| 1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
| 2 |
2 |
*
|
| 3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
| 4 |
4 |
*
|
| 5 |
5 |
* Copyright (C) 2003-2009
|
| 6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
| 7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
| 8 |
8 |
*
|
| 9 |
9 |
* Permission to use, modify and distribute this software is granted
|
| 10 |
10 |
* provided that this copyright notice appears in all copies. For
|
| 11 |
11 |
* precise terms see the accompanying LICENSE file.
|
| 12 |
12 |
*
|
| 13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
| 14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
| 15 |
15 |
* purpose.
|
| 16 |
16 |
*
|
| 17 |
17 |
*/
|
| 18 |
18 |
|
| 19 |
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H
|
| 20 |
20 |
#define LEMON_NETWORK_SIMPLEX_H
|
| 21 |
21 |
|
| 22 |
22 |
/// \ingroup min_cost_flow
|
| 23 |
23 |
///
|
| 24 |
24 |
/// \file
|
| 25 |
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow.
|
| 26 |
26 |
|
| 27 |
27 |
#include <vector>
|
| 28 |
28 |
#include <limits>
|
| 29 |
29 |
#include <algorithm>
|
| 30 |
30 |
|
| 31 |
31 |
#include <lemon/core.h>
|
| 32 |
32 |
#include <lemon/math.h>
|
|
33 |
#include <lemon/maps.h>
|
|
34 |
#include <lemon/circulation.h>
|
|
35 |
#include <lemon/adaptors.h>
|
| 33 |
36 |
|
| 34 |
37 |
namespace lemon {
|
| 35 |
38 |
|
| 36 |
39 |
/// \addtogroup min_cost_flow
|
| 37 |
40 |
/// @{
|
| 38 |
41 |
|
| 39 |
42 |
/// \brief Implementation of the primal Network Simplex algorithm
|
| 40 |
43 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
| 41 |
44 |
///
|
| 42 |
45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm
|
| 43 |
46 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
| 44 |
47 |
/// This algorithm is a specialized version of the linear programming
|
| 45 |
48 |
/// simplex method directly for the minimum cost flow problem.
|
| 46 |
49 |
/// It is one of the most efficient solution methods.
|
| 47 |
50 |
///
|
| 48 |
51 |
/// In general this class is the fastest implementation available
|
| 49 |
52 |
/// in LEMON for the minimum cost flow problem.
|
|
53 |
/// Moreover it supports both direction of the supply/demand inequality
|
|
54 |
/// constraints. For more information see \ref ProblemType.
|
| 50 |
55 |
///
|
| 51 |
56 |
/// \tparam GR The digraph type the algorithm runs on.
|
| 52 |
57 |
/// \tparam F The value type used for flow amounts, capacity bounds
|
| 53 |
58 |
/// and supply values in the algorithm. By default it is \c int.
|
| 54 |
59 |
/// \tparam C The value type used for costs and potentials in the
|
| 55 |
60 |
/// algorithm. By default it is the same as \c F.
|
| 56 |
61 |
///
|
| 57 |
62 |
/// \warning Both value types must be signed and all input data must
|
| 58 |
63 |
/// be integer.
|
| 59 |
64 |
///
|
| 60 |
65 |
/// \note %NetworkSimplex provides five different pivot rule
|
| 61 |
|
/// implementations. For more information see \ref PivotRule.
|
|
66 |
/// implementations, from which the most efficient one is used
|
|
67 |
/// by default. For more information see \ref PivotRule.
|
| 62 |
68 |
template <typename GR, typename F = int, typename C = F>
|
| 63 |
69 |
class NetworkSimplex
|
| 64 |
70 |
{
|
| 65 |
71 |
public:
|
| 66 |
72 |
|
| 67 |
73 |
/// The flow type of the algorithm
|
| 68 |
74 |
typedef F Flow;
|
| 69 |
75 |
/// The cost type of the algorithm
|
| 70 |
76 |
typedef C Cost;
|
|
77 |
#ifdef DOXYGEN
|
|
78 |
/// The type of the flow map
|
|
79 |
typedef GR::ArcMap<Flow> FlowMap;
|
|
80 |
/// The type of the potential map
|
|
81 |
typedef GR::NodeMap<Cost> PotentialMap;
|
|
82 |
#else
|
| 71 |
83 |
/// The type of the flow map
|
| 72 |
84 |
typedef typename GR::template ArcMap<Flow> FlowMap;
|
| 73 |
85 |
/// The type of the potential map
|
| 74 |
86 |
typedef typename GR::template NodeMap<Cost> PotentialMap;
|
|
87 |
#endif
|
| 75 |
88 |
|
| 76 |
89 |
public:
|
| 77 |
90 |
|
| 78 |
91 |
/// \brief Enum type for selecting the pivot rule.
|
| 79 |
92 |
///
|
| 80 |
93 |
/// Enum type for selecting the pivot rule for the \ref run()
|
| 81 |
94 |
/// function.
|
| 82 |
95 |
///
|
| 83 |
96 |
/// \ref NetworkSimplex provides five different pivot rule
|
| 84 |
97 |
/// implementations that significantly affect the running time
|
| 85 |
98 |
/// of the algorithm.
|
| 86 |
99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which
|
| 87 |
100 |
/// proved to be the most efficient and the most robust on various
|
| 88 |
101 |
/// test inputs according to our benchmark tests.
|
| 89 |
102 |
/// However another pivot rule can be selected using the \ref run()
|
| 90 |
103 |
/// function with the proper parameter.
|
| 91 |
104 |
enum PivotRule {
|
| 92 |
105 |
|
| 93 |
106 |
/// The First Eligible pivot rule.
|
| 94 |
107 |
/// The next eligible arc is selected in a wraparound fashion
|
| 95 |
108 |
/// in every iteration.
|
| 96 |
109 |
FIRST_ELIGIBLE,
|
| 97 |
110 |
|
| 98 |
111 |
/// The Best Eligible pivot rule.
|
| 99 |
112 |
/// The best eligible arc is selected in every iteration.
|
| 100 |
113 |
BEST_ELIGIBLE,
|
| 101 |
114 |
|
| 102 |
115 |
/// The Block Search pivot rule.
|
| 103 |
116 |
/// A specified number of arcs are examined in every iteration
|
| 104 |
117 |
/// in a wraparound fashion and the best eligible arc is selected
|
| 105 |
118 |
/// from this block.
|
| 106 |
119 |
BLOCK_SEARCH,
|
| 107 |
120 |
|
| 108 |
121 |
/// The Candidate List pivot rule.
|
| 109 |
122 |
/// In a major iteration a candidate list is built from eligible arcs
|
| 110 |
123 |
/// in a wraparound fashion and in the following minor iterations
|
| 111 |
124 |
/// the best eligible arc is selected from this list.
|
| 112 |
125 |
CANDIDATE_LIST,
|
| 113 |
126 |
|
| 114 |
127 |
/// The Altering Candidate List pivot rule.
|
| 115 |
128 |
/// It is a modified version of the Candidate List method.
|
| 116 |
129 |
/// It keeps only the several best eligible arcs from the former
|
| 117 |
130 |
/// candidate list and extends this list in every iteration.
|
| 118 |
131 |
ALTERING_LIST
|
| 119 |
132 |
};
|
|
133 |
|
|
134 |
/// \brief Enum type for selecting the problem type.
|
|
135 |
///
|
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of
|
|
137 |
/// the inequalities in the supply/demand constraints of the
|
|
138 |
/// \ref min_cost_flow "minimum cost flow problem".
|
|
139 |
///
|
|
140 |
/// The default problem type is \c GEQ, since this form is supported
|
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation
|
|
142 |
/// algorithm as well.
|
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType()
|
|
144 |
/// function.
|
|
145 |
///
|
|
146 |
/// Note that the equality form is a special case of both problem type.
|
|
147 |
enum ProblemType {
|
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>"
|
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the
|
|
151 |
/// problem is the following.
|
|
152 |
/**
|
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
155 |
sup(u) \quad \forall u\in V \f]
|
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
|
|
157 |
*/
|
|
158 |
/// It means that the total demand must be greater or equal to the
|
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
160 |
/// negative) and all the supplies have to be carried out from
|
|
161 |
/// the supply nodes, but there could be demands that are not
|
|
162 |
/// satisfied.
|
|
163 |
GEQ,
|
|
164 |
/// It is just an alias for the \c GEQ option.
|
|
165 |
CARRY_SUPPLIES = GEQ,
|
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>"
|
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the
|
|
169 |
/// problem is the following.
|
|
170 |
/**
|
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
173 |
sup(u) \quad \forall u\in V \f]
|
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
|
|
175 |
*/
|
|
176 |
/// It means that the total demand must be less or equal to the
|
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
178 |
/// positive) and all the demands have to be satisfied, but there
|
|
179 |
/// could be supplies that are not carried out from the supply
|
|
180 |
/// nodes.
|
|
181 |
LEQ,
|
|
182 |
/// It is just an alias for the \c LEQ option.
|
|
183 |
SATISFY_DEMANDS = LEQ
|
|
184 |
};
|
| 120 |
185 |
|
| 121 |
186 |
private:
|
| 122 |
187 |
|
| 123 |
188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
| 124 |
189 |
|
| 125 |
190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap;
|
| 126 |
191 |
typedef typename GR::template ArcMap<Cost> CostArcMap;
|
| 127 |
192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap;
|
| 128 |
193 |
|
| 129 |
194 |
typedef std::vector<Arc> ArcVector;
|
| 130 |
195 |
typedef std::vector<Node> NodeVector;
|
| 131 |
196 |
typedef std::vector<int> IntVector;
|
| 132 |
197 |
typedef std::vector<bool> BoolVector;
|
| 133 |
198 |
typedef std::vector<Flow> FlowVector;
|
| 134 |
199 |
typedef std::vector<Cost> CostVector;
|
| 135 |
200 |
|
| 136 |
201 |
// State constants for arcs
|
| 137 |
202 |
enum ArcStateEnum {
|
| 138 |
203 |
STATE_UPPER = -1,
|
| 139 |
204 |
STATE_TREE = 0,
|
| 140 |
205 |
STATE_LOWER = 1
|
| 141 |
206 |
};
|
| 142 |
207 |
|
| 143 |
208 |
private:
|
| 144 |
209 |
|
| 145 |
210 |
// Data related to the underlying digraph
|
| 146 |
211 |
const GR &_graph;
|
| 147 |
212 |
int _node_num;
|
| 148 |
213 |
int _arc_num;
|
| 149 |
214 |
|
| 150 |
215 |
// Parameters of the problem
|
| 151 |
216 |
FlowArcMap *_plower;
|
| 152 |
217 |
FlowArcMap *_pupper;
|
| 153 |
218 |
CostArcMap *_pcost;
|
| 154 |
219 |
FlowNodeMap *_psupply;
|
| 155 |
220 |
bool _pstsup;
|
| 156 |
221 |
Node _psource, _ptarget;
|
| 157 |
222 |
Flow _pstflow;
|
|
223 |
ProblemType _ptype;
|
| 158 |
224 |
|
| 159 |
225 |
// Result maps
|
| 160 |
226 |
FlowMap *_flow_map;
|
| 161 |
227 |
PotentialMap *_potential_map;
|
| 162 |
228 |
bool _local_flow;
|
| 163 |
229 |
bool _local_potential;
|
| 164 |
230 |
|
| 165 |
231 |
// Data structures for storing the digraph
|
| 166 |
232 |
IntNodeMap _node_id;
|
| 167 |
233 |
ArcVector _arc_ref;
|
| 168 |
234 |
IntVector _source;
|
| 169 |
235 |
IntVector _target;
|
| 170 |
236 |
|
| 171 |
237 |
// Node and arc data
|
| 172 |
238 |
FlowVector _cap;
|
| 173 |
239 |
CostVector _cost;
|
| 174 |
240 |
FlowVector _supply;
|
| 175 |
241 |
FlowVector _flow;
|
| 176 |
242 |
CostVector _pi;
|
| 177 |
243 |
|
| 178 |
244 |
// Data for storing the spanning tree structure
|
| 179 |
245 |
IntVector _parent;
|
| 180 |
246 |
IntVector _pred;
|
| 181 |
247 |
IntVector _thread;
|
| 182 |
248 |
IntVector _rev_thread;
|
| 183 |
249 |
IntVector _succ_num;
|
| 184 |
250 |
IntVector _last_succ;
|
| 185 |
251 |
IntVector _dirty_revs;
|
| 186 |
252 |
BoolVector _forward;
|
| 187 |
253 |
IntVector _state;
|
| 188 |
254 |
int _root;
|
| 189 |
255 |
|
| 190 |
256 |
// Temporary data used in the current pivot iteration
|
| 191 |
257 |
int in_arc, join, u_in, v_in, u_out, v_out;
|
| 192 |
258 |
int first, second, right, last;
|
| 193 |
259 |
int stem, par_stem, new_stem;
|
| 194 |
260 |
Flow delta;
|
| 195 |
261 |
|
| 196 |
262 |
private:
|
| 197 |
263 |
|
| 198 |
264 |
// Implementation of the First Eligible pivot rule
|
| 199 |
265 |
class FirstEligiblePivotRule
|
| 200 |
266 |
{
|
| 201 |
267 |
private:
|
| 202 |
268 |
|
| 203 |
269 |
// References to the NetworkSimplex class
|
| 204 |
270 |
const IntVector &_source;
|
| 205 |
271 |
const IntVector &_target;
|
| ... |
... |
@@ -541,121 +607,127 @@
|
| 541 |
607 |
_cand_cost[e] = _state[e] *
|
| 542 |
608 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
| 543 |
609 |
if (_cand_cost[e] < 0) {
|
| 544 |
610 |
_candidates[_curr_length++] = e;
|
| 545 |
611 |
last_arc = e;
|
| 546 |
612 |
}
|
| 547 |
613 |
if (--cnt == 0) {
|
| 548 |
614 |
if (_curr_length > limit) break;
|
| 549 |
615 |
limit = 0;
|
| 550 |
616 |
cnt = _block_size;
|
| 551 |
617 |
}
|
| 552 |
618 |
}
|
| 553 |
619 |
if (_curr_length <= limit) {
|
| 554 |
620 |
for (int e = 0; e < _next_arc; ++e) {
|
| 555 |
621 |
_cand_cost[e] = _state[e] *
|
| 556 |
622 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
| 557 |
623 |
if (_cand_cost[e] < 0) {
|
| 558 |
624 |
_candidates[_curr_length++] = e;
|
| 559 |
625 |
last_arc = e;
|
| 560 |
626 |
}
|
| 561 |
627 |
if (--cnt == 0) {
|
| 562 |
628 |
if (_curr_length > limit) break;
|
| 563 |
629 |
limit = 0;
|
| 564 |
630 |
cnt = _block_size;
|
| 565 |
631 |
}
|
| 566 |
632 |
}
|
| 567 |
633 |
}
|
| 568 |
634 |
if (_curr_length == 0) return false;
|
| 569 |
635 |
_next_arc = last_arc + 1;
|
| 570 |
636 |
|
| 571 |
637 |
// Make heap of the candidate list (approximating a partial sort)
|
| 572 |
638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
| 573 |
639 |
_sort_func );
|
| 574 |
640 |
|
| 575 |
641 |
// Pop the first element of the heap
|
| 576 |
642 |
_in_arc = _candidates[0];
|
| 577 |
643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
| 578 |
644 |
_sort_func );
|
| 579 |
645 |
_curr_length = std::min(_head_length, _curr_length - 1);
|
| 580 |
646 |
return true;
|
| 581 |
647 |
}
|
| 582 |
648 |
|
| 583 |
649 |
}; //class AlteringListPivotRule
|
| 584 |
650 |
|
| 585 |
651 |
public:
|
| 586 |
652 |
|
| 587 |
653 |
/// \brief Constructor.
|
| 588 |
654 |
///
|
| 589 |
|
/// Constructor.
|
|
655 |
/// The constructor of the class.
|
| 590 |
656 |
///
|
| 591 |
657 |
/// \param graph The digraph the algorithm runs on.
|
| 592 |
658 |
NetworkSimplex(const GR& graph) :
|
| 593 |
659 |
_graph(graph),
|
| 594 |
660 |
_plower(NULL), _pupper(NULL), _pcost(NULL),
|
| 595 |
|
_psupply(NULL), _pstsup(false),
|
|
661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ),
|
| 596 |
662 |
_flow_map(NULL), _potential_map(NULL),
|
| 597 |
663 |
_local_flow(false), _local_potential(false),
|
| 598 |
664 |
_node_id(graph)
|
| 599 |
665 |
{
|
| 600 |
666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
|
| 601 |
667 |
std::numeric_limits<Flow>::is_signed,
|
| 602 |
668 |
"The flow type of NetworkSimplex must be signed integer");
|
| 603 |
669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
|
| 604 |
670 |
std::numeric_limits<Cost>::is_signed,
|
| 605 |
671 |
"The cost type of NetworkSimplex must be signed integer");
|
| 606 |
672 |
}
|
| 607 |
673 |
|
| 608 |
674 |
/// Destructor.
|
| 609 |
675 |
~NetworkSimplex() {
|
| 610 |
676 |
if (_local_flow) delete _flow_map;
|
| 611 |
677 |
if (_local_potential) delete _potential_map;
|
| 612 |
678 |
}
|
| 613 |
679 |
|
|
680 |
/// \name Parameters
|
|
681 |
/// The parameters of the algorithm can be specified using these
|
|
682 |
/// functions.
|
|
683 |
|
|
684 |
/// @{
|
|
685 |
|
| 614 |
686 |
/// \brief Set the lower bounds on the arcs.
|
| 615 |
687 |
///
|
| 616 |
688 |
/// This function sets the lower bounds on the arcs.
|
| 617 |
689 |
/// If neither this function nor \ref boundMaps() is used before
|
| 618 |
690 |
/// calling \ref run(), the lower bounds will be set to zero
|
| 619 |
691 |
/// on all arcs.
|
| 620 |
692 |
///
|
| 621 |
693 |
/// \param map An arc map storing the lower bounds.
|
| 622 |
694 |
/// Its \c Value type must be convertible to the \c Flow type
|
| 623 |
695 |
/// of the algorithm.
|
| 624 |
696 |
///
|
| 625 |
697 |
/// \return <tt>(*this)</tt>
|
| 626 |
698 |
template <typename LOWER>
|
| 627 |
699 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
| 628 |
700 |
delete _plower;
|
| 629 |
701 |
_plower = new FlowArcMap(_graph);
|
| 630 |
702 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 631 |
703 |
(*_plower)[a] = map[a];
|
| 632 |
704 |
}
|
| 633 |
705 |
return *this;
|
| 634 |
706 |
}
|
| 635 |
707 |
|
| 636 |
708 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
| 637 |
709 |
///
|
| 638 |
710 |
/// This function sets the upper bounds (capacities) on the arcs.
|
| 639 |
711 |
/// If none of the functions \ref upperMap(), \ref capacityMap()
|
| 640 |
712 |
/// and \ref boundMaps() is used before calling \ref run(),
|
| 641 |
713 |
/// the upper bounds (capacities) will be set to
|
| 642 |
714 |
/// \c std::numeric_limits<Flow>::max() on all arcs.
|
| 643 |
715 |
///
|
| 644 |
716 |
/// \param map An arc map storing the upper bounds.
|
| 645 |
717 |
/// Its \c Value type must be convertible to the \c Flow type
|
| 646 |
718 |
/// of the algorithm.
|
| 647 |
719 |
///
|
| 648 |
720 |
/// \return <tt>(*this)</tt>
|
| 649 |
721 |
template<typename UPPER>
|
| 650 |
722 |
NetworkSimplex& upperMap(const UPPER& map) {
|
| 651 |
723 |
delete _pupper;
|
| 652 |
724 |
_pupper = new FlowArcMap(_graph);
|
| 653 |
725 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 654 |
726 |
(*_pupper)[a] = map[a];
|
| 655 |
727 |
}
|
| 656 |
728 |
return *this;
|
| 657 |
729 |
}
|
| 658 |
730 |
|
| 659 |
731 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
| 660 |
732 |
///
|
| 661 |
733 |
/// This function sets the upper bounds (capacities) on the arcs.
|
| ... |
... |
@@ -715,205 +787,231 @@
|
| 715 |
787 |
}
|
| 716 |
788 |
|
| 717 |
789 |
/// \brief Set the supply values of the nodes.
|
| 718 |
790 |
///
|
| 719 |
791 |
/// This function sets the supply values of the nodes.
|
| 720 |
792 |
/// If neither this function nor \ref stSupply() is used before
|
| 721 |
793 |
/// calling \ref run(), the supply of each node will be set to zero.
|
| 722 |
794 |
/// (It makes sense only if non-zero lower bounds are given.)
|
| 723 |
795 |
///
|
| 724 |
796 |
/// \param map A node map storing the supply values.
|
| 725 |
797 |
/// Its \c Value type must be convertible to the \c Flow type
|
| 726 |
798 |
/// of the algorithm.
|
| 727 |
799 |
///
|
| 728 |
800 |
/// \return <tt>(*this)</tt>
|
| 729 |
801 |
template<typename SUP>
|
| 730 |
802 |
NetworkSimplex& supplyMap(const SUP& map) {
|
| 731 |
803 |
delete _psupply;
|
| 732 |
804 |
_pstsup = false;
|
| 733 |
805 |
_psupply = new FlowNodeMap(_graph);
|
| 734 |
806 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 735 |
807 |
(*_psupply)[n] = map[n];
|
| 736 |
808 |
}
|
| 737 |
809 |
return *this;
|
| 738 |
810 |
}
|
| 739 |
811 |
|
| 740 |
812 |
/// \brief Set single source and target nodes and a supply value.
|
| 741 |
813 |
///
|
| 742 |
814 |
/// This function sets a single source node and a single target node
|
| 743 |
815 |
/// and the required flow value.
|
| 744 |
816 |
/// If neither this function nor \ref supplyMap() is used before
|
| 745 |
817 |
/// calling \ref run(), the supply of each node will be set to zero.
|
| 746 |
818 |
/// (It makes sense only if non-zero lower bounds are given.)
|
| 747 |
819 |
///
|
| 748 |
820 |
/// \param s The source node.
|
| 749 |
821 |
/// \param t The target node.
|
| 750 |
822 |
/// \param k The required amount of flow from node \c s to node \c t
|
| 751 |
823 |
/// (i.e. the supply of \c s and the demand of \c t).
|
| 752 |
824 |
///
|
| 753 |
825 |
/// \return <tt>(*this)</tt>
|
| 754 |
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
|
| 755 |
827 |
delete _psupply;
|
| 756 |
828 |
_psupply = NULL;
|
| 757 |
829 |
_pstsup = true;
|
| 758 |
830 |
_psource = s;
|
| 759 |
831 |
_ptarget = t;
|
| 760 |
832 |
_pstflow = k;
|
| 761 |
833 |
return *this;
|
| 762 |
834 |
}
|
|
835 |
|
|
836 |
/// \brief Set the problem type.
|
|
837 |
///
|
|
838 |
/// This function sets the problem type for the algorithm.
|
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem
|
|
840 |
/// type will be used.
|
|
841 |
///
|
|
842 |
/// For more information see \ref ProblemType.
|
|
843 |
///
|
|
844 |
/// \return <tt>(*this)</tt>
|
|
845 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
846 |
_ptype = problem_type;
|
|
847 |
return *this;
|
|
848 |
}
|
| 763 |
849 |
|
| 764 |
850 |
/// \brief Set the flow map.
|
| 765 |
851 |
///
|
| 766 |
852 |
/// This function sets the flow map.
|
| 767 |
853 |
/// If it is not used before calling \ref run(), an instance will
|
| 768 |
854 |
/// be allocated automatically. The destructor deallocates this
|
| 769 |
855 |
/// automatically allocated map, of course.
|
| 770 |
856 |
///
|
| 771 |
857 |
/// \return <tt>(*this)</tt>
|
| 772 |
858 |
NetworkSimplex& flowMap(FlowMap& map) {
|
| 773 |
859 |
if (_local_flow) {
|
| 774 |
860 |
delete _flow_map;
|
| 775 |
861 |
_local_flow = false;
|
| 776 |
862 |
}
|
| 777 |
863 |
_flow_map = ↦
|
| 778 |
864 |
return *this;
|
| 779 |
865 |
}
|
| 780 |
866 |
|
| 781 |
867 |
/// \brief Set the potential map.
|
| 782 |
868 |
///
|
| 783 |
869 |
/// This function sets the potential map, which is used for storing
|
| 784 |
870 |
/// the dual solution.
|
| 785 |
871 |
/// If it is not used before calling \ref run(), an instance will
|
| 786 |
872 |
/// be allocated automatically. The destructor deallocates this
|
| 787 |
873 |
/// automatically allocated map, of course.
|
| 788 |
874 |
///
|
| 789 |
875 |
/// \return <tt>(*this)</tt>
|
| 790 |
876 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
| 791 |
877 |
if (_local_potential) {
|
| 792 |
878 |
delete _potential_map;
|
| 793 |
879 |
_local_potential = false;
|
| 794 |
880 |
}
|
| 795 |
881 |
_potential_map = ↦
|
| 796 |
882 |
return *this;
|
| 797 |
883 |
}
|
|
884 |
|
|
885 |
/// @}
|
| 798 |
886 |
|
| 799 |
887 |
/// \name Execution Control
|
| 800 |
888 |
/// The algorithm can be executed using \ref run().
|
| 801 |
889 |
|
| 802 |
890 |
/// @{
|
| 803 |
891 |
|
| 804 |
892 |
/// \brief Run the algorithm.
|
| 805 |
893 |
///
|
| 806 |
894 |
/// This function runs the algorithm.
|
| 807 |
|
/// The paramters can be specified using \ref lowerMap(),
|
|
895 |
/// The paramters can be specified using functions \ref lowerMap(),
|
| 808 |
896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
|
| 809 |
|
/// \ref costMap(), \ref supplyMap() and \ref stSupply()
|
| 810 |
|
/// functions. For example,
|
|
897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(),
|
|
898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap().
|
|
899 |
/// For example,
|
| 811 |
900 |
/// \code
|
| 812 |
901 |
/// NetworkSimplex<ListDigraph> ns(graph);
|
| 813 |
902 |
/// ns.boundMaps(lower, upper).costMap(cost)
|
| 814 |
903 |
/// .supplyMap(sup).run();
|
| 815 |
904 |
/// \endcode
|
| 816 |
905 |
///
|
| 817 |
906 |
/// This function can be called more than once. All the parameters
|
| 818 |
907 |
/// that have been given are kept for the next call, unless
|
| 819 |
908 |
/// \ref reset() is called, thus only the modified parameters
|
| 820 |
909 |
/// have to be set again. See \ref reset() for examples.
|
| 821 |
910 |
///
|
| 822 |
911 |
/// \param pivot_rule The pivot rule that will be used during the
|
| 823 |
912 |
/// algorithm. For more information see \ref PivotRule.
|
| 824 |
913 |
///
|
| 825 |
914 |
/// \return \c true if a feasible flow can be found.
|
| 826 |
915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 827 |
916 |
return init() && start(pivot_rule);
|
| 828 |
917 |
}
|
| 829 |
918 |
|
| 830 |
919 |
/// \brief Reset all the parameters that have been given before.
|
| 831 |
920 |
///
|
| 832 |
921 |
/// This function resets all the paramaters that have been given
|
| 833 |
|
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(),
|
| 834 |
|
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and
|
| 835 |
|
/// \ref stSupply() functions before.
|
|
922 |
/// before using functions \ref lowerMap(), \ref upperMap(),
|
|
923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(),
|
|
924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(),
|
|
925 |
/// \ref flowMap() and \ref potentialMap().
|
| 836 |
926 |
///
|
| 837 |
927 |
/// It is useful for multiple run() calls. If this function is not
|
| 838 |
928 |
/// used, all the parameters given before are kept for the next
|
| 839 |
929 |
/// \ref run() call.
|
| 840 |
930 |
///
|
| 841 |
931 |
/// For example,
|
| 842 |
932 |
/// \code
|
| 843 |
933 |
/// NetworkSimplex<ListDigraph> ns(graph);
|
| 844 |
934 |
///
|
| 845 |
935 |
/// // First run
|
| 846 |
936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost)
|
| 847 |
937 |
/// .supplyMap(sup).run();
|
| 848 |
938 |
///
|
| 849 |
939 |
/// // Run again with modified cost map (reset() is not called,
|
| 850 |
940 |
/// // so only the cost map have to be set again)
|
| 851 |
941 |
/// cost[e] += 100;
|
| 852 |
942 |
/// ns.costMap(cost).run();
|
| 853 |
943 |
///
|
| 854 |
944 |
/// // Run again from scratch using reset()
|
| 855 |
945 |
/// // (the lower bounds will be set to zero on all arcs)
|
| 856 |
946 |
/// ns.reset();
|
| 857 |
947 |
/// ns.capacityMap(cap).costMap(cost)
|
| 858 |
948 |
/// .supplyMap(sup).run();
|
| 859 |
949 |
/// \endcode
|
| 860 |
950 |
///
|
| 861 |
951 |
/// \return <tt>(*this)</tt>
|
| 862 |
952 |
NetworkSimplex& reset() {
|
| 863 |
953 |
delete _plower;
|
| 864 |
954 |
delete _pupper;
|
| 865 |
955 |
delete _pcost;
|
| 866 |
956 |
delete _psupply;
|
| 867 |
957 |
_plower = NULL;
|
| 868 |
958 |
_pupper = NULL;
|
| 869 |
959 |
_pcost = NULL;
|
| 870 |
960 |
_psupply = NULL;
|
| 871 |
961 |
_pstsup = false;
|
|
962 |
_ptype = GEQ;
|
|
963 |
if (_local_flow) delete _flow_map;
|
|
964 |
if (_local_potential) delete _potential_map;
|
|
965 |
_flow_map = NULL;
|
|
966 |
_potential_map = NULL;
|
|
967 |
_local_flow = false;
|
|
968 |
_local_potential = false;
|
|
969 |
|
| 872 |
970 |
return *this;
|
| 873 |
971 |
}
|
| 874 |
972 |
|
| 875 |
973 |
/// @}
|
| 876 |
974 |
|
| 877 |
975 |
/// \name Query Functions
|
| 878 |
976 |
/// The results of the algorithm can be obtained using these
|
| 879 |
977 |
/// functions.\n
|
| 880 |
978 |
/// The \ref run() function must be called before using them.
|
| 881 |
979 |
|
| 882 |
980 |
/// @{
|
| 883 |
981 |
|
| 884 |
982 |
/// \brief Return the total cost of the found flow.
|
| 885 |
983 |
///
|
| 886 |
984 |
/// This function returns the total cost of the found flow.
|
| 887 |
985 |
/// The complexity of the function is O(e).
|
| 888 |
986 |
///
|
| 889 |
987 |
/// \note The return type of the function can be specified as a
|
| 890 |
988 |
/// template parameter. For example,
|
| 891 |
989 |
/// \code
|
| 892 |
990 |
/// ns.totalCost<double>();
|
| 893 |
991 |
/// \endcode
|
| 894 |
992 |
/// It is useful if the total cost cannot be stored in the \c Cost
|
| 895 |
993 |
/// type of the algorithm, which is the default return type of the
|
| 896 |
994 |
/// function.
|
| 897 |
995 |
///
|
| 898 |
996 |
/// \pre \ref run() must be called before using this function.
|
| 899 |
997 |
template <typename Num>
|
| 900 |
998 |
Num totalCost() const {
|
| 901 |
999 |
Num c = 0;
|
| 902 |
1000 |
if (_pcost) {
|
| 903 |
1001 |
for (ArcIt e(_graph); e != INVALID; ++e)
|
| 904 |
1002 |
c += (*_flow_map)[e] * (*_pcost)[e];
|
| 905 |
1003 |
} else {
|
| 906 |
1004 |
for (ArcIt e(_graph); e != INVALID; ++e)
|
| 907 |
1005 |
c += (*_flow_map)[e];
|
| 908 |
1006 |
}
|
| 909 |
1007 |
return c;
|
| 910 |
1008 |
}
|
| 911 |
1009 |
|
| 912 |
1010 |
#ifndef DOXYGEN
|
| 913 |
1011 |
Cost totalCost() const {
|
| 914 |
1012 |
return totalCost<Cost>();
|
| 915 |
1013 |
}
|
| 916 |
1014 |
#endif
|
| 917 |
1015 |
|
| 918 |
1016 |
/// \brief Return the flow on the given arc.
|
| 919 |
1017 |
///
|
| ... |
... |
@@ -955,222 +1053,296 @@
|
| 955 |
1053 |
const PotentialMap& potentialMap() const {
|
| 956 |
1054 |
return *_potential_map;
|
| 957 |
1055 |
}
|
| 958 |
1056 |
|
| 959 |
1057 |
/// @}
|
| 960 |
1058 |
|
| 961 |
1059 |
private:
|
| 962 |
1060 |
|
| 963 |
1061 |
// Initialize internal data structures
|
| 964 |
1062 |
bool init() {
|
| 965 |
1063 |
// Initialize result maps
|
| 966 |
1064 |
if (!_flow_map) {
|
| 967 |
1065 |
_flow_map = new FlowMap(_graph);
|
| 968 |
1066 |
_local_flow = true;
|
| 969 |
1067 |
}
|
| 970 |
1068 |
if (!_potential_map) {
|
| 971 |
1069 |
_potential_map = new PotentialMap(_graph);
|
| 972 |
1070 |
_local_potential = true;
|
| 973 |
1071 |
}
|
| 974 |
1072 |
|
| 975 |
1073 |
// Initialize vectors
|
| 976 |
1074 |
_node_num = countNodes(_graph);
|
| 977 |
1075 |
_arc_num = countArcs(_graph);
|
| 978 |
1076 |
int all_node_num = _node_num + 1;
|
| 979 |
1077 |
int all_arc_num = _arc_num + _node_num;
|
| 980 |
1078 |
if (_node_num == 0) return false;
|
| 981 |
1079 |
|
| 982 |
1080 |
_arc_ref.resize(_arc_num);
|
| 983 |
1081 |
_source.resize(all_arc_num);
|
| 984 |
1082 |
_target.resize(all_arc_num);
|
| 985 |
1083 |
|
| 986 |
1084 |
_cap.resize(all_arc_num);
|
| 987 |
1085 |
_cost.resize(all_arc_num);
|
| 988 |
1086 |
_supply.resize(all_node_num);
|
| 989 |
1087 |
_flow.resize(all_arc_num);
|
| 990 |
1088 |
_pi.resize(all_node_num);
|
| 991 |
1089 |
|
| 992 |
1090 |
_parent.resize(all_node_num);
|
| 993 |
1091 |
_pred.resize(all_node_num);
|
| 994 |
1092 |
_forward.resize(all_node_num);
|
| 995 |
1093 |
_thread.resize(all_node_num);
|
| 996 |
1094 |
_rev_thread.resize(all_node_num);
|
| 997 |
1095 |
_succ_num.resize(all_node_num);
|
| 998 |
1096 |
_last_succ.resize(all_node_num);
|
| 999 |
1097 |
_state.resize(all_arc_num);
|
| 1000 |
1098 |
|
| 1001 |
1099 |
// Initialize node related data
|
| 1002 |
1100 |
bool valid_supply = true;
|
|
1101 |
Flow sum_supply = 0;
|
| 1003 |
1102 |
if (!_pstsup && !_psupply) {
|
| 1004 |
1103 |
_pstsup = true;
|
| 1005 |
1104 |
_psource = _ptarget = NodeIt(_graph);
|
| 1006 |
1105 |
_pstflow = 0;
|
| 1007 |
1106 |
}
|
| 1008 |
1107 |
if (_psupply) {
|
| 1009 |
|
Flow sum = 0;
|
| 1010 |
1108 |
int i = 0;
|
| 1011 |
1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1012 |
1110 |
_node_id[n] = i;
|
| 1013 |
1111 |
_supply[i] = (*_psupply)[n];
|
| 1014 |
|
sum += _supply[i];
|
|
1112 |
sum_supply += _supply[i];
|
| 1015 |
1113 |
}
|
| 1016 |
|
valid_supply = (sum == 0);
|
|
1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) ||
|
|
1115 |
(_ptype == LEQ && sum_supply >= 0);
|
| 1017 |
1116 |
} else {
|
| 1018 |
1117 |
int i = 0;
|
| 1019 |
1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1020 |
1119 |
_node_id[n] = i;
|
| 1021 |
1120 |
_supply[i] = 0;
|
| 1022 |
1121 |
}
|
| 1023 |
1122 |
_supply[_node_id[_psource]] = _pstflow;
|
| 1024 |
|
_supply[_node_id[_ptarget]] = -_pstflow;
|
|
1123 |
_supply[_node_id[_ptarget]] = -_pstflow;
|
| 1025 |
1124 |
}
|
| 1026 |
1125 |
if (!valid_supply) return false;
|
| 1027 |
1126 |
|
|
1127 |
// Infinite capacity value
|
|
1128 |
Flow inf_cap =
|
|
1129 |
std::numeric_limits<Flow>::has_infinity ?
|
|
1130 |
std::numeric_limits<Flow>::infinity() :
|
|
1131 |
std::numeric_limits<Flow>::max();
|
|
1132 |
|
|
1133 |
// Initialize artifical cost
|
|
1134 |
Cost art_cost;
|
|
1135 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
|
|
1137 |
} else {
|
|
1138 |
art_cost = std::numeric_limits<Cost>::min();
|
|
1139 |
for (int i = 0; i != _arc_num; ++i) {
|
|
1140 |
if (_cost[i] > art_cost) art_cost = _cost[i];
|
|
1141 |
}
|
|
1142 |
art_cost = (art_cost + 1) * _node_num;
|
|
1143 |
}
|
|
1144 |
|
|
1145 |
// Run Circulation to check if a feasible solution exists
|
|
1146 |
typedef ConstMap<Arc, Flow> ConstArcMap;
|
|
1147 |
FlowNodeMap *csup = NULL;
|
|
1148 |
bool local_csup = false;
|
|
1149 |
if (_psupply) {
|
|
1150 |
csup = _psupply;
|
|
1151 |
} else {
|
|
1152 |
csup = new FlowNodeMap(_graph, 0);
|
|
1153 |
(*csup)[_psource] = _pstflow;
|
|
1154 |
(*csup)[_ptarget] = -_pstflow;
|
|
1155 |
local_csup = true;
|
|
1156 |
}
|
|
1157 |
bool circ_result = false;
|
|
1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
1159 |
// GEQ problem type
|
|
1160 |
if (_plower) {
|
|
1161 |
if (_pupper) {
|
|
1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap>
|
|
1163 |
circ(_graph, *_plower, *_pupper, *csup);
|
|
1164 |
circ_result = circ.run();
|
|
1165 |
} else {
|
|
1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap>
|
|
1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup);
|
|
1168 |
circ_result = circ.run();
|
|
1169 |
}
|
|
1170 |
} else {
|
|
1171 |
if (_pupper) {
|
|
1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap>
|
|
1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup);
|
|
1174 |
circ_result = circ.run();
|
|
1175 |
} else {
|
|
1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap>
|
|
1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup);
|
|
1178 |
circ_result = circ.run();
|
|
1179 |
}
|
|
1180 |
}
|
|
1181 |
} else {
|
|
1182 |
// LEQ problem type
|
|
1183 |
typedef ReverseDigraph<const GR> RevGraph;
|
|
1184 |
typedef NegMap<FlowNodeMap> NegNodeMap;
|
|
1185 |
RevGraph rgraph(_graph);
|
|
1186 |
NegNodeMap neg_csup(*csup);
|
|
1187 |
if (_plower) {
|
|
1188 |
if (_pupper) {
|
|
1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap>
|
|
1190 |
circ(rgraph, *_plower, *_pupper, neg_csup);
|
|
1191 |
circ_result = circ.run();
|
|
1192 |
} else {
|
|
1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap>
|
|
1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup);
|
|
1195 |
circ_result = circ.run();
|
|
1196 |
}
|
|
1197 |
} else {
|
|
1198 |
if (_pupper) {
|
|
1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap>
|
|
1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup);
|
|
1201 |
circ_result = circ.run();
|
|
1202 |
} else {
|
|
1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap>
|
|
1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup);
|
|
1205 |
circ_result = circ.run();
|
|
1206 |
}
|
|
1207 |
}
|
|
1208 |
}
|
|
1209 |
if (local_csup) delete csup;
|
|
1210 |
if (!circ_result) return false;
|
|
1211 |
|
| 1028 |
1212 |
// Set data for the artificial root node
|
| 1029 |
1213 |
_root = _node_num;
|
| 1030 |
1214 |
_parent[_root] = -1;
|
| 1031 |
1215 |
_pred[_root] = -1;
|
| 1032 |
1216 |
_thread[_root] = 0;
|
| 1033 |
1217 |
_rev_thread[0] = _root;
|
| 1034 |
1218 |
_succ_num[_root] = all_node_num;
|
| 1035 |
1219 |
_last_succ[_root] = _root - 1;
|
| 1036 |
|
_supply[_root] = 0;
|
| 1037 |
|
_pi[_root] = 0;
|
|
1220 |
_supply[_root] = -sum_supply;
|
|
1221 |
if (sum_supply < 0) {
|
|
1222 |
_pi[_root] = -art_cost;
|
|
1223 |
} else {
|
|
1224 |
_pi[_root] = art_cost;
|
|
1225 |
}
|
| 1038 |
1226 |
|
| 1039 |
1227 |
// Store the arcs in a mixed order
|
| 1040 |
1228 |
int k = std::max(int(sqrt(_arc_num)), 10);
|
| 1041 |
1229 |
int i = 0;
|
| 1042 |
1230 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1043 |
1231 |
_arc_ref[i] = e;
|
| 1044 |
1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1;
|
| 1045 |
1233 |
}
|
| 1046 |
1234 |
|
| 1047 |
1235 |
// Initialize arc maps
|
| 1048 |
|
Flow inf_cap =
|
| 1049 |
|
std::numeric_limits<Flow>::has_infinity ?
|
| 1050 |
|
std::numeric_limits<Flow>::infinity() :
|
| 1051 |
|
std::numeric_limits<Flow>::max();
|
| 1052 |
1236 |
if (_pupper && _pcost) {
|
| 1053 |
1237 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 |
1238 |
Arc e = _arc_ref[i];
|
| 1055 |
1239 |
_source[i] = _node_id[_graph.source(e)];
|
| 1056 |
1240 |
_target[i] = _node_id[_graph.target(e)];
|
| 1057 |
1241 |
_cap[i] = (*_pupper)[e];
|
| 1058 |
1242 |
_cost[i] = (*_pcost)[e];
|
| 1059 |
1243 |
_flow[i] = 0;
|
| 1060 |
1244 |
_state[i] = STATE_LOWER;
|
| 1061 |
1245 |
}
|
| 1062 |
1246 |
} else {
|
| 1063 |
1247 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1064 |
1248 |
Arc e = _arc_ref[i];
|
| 1065 |
1249 |
_source[i] = _node_id[_graph.source(e)];
|
| 1066 |
1250 |
_target[i] = _node_id[_graph.target(e)];
|
| 1067 |
1251 |
_flow[i] = 0;
|
| 1068 |
1252 |
_state[i] = STATE_LOWER;
|
| 1069 |
1253 |
}
|
| 1070 |
1254 |
if (_pupper) {
|
| 1071 |
1255 |
for (int i = 0; i != _arc_num; ++i)
|
| 1072 |
1256 |
_cap[i] = (*_pupper)[_arc_ref[i]];
|
| 1073 |
1257 |
} else {
|
| 1074 |
1258 |
for (int i = 0; i != _arc_num; ++i)
|
| 1075 |
1259 |
_cap[i] = inf_cap;
|
| 1076 |
1260 |
}
|
| 1077 |
1261 |
if (_pcost) {
|
| 1078 |
1262 |
for (int i = 0; i != _arc_num; ++i)
|
| 1079 |
1263 |
_cost[i] = (*_pcost)[_arc_ref[i]];
|
| 1080 |
1264 |
} else {
|
| 1081 |
1265 |
for (int i = 0; i != _arc_num; ++i)
|
| 1082 |
1266 |
_cost[i] = 1;
|
| 1083 |
1267 |
}
|
| 1084 |
1268 |
}
|
| 1085 |
1269 |
|
| 1086 |
|
// Initialize artifical cost
|
| 1087 |
|
Cost art_cost;
|
| 1088 |
|
if (std::numeric_limits<Cost>::is_exact) {
|
| 1089 |
|
art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
|
| 1090 |
|
} else {
|
| 1091 |
|
art_cost = std::numeric_limits<Cost>::min();
|
| 1092 |
|
for (int i = 0; i != _arc_num; ++i) {
|
| 1093 |
|
if (_cost[i] > art_cost) art_cost = _cost[i];
|
| 1094 |
|
}
|
| 1095 |
|
art_cost = (art_cost + 1) * _node_num;
|
| 1096 |
|
}
|
| 1097 |
|
|
| 1098 |
1270 |
// Remove non-zero lower bounds
|
| 1099 |
1271 |
if (_plower) {
|
| 1100 |
1272 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1101 |
1273 |
Flow c = (*_plower)[_arc_ref[i]];
|
| 1102 |
1274 |
if (c != 0) {
|
| 1103 |
1275 |
_cap[i] -= c;
|
| 1104 |
1276 |
_supply[_source[i]] -= c;
|
| 1105 |
1277 |
_supply[_target[i]] += c;
|
| 1106 |
1278 |
}
|
| 1107 |
1279 |
}
|
| 1108 |
1280 |
}
|
| 1109 |
1281 |
|
| 1110 |
1282 |
// Add artificial arcs and initialize the spanning tree data structure
|
| 1111 |
1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1112 |
1284 |
_thread[u] = u + 1;
|
| 1113 |
1285 |
_rev_thread[u + 1] = u;
|
| 1114 |
1286 |
_succ_num[u] = 1;
|
| 1115 |
1287 |
_last_succ[u] = u;
|
| 1116 |
1288 |
_parent[u] = _root;
|
| 1117 |
1289 |
_pred[u] = e;
|
| 1118 |
1290 |
_cost[e] = art_cost;
|
| 1119 |
1291 |
_cap[e] = inf_cap;
|
| 1120 |
1292 |
_state[e] = STATE_TREE;
|
| 1121 |
|
if (_supply[u] >= 0) {
|
|
1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
|
| 1122 |
1294 |
_flow[e] = _supply[u];
|
| 1123 |
1295 |
_forward[u] = true;
|
| 1124 |
|
_pi[u] = -art_cost;
|
|
1296 |
_pi[u] = -art_cost + _pi[_root];
|
| 1125 |
1297 |
} else {
|
| 1126 |
1298 |
_flow[e] = -_supply[u];
|
| 1127 |
1299 |
_forward[u] = false;
|
| 1128 |
|
_pi[u] = art_cost;
|
|
1300 |
_pi[u] = art_cost + _pi[_root];
|
| 1129 |
1301 |
}
|
| 1130 |
1302 |
}
|
| 1131 |
1303 |
|
| 1132 |
1304 |
return true;
|
| 1133 |
1305 |
}
|
| 1134 |
1306 |
|
| 1135 |
1307 |
// Find the join node
|
| 1136 |
1308 |
void findJoinNode() {
|
| 1137 |
1309 |
int u = _source[in_arc];
|
| 1138 |
1310 |
int v = _target[in_arc];
|
| 1139 |
1311 |
while (u != v) {
|
| 1140 |
1312 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1141 |
1313 |
u = _parent[u];
|
| 1142 |
1314 |
} else {
|
| 1143 |
1315 |
v = _parent[v];
|
| 1144 |
1316 |
}
|
| 1145 |
1317 |
}
|
| 1146 |
1318 |
join = u;
|
| 1147 |
1319 |
}
|
| 1148 |
1320 |
|
| 1149 |
1321 |
// Find the leaving arc of the cycle and returns true if the
|
| 1150 |
1322 |
// leaving arc is not the same as the entering arc
|
| 1151 |
1323 |
bool findLeavingArc() {
|
| 1152 |
1324 |
// Initialize first and second nodes according to the direction
|
| 1153 |
1325 |
// of the cycle
|
| 1154 |
1326 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1155 |
1327 |
first = _source[in_arc];
|
| 1156 |
1328 |
second = _target[in_arc];
|
| 1157 |
1329 |
} else {
|
| 1158 |
1330 |
first = _target[in_arc];
|
| 1159 |
1331 |
second = _source[in_arc];
|
| 1160 |
1332 |
}
|
| 1161 |
1333 |
delta = _cap[in_arc];
|
| 1162 |
1334 |
int result = 0;
|
| 1163 |
1335 |
Flow d;
|
| 1164 |
1336 |
int e;
|
| 1165 |
1337 |
|
| 1166 |
1338 |
// Search the cycle along the path form the first node to the root
|
| 1167 |
1339 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1168 |
1340 |
e = _pred[u];
|
| 1169 |
1341 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
|
| 1170 |
1342 |
if (d < delta) {
|
| 1171 |
1343 |
delta = d;
|
| 1172 |
1344 |
u_out = u;
|
| 1173 |
1345 |
result = 1;
|
| 1174 |
1346 |
}
|
| 1175 |
1347 |
}
|
| 1176 |
1348 |
// Search the cycle along the path form the second node to the root
|
| ... |
... |
@@ -1337,79 +1509,74 @@
|
| 1337 |
1509 |
}
|
| 1338 |
1510 |
}
|
| 1339 |
1511 |
|
| 1340 |
1512 |
// Update potentials
|
| 1341 |
1513 |
void updatePotential() {
|
| 1342 |
1514 |
Cost sigma = _forward[u_in] ?
|
| 1343 |
1515 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
|
| 1344 |
1516 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
|
| 1345 |
1517 |
// Update potentials in the subtree, which has been moved
|
| 1346 |
1518 |
int end = _thread[_last_succ[u_in]];
|
| 1347 |
1519 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1348 |
1520 |
_pi[u] += sigma;
|
| 1349 |
1521 |
}
|
| 1350 |
1522 |
}
|
| 1351 |
1523 |
|
| 1352 |
1524 |
// Execute the algorithm
|
| 1353 |
1525 |
bool start(PivotRule pivot_rule) {
|
| 1354 |
1526 |
// Select the pivot rule implementation
|
| 1355 |
1527 |
switch (pivot_rule) {
|
| 1356 |
1528 |
case FIRST_ELIGIBLE:
|
| 1357 |
1529 |
return start<FirstEligiblePivotRule>();
|
| 1358 |
1530 |
case BEST_ELIGIBLE:
|
| 1359 |
1531 |
return start<BestEligiblePivotRule>();
|
| 1360 |
1532 |
case BLOCK_SEARCH:
|
| 1361 |
1533 |
return start<BlockSearchPivotRule>();
|
| 1362 |
1534 |
case CANDIDATE_LIST:
|
| 1363 |
1535 |
return start<CandidateListPivotRule>();
|
| 1364 |
1536 |
case ALTERING_LIST:
|
| 1365 |
1537 |
return start<AlteringListPivotRule>();
|
| 1366 |
1538 |
}
|
| 1367 |
1539 |
return false;
|
| 1368 |
1540 |
}
|
| 1369 |
1541 |
|
| 1370 |
1542 |
template <typename PivotRuleImpl>
|
| 1371 |
1543 |
bool start() {
|
| 1372 |
1544 |
PivotRuleImpl pivot(*this);
|
| 1373 |
1545 |
|
| 1374 |
1546 |
// Execute the Network Simplex algorithm
|
| 1375 |
1547 |
while (pivot.findEnteringArc()) {
|
| 1376 |
1548 |
findJoinNode();
|
| 1377 |
1549 |
bool change = findLeavingArc();
|
| 1378 |
1550 |
changeFlow(change);
|
| 1379 |
1551 |
if (change) {
|
| 1380 |
1552 |
updateTreeStructure();
|
| 1381 |
1553 |
updatePotential();
|
| 1382 |
1554 |
}
|
| 1383 |
1555 |
}
|
| 1384 |
1556 |
|
| 1385 |
|
// Check if the flow amount equals zero on all the artificial arcs
|
| 1386 |
|
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
|
| 1387 |
|
if (_flow[e] > 0) return false;
|
| 1388 |
|
}
|
| 1389 |
|
|
| 1390 |
1557 |
// Copy flow values to _flow_map
|
| 1391 |
1558 |
if (_plower) {
|
| 1392 |
1559 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1393 |
1560 |
Arc e = _arc_ref[i];
|
| 1394 |
1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]);
|
| 1395 |
1562 |
}
|
| 1396 |
1563 |
} else {
|
| 1397 |
1564 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1398 |
1565 |
_flow_map->set(_arc_ref[i], _flow[i]);
|
| 1399 |
1566 |
}
|
| 1400 |
1567 |
}
|
| 1401 |
1568 |
// Copy potential values to _potential_map
|
| 1402 |
1569 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1403 |
1570 |
_potential_map->set(n, _pi[_node_id[n]]);
|
| 1404 |
1571 |
}
|
| 1405 |
1572 |
|
| 1406 |
1573 |
return true;
|
| 1407 |
1574 |
}
|
| 1408 |
1575 |
|
| 1409 |
1576 |
}; //class NetworkSimplex
|
| 1410 |
1577 |
|
| 1411 |
1578 |
///@}
|
| 1412 |
1579 |
|
| 1413 |
1580 |
} //namespace lemon
|
| 1414 |
1581 |
|
| 1415 |
1582 |
#endif //LEMON_NETWORK_SIMPLEX_H
|