... | ... |
@@ -18,512 +18,695 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 |
/// \ingroup |
|
22 |
/// \ingroup min_cost_flow_algs |
|
23 | 23 |
/// |
24 | 24 |
/// \file |
25 |
/// \brief Capacity |
|
25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
|
26 | 26 |
|
27 | 27 |
#include <vector> |
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
28 | 30 |
#include <lemon/bin_heap.h> |
29 | 31 |
|
30 | 32 |
namespace lemon { |
31 | 33 |
|
32 |
/// \addtogroup |
|
34 |
/// \addtogroup min_cost_flow_algs |
|
33 | 35 |
/// @{ |
34 | 36 |
|
35 |
/// \brief Implementation of the capacity scaling algorithm for |
|
36 |
/// finding a minimum cost flow. |
|
37 |
/// \brief Implementation of the Capacity Scaling algorithm for |
|
38 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
37 | 39 |
/// |
38 | 40 |
/// \ref CapacityScaling implements the capacity scaling version |
39 |
/// of the successive shortest path algorithm for finding a minimum |
|
40 |
/// cost flow. |
|
41 |
/// of the successive shortest path algorithm for finding a |
|
42 |
/// \ref min_cost_flow "minimum cost flow". It is an efficient dual |
|
43 |
/// solution method. |
|
41 | 44 |
/// |
42 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
43 |
/// \tparam LowerMap The type of the lower bound map. |
|
44 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
45 |
/// \tparam CostMap The type of the cost (length) map. |
|
46 |
/// |
|
45 |
/// Most of the parameters of the problem (except for the digraph) |
|
46 |
/// can be given using separate functions, and the algorithm can be |
|
47 |
/// executed using the \ref run() function. If some parameters are not |
|
48 |
/// specified, then default values will be used. |
|
47 | 49 |
/// |
48 |
/// \warning |
|
49 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
50 |
/// - Supply values should be \e signed \e integers. |
|
51 |
/// - The value types of the maps should be convertible to each other. |
|
52 |
/// |
|
50 |
/// \tparam GR The digraph type the algorithm runs on. |
|
51 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
52 |
/// and supply values in the algorithm. By default it is \c int. |
|
53 |
/// \tparam C The value type used for costs and potentials in the |
|
54 |
/// algorithm. By default it is the same as \c V. |
|
53 | 55 |
/// |
54 |
/// \author Peter Kovacs |
|
55 |
template < typename Digraph, |
|
56 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
57 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
58 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
59 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
56 |
/// \warning Both value types must be signed and all input data must |
|
57 |
/// be integer. |
|
58 |
/// \warning This algorithm does not support negative costs for such |
|
59 |
/// arcs that have infinite upper bound. |
|
60 |
template <typename GR, typename V = int, typename C = V> |
|
60 | 61 |
class CapacityScaling |
61 | 62 |
{ |
62 |
|
|
63 |
public: |
|
63 | 64 |
|
64 |
typedef typename CapacityMap::Value Capacity; |
|
65 |
typedef typename CostMap::Value Cost; |
|
66 |
typedef typename SupplyMap::Value Supply; |
|
67 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
68 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
|
65 |
/// The type of the flow amounts, capacity bounds and supply values |
|
66 |
typedef V Value; |
|
67 |
/// The type of the arc costs |
|
68 |
typedef C Cost; |
|
70 | 69 |
|
71 | 70 |
public: |
72 | 71 |
|
73 |
/// The type of the flow map. |
|
74 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
75 |
/// The type of the potential map. |
|
76 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
72 |
/// \brief Problem type constants for the \c run() function. |
|
73 |
/// |
|
74 |
/// Enum type containing the problem type constants that can be |
|
75 |
/// returned by the \ref run() function of the algorithm. |
|
76 |
enum ProblemType { |
|
77 |
/// The problem has no feasible solution (flow). |
|
78 |
INFEASIBLE, |
|
79 |
/// The problem has optimal solution (i.e. it is feasible and |
|
80 |
/// bounded), and the algorithm has found optimal flow and node |
|
81 |
/// potentials (primal and dual solutions). |
|
82 |
OPTIMAL, |
|
83 |
/// The digraph contains an arc of negative cost and infinite |
|
84 |
/// upper bound. It means that the objective function is unbounded |
|
85 |
/// on that arc, however note that it could actually be bounded |
|
86 |
/// over the feasible flows, but this algroithm cannot handle |
|
87 |
/// these cases. |
|
88 |
UNBOUNDED |
|
89 |
}; |
|
90 |
|
|
91 |
private: |
|
92 |
|
|
93 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
94 |
|
|
95 |
typedef std::vector<Arc> ArcVector; |
|
96 |
typedef std::vector<Node> NodeVector; |
|
97 |
typedef std::vector<int> IntVector; |
|
98 |
typedef std::vector<bool> BoolVector; |
|
99 |
typedef std::vector<Value> ValueVector; |
|
100 |
typedef std::vector<Cost> CostVector; |
|
77 | 101 |
|
78 | 102 |
private: |
79 | 103 |
|
80 |
/// \brief Special implementation of the \ref Dijkstra algorithm |
|
81 |
/// for finding shortest paths in the residual network. |
|
104 |
// Data related to the underlying digraph |
|
105 |
const GR &_graph; |
|
106 |
int _node_num; |
|
107 |
int _arc_num; |
|
108 |
int _res_arc_num; |
|
109 |
int _root; |
|
110 |
|
|
111 |
// Parameters of the problem |
|
112 |
bool _have_lower; |
|
113 |
Value _sum_supply; |
|
114 |
|
|
115 |
// Data structures for storing the digraph |
|
116 |
IntNodeMap _node_id; |
|
117 |
IntArcMap _arc_idf; |
|
118 |
IntArcMap _arc_idb; |
|
119 |
IntVector _first_out; |
|
120 |
BoolVector _forward; |
|
121 |
IntVector _source; |
|
122 |
IntVector _target; |
|
123 |
IntVector _reverse; |
|
124 |
|
|
125 |
// Node and arc data |
|
126 |
ValueVector _lower; |
|
127 |
ValueVector _upper; |
|
128 |
CostVector _cost; |
|
129 |
ValueVector _supply; |
|
130 |
|
|
131 |
ValueVector _res_cap; |
|
132 |
CostVector _pi; |
|
133 |
ValueVector _excess; |
|
134 |
IntVector _excess_nodes; |
|
135 |
IntVector _deficit_nodes; |
|
136 |
|
|
137 |
Value _delta; |
|
138 |
int _phase_num; |
|
139 |
IntVector _pred; |
|
140 |
|
|
141 |
public: |
|
142 |
|
|
143 |
/// \brief Constant for infinite upper bounds (capacities). |
|
82 | 144 |
/// |
83 |
/// \ref ResidualDijkstra is a special implementation of the |
|
84 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
|
85 |
/// residual network of the digraph with respect to the reduced arc |
|
86 |
/// costs and modifying the node potentials according to the |
|
87 |
/// |
|
145 |
/// Constant for infinite upper bounds (capacities). |
|
146 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
147 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
148 |
const Value INF; |
|
149 |
|
|
150 |
private: |
|
151 |
|
|
152 |
// Special implementation of the Dijkstra algorithm for finding |
|
153 |
// shortest paths in the residual network of the digraph with |
|
154 |
// respect to the reduced arc costs and modifying the node |
|
155 |
// potentials according to the found distance labels. |
|
88 | 156 |
class ResidualDijkstra |
89 | 157 |
{ |
90 |
typedef |
|
158 |
typedef RangeMap<int> HeapCrossRef; |
|
91 | 159 |
typedef BinHeap<Cost, HeapCrossRef> Heap; |
92 | 160 |
|
93 | 161 |
private: |
94 | 162 |
|
95 |
// The digraph the algorithm runs on |
|
96 |
const Digraph &_graph; |
|
97 |
|
|
98 |
// The main maps |
|
99 |
const FlowMap &_flow; |
|
100 |
const CapacityArcMap &_res_cap; |
|
101 |
const CostMap &_cost; |
|
102 |
const SupplyNodeMap &_excess; |
|
103 |
PotentialMap &_potential; |
|
104 |
|
|
105 |
// The distance map |
|
106 |
PotentialMap _dist; |
|
107 |
// The pred arc map |
|
108 |
PredMap &_pred; |
|
109 |
// The processed (i.e. permanently labeled) nodes |
|
110 |
std::vector<Node> _proc_nodes; |
|
111 |
|
|
163 |
int _node_num; |
|
164 |
const IntVector &_first_out; |
|
165 |
const IntVector &_target; |
|
166 |
const CostVector &_cost; |
|
167 |
const ValueVector &_res_cap; |
|
168 |
const ValueVector &_excess; |
|
169 |
CostVector &_pi; |
|
170 |
IntVector &_pred; |
|
171 |
|
|
172 |
IntVector _proc_nodes; |
|
173 |
CostVector _dist; |
|
174 |
|
|
112 | 175 |
public: |
113 | 176 |
|
114 |
/// Constructor. |
|
115 |
ResidualDijkstra( const Digraph &digraph, |
|
116 |
const FlowMap &flow, |
|
117 |
const CapacityArcMap &res_cap, |
|
118 |
const CostMap &cost, |
|
119 |
const SupplyMap &excess, |
|
120 |
PotentialMap &potential, |
|
121 |
PredMap &pred ) : |
|
122 |
_graph(digraph), _flow(flow), _res_cap(res_cap), _cost(cost), |
|
123 |
_excess(excess), _potential(potential), _dist(digraph), |
|
124 |
|
|
177 |
ResidualDijkstra(CapacityScaling& cs) : |
|
178 |
_node_num(cs._node_num), _first_out(cs._first_out), |
|
179 |
_target(cs._target), _cost(cs._cost), _res_cap(cs._res_cap), |
|
180 |
_excess(cs._excess), _pi(cs._pi), _pred(cs._pred), |
|
181 |
_dist(cs._node_num) |
|
125 | 182 |
{} |
126 | 183 |
|
127 |
/// Run the algorithm from the given source node. |
|
128 |
Node run(Node s, Capacity delta = 1) { |
|
129 |
|
|
184 |
int run(int s, Value delta = 1) { |
|
185 |
HeapCrossRef heap_cross_ref(_node_num, Heap::PRE_HEAP); |
|
130 | 186 |
Heap heap(heap_cross_ref); |
131 | 187 |
heap.push(s, 0); |
132 |
_pred[s] = |
|
188 |
_pred[s] = -1; |
|
133 | 189 |
_proc_nodes.clear(); |
134 | 190 |
|
135 |
// |
|
191 |
// Process nodes |
|
136 | 192 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
137 |
Node u = heap.top(), v; |
|
138 |
Cost d = heap.prio() + _potential[u], nd; |
|
193 |
int u = heap.top(), v; |
|
194 |
Cost d = heap.prio() + _pi[u], dn; |
|
139 | 195 |
_dist[u] = heap.prio(); |
196 |
_proc_nodes.push_back(u); |
|
140 | 197 |
heap.pop(); |
141 |
_proc_nodes.push_back(u); |
|
142 | 198 |
|
143 |
// Traversing outgoing arcs |
|
144 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
|
145 |
if (_res_cap[e] >= delta) { |
|
146 |
v = _graph.target(e); |
|
147 |
|
|
199 |
// Traverse outgoing residual arcs |
|
200 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
|
201 |
if (_res_cap[a] < delta) continue; |
|
202 |
v = _target[a]; |
|
203 |
switch (heap.state(v)) { |
|
148 | 204 |
case Heap::PRE_HEAP: |
149 |
heap.push(v, d + _cost[e] - _potential[v]); |
|
150 |
_pred[v] = e; |
|
205 |
heap.push(v, d + _cost[a] - _pi[v]); |
|
206 |
_pred[v] = a; |
|
151 | 207 |
break; |
152 | 208 |
case Heap::IN_HEAP: |
153 |
nd = d + _cost[e] - _potential[v]; |
|
154 |
if (nd < heap[v]) { |
|
155 |
heap.decrease(v, nd); |
|
156 |
_pred[v] = e; |
|
209 |
dn = d + _cost[a] - _pi[v]; |
|
210 |
if (dn < heap[v]) { |
|
211 |
heap.decrease(v, dn); |
|
212 |
_pred[v] = a; |
|
157 | 213 |
} |
158 | 214 |
break; |
159 | 215 |
case Heap::POST_HEAP: |
160 | 216 |
break; |
161 |
} |
|
162 |
} |
|
163 |
} |
|
164 |
|
|
165 |
// Traversing incoming arcs |
|
166 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
|
167 |
if (_flow[e] >= delta) { |
|
168 |
v = _graph.source(e); |
|
169 |
switch(heap.state(v)) { |
|
170 |
case Heap::PRE_HEAP: |
|
171 |
heap.push(v, d - _cost[e] - _potential[v]); |
|
172 |
_pred[v] = e; |
|
173 |
break; |
|
174 |
case Heap::IN_HEAP: |
|
175 |
nd = d - _cost[e] - _potential[v]; |
|
176 |
if (nd < heap[v]) { |
|
177 |
heap.decrease(v, nd); |
|
178 |
_pred[v] = e; |
|
179 |
} |
|
180 |
break; |
|
181 |
case Heap::POST_HEAP: |
|
182 |
break; |
|
183 |
} |
|
184 | 217 |
} |
185 | 218 |
} |
186 | 219 |
} |
187 |
if (heap.empty()) return |
|
220 |
if (heap.empty()) return -1; |
|
188 | 221 |
|
189 |
// Updating potentials of processed nodes |
|
190 |
Node t = heap.top(); |
|
191 |
Cost t_dist = heap.prio(); |
|
192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
193 |
|
|
222 |
// Update potentials of processed nodes |
|
223 |
int t = heap.top(); |
|
224 |
Cost dt = heap.prio(); |
|
225 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
|
226 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
|
227 |
} |
|
194 | 228 |
|
195 | 229 |
return t; |
196 | 230 |
} |
197 | 231 |
|
198 | 232 |
}; //class ResidualDijkstra |
199 | 233 |
|
200 |
private: |
|
201 |
|
|
202 |
// The digraph the algorithm runs on |
|
203 |
const Digraph &_graph; |
|
204 |
// The original lower bound map |
|
205 |
const LowerMap *_lower; |
|
206 |
// The modified capacity map |
|
207 |
CapacityArcMap _capacity; |
|
208 |
// The original cost map |
|
209 |
const CostMap &_cost; |
|
210 |
// The modified supply map |
|
211 |
SupplyNodeMap _supply; |
|
212 |
bool _valid_supply; |
|
213 |
|
|
214 |
// Arc map of the current flow |
|
215 |
FlowMap *_flow; |
|
216 |
bool _local_flow; |
|
217 |
// Node map of the current potentials |
|
218 |
PotentialMap *_potential; |
|
219 |
bool _local_potential; |
|
220 |
|
|
221 |
// The residual capacity map |
|
222 |
CapacityArcMap _res_cap; |
|
223 |
// The excess map |
|
224 |
SupplyNodeMap _excess; |
|
225 |
// The excess nodes (i.e. nodes with positive excess) |
|
226 |
std::vector<Node> _excess_nodes; |
|
227 |
// The deficit nodes (i.e. nodes with negative excess) |
|
228 |
std::vector<Node> _deficit_nodes; |
|
229 |
|
|
230 |
// The delta parameter used for capacity scaling |
|
231 |
Capacity _delta; |
|
232 |
// The maximum number of phases |
|
233 |
int _phase_num; |
|
234 |
|
|
235 |
// The pred arc map |
|
236 |
PredMap _pred; |
|
237 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
238 |
// shortest paths in the residual network |
|
239 |
ResidualDijkstra *_dijkstra; |
|
240 |
|
|
241 | 234 |
public: |
242 | 235 |
|
243 |
/// \brief |
|
236 |
/// \brief Constructor. |
|
244 | 237 |
/// |
245 |
/// |
|
238 |
/// The constructor of the class. |
|
246 | 239 |
/// |
247 |
/// \param digraph The digraph the algorithm runs on. |
|
248 |
/// \param lower The lower bounds of the arcs. |
|
249 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
250 |
/// \param cost The cost (length) values of the arcs. |
|
251 |
/// \param supply The supply values of the nodes (signed). |
|
252 |
CapacityScaling( const Digraph &digraph, |
|
253 |
const LowerMap &lower, |
|
254 |
const CapacityMap &capacity, |
|
255 |
const CostMap &cost, |
|
256 |
const SupplyMap &supply ) : |
|
257 |
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), |
|
258 |
_supply(digraph), _flow(NULL), _local_flow(false), |
|
259 |
_potential(NULL), _local_potential(false), |
|
260 |
_res_cap(digraph), _excess(digraph), _pred(digraph), _dijkstra(NULL) |
|
240 |
/// \param graph The digraph the algorithm runs on. |
|
241 |
CapacityScaling(const GR& graph) : |
|
242 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
243 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
244 |
std::numeric_limits<Value>::infinity() : |
|
245 |
std::numeric_limits<Value>::max()) |
|
261 | 246 |
{ |
262 |
Supply sum = 0; |
|
263 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
264 |
_supply[n] = supply[n]; |
|
265 |
_excess[n] = supply[n]; |
|
266 |
|
|
247 |
// Check the value types |
|
248 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
249 |
"The flow type of CapacityScaling must be signed"); |
|
250 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
251 |
"The cost type of CapacityScaling must be signed"); |
|
252 |
|
|
253 |
// Resize vectors |
|
254 |
_node_num = countNodes(_graph); |
|
255 |
_arc_num = countArcs(_graph); |
|
256 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
257 |
_root = _node_num; |
|
258 |
++_node_num; |
|
259 |
|
|
260 |
_first_out.resize(_node_num + 1); |
|
261 |
_forward.resize(_res_arc_num); |
|
262 |
_source.resize(_res_arc_num); |
|
263 |
_target.resize(_res_arc_num); |
|
264 |
_reverse.resize(_res_arc_num); |
|
265 |
|
|
266 |
_lower.resize(_res_arc_num); |
|
267 |
_upper.resize(_res_arc_num); |
|
268 |
_cost.resize(_res_arc_num); |
|
269 |
_supply.resize(_node_num); |
|
270 |
|
|
271 |
_res_cap.resize(_res_arc_num); |
|
272 |
_pi.resize(_node_num); |
|
273 |
_excess.resize(_node_num); |
|
274 |
_pred.resize(_node_num); |
|
275 |
|
|
276 |
// Copy the graph |
|
277 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
|
278 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
279 |
_node_id[n] = i; |
|
267 | 280 |
} |
268 |
|
|
281 |
i = 0; |
|
282 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
283 |
_first_out[i] = j; |
|
284 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
285 |
_arc_idf[a] = j; |
|
286 |
_forward[j] = true; |
|
287 |
_source[j] = i; |
|
288 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
289 |
} |
|
290 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
291 |
_arc_idb[a] = j; |
|
292 |
_forward[j] = false; |
|
293 |
_source[j] = i; |
|
294 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
295 |
} |
|
296 |
_forward[j] = false; |
|
297 |
_source[j] = i; |
|
298 |
_target[j] = _root; |
|
299 |
_reverse[j] = k; |
|
300 |
_forward[k] = true; |
|
301 |
_source[k] = _root; |
|
302 |
_target[k] = i; |
|
303 |
_reverse[k] = j; |
|
304 |
++j; ++k; |
|
305 |
} |
|
306 |
_first_out[i] = j; |
|
307 |
_first_out[_node_num] = k; |
|
269 | 308 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
270 |
_capacity[a] = capacity[a]; |
|
271 |
_res_cap[a] = capacity[a]; |
|
309 |
int fi = _arc_idf[a]; |
|
310 |
int bi = _arc_idb[a]; |
|
311 |
_reverse[fi] = bi; |
|
312 |
_reverse[bi] = fi; |
|
272 | 313 |
} |
273 |
|
|
274 |
// Remove non-zero lower bounds |
|
275 |
typename LowerMap::Value lcap; |
|
276 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
277 |
if ((lcap = lower[e]) != 0) { |
|
278 |
_capacity[e] -= lcap; |
|
279 |
_res_cap[e] -= lcap; |
|
280 |
_supply[_graph.source(e)] -= lcap; |
|
281 |
_supply[_graph.target(e)] += lcap; |
|
282 |
_excess[_graph.source(e)] -= lcap; |
|
283 |
_excess[_graph.target(e)] += lcap; |
|
284 |
} |
|
285 |
} |
|
286 |
} |
|
287 |
/* |
|
288 |
/// \brief General constructor (without lower bounds). |
|
289 |
/// |
|
290 |
/// General constructor (without lower bounds). |
|
291 |
/// |
|
292 |
/// \param digraph The digraph the algorithm runs on. |
|
293 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
294 |
/// \param cost The cost (length) values of the arcs. |
|
295 |
/// \param supply The supply values of the nodes (signed). |
|
296 |
CapacityScaling( const Digraph &digraph, |
|
297 |
const CapacityMap &capacity, |
|
298 |
const CostMap &cost, |
|
299 |
const SupplyMap &supply ) : |
|
300 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
301 |
_supply(supply), _flow(NULL), _local_flow(false), |
|
302 |
_potential(NULL), _local_potential(false), |
|
303 |
_res_cap(capacity), _excess(supply), _pred(digraph), _dijkstra(NULL) |
|
304 |
{ |
|
305 |
// Check the sum of supply values |
|
306 |
Supply sum = 0; |
|
307 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
308 |
_valid_supply = sum == 0; |
|
314 |
|
|
315 |
// Reset parameters |
|
316 |
reset(); |
|
309 | 317 |
} |
310 | 318 |
|
311 |
/// \ |
|
319 |
/// \name Parameters |
|
320 |
/// The parameters of the algorithm can be specified using these |
|
321 |
/// functions. |
|
322 |
|
|
323 |
/// @{ |
|
324 |
|
|
325 |
/// \brief Set the lower bounds on the arcs. |
|
312 | 326 |
/// |
313 |
/// |
|
327 |
/// This function sets the lower bounds on the arcs. |
|
328 |
/// If it is not used before calling \ref run(), the lower bounds |
|
329 |
/// will be set to zero on all arcs. |
|
314 | 330 |
/// |
315 |
/// \param digraph The digraph the algorithm runs on. |
|
316 |
/// \param lower The lower bounds of the arcs. |
|
317 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
318 |
/// \param cost The cost (length) values of the arcs. |
|
319 |
/// \param s The source node. |
|
320 |
/// \param t The target node. |
|
321 |
/// \param flow_value The required amount of flow from node \c s |
|
322 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
323 |
CapacityScaling( const Digraph &digraph, |
|
324 |
const LowerMap &lower, |
|
325 |
const CapacityMap &capacity, |
|
326 |
const CostMap &cost, |
|
327 |
Node s, Node t, |
|
328 |
Supply flow_value ) : |
|
329 |
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
330 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
331 |
_potential(NULL), _local_potential(false), |
|
332 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
333 |
{ |
|
334 |
// Remove non-zero lower bounds |
|
335 |
_supply[s] = _excess[s] = flow_value; |
|
336 |
_supply[t] = _excess[t] = -flow_value; |
|
337 |
typename LowerMap::Value lcap; |
|
338 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
339 |
if ((lcap = lower[e]) != 0) { |
|
340 |
_capacity[e] -= lcap; |
|
341 |
_res_cap[e] -= lcap; |
|
342 |
_supply[_graph.source(e)] -= lcap; |
|
343 |
_supply[_graph.target(e)] += lcap; |
|
344 |
_excess[_graph.source(e)] -= lcap; |
|
345 |
_excess[_graph.target(e)] += lcap; |
|
346 |
} |
|
331 |
/// \param map An arc map storing the lower bounds. |
|
332 |
/// Its \c Value type must be convertible to the \c Value type |
|
333 |
/// of the algorithm. |
|
334 |
/// |
|
335 |
/// \return <tt>(*this)</tt> |
|
336 |
template <typename LowerMap> |
|
337 |
CapacityScaling& lowerMap(const LowerMap& map) { |
|
338 |
_have_lower = true; |
|
339 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
340 |
_lower[_arc_idf[a]] = map[a]; |
|
341 |
_lower[_arc_idb[a]] = map[a]; |
|
347 | 342 |
} |
348 |
_valid_supply = true; |
|
349 |
} |
|
350 |
|
|
351 |
/// \brief Simple constructor (without lower bounds). |
|
352 |
/// |
|
353 |
/// Simple constructor (without lower bounds). |
|
354 |
/// |
|
355 |
/// \param digraph The digraph the algorithm runs on. |
|
356 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
357 |
/// \param cost The cost (length) values of the arcs. |
|
358 |
/// \param s The source node. |
|
359 |
/// \param t The target node. |
|
360 |
/// \param flow_value The required amount of flow from node \c s |
|
361 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
362 |
CapacityScaling( const Digraph &digraph, |
|
363 |
const CapacityMap &capacity, |
|
364 |
const CostMap &cost, |
|
365 |
Node s, Node t, |
|
366 |
Supply flow_value ) : |
|
367 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
368 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
369 |
_potential(NULL), _local_potential(false), |
|
370 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
371 |
{ |
|
372 |
_supply[s] = _excess[s] = flow_value; |
|
373 |
_supply[t] = _excess[t] = -flow_value; |
|
374 |
_valid_supply = true; |
|
375 |
} |
|
376 |
*/ |
|
377 |
/// Destructor. |
|
378 |
~CapacityScaling() { |
|
379 |
if (_local_flow) delete _flow; |
|
380 |
if (_local_potential) delete _potential; |
|
381 |
delete _dijkstra; |
|
382 |
} |
|
383 |
|
|
384 |
/// \brief Set the flow map. |
|
385 |
/// |
|
386 |
/// Set the flow map. |
|
387 |
/// |
|
388 |
/// \return \c (*this) |
|
389 |
CapacityScaling& flowMap(FlowMap &map) { |
|
390 |
if (_local_flow) { |
|
391 |
delete _flow; |
|
392 |
_local_flow = false; |
|
393 |
} |
|
394 |
_flow = ↦ |
|
395 | 343 |
return *this; |
396 | 344 |
} |
397 | 345 |
|
398 |
/// \brief Set the |
|
346 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
399 | 347 |
/// |
400 |
/// |
|
348 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
349 |
/// If it is not used before calling \ref run(), the upper bounds |
|
350 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
351 |
/// unbounded from above on each arc). |
|
401 | 352 |
/// |
402 |
/// \return \c (*this) |
|
403 |
CapacityScaling& potentialMap(PotentialMap &map) { |
|
404 |
if (_local_potential) { |
|
405 |
delete _potential; |
|
406 |
|
|
353 |
/// \param map An arc map storing the upper bounds. |
|
354 |
/// Its \c Value type must be convertible to the \c Value type |
|
355 |
/// of the algorithm. |
|
356 |
/// |
|
357 |
/// \return <tt>(*this)</tt> |
|
358 |
template<typename UpperMap> |
|
359 |
CapacityScaling& upperMap(const UpperMap& map) { |
|
360 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
361 |
_upper[_arc_idf[a]] = map[a]; |
|
407 | 362 |
} |
408 |
_potential = ↦ |
|
409 | 363 |
return *this; |
410 | 364 |
} |
411 | 365 |
|
366 |
/// \brief Set the costs of the arcs. |
|
367 |
/// |
|
368 |
/// This function sets the costs of the arcs. |
|
369 |
/// If it is not used before calling \ref run(), the costs |
|
370 |
/// will be set to \c 1 on all arcs. |
|
371 |
/// |
|
372 |
/// \param map An arc map storing the costs. |
|
373 |
/// Its \c Value type must be convertible to the \c Cost type |
|
374 |
/// of the algorithm. |
|
375 |
/// |
|
376 |
/// \return <tt>(*this)</tt> |
|
377 |
template<typename CostMap> |
|
378 |
CapacityScaling& costMap(const CostMap& map) { |
|
379 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
380 |
_cost[_arc_idf[a]] = map[a]; |
|
381 |
_cost[_arc_idb[a]] = -map[a]; |
|
382 |
} |
|
383 |
return *this; |
|
384 |
} |
|
385 |
|
|
386 |
/// \brief Set the supply values of the nodes. |
|
387 |
/// |
|
388 |
/// This function sets the supply values of the nodes. |
|
389 |
/// If neither this function nor \ref stSupply() is used before |
|
390 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
391 |
/// |
|
392 |
/// \param map A node map storing the supply values. |
|
393 |
/// Its \c Value type must be convertible to the \c Value type |
|
394 |
/// of the algorithm. |
|
395 |
/// |
|
396 |
/// \return <tt>(*this)</tt> |
|
397 |
template<typename SupplyMap> |
|
398 |
CapacityScaling& supplyMap(const SupplyMap& map) { |
|
399 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
400 |
_supply[_node_id[n]] = map[n]; |
|
401 |
} |
|
402 |
return *this; |
|
403 |
} |
|
404 |
|
|
405 |
/// \brief Set single source and target nodes and a supply value. |
|
406 |
/// |
|
407 |
/// This function sets a single source node and a single target node |
|
408 |
/// and the required flow value. |
|
409 |
/// If neither this function nor \ref supplyMap() is used before |
|
410 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
411 |
/// |
|
412 |
/// Using this function has the same effect as using \ref supplyMap() |
|
413 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
414 |
/// assigned to \c t and all other nodes have zero supply value. |
|
415 |
/// |
|
416 |
/// \param s The source node. |
|
417 |
/// \param t The target node. |
|
418 |
/// \param k The required amount of flow from node \c s to node \c t |
|
419 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
420 |
/// |
|
421 |
/// \return <tt>(*this)</tt> |
|
422 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
|
423 |
for (int i = 0; i != _node_num; ++i) { |
|
424 |
_supply[i] = 0; |
|
425 |
} |
|
426 |
_supply[_node_id[s]] = k; |
|
427 |
_supply[_node_id[t]] = -k; |
|
428 |
return *this; |
|
429 |
} |
|
430 |
|
|
431 |
/// @} |
|
432 |
|
|
412 | 433 |
/// \name Execution control |
413 | 434 |
|
414 | 435 |
/// @{ |
415 | 436 |
|
416 | 437 |
/// \brief Run the algorithm. |
417 | 438 |
/// |
418 | 439 |
/// This function runs the algorithm. |
440 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
441 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
442 |
/// For example, |
|
443 |
/// \code |
|
444 |
/// CapacityScaling<ListDigraph> cs(graph); |
|
445 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
446 |
/// .supplyMap(sup).run(); |
|
447 |
/// \endcode |
|
448 |
/// |
|
449 |
/// This function can be called more than once. All the parameters |
|
450 |
/// that have been given are kept for the next call, unless |
|
451 |
/// \ref reset() is called, thus only the modified parameters |
|
452 |
/// have to be set again. See \ref reset() for examples. |
|
453 |
/// However the underlying digraph must not be modified after this |
|
454 |
/// class have been constructed, since it copies the digraph. |
|
419 | 455 |
/// |
420 | 456 |
/// \param scaling Enable or disable capacity scaling. |
421 |
/// If the maximum |
|
457 |
/// If the maximum upper bound and/or the amount of total supply |
|
422 | 458 |
/// is rather small, the algorithm could be slightly faster without |
423 | 459 |
/// scaling. |
424 | 460 |
/// |
425 |
/// \return \c true if a feasible flow can be found. |
|
426 |
bool run(bool scaling = true) { |
|
427 |
|
|
461 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
462 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
463 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
464 |
/// optimal flow and node potentials (primal and dual solutions), |
|
465 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
466 |
/// and infinite upper bound. It means that the objective function |
|
467 |
/// is unbounded on that arc, however note that it could actually be |
|
468 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
469 |
/// these cases. |
|
470 |
/// |
|
471 |
/// \see ProblemType |
|
472 |
ProblemType run(bool scaling = true) { |
|
473 |
ProblemType pt = init(scaling); |
|
474 |
if (pt != OPTIMAL) return pt; |
|
475 |
return start(); |
|
476 |
} |
|
477 |
|
|
478 |
/// \brief Reset all the parameters that have been given before. |
|
479 |
/// |
|
480 |
/// This function resets all the paramaters that have been given |
|
481 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
482 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
483 |
/// |
|
484 |
/// It is useful for multiple run() calls. If this function is not |
|
485 |
/// used, all the parameters given before are kept for the next |
|
486 |
/// \ref run() call. |
|
487 |
/// However the underlying digraph must not be modified after this |
|
488 |
/// class have been constructed, since it copies and extends the graph. |
|
489 |
/// |
|
490 |
/// For example, |
|
491 |
/// \code |
|
492 |
/// CapacityScaling<ListDigraph> cs(graph); |
|
493 |
/// |
|
494 |
/// // First run |
|
495 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
496 |
/// .supplyMap(sup).run(); |
|
497 |
/// |
|
498 |
/// // Run again with modified cost map (reset() is not called, |
|
499 |
/// // so only the cost map have to be set again) |
|
500 |
/// cost[e] += 100; |
|
501 |
/// cs.costMap(cost).run(); |
|
502 |
/// |
|
503 |
/// // Run again from scratch using reset() |
|
504 |
/// // (the lower bounds will be set to zero on all arcs) |
|
505 |
/// cs.reset(); |
|
506 |
/// cs.upperMap(capacity).costMap(cost) |
|
507 |
/// .supplyMap(sup).run(); |
|
508 |
/// \endcode |
|
509 |
/// |
|
510 |
/// \return <tt>(*this)</tt> |
|
511 |
CapacityScaling& reset() { |
|
512 |
for (int i = 0; i != _node_num; ++i) { |
|
513 |
_supply[i] = 0; |
|
514 |
} |
|
515 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
516 |
_lower[j] = 0; |
|
517 |
_upper[j] = INF; |
|
518 |
_cost[j] = _forward[j] ? 1 : -1; |
|
519 |
} |
|
520 |
_have_lower = false; |
|
521 |
return *this; |
|
428 | 522 |
} |
429 | 523 |
|
430 | 524 |
/// @} |
431 | 525 |
|
432 | 526 |
/// \name Query Functions |
433 | 527 |
/// The results of the algorithm can be obtained using these |
434 | 528 |
/// functions.\n |
435 |
/// \ref lemon::CapacityScaling::run() "run()" must be called before |
|
436 |
/// using them. |
|
529 |
/// The \ref run() function must be called before using them. |
|
437 | 530 |
|
438 | 531 |
/// @{ |
439 | 532 |
|
440 |
/// \brief Return a const reference to the arc map storing the |
|
441 |
/// found flow. |
|
533 |
/// \brief Return the total cost of the found flow. |
|
442 | 534 |
/// |
443 |
/// |
|
535 |
/// This function returns the total cost of the found flow. |
|
536 |
/// Its complexity is O(e). |
|
537 |
/// |
|
538 |
/// \note The return type of the function can be specified as a |
|
539 |
/// template parameter. For example, |
|
540 |
/// \code |
|
541 |
/// cs.totalCost<double>(); |
|
542 |
/// \endcode |
|
543 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
544 |
/// type of the algorithm, which is the default return type of the |
|
545 |
/// function. |
|
444 | 546 |
/// |
445 | 547 |
/// \pre \ref run() must be called before using this function. |
446 |
const FlowMap& flowMap() const { |
|
447 |
return *_flow; |
|
548 |
template <typename Number> |
|
549 |
Number totalCost() const { |
|
550 |
Number c = 0; |
|
551 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
552 |
int i = _arc_idb[a]; |
|
553 |
c += static_cast<Number>(_res_cap[i]) * |
|
554 |
(-static_cast<Number>(_cost[i])); |
|
555 |
} |
|
556 |
return c; |
|
448 | 557 |
} |
449 | 558 |
|
450 |
/// \brief Return a const reference to the node map storing the |
|
451 |
/// found potentials (the dual solution). |
|
452 |
/// |
|
453 |
/// Return a const reference to the node map storing the found |
|
454 |
/// potentials (the dual solution). |
|
455 |
/// |
|
456 |
/// \pre \ref run() must be called before using this function. |
|
457 |
const PotentialMap& potentialMap() const { |
|
458 |
|
|
559 |
#ifndef DOXYGEN |
|
560 |
Cost totalCost() const { |
|
561 |
return totalCost<Cost>(); |
|
459 | 562 |
} |
563 |
#endif |
|
460 | 564 |
|
461 | 565 |
/// \brief Return the flow on the given arc. |
462 | 566 |
/// |
463 |
/// |
|
567 |
/// This function returns the flow on the given arc. |
|
464 | 568 |
/// |
465 | 569 |
/// \pre \ref run() must be called before using this function. |
466 |
Capacity flow(const Arc& arc) const { |
|
467 |
return (*_flow)[arc]; |
|
570 |
Value flow(const Arc& a) const { |
|
571 |
return _res_cap[_arc_idb[a]]; |
|
468 | 572 |
} |
469 | 573 |
|
470 |
/// \brief Return the |
|
574 |
/// \brief Return the flow map (the primal solution). |
|
471 | 575 |
/// |
472 |
/// |
|
576 |
/// This function copies the flow value on each arc into the given |
|
577 |
/// map. The \c Value type of the algorithm must be convertible to |
|
578 |
/// the \c Value type of the map. |
|
473 | 579 |
/// |
474 | 580 |
/// \pre \ref run() must be called before using this function. |
475 |
Cost potential(const Node& node) const { |
|
476 |
return (*_potential)[node]; |
|
581 |
template <typename FlowMap> |
|
582 |
void flowMap(FlowMap &map) const { |
|
583 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
584 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
585 |
} |
|
477 | 586 |
} |
478 | 587 |
|
479 |
/// \brief Return the |
|
588 |
/// \brief Return the potential (dual value) of the given node. |
|
480 | 589 |
/// |
481 |
/// Return the total cost of the found flow. The complexity of the |
|
482 |
/// function is \f$ O(e) \f$. |
|
590 |
/// This function returns the potential (dual value) of the |
|
591 |
/// given node. |
|
483 | 592 |
/// |
484 | 593 |
/// \pre \ref run() must be called before using this function. |
485 |
Cost totalCost() const { |
|
486 |
Cost c = 0; |
|
487 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
488 |
c += (*_flow)[e] * _cost[e]; |
|
489 |
|
|
594 |
Cost potential(const Node& n) const { |
|
595 |
return _pi[_node_id[n]]; |
|
596 |
} |
|
597 |
|
|
598 |
/// \brief Return the potential map (the dual solution). |
|
599 |
/// |
|
600 |
/// This function copies the potential (dual value) of each node |
|
601 |
/// into the given map. |
|
602 |
/// The \c Cost type of the algorithm must be convertible to the |
|
603 |
/// \c Value type of the map. |
|
604 |
/// |
|
605 |
/// \pre \ref run() must be called before using this function. |
|
606 |
template <typename PotentialMap> |
|
607 |
void potentialMap(PotentialMap &map) const { |
|
608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
609 |
map.set(n, _pi[_node_id[n]]); |
|
610 |
} |
|
490 | 611 |
} |
491 | 612 |
|
492 | 613 |
/// @} |
493 | 614 |
|
494 | 615 |
private: |
495 | 616 |
|
496 |
/// Initialize the algorithm. |
|
497 |
bool init(bool scaling) { |
|
498 |
|
|
617 |
// Initialize the algorithm |
|
618 |
ProblemType init(bool scaling) { |
|
619 |
if (_node_num == 0) return INFEASIBLE; |
|
499 | 620 |
|
500 |
// Initializing maps |
|
501 |
if (!_flow) { |
|
502 |
_flow = new FlowMap(_graph); |
|
503 |
_local_flow = true; |
|
621 |
// Check the sum of supply values |
|
622 |
_sum_supply = 0; |
|
623 |
for (int i = 0; i != _root; ++i) { |
|
624 |
_sum_supply += _supply[i]; |
|
504 | 625 |
} |
505 |
if (!_potential) { |
|
506 |
_potential = new PotentialMap(_graph); |
|
507 |
|
|
626 |
if (_sum_supply > 0) return INFEASIBLE; |
|
627 |
|
|
628 |
// Initialize maps |
|
629 |
for (int i = 0; i != _root; ++i) { |
|
630 |
_pi[i] = 0; |
|
631 |
_excess[i] = _supply[i]; |
|
508 | 632 |
} |
509 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
510 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
511 | 633 |
|
512 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost, |
|
513 |
_excess, *_potential, _pred ); |
|
634 |
// Remove non-zero lower bounds |
|
635 |
if (_have_lower) { |
|
636 |
for (int i = 0; i != _root; ++i) { |
|
637 |
for (int j = _first_out[i]; j != _first_out[i+1]; ++j) { |
|
638 |
if (_forward[j]) { |
|
639 |
Value c = _lower[j]; |
|
640 |
if (c >= 0) { |
|
641 |
_res_cap[j] = _upper[j] < INF ? _upper[j] - c : INF; |
|
642 |
} else { |
|
643 |
_res_cap[j] = _upper[j] < INF + c ? _upper[j] - c : INF; |
|
644 |
} |
|
645 |
_excess[i] -= c; |
|
646 |
_excess[_target[j]] += c; |
|
647 |
} else { |
|
648 |
_res_cap[j] = 0; |
|
649 |
} |
|
650 |
} |
|
651 |
} |
|
652 |
} else { |
|
653 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
654 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
|
655 |
} |
|
656 |
} |
|
514 | 657 |
|
515 |
// |
|
658 |
// Handle negative costs |
|
659 |
for (int u = 0; u != _root; ++u) { |
|
660 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
|
661 |
Value rc = _res_cap[a]; |
|
662 |
if (_cost[a] < 0 && rc > 0) { |
|
663 |
if (rc == INF) return UNBOUNDED; |
|
664 |
_excess[u] -= rc; |
|
665 |
_excess[_target[a]] += rc; |
|
666 |
_res_cap[a] = 0; |
|
667 |
_res_cap[_reverse[a]] += rc; |
|
668 |
} |
|
669 |
} |
|
670 |
} |
|
671 |
|
|
672 |
// Handle GEQ supply type |
|
673 |
if (_sum_supply < 0) { |
|
674 |
_pi[_root] = 0; |
|
675 |
_excess[_root] = -_sum_supply; |
|
676 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|
677 |
int u = _target[a]; |
|
678 |
if (_excess[u] < 0) { |
|
679 |
_res_cap[a] = -_excess[u] + 1; |
|
680 |
} else { |
|
681 |
_res_cap[a] = 1; |
|
682 |
} |
|
683 |
_res_cap[_reverse[a]] = 0; |
|
684 |
_cost[a] = 0; |
|
685 |
_cost[_reverse[a]] = 0; |
|
686 |
} |
|
687 |
} else { |
|
688 |
_pi[_root] = 0; |
|
689 |
_excess[_root] = 0; |
|
690 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|
691 |
_res_cap[a] = 1; |
|
692 |
_res_cap[_reverse[a]] = 0; |
|
693 |
_cost[a] = 0; |
|
694 |
_cost[_reverse[a]] = 0; |
|
695 |
} |
|
696 |
} |
|
697 |
|
|
698 |
// Initialize delta value |
|
516 | 699 |
if (scaling) { |
517 | 700 |
// With scaling |
518 |
Supply max_sup = 0, max_dem = 0; |
|
519 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
520 |
if ( _supply[n] > max_sup) max_sup = _supply[n]; |
|
521 |
if (-_supply[n] > max_dem) max_dem = -_supply[n]; |
|
701 |
Value max_sup = 0, max_dem = 0; |
|
702 |
for (int i = 0; i != _node_num; ++i) { |
|
703 |
if ( _excess[i] > max_sup) max_sup = _excess[i]; |
|
704 |
if (-_excess[i] > max_dem) max_dem = -_excess[i]; |
|
522 | 705 |
} |
523 |
Capacity max_cap = 0; |
|
524 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
525 |
|
|
706 |
Value max_cap = 0; |
|
707 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
708 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
526 | 709 |
} |
527 | 710 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
528 | 711 |
_phase_num = 0; |
529 | 712 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) |
... | ... |
@@ -532,55 +715,72 @@ |
532 | 715 |
// Without scaling |
533 | 716 |
_delta = 1; |
534 | 717 |
} |
535 | 718 |
|
536 |
return |
|
719 |
return OPTIMAL; |
|
537 | 720 |
} |
538 | 721 |
|
539 |
|
|
722 |
ProblemType start() { |
|
723 |
// Execute the algorithm |
|
724 |
ProblemType pt; |
|
540 | 725 |
if (_delta > 1) |
541 |
|
|
726 |
pt = startWithScaling(); |
|
542 | 727 |
else |
543 |
|
|
728 |
pt = startWithoutScaling(); |
|
729 |
|
|
730 |
// Handle non-zero lower bounds |
|
731 |
if (_have_lower) { |
|
732 |
for (int j = 0; j != _res_arc_num - _node_num + 1; ++j) { |
|
733 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
734 |
} |
|
735 |
} |
|
736 |
|
|
737 |
// Shift potentials if necessary |
|
738 |
Cost pr = _pi[_root]; |
|
739 |
if (_sum_supply < 0 || pr > 0) { |
|
740 |
for (int i = 0; i != _node_num; ++i) { |
|
741 |
_pi[i] -= pr; |
|
742 |
} |
|
743 |
} |
|
744 |
|
|
745 |
return pt; |
|
544 | 746 |
} |
545 | 747 |
|
546 |
/// Execute the capacity scaling algorithm. |
|
547 |
bool startWithScaling() { |
|
548 |
// Processing capacity scaling phases |
|
549 |
Node s, t; |
|
748 |
// Execute the capacity scaling algorithm |
|
749 |
ProblemType startWithScaling() { |
|
750 |
// Process capacity scaling phases |
|
751 |
int s, t; |
|
550 | 752 |
int phase_cnt = 0; |
551 | 753 |
int factor = 4; |
754 |
ResidualDijkstra _dijkstra(*this); |
|
552 | 755 |
while (true) { |
553 |
// Saturating all arcs not satisfying the optimality condition |
|
554 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
555 |
Node u = _graph.source(e), v = _graph.target(e); |
|
556 |
Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v]; |
|
557 |
if (c < 0 && _res_cap[e] >= _delta) { |
|
558 |
_excess[u] -= _res_cap[e]; |
|
559 |
_excess[v] += _res_cap[e]; |
|
560 |
(*_flow)[e] = _capacity[e]; |
|
561 |
_res_cap[e] = 0; |
|
562 |
} |
|
563 |
else if (c > 0 && (*_flow)[e] >= _delta) { |
|
564 |
_excess[u] += (*_flow)[e]; |
|
565 |
_excess[v] -= (*_flow)[e]; |
|
566 |
(*_flow)[e] = 0; |
|
567 |
|
|
756 |
// Saturate all arcs not satisfying the optimality condition |
|
757 |
for (int u = 0; u != _node_num; ++u) { |
|
758 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
|
759 |
int v = _target[a]; |
|
760 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
|
761 |
Value rc = _res_cap[a]; |
|
762 |
if (c < 0 && rc >= _delta) { |
|
763 |
_excess[u] -= rc; |
|
764 |
_excess[v] += rc; |
|
765 |
_res_cap[a] = 0; |
|
766 |
_res_cap[_reverse[a]] += rc; |
|
767 |
} |
|
568 | 768 |
} |
569 | 769 |
} |
570 | 770 |
|
571 |
// |
|
771 |
// Find excess nodes and deficit nodes |
|
572 | 772 |
_excess_nodes.clear(); |
573 | 773 |
_deficit_nodes.clear(); |
574 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
575 |
if (_excess[n] >= _delta) _excess_nodes.push_back(n); |
|
576 |
|
|
774 |
for (int u = 0; u != _node_num; ++u) { |
|
775 |
if (_excess[u] >= _delta) _excess_nodes.push_back(u); |
|
776 |
if (_excess[u] <= -_delta) _deficit_nodes.push_back(u); |
|
577 | 777 |
} |
578 | 778 |
int next_node = 0, next_def_node = 0; |
579 | 779 |
|
580 |
// |
|
780 |
// Find augmenting shortest paths |
|
581 | 781 |
while (next_node < int(_excess_nodes.size())) { |
582 |
// |
|
782 |
// Check deficit nodes |
|
583 | 783 |
if (_delta > 1) { |
584 | 784 |
bool delta_deficit = false; |
585 | 785 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
586 | 786 |
++next_def_node ) { |
... | ... |
@@ -591,122 +791,89 @@ |
591 | 791 |
} |
592 | 792 |
if (!delta_deficit) break; |
593 | 793 |
} |
594 | 794 |
|
595 |
// |
|
795 |
// Run Dijkstra in the residual network |
|
596 | 796 |
s = _excess_nodes[next_node]; |
597 |
if ((t = _dijkstra |
|
797 |
if ((t = _dijkstra.run(s, _delta)) == -1) { |
|
598 | 798 |
if (_delta > 1) { |
599 | 799 |
++next_node; |
600 | 800 |
continue; |
601 | 801 |
} |
602 |
return |
|
802 |
return INFEASIBLE; |
|
603 | 803 |
} |
604 | 804 |
|
605 |
// Augmenting along a shortest path from s to t. |
|
606 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
607 |
Node u = t; |
|
608 |
Arc e; |
|
805 |
// Augment along a shortest path from s to t |
|
806 |
Value d = std::min(_excess[s], -_excess[t]); |
|
807 |
int u = t; |
|
808 |
int a; |
|
609 | 809 |
if (d > _delta) { |
610 |
while ((e = _pred[u]) != INVALID) { |
|
611 |
Capacity rc; |
|
612 |
if (u == _graph.target(e)) { |
|
613 |
rc = _res_cap[e]; |
|
614 |
u = _graph.source(e); |
|
615 |
} else { |
|
616 |
rc = (*_flow)[e]; |
|
617 |
u = _graph.target(e); |
|
618 |
} |
|
619 |
if (rc < d) d = rc; |
|
810 |
while ((a = _pred[u]) != -1) { |
|
811 |
if (_res_cap[a] < d) d = _res_cap[a]; |
|
812 |
u = _source[a]; |
|
620 | 813 |
} |
621 | 814 |
} |
622 | 815 |
u = t; |
623 |
while ((e = _pred[u]) != INVALID) { |
|
624 |
if (u == _graph.target(e)) { |
|
625 |
(*_flow)[e] += d; |
|
626 |
_res_cap[e] -= d; |
|
627 |
u = _graph.source(e); |
|
628 |
} else { |
|
629 |
(*_flow)[e] -= d; |
|
630 |
_res_cap[e] += d; |
|
631 |
u = _graph.target(e); |
|
632 |
} |
|
816 |
while ((a = _pred[u]) != -1) { |
|
817 |
_res_cap[a] -= d; |
|
818 |
_res_cap[_reverse[a]] += d; |
|
819 |
u = _source[a]; |
|
633 | 820 |
} |
634 | 821 |
_excess[s] -= d; |
635 | 822 |
_excess[t] += d; |
636 | 823 |
|
637 | 824 |
if (_excess[s] < _delta) ++next_node; |
638 | 825 |
} |
639 | 826 |
|
640 | 827 |
if (_delta == 1) break; |
641 |
if (++phase_cnt |
|
828 |
if (++phase_cnt == _phase_num / 4) factor = 2; |
|
642 | 829 |
_delta = _delta <= factor ? 1 : _delta / factor; |
643 | 830 |
} |
644 | 831 |
|
645 |
// Handling non-zero lower bounds |
|
646 |
if (_lower) { |
|
647 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
648 |
(*_flow)[e] += (*_lower)[e]; |
|
649 |
} |
|
650 |
return true; |
|
832 |
return OPTIMAL; |
|
651 | 833 |
} |
652 | 834 |
|
653 |
/// Execute the successive shortest path algorithm. |
|
654 |
bool startWithoutScaling() { |
|
655 |
// Finding excess nodes |
|
656 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
657 |
if (_excess[n] > 0) _excess_nodes.push_back(n); |
|
658 |
if (_excess_nodes.size() == 0) return true; |
|
835 |
// Execute the successive shortest path algorithm |
|
836 |
ProblemType startWithoutScaling() { |
|
837 |
// Find excess nodes |
|
838 |
_excess_nodes.clear(); |
|
839 |
for (int i = 0; i != _node_num; ++i) { |
|
840 |
if (_excess[i] > 0) _excess_nodes.push_back(i); |
|
841 |
} |
|
842 |
if (_excess_nodes.size() == 0) return OPTIMAL; |
|
659 | 843 |
int next_node = 0; |
660 | 844 |
|
661 |
// Finding shortest paths |
|
662 |
Node s, t; |
|
845 |
// Find shortest paths |
|
846 |
int s, t; |
|
847 |
ResidualDijkstra _dijkstra(*this); |
|
663 | 848 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
664 | 849 |
++next_node < int(_excess_nodes.size()) ) |
665 | 850 |
{ |
666 |
// |
|
851 |
// Run Dijkstra in the residual network |
|
667 | 852 |
s = _excess_nodes[next_node]; |
668 |
if ((t = _dijkstra |
|
853 |
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
|
669 | 854 |
|
670 |
// Augmenting along a shortest path from s to t |
|
671 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
672 |
Node u = t; |
|
673 |
Arc e; |
|
855 |
// Augment along a shortest path from s to t |
|
856 |
Value d = std::min(_excess[s], -_excess[t]); |
|
857 |
int u = t; |
|
858 |
int a; |
|
674 | 859 |
if (d > 1) { |
675 |
while ((e = _pred[u]) != INVALID) { |
|
676 |
Capacity rc; |
|
677 |
if (u == _graph.target(e)) { |
|
678 |
rc = _res_cap[e]; |
|
679 |
u = _graph.source(e); |
|
680 |
} else { |
|
681 |
rc = (*_flow)[e]; |
|
682 |
u = _graph.target(e); |
|
683 |
} |
|
684 |
if (rc < d) d = rc; |
|
860 |
while ((a = _pred[u]) != -1) { |
|
861 |
if (_res_cap[a] < d) d = _res_cap[a]; |
|
862 |
u = _source[a]; |
|
685 | 863 |
} |
686 | 864 |
} |
687 | 865 |
u = t; |
688 |
while ((e = _pred[u]) != INVALID) { |
|
689 |
if (u == _graph.target(e)) { |
|
690 |
(*_flow)[e] += d; |
|
691 |
_res_cap[e] -= d; |
|
692 |
u = _graph.source(e); |
|
693 |
} else { |
|
694 |
(*_flow)[e] -= d; |
|
695 |
_res_cap[e] += d; |
|
696 |
u = _graph.target(e); |
|
697 |
} |
|
866 |
while ((a = _pred[u]) != -1) { |
|
867 |
_res_cap[a] -= d; |
|
868 |
_res_cap[_reverse[a]] += d; |
|
869 |
u = _source[a]; |
|
698 | 870 |
} |
699 | 871 |
_excess[s] -= d; |
700 | 872 |
_excess[t] += d; |
701 | 873 |
} |
702 | 874 |
|
703 |
// Handling non-zero lower bounds |
|
704 |
if (_lower) { |
|
705 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
706 |
(*_flow)[e] += (*_lower)[e]; |
|
707 |
} |
|
708 |
return true; |
|
875 |
return OPTIMAL; |
|
709 | 876 |
} |
710 | 877 |
|
711 | 878 |
}; //class CapacityScaling |
712 | 879 |
|
0 comments (0 inline)