and/or capacities are rather small, |
|
| 444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
| 377 | 445 |
*/ |
| 378 | 446 |
|
| 379 | 447 |
/** |
| ... | ... |
@@ -30,6 +30,9 @@ |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/maps.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 33 | 36 |
|
| 34 | 37 |
namespace lemon {
|
| 35 | 38 |
|
| ... | ... |
@@ -47,6 +50,8 @@ |
| 47 | 50 |
/// |
| 48 | 51 |
/// In general this class is the fastest implementation available |
| 49 | 52 |
/// in LEMON for the minimum cost flow problem. |
| 53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
| 54 |
/// constraints. For more information see \ref ProblemType. |
|
| 50 | 55 |
/// |
| 51 | 56 |
/// \tparam GR The digraph type the algorithm runs on. |
| 52 | 57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
| ... | ... |
@@ -58,7 +63,8 @@ |
| 58 | 63 |
/// be integer. |
| 59 | 64 |
/// |
| 60 | 65 |
/// \note %NetworkSimplex provides five different pivot rule |
| 61 |
/// implementations |
|
| 66 |
/// implementations, from which the most efficient one is used |
|
| 67 |
/// by default. For more information see \ref PivotRule. |
|
| 62 | 68 |
template <typename GR, typename F = int, typename C = F> |
| 63 | 69 |
class NetworkSimplex |
| 64 | 70 |
{
|
| ... | ... |
@@ -68,10 +74,17 @@ |
| 68 | 74 |
typedef F Flow; |
| 69 | 75 |
/// The cost type of the algorithm |
| 70 | 76 |
typedef C Cost; |
| 77 |
#ifdef DOXYGEN |
|
| 78 |
/// The type of the flow map |
|
| 79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
| 80 |
/// The type of the potential map |
|
| 81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
| 82 |
#else |
|
| 71 | 83 |
/// The type of the flow map |
| 72 | 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
| 73 | 85 |
/// The type of the potential map |
| 74 | 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
| 87 |
#endif |
|
| 75 | 88 |
|
| 76 | 89 |
public: |
| 77 | 90 |
|
| ... | ... |
@@ -118,6 +131,58 @@ |
| 118 | 131 |
ALTERING_LIST |
| 119 | 132 |
}; |
| 120 | 133 |
|
| 134 |
/// \brief Enum type for selecting the problem type. |
|
| 135 |
/// |
|
| 136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
| 137 |
/// the inequalities in the supply/demand constraints of the |
|
| 138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 139 |
/// |
|
| 140 |
/// The default problem type is \c GEQ, since this form is supported |
|
| 141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 142 |
/// algorithm as well. |
|
| 143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
| 144 |
/// function. |
|
| 145 |
/// |
|
| 146 |
/// Note that the equality form is a special case of both problem type. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
|
|
| 149 |
/// This option means that there are "<em>greater or equal</em>" |
|
| 150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 151 |
/// problem is the following. |
|
| 152 |
/** |
|
| 153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 155 |
sup(u) \quad \forall u\in V \f] |
|
| 156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 157 |
*/ |
|
| 158 |
/// It means that the total demand must be greater or equal to the |
|
| 159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 160 |
/// negative) and all the supplies have to be carried out from |
|
| 161 |
/// the supply nodes, but there could be demands that are not |
|
| 162 |
/// satisfied. |
|
| 163 |
GEQ, |
|
| 164 |
/// It is just an alias for the \c GEQ option. |
|
| 165 |
CARRY_SUPPLIES = GEQ, |
|
| 166 |
|
|
| 167 |
/// This option means that there are "<em>less or equal</em>" |
|
| 168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 169 |
/// problem is the following. |
|
| 170 |
/** |
|
| 171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 173 |
sup(u) \quad \forall u\in V \f] |
|
| 174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 175 |
*/ |
|
| 176 |
/// It means that the total demand must be less or equal to the |
|
| 177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 178 |
/// positive) and all the demands have to be satisfied, but there |
|
| 179 |
/// could be supplies that are not carried out from the supply |
|
| 180 |
/// nodes. |
|
| 181 |
LEQ, |
|
| 182 |
/// It is just an alias for the \c LEQ option. |
|
| 183 |
SATISFY_DEMANDS = LEQ |
|
| 184 |
}; |
|
| 185 |
|
|
| 121 | 186 |
private: |
| 122 | 187 |
|
| 123 | 188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| ... | ... |
@@ -155,6 +220,7 @@ |
| 155 | 220 |
bool _pstsup; |
| 156 | 221 |
Node _psource, _ptarget; |
| 157 | 222 |
Flow _pstflow; |
| 223 |
ProblemType _ptype; |
|
| 158 | 224 |
|
| 159 | 225 |
// Result maps |
| 160 | 226 |
FlowMap *_flow_map; |
| ... | ... |
@@ -586,13 +652,13 @@ |
| 586 | 652 |
|
| 587 | 653 |
/// \brief Constructor. |
| 588 | 654 |
/// |
| 589 |
/// |
|
| 655 |
/// The constructor of the class. |
|
| 590 | 656 |
/// |
| 591 | 657 |
/// \param graph The digraph the algorithm runs on. |
| 592 | 658 |
NetworkSimplex(const GR& graph) : |
| 593 | 659 |
_graph(graph), |
| 594 | 660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
| 595 |
_psupply(NULL), _pstsup(false), |
|
| 661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
| 596 | 662 |
_flow_map(NULL), _potential_map(NULL), |
| 597 | 663 |
_local_flow(false), _local_potential(false), |
| 598 | 664 |
_node_id(graph) |
| ... | ... |
@@ -611,6 +677,12 @@ |
| 611 | 677 |
if (_local_potential) delete _potential_map; |
| 612 | 678 |
} |
| 613 | 679 |
|
| 680 |
/// \name Parameters |
|
| 681 |
/// The parameters of the algorithm can be specified using these |
|
| 682 |
/// functions. |
|
| 683 |
|
|
| 684 |
/// @{
|
|
| 685 |
|
|
| 614 | 686 |
/// \brief Set the lower bounds on the arcs. |
| 615 | 687 |
/// |
| 616 | 688 |
/// This function sets the lower bounds on the arcs. |
| ... | ... |
@@ -761,6 +833,20 @@ |
| 761 | 833 |
return *this; |
| 762 | 834 |
} |
| 763 | 835 |
|
| 836 |
/// \brief Set the problem type. |
|
| 837 |
/// |
|
| 838 |
/// This function sets the problem type for the algorithm. |
|
| 839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
| 840 |
/// type will be used. |
|
| 841 |
/// |
|
| 842 |
/// For more information see \ref ProblemType. |
|
| 843 |
/// |
|
| 844 |
/// \return <tt>(*this)</tt> |
|
| 845 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
| 846 |
_ptype = problem_type; |
|
| 847 |
return *this; |
|
| 848 |
} |
|
| 849 |
|
|
| 764 | 850 |
/// \brief Set the flow map. |
| 765 | 851 |
/// |
| 766 | 852 |
/// This function sets the flow map. |
| ... | ... |
@@ -796,6 +882,8 @@ |
| 796 | 882 |
return *this; |
| 797 | 883 |
} |
| 798 | 884 |
|
| 885 |
/// @} |
|
| 886 |
|
|
| 799 | 887 |
/// \name Execution Control |
| 800 | 888 |
/// The algorithm can be executed using \ref run(). |
| 801 | 889 |
|
| ... | ... |
@@ -804,10 +892,11 @@ |
| 804 | 892 |
/// \brief Run the algorithm. |
| 805 | 893 |
/// |
| 806 | 894 |
/// This function runs the algorithm. |
| 807 |
/// The paramters can be specified using \ref lowerMap(), |
|
| 895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 808 | 896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
| 809 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
| 810 |
/// functions. For example, |
|
| 897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
| 899 |
/// For example, |
|
| 811 | 900 |
/// \code |
| 812 | 901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 813 | 902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
| ... | ... |
@@ -830,9 +919,10 @@ |
| 830 | 919 |
/// \brief Reset all the parameters that have been given before. |
| 831 | 920 |
/// |
| 832 | 921 |
/// This function resets all the paramaters that have been given |
| 833 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
| 834 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
| 835 |
/// \ref |
|
| 922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
| 924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
| 925 |
/// \ref flowMap() and \ref potentialMap(). |
|
| 836 | 926 |
/// |
| 837 | 927 |
/// It is useful for multiple run() calls. If this function is not |
| 838 | 928 |
/// used, all the parameters given before are kept for the next |
| ... | ... |
@@ -869,6 +959,14 @@ |
| 869 | 959 |
_pcost = NULL; |
| 870 | 960 |
_psupply = NULL; |
| 871 | 961 |
_pstsup = false; |
| 962 |
_ptype = GEQ; |
|
| 963 |
if (_local_flow) delete _flow_map; |
|
| 964 |
if (_local_potential) delete _potential_map; |
|
| 965 |
_flow_map = NULL; |
|
| 966 |
_potential_map = NULL; |
|
| 967 |
_local_flow = false; |
|
| 968 |
_local_potential = false; |
|
| 969 |
|
|
| 872 | 970 |
return *this; |
| 873 | 971 |
} |
| 874 | 972 |
|
| ... | ... |
@@ -1000,20 +1098,21 @@ |
| 1000 | 1098 |
|
| 1001 | 1099 |
// Initialize node related data |
| 1002 | 1100 |
bool valid_supply = true; |
| 1101 |
Flow sum_supply = 0; |
|
| 1003 | 1102 |
if (!_pstsup && !_psupply) {
|
| 1004 | 1103 |
_pstsup = true; |
| 1005 | 1104 |
_psource = _ptarget = NodeIt(_graph); |
| 1006 | 1105 |
_pstflow = 0; |
| 1007 | 1106 |
} |
| 1008 | 1107 |
if (_psupply) {
|
| 1009 |
Flow sum = 0; |
|
| 1010 | 1108 |
int i = 0; |
| 1011 | 1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1012 | 1110 |
_node_id[n] = i; |
| 1013 | 1111 |
_supply[i] = (*_psupply)[n]; |
| 1014 |
|
|
| 1112 |
sum_supply += _supply[i]; |
|
| 1015 | 1113 |
} |
| 1016 |
valid_supply = ( |
|
| 1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
| 1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
| 1017 | 1116 |
} else {
|
| 1018 | 1117 |
int i = 0; |
| 1019 | 1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| ... | ... |
@@ -1025,6 +1124,91 @@ |
| 1025 | 1124 |
} |
| 1026 | 1125 |
if (!valid_supply) return false; |
| 1027 | 1126 |
|
| 1127 |
// Infinite capacity value |
|
| 1128 |
Flow inf_cap = |
|
| 1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1130 |
std::numeric_limits<Flow>::infinity() : |
|
| 1131 |
std::numeric_limits<Flow>::max(); |
|
| 1132 |
|
|
| 1133 |
// Initialize artifical cost |
|
| 1134 |
Cost art_cost; |
|
| 1135 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1137 |
} else {
|
|
| 1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1139 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1141 |
} |
|
| 1142 |
art_cost = (art_cost + 1) * _node_num; |
|
| 1143 |
} |
|
| 1144 |
|
|
| 1145 |
// Run Circulation to check if a feasible solution exists |
|
| 1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
| 1147 |
FlowNodeMap *csup = NULL; |
|
| 1148 |
bool local_csup = false; |
|
| 1149 |
if (_psupply) {
|
|
| 1150 |
csup = _psupply; |
|
| 1151 |
} else {
|
|
| 1152 |
csup = new FlowNodeMap(_graph, 0); |
|
| 1153 |
(*csup)[_psource] = _pstflow; |
|
| 1154 |
(*csup)[_ptarget] = -_pstflow; |
|
| 1155 |
local_csup = true; |
|
| 1156 |
} |
|
| 1157 |
bool circ_result = false; |
|
| 1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
| 1159 |
// GEQ problem type |
|
| 1160 |
if (_plower) {
|
|
| 1161 |
if (_pupper) {
|
|
| 1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
| 1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
| 1164 |
circ_result = circ.run(); |
|
| 1165 |
} else {
|
|
| 1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
| 1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
| 1168 |
circ_result = circ.run(); |
|
| 1169 |
} |
|
| 1170 |
} else {
|
|
| 1171 |
if (_pupper) {
|
|
| 1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
| 1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
| 1174 |
circ_result = circ.run(); |
|
| 1175 |
} else {
|
|
| 1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
| 1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
| 1178 |
circ_result = circ.run(); |
|
| 1179 |
} |
|
| 1180 |
} |
|
| 1181 |
} else {
|
|
| 1182 |
// LEQ problem type |
|
| 1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
| 1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
| 1185 |
RevGraph rgraph(_graph); |
|
| 1186 |
NegNodeMap neg_csup(*csup); |
|
| 1187 |
if (_plower) {
|
|
| 1188 |
if (_pupper) {
|
|
| 1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
| 1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
| 1191 |
circ_result = circ.run(); |
|
| 1192 |
} else {
|
|
| 1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
| 1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
| 1195 |
circ_result = circ.run(); |
|
| 1196 |
} |
|
| 1197 |
} else {
|
|
| 1198 |
if (_pupper) {
|
|
| 1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
| 1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
| 1201 |
circ_result = circ.run(); |
|
| 1202 |
} else {
|
|
| 1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
| 1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
| 1205 |
circ_result = circ.run(); |
|
| 1206 |
} |
|
| 1207 |
} |
|
| 1208 |
} |
|
| 1209 |
if (local_csup) delete csup; |
|
| 1210 |
if (!circ_result) return false; |
|
| 1211 |
|
|
| 1028 | 1212 |
// Set data for the artificial root node |
| 1029 | 1213 |
_root = _node_num; |
| 1030 | 1214 |
_parent[_root] = -1; |
| ... | ... |
@@ -1033,8 +1217,12 @@ |
| 1033 | 1217 |
_rev_thread[0] = _root; |
| 1034 | 1218 |
_succ_num[_root] = all_node_num; |
| 1035 | 1219 |
_last_succ[_root] = _root - 1; |
| 1036 |
_supply[_root] = 0; |
|
| 1037 |
_pi[_root] = 0; |
|
| 1220 |
_supply[_root] = -sum_supply; |
|
| 1221 |
if (sum_supply < 0) {
|
|
| 1222 |
_pi[_root] = -art_cost; |
|
| 1223 |
} else {
|
|
| 1224 |
_pi[_root] = art_cost; |
|
| 1225 |
} |
|
| 1038 | 1226 |
|
| 1039 | 1227 |
// Store the arcs in a mixed order |
| 1040 | 1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
| ... | ... |
@@ -1045,10 +1233,6 @@ |
| 1045 | 1233 |
} |
| 1046 | 1234 |
|
| 1047 | 1235 |
// Initialize arc maps |
| 1048 |
Flow inf_cap = |
|
| 1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1050 |
std::numeric_limits<Flow>::infinity() : |
|
| 1051 |
std::numeric_limits<Flow>::max(); |
|
| 1052 | 1236 |
if (_pupper && _pcost) {
|
| 1053 | 1237 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1238 |
Arc e = _arc_ref[i]; |
| ... | ... |
@@ -1083,18 +1267,6 @@ |
| 1083 | 1267 |
} |
| 1084 | 1268 |
} |
| 1085 | 1269 |
|
| 1086 |
// Initialize artifical cost |
|
| 1087 |
Cost art_cost; |
|
| 1088 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1090 |
} else {
|
|
| 1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1092 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1094 |
} |
|
| 1095 |
art_cost = (art_cost + 1) * _node_num; |
|
| 1096 |
} |
|
| 1097 |
|
|
| 1098 | 1270 |
// Remove non-zero lower bounds |
| 1099 | 1271 |
if (_plower) {
|
| 1100 | 1272 |
for (int i = 0; i != _arc_num; ++i) {
|
| ... | ... |
@@ -1118,14 +1290,14 @@ |
| 1118 | 1290 |
_cost[e] = art_cost; |
| 1119 | 1291 |
_cap[e] = inf_cap; |
| 1120 | 1292 |
_state[e] = STATE_TREE; |
| 1121 |
if (_supply[u] >= 0) {
|
|
| 1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
|
|
| 1122 | 1294 |
_flow[e] = _supply[u]; |
| 1123 | 1295 |
_forward[u] = true; |
| 1124 |
_pi[u] = -art_cost; |
|
| 1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
| 1125 | 1297 |
} else {
|
| 1126 | 1298 |
_flow[e] = -_supply[u]; |
| 1127 | 1299 |
_forward[u] = false; |
| 1128 |
_pi[u] = art_cost; |
|
| 1300 |
_pi[u] = art_cost + _pi[_root]; |
|
| 1129 | 1301 |
} |
| 1130 | 1302 |
} |
| 1131 | 1303 |
|
| ... | ... |
@@ -1382,11 +1554,6 @@ |
| 1382 | 1554 |
} |
| 1383 | 1555 |
} |
| 1384 | 1556 |
|
| 1385 |
// Check if the flow amount equals zero on all the artificial arcs |
|
| 1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
|
|
| 1387 |
if (_flow[e] > 0) return false; |
|
| 1388 |
} |
|
| 1389 |
|
|
| 1390 | 1557 |
// Copy flow values to _flow_map |
| 1391 | 1558 |
if (_plower) {
|
| 1392 | 1559 |
for (int i = 0; i != _arc_num; ++i) {
|
| ... | ... |
@@ -33,19 +33,19 @@ |
| 33 | 33 |
|
| 34 | 34 |
char test_lgf[] = |
| 35 | 35 |
"@nodes\n" |
| 36 |
"label sup1 sup2 sup3\n" |
|
| 37 |
" 1 20 27 0\n" |
|
| 38 |
" 2 -4 0 0\n" |
|
| 39 |
" 3 0 0 0\n" |
|
| 40 |
" 4 0 0 0\n" |
|
| 41 |
" 5 9 0 0\n" |
|
| 42 |
" 6 -6 0 0\n" |
|
| 43 |
" 7 0 0 0\n" |
|
| 44 |
" 8 0 0 0\n" |
|
| 45 |
" 9 3 0 0\n" |
|
| 46 |
" 10 -2 0 0\n" |
|
| 47 |
" 11 0 0 0\n" |
|
| 48 |
" |
|
| 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
| 37 |
" 1 20 27 0 20 30\n" |
|
| 38 |
" 2 -4 0 0 -8 -3\n" |
|
| 39 |
" 3 0 0 0 0 0\n" |
|
| 40 |
" 4 0 0 0 0 0\n" |
|
| 41 |
" 5 9 0 0 6 11\n" |
|
| 42 |
" 6 -6 0 0 -5 -6\n" |
|
| 43 |
" 7 0 0 0 0 0\n" |
|
| 44 |
" 8 0 0 0 0 3\n" |
|
| 45 |
" 9 3 0 0 0 0\n" |
|
| 46 |
" 10 -2 0 0 -7 -2\n" |
|
| 47 |
" 11 0 0 0 -10 0\n" |
|
| 48 |
" 12 -20 -27 0 -30 -20\n" |
|
| 49 | 49 |
"\n" |
| 50 | 50 |
"@arcs\n" |
| 51 | 51 |
" cost cap low1 low2\n" |
| ... | ... |
@@ -76,6 +76,12 @@ |
| 76 | 76 |
"target 12\n"; |
| 77 | 77 |
|
| 78 | 78 |
|
| 79 |
enum ProblemType {
|
|
| 80 |
EQ, |
|
| 81 |
GEQ, |
|
| 82 |
LEQ |
|
| 83 |
}; |
|
| 84 |
|
|
| 79 | 85 |
// Check the interface of an MCF algorithm |
| 80 | 86 |
template <typename GR, typename Flow, typename Cost> |
| 81 | 87 |
class McfClassConcept |
| ... | ... |
@@ -97,17 +103,19 @@ |
| 97 | 103 |
.costMap(cost) |
| 98 | 104 |
.supplyMap(sup) |
| 99 | 105 |
.stSupply(n, n, k) |
| 106 |
.flowMap(flow) |
|
| 107 |
.potentialMap(pot) |
|
| 100 | 108 |
.run(); |
| 101 | 109 |
|
| 102 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
| 103 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
| 110 |
const MCF& const_mcf = mcf; |
|
| 104 | 111 |
|
| 105 |
v = mcf.totalCost(); |
|
| 106 |
double x = mcf.template totalCost<double>(); |
|
| 107 |
v = mcf.flow(a); |
|
| 108 |
v = mcf.potential(n); |
|
| 109 |
mcf.flowMap(flow); |
|
| 110 |
mcf.potentialMap(pot); |
|
| 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
| 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
| 114 |
|
|
| 115 |
v = const_mcf.totalCost(); |
|
| 116 |
double x = const_mcf.template totalCost<double>(); |
|
| 117 |
v = const_mcf.flow(a); |
|
| 118 |
v = const_mcf.potential(n); |
|
| 111 | 119 |
|
| 112 | 120 |
ignore_unused_variable_warning(fm); |
| 113 | 121 |
ignore_unused_variable_warning(pm); |
| ... | ... |
@@ -142,7 +150,8 @@ |
| 142 | 150 |
template < typename GR, typename LM, typename UM, |
| 143 | 151 |
typename SM, typename FM > |
| 144 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 145 |
const SM& supply, const FM& flow |
|
| 153 |
const SM& supply, const FM& flow, |
|
| 154 |
ProblemType type = EQ ) |
|
| 146 | 155 |
{
|
| 147 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 148 | 157 |
|
| ... | ... |
@@ -156,7 +165,10 @@ |
| 156 | 165 |
sum += flow[e]; |
| 157 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 158 | 167 |
sum -= flow[e]; |
| 159 |
|
|
| 168 |
bool b = (type == EQ && sum == supply[n]) || |
|
| 169 |
(type == GEQ && sum >= supply[n]) || |
|
| 170 |
(type == LEQ && sum <= supply[n]); |
|
| 171 |
if (!b) return false; |
|
| 160 | 172 |
} |
| 161 | 173 |
|
| 162 | 174 |
return true; |
| ... | ... |
@@ -165,9 +177,10 @@ |
| 165 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
| 166 | 178 |
// using the "Complementary Slackness" optimality condition |
| 167 | 179 |
template < typename GR, typename LM, typename UM, |
| 168 |
typename CM, typename FM, typename PM > |
|
| 180 |
typename CM, typename SM, typename FM, typename PM > |
|
| 169 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 170 |
const CM& cost, const FM& flow, |
|
| 182 |
const CM& cost, const SM& supply, const FM& flow, |
|
| 183 |
const PM& pi ) |
|
| 171 | 184 |
{
|
| 172 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 173 | 186 |
|
| ... | ... |
@@ -179,6 +192,16 @@ |
| 179 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 180 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
| 181 | 194 |
} |
| 195 |
|
|
| 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
|
| 197 |
typename SM::Value sum = 0; |
|
| 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
| 199 |
sum += flow[e]; |
|
| 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
| 201 |
sum -= flow[e]; |
|
| 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
| 203 |
} |
|
| 204 |
|
|
| 182 | 205 |
return opt; |
| 183 | 206 |
} |
| 184 | 207 |
|
| ... | ... |
@@ -190,14 +213,15 @@ |
| 190 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
| 191 | 214 |
const CM& cost, const SM& supply, |
| 192 | 215 |
bool result, typename CM::Value total, |
| 193 |
const std::string &test_id = "" |
|
| 216 |
const std::string &test_id = "", |
|
| 217 |
ProblemType type = EQ ) |
|
| 194 | 218 |
{
|
| 195 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
| 196 | 220 |
if (result) {
|
| 197 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
| 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
| 198 | 222 |
"The flow is not feasible " + test_id); |
| 199 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 200 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
| 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
| 201 | 225 |
mcf.potentialMap()), |
| 202 | 226 |
"Wrong potentials " + test_id); |
| 203 | 227 |
} |
| ... | ... |
@@ -226,7 +250,7 @@ |
| 226 | 250 |
// Read the test digraph |
| 227 | 251 |
Digraph gr; |
| 228 | 252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 229 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
| 253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
| 230 | 254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 231 | 255 |
Node v, w; |
| 232 | 256 |
|
| ... | ... |
@@ -239,6 +263,8 @@ |
| 239 | 263 |
.nodeMap("sup1", s1)
|
| 240 | 264 |
.nodeMap("sup2", s2)
|
| 241 | 265 |
.nodeMap("sup3", s3)
|
| 266 |
.nodeMap("sup4", s4)
|
|
| 267 |
.nodeMap("sup5", s5)
|
|
| 242 | 268 |
.node("source", v)
|
| 243 | 269 |
.node("target", w)
|
| 244 | 270 |
.run(); |
| ... | ... |
@@ -247,6 +273,7 @@ |
| 247 | 273 |
{
|
| 248 | 274 |
NetworkSimplex<Digraph> mcf(gr); |
| 249 | 275 |
|
| 276 |
// Check the equality form |
|
| 250 | 277 |
mcf.upperMap(u).costMap(c); |
| 251 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 252 | 279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
| ... | ... |
@@ -267,6 +294,28 @@ |
| 267 | 294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
| 268 | 295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
| 269 | 296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
| 297 |
|
|
| 298 |
// Check the GEQ form |
|
| 299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
| 300 |
checkMcf(mcf, mcf.run(), |
|
| 301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
| 302 |
mcf.problemType(mcf.GEQ); |
|
| 303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
| 305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
| 306 |
checkMcf(mcf, mcf.run(), |
|
| 307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
| 308 |
|
|
| 309 |
// Check the LEQ form |
|
| 310 |
mcf.reset().problemType(mcf.LEQ); |
|
| 311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
| 312 |
checkMcf(mcf, mcf.run(), |
|
| 313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
| 314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
| 316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
| 317 |
checkMcf(mcf, mcf.run(), |
|
| 318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
| 270 | 319 |
} |
| 271 | 320 |
|
| 272 | 321 |
// B. Test NetworkSimplex with each pivot rule |
0 comments (0 inline)