0
3
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group describes the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group describes some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group describes the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group describes maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group describes map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group describes two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group describes the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group describes some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group describes the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group describes the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group describes the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group describes the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group describes the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
|
326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
|
327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 |
This group |
|
348 |
This group contains the algorithms for finding minimum cost flows and |
|
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 |
in a network with capacity constraints and |
|
353 |
in a network with capacity constraints (lower and upper bounds) |
|
354 |
and arc costs. |
|
354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 |
upper bounds for the flow values on the arcs, |
|
357 |
upper bounds for the flow values on the arcs, for which |
|
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 |
on the arcs, and |
|
359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
360 |
of the nodes. |
|
361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
362 |
the |
|
360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 |
signed supply values of the nodes. |
|
362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
364 |
\f$-sup(u)\f$ demand. |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution |
|
366 |
of the following optimization problem. |
|
363 | 367 |
|
364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
366 |
supply(v) \qquad \forall v\in V \f] |
|
367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
370 |
sup(u) \quad \forall u\in V \f] |
|
371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
368 | 372 |
|
369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
371 |
|
|
373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
374 |
zero or negative in order to have a feasible solution (since the sum |
|
375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
376 |
It means that the total demand must be greater or equal to the total |
|
377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
378 |
but there could be demands that are not satisfied. |
|
379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
380 |
constraints have to be satisfied with equality, i.e. all demands |
|
381 |
have to be satisfied and all supplies have to be used. |
|
382 |
|
|
383 |
If you need the opposite inequalities in the supply/demand constraints |
|
384 |
(i.e. the total demand is less than the total supply and all the demands |
|
385 |
have to be satisfied while there could be supplies that are not used), |
|
386 |
then you could easily transform the problem to the above form by reversing |
|
387 |
the direction of the arcs and taking the negative of the supply values |
|
388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
390 |
for the sake of convenience. |
|
391 |
|
|
392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
393 |
|
|
394 |
Note that the above formulation is actually more general than the usual |
|
395 |
definition of the minimum cost flow problem, in which strict equalities |
|
396 |
are required in the supply/demand contraints, i.e. |
|
397 |
|
|
398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
399 |
sup(u) \quad \forall u\in V. \f] |
|
400 |
|
|
401 |
However if the sum of the supply values is zero, then these two problems |
|
402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
403 |
additional contraint for the algorithms. |
|
404 |
|
|
405 |
The dual solution of the minimum cost flow problem is represented by node |
|
406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem |
|
408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
409 |
node potentials the following \e complementary \e slackness optimality |
|
410 |
conditions hold. |
|
411 |
|
|
412 |
- For all \f$uv\in A\f$ arcs: |
|
413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
416 |
- For all \f$u\in V\f$: |
|
417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
418 |
then \f$\pi(u)=0\f$. |
|
419 |
|
|
420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
423 |
|
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
425 |
if an optimal flow is found. |
|
426 |
|
|
427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
429 |
pivot strategies. |
|
430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
431 |
cost scaling. |
|
432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
372 | 433 |
capacity scaling. |
373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
374 |
cost scaling. |
|
375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
376 |
pivot strategies. |
|
434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
436 |
|
|
437 |
Most of these implementations support the general inequality form of the |
|
438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
439 |
only support the equality form due to the primal method they use. |
|
440 |
|
|
441 |
In general NetworkSimplex is the most efficient implementation, |
|
442 |
but in special cases other algorithms could be faster. |
|
443 |
For example, if the total supply and/or capacities are rather small, |
|
444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
377 | 445 |
*/ |
378 | 446 |
|
379 | 447 |
/** |
380 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 449 |
@ingroup algs |
382 | 450 |
|
383 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 452 |
|
385 | 453 |
This group describes the algorithms for finding minimum cut in graphs. |
386 | 454 |
|
387 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 460 |
|
393 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 463 |
|
396 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 465 |
|
398 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 467 |
in directed graphs. |
400 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
401 | 469 |
calculating minimum cut in undirected graphs. |
402 | 470 |
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
403 | 471 |
all-pairs minimum cut in undirected graphs. |
404 | 472 |
|
405 | 473 |
If you want to find minimum cut just between two distinict nodes, |
406 | 474 |
see the \ref max_flow "maximum flow problem". |
407 | 475 |
*/ |
408 | 476 |
|
409 | 477 |
/** |
410 | 478 |
@defgroup graph_prop Connectivity and Other Graph Properties |
411 | 479 |
@ingroup algs |
412 | 480 |
\brief Algorithms for discovering the graph properties |
413 | 481 |
|
414 | 482 |
This group describes the algorithms for discovering the graph properties |
415 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
416 | 484 |
|
417 | 485 |
\image html edge_biconnected_components.png |
418 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
419 | 487 |
*/ |
420 | 488 |
|
421 | 489 |
/** |
422 | 490 |
@defgroup planar Planarity Embedding and Drawing |
423 | 491 |
@ingroup algs |
424 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
425 | 493 |
|
426 | 494 |
This group describes the algorithms for planarity checking, |
427 | 495 |
embedding and drawing. |
428 | 496 |
|
429 | 497 |
\image html planar.png |
430 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
431 | 499 |
*/ |
432 | 500 |
|
433 | 501 |
/** |
434 | 502 |
@defgroup matching Matching Algorithms |
435 | 503 |
@ingroup algs |
436 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
437 | 505 |
|
438 | 506 |
This group contains algorithm objects and functions to calculate |
439 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
440 | 508 |
finding a subset of the arcs which does not shares common endpoints. |
441 | 509 |
|
442 | 510 |
There are several different algorithms for calculate matchings in |
443 | 511 |
graphs. The matching problems in bipartite graphs are generally |
444 | 512 |
easier than in general graphs. The goal of the matching optimization |
445 | 513 |
can be finding maximum cardinality, maximum weight or minimum cost |
446 | 514 |
matching. The search can be constrained to find perfect or |
447 | 515 |
maximum cardinality matching. |
448 | 516 |
|
449 | 517 |
The matching algorithms implemented in LEMON: |
450 | 518 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
451 | 519 |
for calculating maximum cardinality matching in bipartite graphs. |
452 | 520 |
- \ref PrBipartiteMatching Push-relabel algorithm |
453 | 521 |
for calculating maximum cardinality matching in bipartite graphs. |
454 | 522 |
- \ref MaxWeightedBipartiteMatching |
455 | 523 |
Successive shortest path algorithm for calculating maximum weighted |
456 | 524 |
matching and maximum weighted bipartite matching in bipartite graphs. |
457 | 525 |
- \ref MinCostMaxBipartiteMatching |
458 | 526 |
Successive shortest path algorithm for calculating minimum cost maximum |
459 | 527 |
matching in bipartite graphs. |
460 | 528 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
461 | 529 |
maximum cardinality matching in general graphs. |
462 | 530 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
463 | 531 |
maximum weighted matching in general graphs. |
464 | 532 |
- \ref MaxWeightedPerfectMatching |
465 | 533 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
466 | 534 |
perfect matching in general graphs. |
467 | 535 |
|
468 | 536 |
\image html bipartite_matching.png |
469 | 537 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
470 | 538 |
*/ |
471 | 539 |
|
472 | 540 |
/** |
473 | 541 |
@defgroup spantree Minimum Spanning Tree Algorithms |
474 | 542 |
@ingroup algs |
475 | 543 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
476 | 544 |
|
477 | 545 |
This group describes the algorithms for finding a minimum cost spanning |
478 | 546 |
tree in a graph. |
479 | 547 |
*/ |
480 | 548 |
|
481 | 549 |
/** |
482 | 550 |
@defgroup auxalg Auxiliary Algorithms |
483 | 551 |
@ingroup algs |
484 | 552 |
\brief Auxiliary algorithms implemented in LEMON. |
485 | 553 |
|
486 | 554 |
This group describes some algorithms implemented in LEMON |
487 | 555 |
in order to make it easier to implement complex algorithms. |
488 | 556 |
*/ |
489 | 557 |
|
490 | 558 |
/** |
491 | 559 |
@defgroup approx Approximation Algorithms |
492 | 560 |
@ingroup algs |
493 | 561 |
\brief Approximation algorithms. |
494 | 562 |
|
495 | 563 |
This group describes the approximation and heuristic algorithms |
496 | 564 |
implemented in LEMON. |
497 | 565 |
*/ |
498 | 566 |
|
499 | 567 |
/** |
500 | 568 |
@defgroup gen_opt_group General Optimization Tools |
501 | 569 |
\brief This group describes some general optimization frameworks |
502 | 570 |
implemented in LEMON. |
503 | 571 |
|
504 | 572 |
This group describes some general optimization frameworks |
505 | 573 |
implemented in LEMON. |
506 | 574 |
*/ |
507 | 575 |
|
508 | 576 |
/** |
509 | 577 |
@defgroup lp_group Lp and Mip Solvers |
510 | 578 |
@ingroup gen_opt_group |
511 | 579 |
\brief Lp and Mip solver interfaces for LEMON. |
512 | 580 |
|
513 | 581 |
This group describes Lp and Mip solver interfaces for LEMON. The |
514 | 582 |
various LP solvers could be used in the same manner with this |
515 | 583 |
interface. |
516 | 584 |
*/ |
517 | 585 |
|
518 | 586 |
/** |
519 | 587 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
520 | 588 |
@ingroup lp_group |
521 | 589 |
\brief Helper tools to the Lp and Mip solvers. |
522 | 590 |
|
523 | 591 |
This group adds some helper tools to general optimization framework |
524 | 592 |
implemented in LEMON. |
525 | 593 |
*/ |
526 | 594 |
|
527 | 595 |
/** |
528 | 596 |
@defgroup metah Metaheuristics |
529 | 597 |
@ingroup gen_opt_group |
530 | 598 |
\brief Metaheuristics for LEMON library. |
531 | 599 |
|
532 | 600 |
This group describes some metaheuristic optimization tools. |
533 | 601 |
*/ |
534 | 602 |
|
535 | 603 |
/** |
536 | 604 |
@defgroup utils Tools and Utilities |
537 | 605 |
\brief Tools and utilities for programming in LEMON |
538 | 606 |
|
539 | 607 |
Tools and utilities for programming in LEMON. |
540 | 608 |
*/ |
541 | 609 |
|
542 | 610 |
/** |
543 | 611 |
@defgroup gutils Basic Graph Utilities |
544 | 612 |
@ingroup utils |
545 | 613 |
\brief Simple basic graph utilities. |
546 | 614 |
|
547 | 615 |
This group describes some simple basic graph utilities. |
548 | 616 |
*/ |
549 | 617 |
|
550 | 618 |
/** |
551 | 619 |
@defgroup misc Miscellaneous Tools |
552 | 620 |
@ingroup utils |
553 | 621 |
\brief Tools for development, debugging and testing. |
554 | 622 |
|
555 | 623 |
This group describes several useful tools for development, |
556 | 624 |
debugging and testing. |
557 | 625 |
*/ |
558 | 626 |
|
559 | 627 |
/** |
560 | 628 |
@defgroup timecount Time Measuring and Counting |
561 | 629 |
@ingroup misc |
562 | 630 |
\brief Simple tools for measuring the performance of algorithms. |
563 | 631 |
|
564 | 632 |
This group describes simple tools for measuring the performance |
565 | 633 |
of algorithms. |
566 | 634 |
*/ |
567 | 635 |
|
568 | 636 |
/** |
569 | 637 |
@defgroup exceptions Exceptions |
570 | 638 |
@ingroup utils |
571 | 639 |
\brief Exceptions defined in LEMON. |
572 | 640 |
|
573 | 641 |
This group describes the exceptions defined in LEMON. |
574 | 642 |
*/ |
575 | 643 |
|
576 | 644 |
/** |
577 | 645 |
@defgroup io_group Input-Output |
578 | 646 |
\brief Graph Input-Output methods |
579 | 647 |
|
580 | 648 |
This group describes the tools for importing and exporting graphs |
581 | 649 |
and graph related data. Now it supports the \ref lgf-format |
582 | 650 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
583 | 651 |
postscript (EPS) format. |
584 | 652 |
*/ |
585 | 653 |
|
586 | 654 |
/** |
587 | 655 |
@defgroup lemon_io LEMON Graph Format |
588 | 656 |
@ingroup io_group |
589 | 657 |
\brief Reading and writing LEMON Graph Format. |
590 | 658 |
|
591 | 659 |
This group describes methods for reading and writing |
592 | 660 |
\ref lgf-format "LEMON Graph Format". |
593 | 661 |
*/ |
594 | 662 |
|
595 | 663 |
/** |
596 | 664 |
@defgroup eps_io Postscript Exporting |
597 | 665 |
@ingroup io_group |
598 | 666 |
\brief General \c EPS drawer and graph exporter |
599 | 667 |
|
600 | 668 |
This group describes general \c EPS drawing methods and special |
601 | 669 |
graph exporting tools. |
602 | 670 |
*/ |
603 | 671 |
|
604 | 672 |
/** |
605 | 673 |
@defgroup dimacs_group DIMACS format |
606 | 674 |
@ingroup io_group |
607 | 675 |
\brief Read and write files in DIMACS format |
608 | 676 |
|
609 | 677 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
610 | 678 |
*/ |
611 | 679 |
|
612 | 680 |
/** |
613 | 681 |
@defgroup nauty_group NAUTY Format |
614 | 682 |
@ingroup io_group |
615 | 683 |
\brief Read \e Nauty format |
616 | 684 |
|
617 | 685 |
Tool to read graphs from \e Nauty format data. |
618 | 686 |
*/ |
619 | 687 |
|
620 | 688 |
/** |
621 | 689 |
@defgroup concept Concepts |
622 | 690 |
\brief Skeleton classes and concept checking classes |
623 | 691 |
|
624 | 692 |
This group describes the data/algorithm skeletons and concept checking |
625 | 693 |
classes implemented in LEMON. |
626 | 694 |
|
627 | 695 |
The purpose of the classes in this group is fourfold. |
628 | 696 |
|
629 | 697 |
- These classes contain the documentations of the %concepts. In order |
630 | 698 |
to avoid document multiplications, an implementation of a concept |
631 | 699 |
simply refers to the corresponding concept class. |
632 | 700 |
|
633 | 701 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
634 | 702 |
implementation of the %concepts should provide, however completely |
635 | 703 |
without implementations and real data structures behind the |
636 | 704 |
interface. On the other hand they should provide nothing else. All |
637 | 705 |
the algorithms working on a data structure meeting a certain concept |
638 | 706 |
should compile with these classes. (Though it will not run properly, |
639 | 707 |
of course.) In this way it is easily to check if an algorithm |
640 | 708 |
doesn't use any extra feature of a certain implementation. |
641 | 709 |
|
642 | 710 |
- The concept descriptor classes also provide a <em>checker class</em> |
643 | 711 |
that makes it possible to check whether a certain implementation of a |
644 | 712 |
concept indeed provides all the required features. |
645 | 713 |
|
646 | 714 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
647 | 715 |
*/ |
648 | 716 |
|
649 | 717 |
/** |
650 | 718 |
@defgroup graph_concepts Graph Structure Concepts |
651 | 719 |
@ingroup concept |
652 | 720 |
\brief Skeleton and concept checking classes for graph structures |
653 | 721 |
|
654 | 722 |
This group describes the skeletons and concept checking classes of LEMON's |
655 | 723 |
graph structures and helper classes used to implement these. |
656 | 724 |
*/ |
657 | 725 |
|
658 | 726 |
/** |
659 | 727 |
@defgroup map_concepts Map Concepts |
660 | 728 |
@ingroup concept |
661 | 729 |
\brief Skeleton and concept checking classes for maps |
662 | 730 |
|
663 | 731 |
This group describes the skeletons and concept checking classes of maps. |
664 | 732 |
*/ |
665 | 733 |
|
666 | 734 |
/** |
667 | 735 |
\anchor demoprograms |
668 | 736 |
|
669 | 737 |
@defgroup demos Demo Programs |
670 | 738 |
|
671 | 739 |
Some demo programs are listed here. Their full source codes can be found in |
672 | 740 |
the \c demo subdirectory of the source tree. |
673 | 741 |
|
674 | 742 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
675 | 743 |
build the library. |
676 | 744 |
*/ |
677 | 745 |
|
678 | 746 |
/** |
679 | 747 |
@defgroup tools Standalone Utility Applications |
680 | 748 |
|
681 | 749 |
Some utility applications are listed here. |
682 | 750 |
|
683 | 751 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
684 | 752 |
them, as well. |
685 | 753 |
*/ |
686 | 754 |
|
687 | 755 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
33 | 36 |
|
34 | 37 |
namespace lemon { |
35 | 38 |
|
36 | 39 |
/// \addtogroup min_cost_flow |
37 | 40 |
/// @{ |
38 | 41 |
|
39 | 42 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 44 |
/// |
42 | 45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 46 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 47 |
/// This algorithm is a specialized version of the linear programming |
45 | 48 |
/// simplex method directly for the minimum cost flow problem. |
46 | 49 |
/// It is one of the most efficient solution methods. |
47 | 50 |
/// |
48 | 51 |
/// In general this class is the fastest implementation available |
49 | 52 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 | 55 |
/// |
51 | 56 |
/// \tparam GR The digraph type the algorithm runs on. |
52 | 57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
53 | 58 |
/// and supply values in the algorithm. By default it is \c int. |
54 | 59 |
/// \tparam C The value type used for costs and potentials in the |
55 | 60 |
/// algorithm. By default it is the same as \c F. |
56 | 61 |
/// |
57 | 62 |
/// \warning Both value types must be signed and all input data must |
58 | 63 |
/// be integer. |
59 | 64 |
/// |
60 | 65 |
/// \note %NetworkSimplex provides five different pivot rule |
61 |
/// implementations |
|
66 |
/// implementations, from which the most efficient one is used |
|
67 |
/// by default. For more information see \ref PivotRule. |
|
62 | 68 |
template <typename GR, typename F = int, typename C = F> |
63 | 69 |
class NetworkSimplex |
64 | 70 |
{ |
65 | 71 |
public: |
66 | 72 |
|
67 | 73 |
/// The flow type of the algorithm |
68 | 74 |
typedef F Flow; |
69 | 75 |
/// The cost type of the algorithm |
70 | 76 |
typedef C Cost; |
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
71 | 83 |
/// The type of the flow map |
72 | 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
73 | 85 |
/// The type of the potential map |
74 | 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
87 |
#endif |
|
75 | 88 |
|
76 | 89 |
public: |
77 | 90 |
|
78 | 91 |
/// \brief Enum type for selecting the pivot rule. |
79 | 92 |
/// |
80 | 93 |
/// Enum type for selecting the pivot rule for the \ref run() |
81 | 94 |
/// function. |
82 | 95 |
/// |
83 | 96 |
/// \ref NetworkSimplex provides five different pivot rule |
84 | 97 |
/// implementations that significantly affect the running time |
85 | 98 |
/// of the algorithm. |
86 | 99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
87 | 100 |
/// proved to be the most efficient and the most robust on various |
88 | 101 |
/// test inputs according to our benchmark tests. |
89 | 102 |
/// However another pivot rule can be selected using the \ref run() |
90 | 103 |
/// function with the proper parameter. |
91 | 104 |
enum PivotRule { |
92 | 105 |
|
93 | 106 |
/// The First Eligible pivot rule. |
94 | 107 |
/// The next eligible arc is selected in a wraparound fashion |
95 | 108 |
/// in every iteration. |
96 | 109 |
FIRST_ELIGIBLE, |
97 | 110 |
|
98 | 111 |
/// The Best Eligible pivot rule. |
99 | 112 |
/// The best eligible arc is selected in every iteration. |
100 | 113 |
BEST_ELIGIBLE, |
101 | 114 |
|
102 | 115 |
/// The Block Search pivot rule. |
103 | 116 |
/// A specified number of arcs are examined in every iteration |
104 | 117 |
/// in a wraparound fashion and the best eligible arc is selected |
105 | 118 |
/// from this block. |
106 | 119 |
BLOCK_SEARCH, |
107 | 120 |
|
108 | 121 |
/// The Candidate List pivot rule. |
109 | 122 |
/// In a major iteration a candidate list is built from eligible arcs |
110 | 123 |
/// in a wraparound fashion and in the following minor iterations |
111 | 124 |
/// the best eligible arc is selected from this list. |
112 | 125 |
CANDIDATE_LIST, |
113 | 126 |
|
114 | 127 |
/// The Altering Candidate List pivot rule. |
115 | 128 |
/// It is a modified version of the Candidate List method. |
116 | 129 |
/// It keeps only the several best eligible arcs from the former |
117 | 130 |
/// candidate list and extends this list in every iteration. |
118 | 131 |
ALTERING_LIST |
119 | 132 |
}; |
133 |
|
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
120 | 185 |
|
121 | 186 |
private: |
122 | 187 |
|
123 | 188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
124 | 189 |
|
125 | 190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
126 | 191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
127 | 192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
128 | 193 |
|
129 | 194 |
typedef std::vector<Arc> ArcVector; |
130 | 195 |
typedef std::vector<Node> NodeVector; |
131 | 196 |
typedef std::vector<int> IntVector; |
132 | 197 |
typedef std::vector<bool> BoolVector; |
133 | 198 |
typedef std::vector<Flow> FlowVector; |
134 | 199 |
typedef std::vector<Cost> CostVector; |
135 | 200 |
|
136 | 201 |
// State constants for arcs |
137 | 202 |
enum ArcStateEnum { |
138 | 203 |
STATE_UPPER = -1, |
139 | 204 |
STATE_TREE = 0, |
140 | 205 |
STATE_LOWER = 1 |
141 | 206 |
}; |
142 | 207 |
|
143 | 208 |
private: |
144 | 209 |
|
145 | 210 |
// Data related to the underlying digraph |
146 | 211 |
const GR &_graph; |
147 | 212 |
int _node_num; |
148 | 213 |
int _arc_num; |
149 | 214 |
|
150 | 215 |
// Parameters of the problem |
151 | 216 |
FlowArcMap *_plower; |
152 | 217 |
FlowArcMap *_pupper; |
153 | 218 |
CostArcMap *_pcost; |
154 | 219 |
FlowNodeMap *_psupply; |
155 | 220 |
bool _pstsup; |
156 | 221 |
Node _psource, _ptarget; |
157 | 222 |
Flow _pstflow; |
223 |
ProblemType _ptype; |
|
158 | 224 |
|
159 | 225 |
// Result maps |
160 | 226 |
FlowMap *_flow_map; |
161 | 227 |
PotentialMap *_potential_map; |
162 | 228 |
bool _local_flow; |
163 | 229 |
bool _local_potential; |
164 | 230 |
|
165 | 231 |
// Data structures for storing the digraph |
166 | 232 |
IntNodeMap _node_id; |
167 | 233 |
ArcVector _arc_ref; |
168 | 234 |
IntVector _source; |
169 | 235 |
IntVector _target; |
170 | 236 |
|
171 | 237 |
// Node and arc data |
172 | 238 |
FlowVector _cap; |
173 | 239 |
CostVector _cost; |
174 | 240 |
FlowVector _supply; |
175 | 241 |
FlowVector _flow; |
176 | 242 |
CostVector _pi; |
177 | 243 |
|
178 | 244 |
// Data for storing the spanning tree structure |
179 | 245 |
IntVector _parent; |
180 | 246 |
IntVector _pred; |
181 | 247 |
IntVector _thread; |
182 | 248 |
IntVector _rev_thread; |
183 | 249 |
IntVector _succ_num; |
184 | 250 |
IntVector _last_succ; |
185 | 251 |
IntVector _dirty_revs; |
186 | 252 |
BoolVector _forward; |
187 | 253 |
IntVector _state; |
188 | 254 |
int _root; |
189 | 255 |
|
190 | 256 |
// Temporary data used in the current pivot iteration |
191 | 257 |
int in_arc, join, u_in, v_in, u_out, v_out; |
192 | 258 |
int first, second, right, last; |
193 | 259 |
int stem, par_stem, new_stem; |
194 | 260 |
Flow delta; |
195 | 261 |
|
196 | 262 |
private: |
197 | 263 |
|
198 | 264 |
// Implementation of the First Eligible pivot rule |
199 | 265 |
class FirstEligiblePivotRule |
200 | 266 |
{ |
201 | 267 |
private: |
202 | 268 |
|
203 | 269 |
// References to the NetworkSimplex class |
204 | 270 |
const IntVector &_source; |
205 | 271 |
const IntVector &_target; |
206 | 272 |
const CostVector &_cost; |
207 | 273 |
const IntVector &_state; |
208 | 274 |
const CostVector &_pi; |
209 | 275 |
int &_in_arc; |
210 | 276 |
int _arc_num; |
211 | 277 |
|
212 | 278 |
// Pivot rule data |
213 | 279 |
int _next_arc; |
214 | 280 |
|
215 | 281 |
public: |
216 | 282 |
|
217 | 283 |
// Constructor |
218 | 284 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
219 | 285 |
_source(ns._source), _target(ns._target), |
220 | 286 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
221 | 287 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
222 | 288 |
{} |
223 | 289 |
|
224 | 290 |
// Find next entering arc |
225 | 291 |
bool findEnteringArc() { |
226 | 292 |
Cost c; |
227 | 293 |
for (int e = _next_arc; e < _arc_num; ++e) { |
228 | 294 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
229 | 295 |
if (c < 0) { |
230 | 296 |
_in_arc = e; |
231 | 297 |
_next_arc = e + 1; |
232 | 298 |
return true; |
233 | 299 |
} |
234 | 300 |
} |
235 | 301 |
for (int e = 0; e < _next_arc; ++e) { |
236 | 302 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
237 | 303 |
if (c < 0) { |
238 | 304 |
_in_arc = e; |
239 | 305 |
_next_arc = e + 1; |
240 | 306 |
return true; |
241 | 307 |
} |
242 | 308 |
} |
243 | 309 |
return false; |
244 | 310 |
} |
245 | 311 |
|
246 | 312 |
}; //class FirstEligiblePivotRule |
247 | 313 |
|
248 | 314 |
|
249 | 315 |
// Implementation of the Best Eligible pivot rule |
250 | 316 |
class BestEligiblePivotRule |
251 | 317 |
{ |
252 | 318 |
private: |
253 | 319 |
|
254 | 320 |
// References to the NetworkSimplex class |
255 | 321 |
const IntVector &_source; |
256 | 322 |
const IntVector &_target; |
257 | 323 |
const CostVector &_cost; |
258 | 324 |
const IntVector &_state; |
259 | 325 |
const CostVector &_pi; |
260 | 326 |
int &_in_arc; |
261 | 327 |
int _arc_num; |
262 | 328 |
|
263 | 329 |
public: |
264 | 330 |
|
265 | 331 |
// Constructor |
266 | 332 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
267 | 333 |
_source(ns._source), _target(ns._target), |
268 | 334 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
269 | 335 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
270 | 336 |
{} |
271 | 337 |
|
272 | 338 |
// Find next entering arc |
273 | 339 |
bool findEnteringArc() { |
274 | 340 |
Cost c, min = 0; |
275 | 341 |
for (int e = 0; e < _arc_num; ++e) { |
276 | 342 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
277 | 343 |
if (c < min) { |
278 | 344 |
min = c; |
279 | 345 |
_in_arc = e; |
280 | 346 |
} |
281 | 347 |
} |
282 | 348 |
return min < 0; |
283 | 349 |
} |
284 | 350 |
|
285 | 351 |
}; //class BestEligiblePivotRule |
286 | 352 |
|
287 | 353 |
|
288 | 354 |
// Implementation of the Block Search pivot rule |
289 | 355 |
class BlockSearchPivotRule |
290 | 356 |
{ |
291 | 357 |
private: |
292 | 358 |
|
293 | 359 |
// References to the NetworkSimplex class |
294 | 360 |
const IntVector &_source; |
295 | 361 |
const IntVector &_target; |
296 | 362 |
const CostVector &_cost; |
297 | 363 |
const IntVector &_state; |
298 | 364 |
const CostVector &_pi; |
299 | 365 |
int &_in_arc; |
300 | 366 |
int _arc_num; |
301 | 367 |
|
302 | 368 |
// Pivot rule data |
303 | 369 |
int _block_size; |
304 | 370 |
int _next_arc; |
305 | 371 |
|
306 | 372 |
public: |
307 | 373 |
|
308 | 374 |
// Constructor |
309 | 375 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
310 | 376 |
_source(ns._source), _target(ns._target), |
311 | 377 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
312 | 378 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
313 | 379 |
{ |
314 | 380 |
// The main parameters of the pivot rule |
315 | 381 |
const double BLOCK_SIZE_FACTOR = 2.0; |
316 | 382 |
const int MIN_BLOCK_SIZE = 10; |
317 | 383 |
|
318 | 384 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
319 | 385 |
MIN_BLOCK_SIZE ); |
320 | 386 |
} |
321 | 387 |
|
322 | 388 |
// Find next entering arc |
323 | 389 |
bool findEnteringArc() { |
324 | 390 |
Cost c, min = 0; |
325 | 391 |
int cnt = _block_size; |
326 | 392 |
int e, min_arc = _next_arc; |
327 | 393 |
for (e = _next_arc; e < _arc_num; ++e) { |
328 | 394 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
329 | 395 |
if (c < min) { |
330 | 396 |
min = c; |
331 | 397 |
min_arc = e; |
332 | 398 |
} |
333 | 399 |
if (--cnt == 0) { |
334 | 400 |
if (min < 0) break; |
335 | 401 |
cnt = _block_size; |
336 | 402 |
} |
337 | 403 |
} |
338 | 404 |
if (min == 0 || cnt > 0) { |
339 | 405 |
for (e = 0; e < _next_arc; ++e) { |
340 | 406 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
341 | 407 |
if (c < min) { |
342 | 408 |
min = c; |
343 | 409 |
min_arc = e; |
344 | 410 |
} |
345 | 411 |
if (--cnt == 0) { |
346 | 412 |
if (min < 0) break; |
347 | 413 |
cnt = _block_size; |
348 | 414 |
} |
349 | 415 |
} |
350 | 416 |
} |
351 | 417 |
if (min >= 0) return false; |
352 | 418 |
_in_arc = min_arc; |
353 | 419 |
_next_arc = e; |
354 | 420 |
return true; |
355 | 421 |
} |
356 | 422 |
|
357 | 423 |
}; //class BlockSearchPivotRule |
358 | 424 |
|
359 | 425 |
|
360 | 426 |
// Implementation of the Candidate List pivot rule |
361 | 427 |
class CandidateListPivotRule |
362 | 428 |
{ |
363 | 429 |
private: |
364 | 430 |
|
365 | 431 |
// References to the NetworkSimplex class |
366 | 432 |
const IntVector &_source; |
367 | 433 |
const IntVector &_target; |
368 | 434 |
const CostVector &_cost; |
369 | 435 |
const IntVector &_state; |
370 | 436 |
const CostVector &_pi; |
371 | 437 |
int &_in_arc; |
372 | 438 |
int _arc_num; |
373 | 439 |
|
374 | 440 |
// Pivot rule data |
375 | 441 |
IntVector _candidates; |
376 | 442 |
int _list_length, _minor_limit; |
377 | 443 |
int _curr_length, _minor_count; |
378 | 444 |
int _next_arc; |
379 | 445 |
|
380 | 446 |
public: |
381 | 447 |
|
382 | 448 |
/// Constructor |
383 | 449 |
CandidateListPivotRule(NetworkSimplex &ns) : |
384 | 450 |
_source(ns._source), _target(ns._target), |
385 | 451 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
386 | 452 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
387 | 453 |
{ |
388 | 454 |
// The main parameters of the pivot rule |
389 | 455 |
const double LIST_LENGTH_FACTOR = 1.0; |
390 | 456 |
const int MIN_LIST_LENGTH = 10; |
391 | 457 |
const double MINOR_LIMIT_FACTOR = 0.1; |
392 | 458 |
const int MIN_MINOR_LIMIT = 3; |
393 | 459 |
|
394 | 460 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
395 | 461 |
MIN_LIST_LENGTH ); |
396 | 462 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
397 | 463 |
MIN_MINOR_LIMIT ); |
398 | 464 |
_curr_length = _minor_count = 0; |
399 | 465 |
_candidates.resize(_list_length); |
400 | 466 |
} |
401 | 467 |
|
402 | 468 |
/// Find next entering arc |
403 | 469 |
bool findEnteringArc() { |
404 | 470 |
Cost min, c; |
405 | 471 |
int e, min_arc = _next_arc; |
406 | 472 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
407 | 473 |
// Minor iteration: select the best eligible arc from the |
408 | 474 |
// current candidate list |
409 | 475 |
++_minor_count; |
410 | 476 |
min = 0; |
411 | 477 |
for (int i = 0; i < _curr_length; ++i) { |
412 | 478 |
e = _candidates[i]; |
413 | 479 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
414 | 480 |
if (c < min) { |
415 | 481 |
min = c; |
416 | 482 |
min_arc = e; |
417 | 483 |
} |
418 | 484 |
if (c >= 0) { |
419 | 485 |
_candidates[i--] = _candidates[--_curr_length]; |
420 | 486 |
} |
421 | 487 |
} |
422 | 488 |
if (min < 0) { |
423 | 489 |
_in_arc = min_arc; |
424 | 490 |
return true; |
425 | 491 |
} |
426 | 492 |
} |
427 | 493 |
|
428 | 494 |
// Major iteration: build a new candidate list |
429 | 495 |
min = 0; |
430 | 496 |
_curr_length = 0; |
431 | 497 |
for (e = _next_arc; e < _arc_num; ++e) { |
432 | 498 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
433 | 499 |
if (c < 0) { |
434 | 500 |
_candidates[_curr_length++] = e; |
435 | 501 |
if (c < min) { |
436 | 502 |
min = c; |
437 | 503 |
min_arc = e; |
438 | 504 |
} |
439 | 505 |
if (_curr_length == _list_length) break; |
440 | 506 |
} |
441 | 507 |
} |
442 | 508 |
if (_curr_length < _list_length) { |
443 | 509 |
for (e = 0; e < _next_arc; ++e) { |
444 | 510 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
445 | 511 |
if (c < 0) { |
446 | 512 |
_candidates[_curr_length++] = e; |
447 | 513 |
if (c < min) { |
448 | 514 |
min = c; |
449 | 515 |
min_arc = e; |
450 | 516 |
} |
451 | 517 |
if (_curr_length == _list_length) break; |
452 | 518 |
} |
453 | 519 |
} |
454 | 520 |
} |
455 | 521 |
if (_curr_length == 0) return false; |
456 | 522 |
_minor_count = 1; |
457 | 523 |
_in_arc = min_arc; |
458 | 524 |
_next_arc = e; |
459 | 525 |
return true; |
460 | 526 |
} |
461 | 527 |
|
462 | 528 |
}; //class CandidateListPivotRule |
463 | 529 |
|
464 | 530 |
|
465 | 531 |
// Implementation of the Altering Candidate List pivot rule |
466 | 532 |
class AlteringListPivotRule |
467 | 533 |
{ |
468 | 534 |
private: |
469 | 535 |
|
470 | 536 |
// References to the NetworkSimplex class |
471 | 537 |
const IntVector &_source; |
472 | 538 |
const IntVector &_target; |
473 | 539 |
const CostVector &_cost; |
474 | 540 |
const IntVector &_state; |
475 | 541 |
const CostVector &_pi; |
476 | 542 |
int &_in_arc; |
477 | 543 |
int _arc_num; |
478 | 544 |
|
479 | 545 |
// Pivot rule data |
480 | 546 |
int _block_size, _head_length, _curr_length; |
481 | 547 |
int _next_arc; |
482 | 548 |
IntVector _candidates; |
483 | 549 |
CostVector _cand_cost; |
484 | 550 |
|
485 | 551 |
// Functor class to compare arcs during sort of the candidate list |
486 | 552 |
class SortFunc |
487 | 553 |
{ |
488 | 554 |
private: |
489 | 555 |
const CostVector &_map; |
490 | 556 |
public: |
491 | 557 |
SortFunc(const CostVector &map) : _map(map) {} |
492 | 558 |
bool operator()(int left, int right) { |
493 | 559 |
return _map[left] > _map[right]; |
494 | 560 |
} |
495 | 561 |
}; |
496 | 562 |
|
497 | 563 |
SortFunc _sort_func; |
498 | 564 |
|
499 | 565 |
public: |
500 | 566 |
|
501 | 567 |
// Constructor |
502 | 568 |
AlteringListPivotRule(NetworkSimplex &ns) : |
503 | 569 |
_source(ns._source), _target(ns._target), |
504 | 570 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
505 | 571 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
506 | 572 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
507 | 573 |
{ |
508 | 574 |
// The main parameters of the pivot rule |
509 | 575 |
const double BLOCK_SIZE_FACTOR = 1.5; |
510 | 576 |
const int MIN_BLOCK_SIZE = 10; |
511 | 577 |
const double HEAD_LENGTH_FACTOR = 0.1; |
512 | 578 |
const int MIN_HEAD_LENGTH = 3; |
513 | 579 |
|
514 | 580 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
515 | 581 |
MIN_BLOCK_SIZE ); |
516 | 582 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
517 | 583 |
MIN_HEAD_LENGTH ); |
518 | 584 |
_candidates.resize(_head_length + _block_size); |
519 | 585 |
_curr_length = 0; |
520 | 586 |
} |
521 | 587 |
|
522 | 588 |
// Find next entering arc |
523 | 589 |
bool findEnteringArc() { |
524 | 590 |
// Check the current candidate list |
525 | 591 |
int e; |
526 | 592 |
for (int i = 0; i < _curr_length; ++i) { |
527 | 593 |
e = _candidates[i]; |
528 | 594 |
_cand_cost[e] = _state[e] * |
529 | 595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
530 | 596 |
if (_cand_cost[e] >= 0) { |
531 | 597 |
_candidates[i--] = _candidates[--_curr_length]; |
532 | 598 |
} |
533 | 599 |
} |
534 | 600 |
|
535 | 601 |
// Extend the list |
536 | 602 |
int cnt = _block_size; |
537 | 603 |
int last_arc = 0; |
538 | 604 |
int limit = _head_length; |
539 | 605 |
|
540 | 606 |
for (int e = _next_arc; e < _arc_num; ++e) { |
541 | 607 |
_cand_cost[e] = _state[e] * |
542 | 608 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
543 | 609 |
if (_cand_cost[e] < 0) { |
544 | 610 |
_candidates[_curr_length++] = e; |
545 | 611 |
last_arc = e; |
546 | 612 |
} |
547 | 613 |
if (--cnt == 0) { |
548 | 614 |
if (_curr_length > limit) break; |
549 | 615 |
limit = 0; |
550 | 616 |
cnt = _block_size; |
551 | 617 |
} |
552 | 618 |
} |
553 | 619 |
if (_curr_length <= limit) { |
554 | 620 |
for (int e = 0; e < _next_arc; ++e) { |
555 | 621 |
_cand_cost[e] = _state[e] * |
556 | 622 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
557 | 623 |
if (_cand_cost[e] < 0) { |
558 | 624 |
_candidates[_curr_length++] = e; |
559 | 625 |
last_arc = e; |
560 | 626 |
} |
561 | 627 |
if (--cnt == 0) { |
562 | 628 |
if (_curr_length > limit) break; |
563 | 629 |
limit = 0; |
564 | 630 |
cnt = _block_size; |
565 | 631 |
} |
566 | 632 |
} |
567 | 633 |
} |
568 | 634 |
if (_curr_length == 0) return false; |
569 | 635 |
_next_arc = last_arc + 1; |
570 | 636 |
|
571 | 637 |
// Make heap of the candidate list (approximating a partial sort) |
572 | 638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
573 | 639 |
_sort_func ); |
574 | 640 |
|
575 | 641 |
// Pop the first element of the heap |
576 | 642 |
_in_arc = _candidates[0]; |
577 | 643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
578 | 644 |
_sort_func ); |
579 | 645 |
_curr_length = std::min(_head_length, _curr_length - 1); |
580 | 646 |
return true; |
581 | 647 |
} |
582 | 648 |
|
583 | 649 |
}; //class AlteringListPivotRule |
584 | 650 |
|
585 | 651 |
public: |
586 | 652 |
|
587 | 653 |
/// \brief Constructor. |
588 | 654 |
/// |
589 |
/// |
|
655 |
/// The constructor of the class. |
|
590 | 656 |
/// |
591 | 657 |
/// \param graph The digraph the algorithm runs on. |
592 | 658 |
NetworkSimplex(const GR& graph) : |
593 | 659 |
_graph(graph), |
594 | 660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
595 |
_psupply(NULL), _pstsup(false), |
|
661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
596 | 662 |
_flow_map(NULL), _potential_map(NULL), |
597 | 663 |
_local_flow(false), _local_potential(false), |
598 | 664 |
_node_id(graph) |
599 | 665 |
{ |
600 | 666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
601 | 667 |
std::numeric_limits<Flow>::is_signed, |
602 | 668 |
"The flow type of NetworkSimplex must be signed integer"); |
603 | 669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
604 | 670 |
std::numeric_limits<Cost>::is_signed, |
605 | 671 |
"The cost type of NetworkSimplex must be signed integer"); |
606 | 672 |
} |
607 | 673 |
|
608 | 674 |
/// Destructor. |
609 | 675 |
~NetworkSimplex() { |
610 | 676 |
if (_local_flow) delete _flow_map; |
611 | 677 |
if (_local_potential) delete _potential_map; |
612 | 678 |
} |
613 | 679 |
|
680 |
/// \name Parameters |
|
681 |
/// The parameters of the algorithm can be specified using these |
|
682 |
/// functions. |
|
683 |
|
|
684 |
/// @{ |
|
685 |
|
|
614 | 686 |
/// \brief Set the lower bounds on the arcs. |
615 | 687 |
/// |
616 | 688 |
/// This function sets the lower bounds on the arcs. |
617 | 689 |
/// If neither this function nor \ref boundMaps() is used before |
618 | 690 |
/// calling \ref run(), the lower bounds will be set to zero |
619 | 691 |
/// on all arcs. |
620 | 692 |
/// |
621 | 693 |
/// \param map An arc map storing the lower bounds. |
622 | 694 |
/// Its \c Value type must be convertible to the \c Flow type |
623 | 695 |
/// of the algorithm. |
624 | 696 |
/// |
625 | 697 |
/// \return <tt>(*this)</tt> |
626 | 698 |
template <typename LOWER> |
627 | 699 |
NetworkSimplex& lowerMap(const LOWER& map) { |
628 | 700 |
delete _plower; |
629 | 701 |
_plower = new FlowArcMap(_graph); |
630 | 702 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
631 | 703 |
(*_plower)[a] = map[a]; |
632 | 704 |
} |
633 | 705 |
return *this; |
634 | 706 |
} |
635 | 707 |
|
636 | 708 |
/// \brief Set the upper bounds (capacities) on the arcs. |
637 | 709 |
/// |
638 | 710 |
/// This function sets the upper bounds (capacities) on the arcs. |
639 | 711 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
640 | 712 |
/// and \ref boundMaps() is used before calling \ref run(), |
641 | 713 |
/// the upper bounds (capacities) will be set to |
642 | 714 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
643 | 715 |
/// |
644 | 716 |
/// \param map An arc map storing the upper bounds. |
645 | 717 |
/// Its \c Value type must be convertible to the \c Flow type |
646 | 718 |
/// of the algorithm. |
647 | 719 |
/// |
648 | 720 |
/// \return <tt>(*this)</tt> |
649 | 721 |
template<typename UPPER> |
650 | 722 |
NetworkSimplex& upperMap(const UPPER& map) { |
651 | 723 |
delete _pupper; |
652 | 724 |
_pupper = new FlowArcMap(_graph); |
653 | 725 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
654 | 726 |
(*_pupper)[a] = map[a]; |
655 | 727 |
} |
656 | 728 |
return *this; |
657 | 729 |
} |
658 | 730 |
|
659 | 731 |
/// \brief Set the upper bounds (capacities) on the arcs. |
660 | 732 |
/// |
661 | 733 |
/// This function sets the upper bounds (capacities) on the arcs. |
662 | 734 |
/// It is just an alias for \ref upperMap(). |
663 | 735 |
/// |
664 | 736 |
/// \return <tt>(*this)</tt> |
665 | 737 |
template<typename CAP> |
666 | 738 |
NetworkSimplex& capacityMap(const CAP& map) { |
667 | 739 |
return upperMap(map); |
668 | 740 |
} |
669 | 741 |
|
670 | 742 |
/// \brief Set the lower and upper bounds on the arcs. |
671 | 743 |
/// |
672 | 744 |
/// This function sets the lower and upper bounds on the arcs. |
673 | 745 |
/// If neither this function nor \ref lowerMap() is used before |
674 | 746 |
/// calling \ref run(), the lower bounds will be set to zero |
675 | 747 |
/// on all arcs. |
676 | 748 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
677 | 749 |
/// and \ref boundMaps() is used before calling \ref run(), |
678 | 750 |
/// the upper bounds (capacities) will be set to |
679 | 751 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
680 | 752 |
/// |
681 | 753 |
/// \param lower An arc map storing the lower bounds. |
682 | 754 |
/// \param upper An arc map storing the upper bounds. |
683 | 755 |
/// |
684 | 756 |
/// The \c Value type of the maps must be convertible to the |
685 | 757 |
/// \c Flow type of the algorithm. |
686 | 758 |
/// |
687 | 759 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
688 | 760 |
/// and \ref upperMap() separately. |
689 | 761 |
/// |
690 | 762 |
/// \return <tt>(*this)</tt> |
691 | 763 |
template <typename LOWER, typename UPPER> |
692 | 764 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
693 | 765 |
return lowerMap(lower).upperMap(upper); |
694 | 766 |
} |
695 | 767 |
|
696 | 768 |
/// \brief Set the costs of the arcs. |
697 | 769 |
/// |
698 | 770 |
/// This function sets the costs of the arcs. |
699 | 771 |
/// If it is not used before calling \ref run(), the costs |
700 | 772 |
/// will be set to \c 1 on all arcs. |
701 | 773 |
/// |
702 | 774 |
/// \param map An arc map storing the costs. |
703 | 775 |
/// Its \c Value type must be convertible to the \c Cost type |
704 | 776 |
/// of the algorithm. |
705 | 777 |
/// |
706 | 778 |
/// \return <tt>(*this)</tt> |
707 | 779 |
template<typename COST> |
708 | 780 |
NetworkSimplex& costMap(const COST& map) { |
709 | 781 |
delete _pcost; |
710 | 782 |
_pcost = new CostArcMap(_graph); |
711 | 783 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
712 | 784 |
(*_pcost)[a] = map[a]; |
713 | 785 |
} |
714 | 786 |
return *this; |
715 | 787 |
} |
716 | 788 |
|
717 | 789 |
/// \brief Set the supply values of the nodes. |
718 | 790 |
/// |
719 | 791 |
/// This function sets the supply values of the nodes. |
720 | 792 |
/// If neither this function nor \ref stSupply() is used before |
721 | 793 |
/// calling \ref run(), the supply of each node will be set to zero. |
722 | 794 |
/// (It makes sense only if non-zero lower bounds are given.) |
723 | 795 |
/// |
724 | 796 |
/// \param map A node map storing the supply values. |
725 | 797 |
/// Its \c Value type must be convertible to the \c Flow type |
726 | 798 |
/// of the algorithm. |
727 | 799 |
/// |
728 | 800 |
/// \return <tt>(*this)</tt> |
729 | 801 |
template<typename SUP> |
730 | 802 |
NetworkSimplex& supplyMap(const SUP& map) { |
731 | 803 |
delete _psupply; |
732 | 804 |
_pstsup = false; |
733 | 805 |
_psupply = new FlowNodeMap(_graph); |
734 | 806 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
735 | 807 |
(*_psupply)[n] = map[n]; |
736 | 808 |
} |
737 | 809 |
return *this; |
738 | 810 |
} |
739 | 811 |
|
740 | 812 |
/// \brief Set single source and target nodes and a supply value. |
741 | 813 |
/// |
742 | 814 |
/// This function sets a single source node and a single target node |
743 | 815 |
/// and the required flow value. |
744 | 816 |
/// If neither this function nor \ref supplyMap() is used before |
745 | 817 |
/// calling \ref run(), the supply of each node will be set to zero. |
746 | 818 |
/// (It makes sense only if non-zero lower bounds are given.) |
747 | 819 |
/// |
748 | 820 |
/// \param s The source node. |
749 | 821 |
/// \param t The target node. |
750 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
751 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
752 | 824 |
/// |
753 | 825 |
/// \return <tt>(*this)</tt> |
754 | 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
755 | 827 |
delete _psupply; |
756 | 828 |
_psupply = NULL; |
757 | 829 |
_pstsup = true; |
758 | 830 |
_psource = s; |
759 | 831 |
_ptarget = t; |
760 | 832 |
_pstflow = k; |
761 | 833 |
return *this; |
762 | 834 |
} |
835 |
|
|
836 |
/// \brief Set the problem type. |
|
837 |
/// |
|
838 |
/// This function sets the problem type for the algorithm. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
840 |
/// type will be used. |
|
841 |
/// |
|
842 |
/// For more information see \ref ProblemType. |
|
843 |
/// |
|
844 |
/// \return <tt>(*this)</tt> |
|
845 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
846 |
_ptype = problem_type; |
|
847 |
return *this; |
|
848 |
} |
|
763 | 849 |
|
764 | 850 |
/// \brief Set the flow map. |
765 | 851 |
/// |
766 | 852 |
/// This function sets the flow map. |
767 | 853 |
/// If it is not used before calling \ref run(), an instance will |
768 | 854 |
/// be allocated automatically. The destructor deallocates this |
769 | 855 |
/// automatically allocated map, of course. |
770 | 856 |
/// |
771 | 857 |
/// \return <tt>(*this)</tt> |
772 | 858 |
NetworkSimplex& flowMap(FlowMap& map) { |
773 | 859 |
if (_local_flow) { |
774 | 860 |
delete _flow_map; |
775 | 861 |
_local_flow = false; |
776 | 862 |
} |
777 | 863 |
_flow_map = ↦ |
778 | 864 |
return *this; |
779 | 865 |
} |
780 | 866 |
|
781 | 867 |
/// \brief Set the potential map. |
782 | 868 |
/// |
783 | 869 |
/// This function sets the potential map, which is used for storing |
784 | 870 |
/// the dual solution. |
785 | 871 |
/// If it is not used before calling \ref run(), an instance will |
786 | 872 |
/// be allocated automatically. The destructor deallocates this |
787 | 873 |
/// automatically allocated map, of course. |
788 | 874 |
/// |
789 | 875 |
/// \return <tt>(*this)</tt> |
790 | 876 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
791 | 877 |
if (_local_potential) { |
792 | 878 |
delete _potential_map; |
793 | 879 |
_local_potential = false; |
794 | 880 |
} |
795 | 881 |
_potential_map = ↦ |
796 | 882 |
return *this; |
797 | 883 |
} |
884 |
|
|
885 |
/// @} |
|
798 | 886 |
|
799 | 887 |
/// \name Execution Control |
800 | 888 |
/// The algorithm can be executed using \ref run(). |
801 | 889 |
|
802 | 890 |
/// @{ |
803 | 891 |
|
804 | 892 |
/// \brief Run the algorithm. |
805 | 893 |
/// |
806 | 894 |
/// This function runs the algorithm. |
807 |
/// The paramters can be specified using \ref lowerMap(), |
|
895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
808 | 896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
809 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
810 |
/// functions. For example, |
|
897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
899 |
/// For example, |
|
811 | 900 |
/// \code |
812 | 901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
813 | 902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
814 | 903 |
/// .supplyMap(sup).run(); |
815 | 904 |
/// \endcode |
816 | 905 |
/// |
817 | 906 |
/// This function can be called more than once. All the parameters |
818 | 907 |
/// that have been given are kept for the next call, unless |
819 | 908 |
/// \ref reset() is called, thus only the modified parameters |
820 | 909 |
/// have to be set again. See \ref reset() for examples. |
821 | 910 |
/// |
822 | 911 |
/// \param pivot_rule The pivot rule that will be used during the |
823 | 912 |
/// algorithm. For more information see \ref PivotRule. |
824 | 913 |
/// |
825 | 914 |
/// \return \c true if a feasible flow can be found. |
826 | 915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
827 | 916 |
return init() && start(pivot_rule); |
828 | 917 |
} |
829 | 918 |
|
830 | 919 |
/// \brief Reset all the parameters that have been given before. |
831 | 920 |
/// |
832 | 921 |
/// This function resets all the paramaters that have been given |
833 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
834 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
835 |
/// \ref |
|
922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
925 |
/// \ref flowMap() and \ref potentialMap(). |
|
836 | 926 |
/// |
837 | 927 |
/// It is useful for multiple run() calls. If this function is not |
838 | 928 |
/// used, all the parameters given before are kept for the next |
839 | 929 |
/// \ref run() call. |
840 | 930 |
/// |
841 | 931 |
/// For example, |
842 | 932 |
/// \code |
843 | 933 |
/// NetworkSimplex<ListDigraph> ns(graph); |
844 | 934 |
/// |
845 | 935 |
/// // First run |
846 | 936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
847 | 937 |
/// .supplyMap(sup).run(); |
848 | 938 |
/// |
849 | 939 |
/// // Run again with modified cost map (reset() is not called, |
850 | 940 |
/// // so only the cost map have to be set again) |
851 | 941 |
/// cost[e] += 100; |
852 | 942 |
/// ns.costMap(cost).run(); |
853 | 943 |
/// |
854 | 944 |
/// // Run again from scratch using reset() |
855 | 945 |
/// // (the lower bounds will be set to zero on all arcs) |
856 | 946 |
/// ns.reset(); |
857 | 947 |
/// ns.capacityMap(cap).costMap(cost) |
858 | 948 |
/// .supplyMap(sup).run(); |
859 | 949 |
/// \endcode |
860 | 950 |
/// |
861 | 951 |
/// \return <tt>(*this)</tt> |
862 | 952 |
NetworkSimplex& reset() { |
863 | 953 |
delete _plower; |
864 | 954 |
delete _pupper; |
865 | 955 |
delete _pcost; |
866 | 956 |
delete _psupply; |
867 | 957 |
_plower = NULL; |
868 | 958 |
_pupper = NULL; |
869 | 959 |
_pcost = NULL; |
870 | 960 |
_psupply = NULL; |
871 | 961 |
_pstsup = false; |
962 |
_ptype = GEQ; |
|
963 |
if (_local_flow) delete _flow_map; |
|
964 |
if (_local_potential) delete _potential_map; |
|
965 |
_flow_map = NULL; |
|
966 |
_potential_map = NULL; |
|
967 |
_local_flow = false; |
|
968 |
_local_potential = false; |
|
969 |
|
|
872 | 970 |
return *this; |
873 | 971 |
} |
874 | 972 |
|
875 | 973 |
/// @} |
876 | 974 |
|
877 | 975 |
/// \name Query Functions |
878 | 976 |
/// The results of the algorithm can be obtained using these |
879 | 977 |
/// functions.\n |
880 | 978 |
/// The \ref run() function must be called before using them. |
881 | 979 |
|
882 | 980 |
/// @{ |
883 | 981 |
|
884 | 982 |
/// \brief Return the total cost of the found flow. |
885 | 983 |
/// |
886 | 984 |
/// This function returns the total cost of the found flow. |
887 | 985 |
/// The complexity of the function is O(e). |
888 | 986 |
/// |
889 | 987 |
/// \note The return type of the function can be specified as a |
890 | 988 |
/// template parameter. For example, |
891 | 989 |
/// \code |
892 | 990 |
/// ns.totalCost<double>(); |
893 | 991 |
/// \endcode |
894 | 992 |
/// It is useful if the total cost cannot be stored in the \c Cost |
895 | 993 |
/// type of the algorithm, which is the default return type of the |
896 | 994 |
/// function. |
897 | 995 |
/// |
898 | 996 |
/// \pre \ref run() must be called before using this function. |
899 | 997 |
template <typename Num> |
900 | 998 |
Num totalCost() const { |
901 | 999 |
Num c = 0; |
902 | 1000 |
if (_pcost) { |
903 | 1001 |
for (ArcIt e(_graph); e != INVALID; ++e) |
904 | 1002 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
905 | 1003 |
} else { |
906 | 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
907 | 1005 |
c += (*_flow_map)[e]; |
908 | 1006 |
} |
909 | 1007 |
return c; |
910 | 1008 |
} |
911 | 1009 |
|
912 | 1010 |
#ifndef DOXYGEN |
913 | 1011 |
Cost totalCost() const { |
914 | 1012 |
return totalCost<Cost>(); |
915 | 1013 |
} |
916 | 1014 |
#endif |
917 | 1015 |
|
918 | 1016 |
/// \brief Return the flow on the given arc. |
919 | 1017 |
/// |
920 | 1018 |
/// This function returns the flow on the given arc. |
921 | 1019 |
/// |
922 | 1020 |
/// \pre \ref run() must be called before using this function. |
923 | 1021 |
Flow flow(const Arc& a) const { |
924 | 1022 |
return (*_flow_map)[a]; |
925 | 1023 |
} |
926 | 1024 |
|
927 | 1025 |
/// \brief Return a const reference to the flow map. |
928 | 1026 |
/// |
929 | 1027 |
/// This function returns a const reference to an arc map storing |
930 | 1028 |
/// the found flow. |
931 | 1029 |
/// |
932 | 1030 |
/// \pre \ref run() must be called before using this function. |
933 | 1031 |
const FlowMap& flowMap() const { |
934 | 1032 |
return *_flow_map; |
935 | 1033 |
} |
936 | 1034 |
|
937 | 1035 |
/// \brief Return the potential (dual value) of the given node. |
938 | 1036 |
/// |
939 | 1037 |
/// This function returns the potential (dual value) of the |
940 | 1038 |
/// given node. |
941 | 1039 |
/// |
942 | 1040 |
/// \pre \ref run() must be called before using this function. |
943 | 1041 |
Cost potential(const Node& n) const { |
944 | 1042 |
return (*_potential_map)[n]; |
945 | 1043 |
} |
946 | 1044 |
|
947 | 1045 |
/// \brief Return a const reference to the potential map |
948 | 1046 |
/// (the dual solution). |
949 | 1047 |
/// |
950 | 1048 |
/// This function returns a const reference to a node map storing |
951 | 1049 |
/// the found potentials, which form the dual solution of the |
952 | 1050 |
/// \ref min_cost_flow "minimum cost flow" problem. |
953 | 1051 |
/// |
954 | 1052 |
/// \pre \ref run() must be called before using this function. |
955 | 1053 |
const PotentialMap& potentialMap() const { |
956 | 1054 |
return *_potential_map; |
957 | 1055 |
} |
958 | 1056 |
|
959 | 1057 |
/// @} |
960 | 1058 |
|
961 | 1059 |
private: |
962 | 1060 |
|
963 | 1061 |
// Initialize internal data structures |
964 | 1062 |
bool init() { |
965 | 1063 |
// Initialize result maps |
966 | 1064 |
if (!_flow_map) { |
967 | 1065 |
_flow_map = new FlowMap(_graph); |
968 | 1066 |
_local_flow = true; |
969 | 1067 |
} |
970 | 1068 |
if (!_potential_map) { |
971 | 1069 |
_potential_map = new PotentialMap(_graph); |
972 | 1070 |
_local_potential = true; |
973 | 1071 |
} |
974 | 1072 |
|
975 | 1073 |
// Initialize vectors |
976 | 1074 |
_node_num = countNodes(_graph); |
977 | 1075 |
_arc_num = countArcs(_graph); |
978 | 1076 |
int all_node_num = _node_num + 1; |
979 | 1077 |
int all_arc_num = _arc_num + _node_num; |
980 | 1078 |
if (_node_num == 0) return false; |
981 | 1079 |
|
982 | 1080 |
_arc_ref.resize(_arc_num); |
983 | 1081 |
_source.resize(all_arc_num); |
984 | 1082 |
_target.resize(all_arc_num); |
985 | 1083 |
|
986 | 1084 |
_cap.resize(all_arc_num); |
987 | 1085 |
_cost.resize(all_arc_num); |
988 | 1086 |
_supply.resize(all_node_num); |
989 | 1087 |
_flow.resize(all_arc_num); |
990 | 1088 |
_pi.resize(all_node_num); |
991 | 1089 |
|
992 | 1090 |
_parent.resize(all_node_num); |
993 | 1091 |
_pred.resize(all_node_num); |
994 | 1092 |
_forward.resize(all_node_num); |
995 | 1093 |
_thread.resize(all_node_num); |
996 | 1094 |
_rev_thread.resize(all_node_num); |
997 | 1095 |
_succ_num.resize(all_node_num); |
998 | 1096 |
_last_succ.resize(all_node_num); |
999 | 1097 |
_state.resize(all_arc_num); |
1000 | 1098 |
|
1001 | 1099 |
// Initialize node related data |
1002 | 1100 |
bool valid_supply = true; |
1101 |
Flow sum_supply = 0; |
|
1003 | 1102 |
if (!_pstsup && !_psupply) { |
1004 | 1103 |
_pstsup = true; |
1005 | 1104 |
_psource = _ptarget = NodeIt(_graph); |
1006 | 1105 |
_pstflow = 0; |
1007 | 1106 |
} |
1008 | 1107 |
if (_psupply) { |
1009 |
Flow sum = 0; |
|
1010 | 1108 |
int i = 0; |
1011 | 1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1012 | 1110 |
_node_id[n] = i; |
1013 | 1111 |
_supply[i] = (*_psupply)[n]; |
1014 |
|
|
1112 |
sum_supply += _supply[i]; |
|
1015 | 1113 |
} |
1016 |
valid_supply = ( |
|
1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
1017 | 1116 |
} else { |
1018 | 1117 |
int i = 0; |
1019 | 1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1020 | 1119 |
_node_id[n] = i; |
1021 | 1120 |
_supply[i] = 0; |
1022 | 1121 |
} |
1023 | 1122 |
_supply[_node_id[_psource]] = _pstflow; |
1024 |
_supply[_node_id[_ptarget]] |
|
1123 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1025 | 1124 |
} |
1026 | 1125 |
if (!valid_supply) return false; |
1027 | 1126 |
|
1127 |
// Infinite capacity value |
|
1128 |
Flow inf_cap = |
|
1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
1130 |
std::numeric_limits<Flow>::infinity() : |
|
1131 |
std::numeric_limits<Flow>::max(); |
|
1132 |
|
|
1133 |
// Initialize artifical cost |
|
1134 |
Cost art_cost; |
|
1135 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1137 |
} else { |
|
1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1139 |
for (int i = 0; i != _arc_num; ++i) { |
|
1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1141 |
} |
|
1142 |
art_cost = (art_cost + 1) * _node_num; |
|
1143 |
} |
|
1144 |
|
|
1145 |
// Run Circulation to check if a feasible solution exists |
|
1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1147 |
FlowNodeMap *csup = NULL; |
|
1148 |
bool local_csup = false; |
|
1149 |
if (_psupply) { |
|
1150 |
csup = _psupply; |
|
1151 |
} else { |
|
1152 |
csup = new FlowNodeMap(_graph, 0); |
|
1153 |
(*csup)[_psource] = _pstflow; |
|
1154 |
(*csup)[_ptarget] = -_pstflow; |
|
1155 |
local_csup = true; |
|
1156 |
} |
|
1157 |
bool circ_result = false; |
|
1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1159 |
// GEQ problem type |
|
1160 |
if (_plower) { |
|
1161 |
if (_pupper) { |
|
1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1164 |
circ_result = circ.run(); |
|
1165 |
} else { |
|
1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} |
|
1170 |
} else { |
|
1171 |
if (_pupper) { |
|
1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
1174 |
circ_result = circ.run(); |
|
1175 |
} else { |
|
1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} |
|
1180 |
} |
|
1181 |
} else { |
|
1182 |
// LEQ problem type |
|
1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1185 |
RevGraph rgraph(_graph); |
|
1186 |
NegNodeMap neg_csup(*csup); |
|
1187 |
if (_plower) { |
|
1188 |
if (_pupper) { |
|
1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1191 |
circ_result = circ.run(); |
|
1192 |
} else { |
|
1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} |
|
1197 |
} else { |
|
1198 |
if (_pupper) { |
|
1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
1201 |
circ_result = circ.run(); |
|
1202 |
} else { |
|
1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} |
|
1207 |
} |
|
1208 |
} |
|
1209 |
if (local_csup) delete csup; |
|
1210 |
if (!circ_result) return false; |
|
1211 |
|
|
1028 | 1212 |
// Set data for the artificial root node |
1029 | 1213 |
_root = _node_num; |
1030 | 1214 |
_parent[_root] = -1; |
1031 | 1215 |
_pred[_root] = -1; |
1032 | 1216 |
_thread[_root] = 0; |
1033 | 1217 |
_rev_thread[0] = _root; |
1034 | 1218 |
_succ_num[_root] = all_node_num; |
1035 | 1219 |
_last_succ[_root] = _root - 1; |
1036 |
_supply[_root] = 0; |
|
1037 |
_pi[_root] = 0; |
|
1220 |
_supply[_root] = -sum_supply; |
|
1221 |
if (sum_supply < 0) { |
|
1222 |
_pi[_root] = -art_cost; |
|
1223 |
} else { |
|
1224 |
_pi[_root] = art_cost; |
|
1225 |
} |
|
1038 | 1226 |
|
1039 | 1227 |
// Store the arcs in a mixed order |
1040 | 1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
1041 | 1229 |
int i = 0; |
1042 | 1230 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1043 | 1231 |
_arc_ref[i] = e; |
1044 | 1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1045 | 1233 |
} |
1046 | 1234 |
|
1047 | 1235 |
// Initialize arc maps |
1048 |
Flow inf_cap = |
|
1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
1050 |
std::numeric_limits<Flow>::infinity() : |
|
1051 |
std::numeric_limits<Flow>::max(); |
|
1052 | 1236 |
if (_pupper && _pcost) { |
1053 | 1237 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1238 |
Arc e = _arc_ref[i]; |
1055 | 1239 |
_source[i] = _node_id[_graph.source(e)]; |
1056 | 1240 |
_target[i] = _node_id[_graph.target(e)]; |
1057 | 1241 |
_cap[i] = (*_pupper)[e]; |
1058 | 1242 |
_cost[i] = (*_pcost)[e]; |
1059 | 1243 |
_flow[i] = 0; |
1060 | 1244 |
_state[i] = STATE_LOWER; |
1061 | 1245 |
} |
1062 | 1246 |
} else { |
1063 | 1247 |
for (int i = 0; i != _arc_num; ++i) { |
1064 | 1248 |
Arc e = _arc_ref[i]; |
1065 | 1249 |
_source[i] = _node_id[_graph.source(e)]; |
1066 | 1250 |
_target[i] = _node_id[_graph.target(e)]; |
1067 | 1251 |
_flow[i] = 0; |
1068 | 1252 |
_state[i] = STATE_LOWER; |
1069 | 1253 |
} |
1070 | 1254 |
if (_pupper) { |
1071 | 1255 |
for (int i = 0; i != _arc_num; ++i) |
1072 | 1256 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1073 | 1257 |
} else { |
1074 | 1258 |
for (int i = 0; i != _arc_num; ++i) |
1075 | 1259 |
_cap[i] = inf_cap; |
1076 | 1260 |
} |
1077 | 1261 |
if (_pcost) { |
1078 | 1262 |
for (int i = 0; i != _arc_num; ++i) |
1079 | 1263 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1080 | 1264 |
} else { |
1081 | 1265 |
for (int i = 0; i != _arc_num; ++i) |
1082 | 1266 |
_cost[i] = 1; |
1083 | 1267 |
} |
1084 | 1268 |
} |
1085 | 1269 |
|
1086 |
// Initialize artifical cost |
|
1087 |
Cost art_cost; |
|
1088 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1090 |
} else { |
|
1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1092 |
for (int i = 0; i != _arc_num; ++i) { |
|
1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1094 |
} |
|
1095 |
art_cost = (art_cost + 1) * _node_num; |
|
1096 |
} |
|
1097 |
|
|
1098 | 1270 |
// Remove non-zero lower bounds |
1099 | 1271 |
if (_plower) { |
1100 | 1272 |
for (int i = 0; i != _arc_num; ++i) { |
1101 | 1273 |
Flow c = (*_plower)[_arc_ref[i]]; |
1102 | 1274 |
if (c != 0) { |
1103 | 1275 |
_cap[i] -= c; |
1104 | 1276 |
_supply[_source[i]] -= c; |
1105 | 1277 |
_supply[_target[i]] += c; |
1106 | 1278 |
} |
1107 | 1279 |
} |
1108 | 1280 |
} |
1109 | 1281 |
|
1110 | 1282 |
// Add artificial arcs and initialize the spanning tree data structure |
1111 | 1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1112 | 1284 |
_thread[u] = u + 1; |
1113 | 1285 |
_rev_thread[u + 1] = u; |
1114 | 1286 |
_succ_num[u] = 1; |
1115 | 1287 |
_last_succ[u] = u; |
1116 | 1288 |
_parent[u] = _root; |
1117 | 1289 |
_pred[u] = e; |
1118 | 1290 |
_cost[e] = art_cost; |
1119 | 1291 |
_cap[e] = inf_cap; |
1120 | 1292 |
_state[e] = STATE_TREE; |
1121 |
if (_supply[u] >= 0) { |
|
1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) { |
|
1122 | 1294 |
_flow[e] = _supply[u]; |
1123 | 1295 |
_forward[u] = true; |
1124 |
_pi[u] = -art_cost; |
|
1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
1125 | 1297 |
} else { |
1126 | 1298 |
_flow[e] = -_supply[u]; |
1127 | 1299 |
_forward[u] = false; |
1128 |
_pi[u] = art_cost; |
|
1300 |
_pi[u] = art_cost + _pi[_root]; |
|
1129 | 1301 |
} |
1130 | 1302 |
} |
1131 | 1303 |
|
1132 | 1304 |
return true; |
1133 | 1305 |
} |
1134 | 1306 |
|
1135 | 1307 |
// Find the join node |
1136 | 1308 |
void findJoinNode() { |
1137 | 1309 |
int u = _source[in_arc]; |
1138 | 1310 |
int v = _target[in_arc]; |
1139 | 1311 |
while (u != v) { |
1140 | 1312 |
if (_succ_num[u] < _succ_num[v]) { |
1141 | 1313 |
u = _parent[u]; |
1142 | 1314 |
} else { |
1143 | 1315 |
v = _parent[v]; |
1144 | 1316 |
} |
1145 | 1317 |
} |
1146 | 1318 |
join = u; |
1147 | 1319 |
} |
1148 | 1320 |
|
1149 | 1321 |
// Find the leaving arc of the cycle and returns true if the |
1150 | 1322 |
// leaving arc is not the same as the entering arc |
1151 | 1323 |
bool findLeavingArc() { |
1152 | 1324 |
// Initialize first and second nodes according to the direction |
1153 | 1325 |
// of the cycle |
1154 | 1326 |
if (_state[in_arc] == STATE_LOWER) { |
1155 | 1327 |
first = _source[in_arc]; |
1156 | 1328 |
second = _target[in_arc]; |
1157 | 1329 |
} else { |
1158 | 1330 |
first = _target[in_arc]; |
1159 | 1331 |
second = _source[in_arc]; |
1160 | 1332 |
} |
1161 | 1333 |
delta = _cap[in_arc]; |
1162 | 1334 |
int result = 0; |
1163 | 1335 |
Flow d; |
1164 | 1336 |
int e; |
1165 | 1337 |
|
1166 | 1338 |
// Search the cycle along the path form the first node to the root |
1167 | 1339 |
for (int u = first; u != join; u = _parent[u]) { |
1168 | 1340 |
e = _pred[u]; |
1169 | 1341 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
1170 | 1342 |
if (d < delta) { |
1171 | 1343 |
delta = d; |
1172 | 1344 |
u_out = u; |
1173 | 1345 |
result = 1; |
1174 | 1346 |
} |
1175 | 1347 |
} |
1176 | 1348 |
// Search the cycle along the path form the second node to the root |
1177 | 1349 |
for (int u = second; u != join; u = _parent[u]) { |
1178 | 1350 |
e = _pred[u]; |
1179 | 1351 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
1180 | 1352 |
if (d <= delta) { |
1181 | 1353 |
delta = d; |
1182 | 1354 |
u_out = u; |
1183 | 1355 |
result = 2; |
1184 | 1356 |
} |
1185 | 1357 |
} |
1186 | 1358 |
|
1187 | 1359 |
if (result == 1) { |
1188 | 1360 |
u_in = first; |
1189 | 1361 |
v_in = second; |
1190 | 1362 |
} else { |
1191 | 1363 |
u_in = second; |
1192 | 1364 |
v_in = first; |
1193 | 1365 |
} |
1194 | 1366 |
return result != 0; |
1195 | 1367 |
} |
1196 | 1368 |
|
1197 | 1369 |
// Change _flow and _state vectors |
1198 | 1370 |
void changeFlow(bool change) { |
1199 | 1371 |
// Augment along the cycle |
1200 | 1372 |
if (delta > 0) { |
1201 | 1373 |
Flow val = _state[in_arc] * delta; |
1202 | 1374 |
_flow[in_arc] += val; |
1203 | 1375 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1204 | 1376 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1205 | 1377 |
} |
1206 | 1378 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1207 | 1379 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1208 | 1380 |
} |
1209 | 1381 |
} |
1210 | 1382 |
// Update the state of the entering and leaving arcs |
1211 | 1383 |
if (change) { |
1212 | 1384 |
_state[in_arc] = STATE_TREE; |
1213 | 1385 |
_state[_pred[u_out]] = |
1214 | 1386 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1215 | 1387 |
} else { |
1216 | 1388 |
_state[in_arc] = -_state[in_arc]; |
1217 | 1389 |
} |
1218 | 1390 |
} |
1219 | 1391 |
|
1220 | 1392 |
// Update the tree structure |
1221 | 1393 |
void updateTreeStructure() { |
1222 | 1394 |
int u, w; |
1223 | 1395 |
int old_rev_thread = _rev_thread[u_out]; |
1224 | 1396 |
int old_succ_num = _succ_num[u_out]; |
1225 | 1397 |
int old_last_succ = _last_succ[u_out]; |
1226 | 1398 |
v_out = _parent[u_out]; |
1227 | 1399 |
|
1228 | 1400 |
u = _last_succ[u_in]; // the last successor of u_in |
1229 | 1401 |
right = _thread[u]; // the node after it |
1230 | 1402 |
|
1231 | 1403 |
// Handle the case when old_rev_thread equals to v_in |
1232 | 1404 |
// (it also means that join and v_out coincide) |
1233 | 1405 |
if (old_rev_thread == v_in) { |
1234 | 1406 |
last = _thread[_last_succ[u_out]]; |
1235 | 1407 |
} else { |
1236 | 1408 |
last = _thread[v_in]; |
1237 | 1409 |
} |
1238 | 1410 |
|
1239 | 1411 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1240 | 1412 |
// between u_in and u_out, whose parent have to be changed) |
1241 | 1413 |
_thread[v_in] = stem = u_in; |
1242 | 1414 |
_dirty_revs.clear(); |
1243 | 1415 |
_dirty_revs.push_back(v_in); |
1244 | 1416 |
par_stem = v_in; |
1245 | 1417 |
while (stem != u_out) { |
1246 | 1418 |
// Insert the next stem node into the thread list |
1247 | 1419 |
new_stem = _parent[stem]; |
1248 | 1420 |
_thread[u] = new_stem; |
1249 | 1421 |
_dirty_revs.push_back(u); |
1250 | 1422 |
|
1251 | 1423 |
// Remove the subtree of stem from the thread list |
1252 | 1424 |
w = _rev_thread[stem]; |
1253 | 1425 |
_thread[w] = right; |
1254 | 1426 |
_rev_thread[right] = w; |
1255 | 1427 |
|
1256 | 1428 |
// Change the parent node and shift stem nodes |
1257 | 1429 |
_parent[stem] = par_stem; |
1258 | 1430 |
par_stem = stem; |
1259 | 1431 |
stem = new_stem; |
1260 | 1432 |
|
1261 | 1433 |
// Update u and right |
1262 | 1434 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1263 | 1435 |
_rev_thread[par_stem] : _last_succ[stem]; |
1264 | 1436 |
right = _thread[u]; |
1265 | 1437 |
} |
1266 | 1438 |
_parent[u_out] = par_stem; |
1267 | 1439 |
_thread[u] = last; |
1268 | 1440 |
_rev_thread[last] = u; |
1269 | 1441 |
_last_succ[u_out] = u; |
1270 | 1442 |
|
1271 | 1443 |
// Remove the subtree of u_out from the thread list except for |
1272 | 1444 |
// the case when old_rev_thread equals to v_in |
1273 | 1445 |
// (it also means that join and v_out coincide) |
1274 | 1446 |
if (old_rev_thread != v_in) { |
1275 | 1447 |
_thread[old_rev_thread] = right; |
1276 | 1448 |
_rev_thread[right] = old_rev_thread; |
1277 | 1449 |
} |
1278 | 1450 |
|
1279 | 1451 |
// Update _rev_thread using the new _thread values |
1280 | 1452 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1281 | 1453 |
u = _dirty_revs[i]; |
1282 | 1454 |
_rev_thread[_thread[u]] = u; |
1283 | 1455 |
} |
1284 | 1456 |
|
1285 | 1457 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1286 | 1458 |
// stem nodes from u_out to u_in |
1287 | 1459 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1288 | 1460 |
u = u_out; |
1289 | 1461 |
while (u != u_in) { |
1290 | 1462 |
w = _parent[u]; |
1291 | 1463 |
_pred[u] = _pred[w]; |
1292 | 1464 |
_forward[u] = !_forward[w]; |
1293 | 1465 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1294 | 1466 |
_succ_num[u] = tmp_sc; |
1295 | 1467 |
_last_succ[w] = tmp_ls; |
1296 | 1468 |
u = w; |
1297 | 1469 |
} |
1298 | 1470 |
_pred[u_in] = in_arc; |
1299 | 1471 |
_forward[u_in] = (u_in == _source[in_arc]); |
1300 | 1472 |
_succ_num[u_in] = old_succ_num; |
1301 | 1473 |
|
1302 | 1474 |
// Set limits for updating _last_succ form v_in and v_out |
1303 | 1475 |
// towards the root |
1304 | 1476 |
int up_limit_in = -1; |
1305 | 1477 |
int up_limit_out = -1; |
1306 | 1478 |
if (_last_succ[join] == v_in) { |
1307 | 1479 |
up_limit_out = join; |
1308 | 1480 |
} else { |
1309 | 1481 |
up_limit_in = join; |
1310 | 1482 |
} |
1311 | 1483 |
|
1312 | 1484 |
// Update _last_succ from v_in towards the root |
1313 | 1485 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1314 | 1486 |
u = _parent[u]) { |
1315 | 1487 |
_last_succ[u] = _last_succ[u_out]; |
1316 | 1488 |
} |
1317 | 1489 |
// Update _last_succ from v_out towards the root |
1318 | 1490 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1319 | 1491 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1320 | 1492 |
u = _parent[u]) { |
1321 | 1493 |
_last_succ[u] = old_rev_thread; |
1322 | 1494 |
} |
1323 | 1495 |
} else { |
1324 | 1496 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1325 | 1497 |
u = _parent[u]) { |
1326 | 1498 |
_last_succ[u] = _last_succ[u_out]; |
1327 | 1499 |
} |
1328 | 1500 |
} |
1329 | 1501 |
|
1330 | 1502 |
// Update _succ_num from v_in to join |
1331 | 1503 |
for (u = v_in; u != join; u = _parent[u]) { |
1332 | 1504 |
_succ_num[u] += old_succ_num; |
1333 | 1505 |
} |
1334 | 1506 |
// Update _succ_num from v_out to join |
1335 | 1507 |
for (u = v_out; u != join; u = _parent[u]) { |
1336 | 1508 |
_succ_num[u] -= old_succ_num; |
1337 | 1509 |
} |
1338 | 1510 |
} |
1339 | 1511 |
|
1340 | 1512 |
// Update potentials |
1341 | 1513 |
void updatePotential() { |
1342 | 1514 |
Cost sigma = _forward[u_in] ? |
1343 | 1515 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1344 | 1516 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1345 | 1517 |
// Update potentials in the subtree, which has been moved |
1346 | 1518 |
int end = _thread[_last_succ[u_in]]; |
1347 | 1519 |
for (int u = u_in; u != end; u = _thread[u]) { |
1348 | 1520 |
_pi[u] += sigma; |
1349 | 1521 |
} |
1350 | 1522 |
} |
1351 | 1523 |
|
1352 | 1524 |
// Execute the algorithm |
1353 | 1525 |
bool start(PivotRule pivot_rule) { |
1354 | 1526 |
// Select the pivot rule implementation |
1355 | 1527 |
switch (pivot_rule) { |
1356 | 1528 |
case FIRST_ELIGIBLE: |
1357 | 1529 |
return start<FirstEligiblePivotRule>(); |
1358 | 1530 |
case BEST_ELIGIBLE: |
1359 | 1531 |
return start<BestEligiblePivotRule>(); |
1360 | 1532 |
case BLOCK_SEARCH: |
1361 | 1533 |
return start<BlockSearchPivotRule>(); |
1362 | 1534 |
case CANDIDATE_LIST: |
1363 | 1535 |
return start<CandidateListPivotRule>(); |
1364 | 1536 |
case ALTERING_LIST: |
1365 | 1537 |
return start<AlteringListPivotRule>(); |
1366 | 1538 |
} |
1367 | 1539 |
return false; |
1368 | 1540 |
} |
1369 | 1541 |
|
1370 | 1542 |
template <typename PivotRuleImpl> |
1371 | 1543 |
bool start() { |
1372 | 1544 |
PivotRuleImpl pivot(*this); |
1373 | 1545 |
|
1374 | 1546 |
// Execute the Network Simplex algorithm |
1375 | 1547 |
while (pivot.findEnteringArc()) { |
1376 | 1548 |
findJoinNode(); |
1377 | 1549 |
bool change = findLeavingArc(); |
1378 | 1550 |
changeFlow(change); |
1379 | 1551 |
if (change) { |
1380 | 1552 |
updateTreeStructure(); |
1381 | 1553 |
updatePotential(); |
1382 | 1554 |
} |
1383 | 1555 |
} |
1384 | 1556 |
|
1385 |
// Check if the flow amount equals zero on all the artificial arcs |
|
1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
|
1387 |
if (_flow[e] > 0) return false; |
|
1388 |
} |
|
1389 |
|
|
1390 | 1557 |
// Copy flow values to _flow_map |
1391 | 1558 |
if (_plower) { |
1392 | 1559 |
for (int i = 0; i != _arc_num; ++i) { |
1393 | 1560 |
Arc e = _arc_ref[i]; |
1394 | 1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
1395 | 1562 |
} |
1396 | 1563 |
} else { |
1397 | 1564 |
for (int i = 0; i != _arc_num; ++i) { |
1398 | 1565 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1399 | 1566 |
} |
1400 | 1567 |
} |
1401 | 1568 |
// Copy potential values to _potential_map |
1402 | 1569 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1403 | 1570 |
_potential_map->set(n, _pi[_node_id[n]]); |
1404 | 1571 |
} |
1405 | 1572 |
|
1406 | 1573 |
return true; |
1407 | 1574 |
} |
1408 | 1575 |
|
1409 | 1576 |
}; //class NetworkSimplex |
1410 | 1577 |
|
1411 | 1578 |
///@} |
1412 | 1579 |
|
1413 | 1580 |
} //namespace lemon |
1414 | 1581 |
|
1415 | 1582 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
|
22 | 22 |
#include <lemon/list_graph.h> |
23 | 23 |
#include <lemon/lgf_reader.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/network_simplex.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/concepts/digraph.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
#include "test_tools.h" |
31 | 31 |
|
32 | 32 |
using namespace lemon; |
33 | 33 |
|
34 | 34 |
char test_lgf[] = |
35 | 35 |
"@nodes\n" |
36 |
"label sup1 sup2 sup3\n" |
|
37 |
" 1 20 27 0\n" |
|
38 |
" 2 -4 0 0\n" |
|
39 |
" 3 0 0 0\n" |
|
40 |
" 4 0 0 0\n" |
|
41 |
" 5 9 0 0\n" |
|
42 |
" 6 -6 0 0\n" |
|
43 |
" 7 0 0 0\n" |
|
44 |
" 8 0 0 0\n" |
|
45 |
" 9 3 0 0\n" |
|
46 |
" 10 -2 0 0\n" |
|
47 |
" 11 0 0 0\n" |
|
48 |
" |
|
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 | 49 |
"\n" |
50 | 50 |
"@arcs\n" |
51 | 51 |
" cost cap low1 low2\n" |
52 | 52 |
" 1 2 70 11 0 8\n" |
53 | 53 |
" 1 3 150 3 0 1\n" |
54 | 54 |
" 1 4 80 15 0 2\n" |
55 | 55 |
" 2 8 80 12 0 0\n" |
56 | 56 |
" 3 5 140 5 0 3\n" |
57 | 57 |
" 4 6 60 10 0 1\n" |
58 | 58 |
" 4 7 80 2 0 0\n" |
59 | 59 |
" 4 8 110 3 0 0\n" |
60 | 60 |
" 5 7 60 14 0 0\n" |
61 | 61 |
" 5 11 120 12 0 0\n" |
62 | 62 |
" 6 3 0 3 0 0\n" |
63 | 63 |
" 6 9 140 4 0 0\n" |
64 | 64 |
" 6 10 90 8 0 0\n" |
65 | 65 |
" 7 1 30 5 0 0\n" |
66 | 66 |
" 8 12 60 16 0 4\n" |
67 | 67 |
" 9 12 50 6 0 0\n" |
68 | 68 |
"10 12 70 13 0 5\n" |
69 | 69 |
"10 2 100 7 0 0\n" |
70 | 70 |
"10 7 60 10 0 0\n" |
71 | 71 |
"11 10 20 14 0 6\n" |
72 | 72 |
"12 11 30 10 0 0\n" |
73 | 73 |
"\n" |
74 | 74 |
"@attributes\n" |
75 | 75 |
"source 1\n" |
76 | 76 |
"target 12\n"; |
77 | 77 |
|
78 | 78 |
|
79 |
enum ProblemType { |
|
80 |
EQ, |
|
81 |
GEQ, |
|
82 |
LEQ |
|
83 |
}; |
|
84 |
|
|
79 | 85 |
// Check the interface of an MCF algorithm |
80 | 86 |
template <typename GR, typename Flow, typename Cost> |
81 | 87 |
class McfClassConcept |
82 | 88 |
{ |
83 | 89 |
public: |
84 | 90 |
|
85 | 91 |
template <typename MCF> |
86 | 92 |
struct Constraints { |
87 | 93 |
void constraints() { |
88 | 94 |
checkConcept<concepts::Digraph, GR>(); |
89 | 95 |
|
90 | 96 |
MCF mcf(g); |
91 | 97 |
|
92 | 98 |
b = mcf.reset() |
93 | 99 |
.lowerMap(lower) |
94 | 100 |
.upperMap(upper) |
95 | 101 |
.capacityMap(upper) |
96 | 102 |
.boundMaps(lower, upper) |
97 | 103 |
.costMap(cost) |
98 | 104 |
.supplyMap(sup) |
99 | 105 |
.stSupply(n, n, k) |
106 |
.flowMap(flow) |
|
107 |
.potentialMap(pot) |
|
100 | 108 |
.run(); |
109 |
|
|
110 |
const MCF& const_mcf = mcf; |
|
101 | 111 |
|
102 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
103 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
104 | 114 |
|
105 |
v = mcf.totalCost(); |
|
106 |
double x = mcf.template totalCost<double>(); |
|
107 |
v = mcf.flow(a); |
|
108 |
v = mcf.potential(n); |
|
109 |
mcf.flowMap(flow); |
|
110 |
mcf.potentialMap(pot); |
|
115 |
v = const_mcf.totalCost(); |
|
116 |
double x = const_mcf.template totalCost<double>(); |
|
117 |
v = const_mcf.flow(a); |
|
118 |
v = const_mcf.potential(n); |
|
111 | 119 |
|
112 | 120 |
ignore_unused_variable_warning(fm); |
113 | 121 |
ignore_unused_variable_warning(pm); |
114 | 122 |
ignore_unused_variable_warning(x); |
115 | 123 |
} |
116 | 124 |
|
117 | 125 |
typedef typename GR::Node Node; |
118 | 126 |
typedef typename GR::Arc Arc; |
119 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
120 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
121 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
122 | 130 |
|
123 | 131 |
const GR &g; |
124 | 132 |
const FAM &lower; |
125 | 133 |
const FAM &upper; |
126 | 134 |
const CAM &cost; |
127 | 135 |
const NM ⊃ |
128 | 136 |
const Node &n; |
129 | 137 |
const Arc &a; |
130 | 138 |
const Flow &k; |
131 | 139 |
Flow v; |
132 | 140 |
bool b; |
133 | 141 |
|
134 | 142 |
typename MCF::FlowMap &flow; |
135 | 143 |
typename MCF::PotentialMap &pot; |
136 | 144 |
}; |
137 | 145 |
|
138 | 146 |
}; |
139 | 147 |
|
140 | 148 |
|
141 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
142 | 150 |
template < typename GR, typename LM, typename UM, |
143 | 151 |
typename SM, typename FM > |
144 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
145 |
const SM& supply, const FM& flow |
|
153 |
const SM& supply, const FM& flow, |
|
154 |
ProblemType type = EQ ) |
|
146 | 155 |
{ |
147 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
148 | 157 |
|
149 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
150 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
151 | 160 |
} |
152 | 161 |
|
153 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
154 | 163 |
typename SM::Value sum = 0; |
155 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
156 | 165 |
sum += flow[e]; |
157 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
158 | 167 |
sum -= flow[e]; |
159 |
|
|
168 |
bool b = (type == EQ && sum == supply[n]) || |
|
169 |
(type == GEQ && sum >= supply[n]) || |
|
170 |
(type == LEQ && sum <= supply[n]); |
|
171 |
if (!b) return false; |
|
160 | 172 |
} |
161 | 173 |
|
162 | 174 |
return true; |
163 | 175 |
} |
164 | 176 |
|
165 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
166 | 178 |
// using the "Complementary Slackness" optimality condition |
167 | 179 |
template < typename GR, typename LM, typename UM, |
168 |
typename CM, typename FM, typename PM > |
|
180 |
typename CM, typename SM, typename FM, typename PM > |
|
169 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
170 |
const CM& cost, const FM& flow, |
|
182 |
const CM& cost, const SM& supply, const FM& flow, |
|
183 |
const PM& pi ) |
|
171 | 184 |
{ |
172 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
173 | 186 |
|
174 | 187 |
bool opt = true; |
175 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
176 | 189 |
typename CM::Value red_cost = |
177 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
178 | 191 |
opt = red_cost == 0 || |
179 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
180 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
181 | 194 |
} |
195 |
|
|
196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
|
197 |
typename SM::Value sum = 0; |
|
198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
199 |
sum += flow[e]; |
|
200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
201 |
sum -= flow[e]; |
|
202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
203 |
} |
|
204 |
|
|
182 | 205 |
return opt; |
183 | 206 |
} |
184 | 207 |
|
185 | 208 |
// Run a minimum cost flow algorithm and check the results |
186 | 209 |
template < typename MCF, typename GR, |
187 | 210 |
typename LM, typename UM, |
188 | 211 |
typename CM, typename SM > |
189 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
190 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
191 | 214 |
const CM& cost, const SM& supply, |
192 | 215 |
bool result, typename CM::Value total, |
193 |
const std::string &test_id = "" |
|
216 |
const std::string &test_id = "", |
|
217 |
ProblemType type = EQ ) |
|
194 | 218 |
{ |
195 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
196 | 220 |
if (result) { |
197 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
198 | 222 |
"The flow is not feasible " + test_id); |
199 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
200 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
201 | 225 |
mcf.potentialMap()), |
202 | 226 |
"Wrong potentials " + test_id); |
203 | 227 |
} |
204 | 228 |
} |
205 | 229 |
|
206 | 230 |
int main() |
207 | 231 |
{ |
208 | 232 |
// Check the interfaces |
209 | 233 |
{ |
210 | 234 |
typedef int Flow; |
211 | 235 |
typedef int Cost; |
212 | 236 |
// TODO: This typedef should be enabled if the standard maps are |
213 | 237 |
// reference maps in the graph concepts (See #190). |
214 | 238 |
/**/ |
215 | 239 |
//typedef concepts::Digraph GR; |
216 | 240 |
typedef ListDigraph GR; |
217 | 241 |
/**/ |
218 | 242 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
219 | 243 |
NetworkSimplex<GR, Flow, Cost> >(); |
220 | 244 |
} |
221 | 245 |
|
222 | 246 |
// Run various MCF tests |
223 | 247 |
typedef ListDigraph Digraph; |
224 | 248 |
DIGRAPH_TYPEDEFS(ListDigraph); |
225 | 249 |
|
226 | 250 |
// Read the test digraph |
227 | 251 |
Digraph gr; |
228 | 252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
229 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
230 | 254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
231 | 255 |
Node v, w; |
232 | 256 |
|
233 | 257 |
std::istringstream input(test_lgf); |
234 | 258 |
DigraphReader<Digraph>(gr, input) |
235 | 259 |
.arcMap("cost", c) |
236 | 260 |
.arcMap("cap", u) |
237 | 261 |
.arcMap("low1", l1) |
238 | 262 |
.arcMap("low2", l2) |
239 | 263 |
.nodeMap("sup1", s1) |
240 | 264 |
.nodeMap("sup2", s2) |
241 | 265 |
.nodeMap("sup3", s3) |
266 |
.nodeMap("sup4", s4) |
|
267 |
.nodeMap("sup5", s5) |
|
242 | 268 |
.node("source", v) |
243 | 269 |
.node("target", w) |
244 | 270 |
.run(); |
245 | 271 |
|
246 | 272 |
// A. Test NetworkSimplex with the default pivot rule |
247 | 273 |
{ |
248 | 274 |
NetworkSimplex<Digraph> mcf(gr); |
249 | 275 |
|
276 |
// Check the equality form |
|
250 | 277 |
mcf.upperMap(u).costMap(c); |
251 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
252 | 279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
253 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
254 | 281 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
255 | 282 |
mcf.lowerMap(l2); |
256 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
257 | 284 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
258 | 285 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
259 | 286 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
260 | 287 |
mcf.reset(); |
261 | 288 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
262 | 289 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
263 | 290 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
264 | 291 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
265 | 292 |
mcf.reset(); |
266 | 293 |
checkMcf(mcf, mcf.run(), |
267 | 294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
268 | 295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
269 | 296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
297 |
|
|
298 |
// Check the GEQ form |
|
299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
300 |
checkMcf(mcf, mcf.run(), |
|
301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
302 |
mcf.problemType(mcf.GEQ); |
|
303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
306 |
checkMcf(mcf, mcf.run(), |
|
307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
308 |
|
|
309 |
// Check the LEQ form |
|
310 |
mcf.reset().problemType(mcf.LEQ); |
|
311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
312 |
checkMcf(mcf, mcf.run(), |
|
313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
317 |
checkMcf(mcf, mcf.run(), |
|
318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
270 | 319 |
} |
271 | 320 |
|
272 | 321 |
// B. Test NetworkSimplex with each pivot rule |
273 | 322 |
{ |
274 | 323 |
NetworkSimplex<Digraph> mcf(gr); |
275 | 324 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
276 | 325 |
|
277 | 326 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
278 | 327 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
279 | 328 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
280 | 329 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
281 | 330 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
282 | 331 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
283 | 332 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
284 | 333 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
285 | 334 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
286 | 335 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
287 | 336 |
} |
288 | 337 |
|
289 | 338 |
return 0; |
290 | 339 |
} |
0 comments (0 inline)