... | ... |
@@ -207,193 +207,198 @@ |
207 | 207 |
return new Heap(crossref); |
208 | 208 |
} |
209 | 209 |
}; |
210 | 210 |
|
211 | 211 |
/// \brief \ref named-templ-param "Named parameter" for setting |
212 | 212 |
/// heap and cross reference type with automatic allocation |
213 | 213 |
/// |
214 | 214 |
/// \ref named-templ-param "Named parameter" for setting heap and |
215 | 215 |
/// cross reference type with automatic allocation. They should |
216 | 216 |
/// have standard constructor interfaces to be able to |
217 | 217 |
/// automatically created by the algorithm (i.e. the graph should |
218 | 218 |
/// be passed to the constructor of the cross reference and the |
219 | 219 |
/// cross reference should be passed to the constructor of the |
220 | 220 |
/// heap). However, external heap and cross reference objects |
221 | 221 |
/// could also be passed to the algorithm using the \ref heap() |
222 | 222 |
/// function before calling \ref run() or \ref init(). The heap |
223 | 223 |
/// has to maximize the priorities. |
224 | 224 |
/// \sa SetHeap |
225 | 225 |
template <class H, class CR = RangeMap<int> > |
226 | 226 |
struct SetStandardHeap |
227 | 227 |
: public NagamochiIbaraki<Graph, CapacityMap, |
228 | 228 |
SetStandardHeapTraits<H, CR> > { |
229 | 229 |
typedef NagamochiIbaraki<Graph, CapacityMap, |
230 | 230 |
SetStandardHeapTraits<H, CR> > Create; |
231 | 231 |
}; |
232 | 232 |
|
233 | 233 |
///@} |
234 | 234 |
|
235 | 235 |
|
236 | 236 |
private: |
237 | 237 |
|
238 | 238 |
const Graph &_graph; |
239 | 239 |
const CapacityMap *_capacity; |
240 | 240 |
bool _local_capacity; // unit capacity |
241 | 241 |
|
242 | 242 |
struct ArcData { |
243 | 243 |
typename Graph::Node target; |
244 | 244 |
int prev, next; |
245 | 245 |
}; |
246 | 246 |
struct EdgeData { |
247 | 247 |
Value capacity; |
248 | 248 |
Value cut; |
249 | 249 |
}; |
250 | 250 |
|
251 | 251 |
struct NodeData { |
252 | 252 |
int first_arc; |
253 | 253 |
typename Graph::Node prev, next; |
254 | 254 |
int curr_arc; |
255 | 255 |
typename Graph::Node last_rep; |
256 | 256 |
Value sum; |
257 | 257 |
}; |
258 | 258 |
|
259 | 259 |
typename Graph::template NodeMap<NodeData> *_nodes; |
260 | 260 |
std::vector<ArcData> _arcs; |
261 | 261 |
std::vector<EdgeData> _edges; |
262 | 262 |
|
263 | 263 |
typename Graph::Node _first_node; |
264 | 264 |
int _node_num; |
265 | 265 |
|
266 | 266 |
Value _min_cut; |
267 | 267 |
|
268 | 268 |
HeapCrossRef *_heap_cross_ref; |
269 | 269 |
bool _local_heap_cross_ref; |
270 | 270 |
Heap *_heap; |
271 | 271 |
bool _local_heap; |
272 | 272 |
|
273 | 273 |
typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; |
274 | 274 |
NodeList *_next_rep; |
275 | 275 |
|
276 | 276 |
typedef typename Graph::template NodeMap<bool> MinCutMap; |
277 | 277 |
MinCutMap *_cut_map; |
278 | 278 |
|
279 | 279 |
void createStructures() { |
280 | 280 |
if (!_nodes) { |
281 | 281 |
_nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); |
282 | 282 |
} |
283 | 283 |
if (!_capacity) { |
284 | 284 |
_local_capacity = true; |
285 | 285 |
_capacity = Traits::createCapacityMap(_graph); |
286 | 286 |
} |
287 | 287 |
if (!_heap_cross_ref) { |
288 | 288 |
_local_heap_cross_ref = true; |
289 | 289 |
_heap_cross_ref = Traits::createHeapCrossRef(_graph); |
290 | 290 |
} |
291 | 291 |
if (!_heap) { |
292 | 292 |
_local_heap = true; |
293 | 293 |
_heap = Traits::createHeap(*_heap_cross_ref); |
294 | 294 |
} |
295 | 295 |
if (!_next_rep) { |
296 | 296 |
_next_rep = new NodeList(_graph); |
297 | 297 |
} |
298 | 298 |
if (!_cut_map) { |
299 | 299 |
_cut_map = new MinCutMap(_graph); |
300 | 300 |
} |
301 | 301 |
} |
302 | 302 |
|
303 |
|
|
303 |
protected: |
|
304 |
//This is here to avoid a gcc-3.3 compilation error. |
|
305 |
//It should never be called. |
|
306 |
NagamochiIbaraki() {} |
|
307 |
|
|
308 |
public: |
|
304 | 309 |
|
305 | 310 |
typedef NagamochiIbaraki Create; |
306 | 311 |
|
307 | 312 |
|
308 | 313 |
/// \brief Constructor. |
309 | 314 |
/// |
310 | 315 |
/// \param graph The graph the algorithm runs on. |
311 | 316 |
/// \param capacity The capacity map used by the algorithm. |
312 | 317 |
NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
313 | 318 |
: _graph(graph), _capacity(&capacity), _local_capacity(false), |
314 | 319 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
315 | 320 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
316 | 321 |
_heap(0), _local_heap(false), |
317 | 322 |
_next_rep(0), _cut_map(0) {} |
318 | 323 |
|
319 | 324 |
/// \brief Constructor. |
320 | 325 |
/// |
321 | 326 |
/// This constructor can be used only when the Traits class |
322 | 327 |
/// defines how can the local capacity map be instantiated. |
323 | 328 |
/// If the SetUnitCapacity used the algorithm automatically |
324 | 329 |
/// constructs the capacity map. |
325 | 330 |
/// |
326 | 331 |
///\param graph The graph the algorithm runs on. |
327 | 332 |
NagamochiIbaraki(const Graph& graph) |
328 | 333 |
: _graph(graph), _capacity(0), _local_capacity(false), |
329 | 334 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
330 | 335 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
331 | 336 |
_heap(0), _local_heap(false), |
332 | 337 |
_next_rep(0), _cut_map(0) {} |
333 | 338 |
|
334 | 339 |
/// \brief Destructor. |
335 | 340 |
/// |
336 | 341 |
/// Destructor. |
337 | 342 |
~NagamochiIbaraki() { |
338 | 343 |
if (_local_capacity) delete _capacity; |
339 | 344 |
if (_nodes) delete _nodes; |
340 | 345 |
if (_local_heap) delete _heap; |
341 | 346 |
if (_local_heap_cross_ref) delete _heap_cross_ref; |
342 | 347 |
if (_next_rep) delete _next_rep; |
343 | 348 |
if (_cut_map) delete _cut_map; |
344 | 349 |
} |
345 | 350 |
|
346 | 351 |
/// \brief Sets the heap and the cross reference used by algorithm. |
347 | 352 |
/// |
348 | 353 |
/// Sets the heap and the cross reference used by algorithm. |
349 | 354 |
/// If you don't use this function before calling \ref run(), |
350 | 355 |
/// it will allocate one. The destuctor deallocates this |
351 | 356 |
/// automatically allocated heap and cross reference, of course. |
352 | 357 |
/// \return <tt> (*this) </tt> |
353 | 358 |
NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) |
354 | 359 |
{ |
355 | 360 |
if (_local_heap_cross_ref) { |
356 | 361 |
delete _heap_cross_ref; |
357 | 362 |
_local_heap_cross_ref = false; |
358 | 363 |
} |
359 | 364 |
_heap_cross_ref = &cr; |
360 | 365 |
if (_local_heap) { |
361 | 366 |
delete _heap; |
362 | 367 |
_local_heap = false; |
363 | 368 |
} |
364 | 369 |
_heap = &hp; |
365 | 370 |
return *this; |
366 | 371 |
} |
367 | 372 |
|
368 | 373 |
/// \name Execution control |
369 | 374 |
/// The simplest way to execute the algorithm is to use |
370 | 375 |
/// one of the member functions called \c run(). |
371 | 376 |
/// \n |
372 | 377 |
/// If you need more control on the execution, |
373 | 378 |
/// first you must call \ref init() and then call the start() |
374 | 379 |
/// or proper times the processNextPhase() member functions. |
375 | 380 |
|
376 | 381 |
///@{ |
377 | 382 |
|
378 | 383 |
/// \brief Initializes the internal data structures. |
379 | 384 |
/// |
380 | 385 |
/// Initializes the internal data structures. |
381 | 386 |
void init() { |
382 | 387 |
createStructures(); |
383 | 388 |
|
384 | 389 |
int edge_num = countEdges(_graph); |
385 | 390 |
_edges.resize(edge_num); |
386 | 391 |
_arcs.resize(2 * edge_num); |
387 | 392 |
|
388 | 393 |
typename Graph::Node prev = INVALID; |
389 | 394 |
_node_num = 0; |
390 | 395 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
391 | 396 |
(*_cut_map)[n] = false; |
392 | 397 |
(*_next_rep)[n] = INVALID; |
393 | 398 |
(*_nodes)[n].last_rep = n; |
394 | 399 |
(*_nodes)[n].first_arc = -1; |
395 | 400 |
(*_nodes)[n].curr_arc = -1; |
396 | 401 |
(*_nodes)[n].prev = prev; |
397 | 402 |
if (prev != INVALID) { |
398 | 403 |
(*_nodes)[prev].next = n; |
399 | 404 |
} |
0 comments (0 inline)