|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2008
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_ELEVATOR_H
|
|
20 |
#define LEMON_ELEVATOR_H
|
|
21 |
|
|
22 |
///\ingroup auxdat
|
|
23 |
///\file
|
|
24 |
///\brief Elevator class
|
|
25 |
///
|
|
26 |
///Elevator class implements an efficient data structure
|
|
27 |
///for labeling items in push-relabel type algorithms.
|
|
28 |
///
|
|
29 |
|
|
30 |
#include <lemon/bits/traits.h>
|
|
31 |
|
|
32 |
namespace lemon {
|
|
33 |
|
|
34 |
///Class for handling "labels" in push-relabel type algorithms.
|
|
35 |
|
|
36 |
///A class for handling "labels" in push-relabel type algorithms.
|
|
37 |
///
|
|
38 |
///\ingroup auxdat
|
|
39 |
///Using this class you can assign "labels" (nonnegative integer numbers)
|
|
40 |
///to the edges or nodes of a graph, manipulate and query them through
|
|
41 |
///operations typically arising in "push-relabel" type algorithms.
|
|
42 |
///
|
|
43 |
///Each item is either \em active or not, and you can also choose a
|
|
44 |
///highest level active item.
|
|
45 |
///
|
|
46 |
///\sa LinkedElevator
|
|
47 |
///
|
|
48 |
///\param Graph Type of the underlying graph.
|
|
49 |
///\param Item Type of the items the data is assigned to (Graph::Node,
|
|
50 |
///Graph::Arc, Graph::Edge).
|
|
51 |
template<class Graph, class Item>
|
|
52 |
class Elevator
|
|
53 |
{
|
|
54 |
public:
|
|
55 |
|
|
56 |
typedef Item Key;
|
|
57 |
typedef int Value;
|
|
58 |
|
|
59 |
private:
|
|
60 |
|
|
61 |
typedef Item *Vit;
|
|
62 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
|
|
63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
|
|
64 |
|
|
65 |
const Graph &_g;
|
|
66 |
int _max_level;
|
|
67 |
int _item_num;
|
|
68 |
VitMap _where;
|
|
69 |
IntMap _level;
|
|
70 |
std::vector<Item> _items;
|
|
71 |
std::vector<Vit> _first;
|
|
72 |
std::vector<Vit> _last_active;
|
|
73 |
|
|
74 |
int _highest_active;
|
|
75 |
|
|
76 |
void copy(Item i, Vit p)
|
|
77 |
{
|
|
78 |
_where.set(*p=i,p);
|
|
79 |
}
|
|
80 |
void copy(Vit s, Vit p)
|
|
81 |
{
|
|
82 |
if(s!=p)
|
|
83 |
{
|
|
84 |
Item i=*s;
|
|
85 |
*p=i;
|
|
86 |
_where.set(i,p);
|
|
87 |
}
|
|
88 |
}
|
|
89 |
void swap(Vit i, Vit j)
|
|
90 |
{
|
|
91 |
Item ti=*i;
|
|
92 |
Vit ct = _where[ti];
|
|
93 |
_where.set(ti,_where[*i=*j]);
|
|
94 |
_where.set(*j,ct);
|
|
95 |
*j=ti;
|
|
96 |
}
|
|
97 |
|
|
98 |
public:
|
|
99 |
|
|
100 |
///Constructor with given maximum level.
|
|
101 |
|
|
102 |
///Constructor with given maximum level.
|
|
103 |
///
|
|
104 |
///\param graph The underlying graph.
|
|
105 |
///\param max_level The maximum allowed level.
|
|
106 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
|
|
107 |
Elevator(const Graph &graph,int max_level) :
|
|
108 |
_g(graph),
|
|
109 |
_max_level(max_level),
|
|
110 |
_item_num(_max_level),
|
|
111 |
_where(graph),
|
|
112 |
_level(graph,0),
|
|
113 |
_items(_max_level),
|
|
114 |
_first(_max_level+2),
|
|
115 |
_last_active(_max_level+2),
|
|
116 |
_highest_active(-1) {}
|
|
117 |
///Constructor.
|
|
118 |
|
|
119 |
///Constructor.
|
|
120 |
///
|
|
121 |
///\param graph The underlying graph.
|
|
122 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
|
|
123 |
///where \c max_level is equal to the number of labeled items in the graph.
|
|
124 |
Elevator(const Graph &graph) :
|
|
125 |
_g(graph),
|
|
126 |
_max_level(countItems<Graph, Item>(graph)),
|
|
127 |
_item_num(_max_level),
|
|
128 |
_where(graph),
|
|
129 |
_level(graph,0),
|
|
130 |
_items(_max_level),
|
|
131 |
_first(_max_level+2),
|
|
132 |
_last_active(_max_level+2),
|
|
133 |
_highest_active(-1)
|
|
134 |
{
|
|
135 |
}
|
|
136 |
|
|
137 |
///Activate item \c i.
|
|
138 |
|
|
139 |
///Activate item \c i.
|
|
140 |
///\pre Item \c i shouldn't be active before.
|
|
141 |
void activate(Item i)
|
|
142 |
{
|
|
143 |
const int l=_level[i];
|
|
144 |
swap(_where[i],++_last_active[l]);
|
|
145 |
if(l>_highest_active) _highest_active=l;
|
|
146 |
}
|
|
147 |
|
|
148 |
///Deactivate item \c i.
|
|
149 |
|
|
150 |
///Deactivate item \c i.
|
|
151 |
///\pre Item \c i must be active before.
|
|
152 |
void deactivate(Item i)
|
|
153 |
{
|
|
154 |
swap(_where[i],_last_active[_level[i]]--);
|
|
155 |
while(_highest_active>=0 &&
|
|
156 |
_last_active[_highest_active]<_first[_highest_active])
|
|
157 |
_highest_active--;
|
|
158 |
}
|
|
159 |
|
|
160 |
///Query whether item \c i is active
|
|
161 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
|
|
162 |
|
|
163 |
///Return the level of item \c i.
|
|
164 |
int operator[](Item i) const { return _level[i]; }
|
|
165 |
|
|
166 |
///Return the number of items on level \c l.
|
|
167 |
int onLevel(int l) const
|
|
168 |
{
|
|
169 |
return _first[l+1]-_first[l];
|
|
170 |
}
|
|
171 |
///Return true if level \c l is empty.
|
|
172 |
bool emptyLevel(int l) const
|
|
173 |
{
|
|
174 |
return _first[l+1]-_first[l]==0;
|
|
175 |
}
|
|
176 |
///Return the number of items above level \c l.
|
|
177 |
int aboveLevel(int l) const
|
|
178 |
{
|
|
179 |
return _first[_max_level+1]-_first[l+1];
|
|
180 |
}
|
|
181 |
///Return the number of active items on level \c l.
|
|
182 |
int activesOnLevel(int l) const
|
|
183 |
{
|
|
184 |
return _last_active[l]-_first[l]+1;
|
|
185 |
}
|
|
186 |
///Return true if there is no active item on level \c l.
|
|
187 |
bool activeFree(int l) const
|
|
188 |
{
|
|
189 |
return _last_active[l]<_first[l];
|
|
190 |
}
|
|
191 |
///Return the maximum allowed level.
|
|
192 |
int maxLevel() const
|
|
193 |
{
|
|
194 |
return _max_level;
|
|
195 |
}
|
|
196 |
|
|
197 |
///\name Highest Active Item
|
|
198 |
///Functions for working with the highest level
|
|
199 |
///active item.
|
|
200 |
|
|
201 |
///@{
|
|
202 |
|
|
203 |
///Return a highest level active item.
|
|
204 |
|
|
205 |
///Return a highest level active item or INVALID if there is no active
|
|
206 |
///item.
|
|
207 |
Item highestActive() const
|
|
208 |
{
|
|
209 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID;
|
|
210 |
}
|
|
211 |
|
|
212 |
///Return the highest active level.
|
|
213 |
|
|
214 |
///Return the level of the highest active item or -1 if there is no active
|
|
215 |
///item.
|
|
216 |
int highestActiveLevel() const
|
|
217 |
{
|
|
218 |
return _highest_active;
|
|
219 |
}
|
|
220 |
|
|
221 |
///Lift the highest active item by one.
|
|
222 |
|
|
223 |
///Lift the item returned by highestActive() by one.
|
|
224 |
///
|
|
225 |
void liftHighestActive()
|
|
226 |
{
|
|
227 |
Item it = *_last_active[_highest_active];
|
|
228 |
_level.set(it,_level[it]+1);
|
|
229 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
|
|
230 |
--_first[++_highest_active];
|
|
231 |
}
|
|
232 |
|
|
233 |
///Lift the highest active item to the given level.
|
|
234 |
|
|
235 |
///Lift the item returned by highestActive() to level \c new_level.
|
|
236 |
///
|
|
237 |
///\warning \c new_level must be strictly higher
|
|
238 |
///than the current level.
|
|
239 |
///
|
|
240 |
void liftHighestActive(int new_level)
|
|
241 |
{
|
|
242 |
const Item li = *_last_active[_highest_active];
|
|
243 |
|
|
244 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
|
|
245 |
for(int l=_highest_active+1;l<new_level;l++)
|
|
246 |
{
|
|
247 |
copy(--_first[l+1],_first[l]);
|
|
248 |
--_last_active[l];
|
|
249 |
}
|
|
250 |
copy(li,_first[new_level]);
|
|
251 |
_level.set(li,new_level);
|
|
252 |
_highest_active=new_level;
|
|
253 |
}
|
|
254 |
|
|
255 |
///Lift the highest active item to the top level.
|
|
256 |
|
|
257 |
///Lift the item returned by highestActive() to the top level and
|
|
258 |
///deactivate it.
|
|
259 |
void liftHighestActiveToTop()
|
|
260 |
{
|
|
261 |
const Item li = *_last_active[_highest_active];
|
|
262 |
|
|
263 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
|
|
264 |
for(int l=_highest_active+1;l<_max_level;l++)
|
|
265 |
{
|
|
266 |
copy(--_first[l+1],_first[l]);
|
|
267 |
--_last_active[l];
|
|
268 |
}
|
|
269 |
copy(li,_first[_max_level]);
|
|
270 |
--_last_active[_max_level];
|
|
271 |
_level.set(li,_max_level);
|
|
272 |
|
|
273 |
while(_highest_active>=0 &&
|
|
274 |
_last_active[_highest_active]<_first[_highest_active])
|
|
275 |
_highest_active--;
|
|
276 |
}
|
|
277 |
|
|
278 |
///@}
|
|
279 |
|
|
280 |
///\name Active Item on Certain Level
|
|
281 |
///Functions for working with the active items.
|
|
282 |
|
|
283 |
///@{
|
|
284 |
|
|
285 |
///Return an active item on level \c l.
|
|
286 |
|
|
287 |
///Return an active item on level \c l or \ref INVALID if there is no such
|
|
288 |
///an item. (\c l must be from the range [0...\c max_level].
|
|
289 |
Item activeOn(int l) const
|
|
290 |
{
|
|
291 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
|
|
292 |
}
|
|
293 |
|
|
294 |
///Lift the active item returned by \c activeOn(level) by one.
|
|
295 |
|
|
296 |
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
|
297 |
///by one.
|
|
298 |
Item liftActiveOn(int level)
|
|
299 |
{
|
|
300 |
Item it =*_last_active[level];
|
|
301 |
_level.set(it,_level[it]+1);
|
|
302 |
swap(_last_active[level]--, --_first[level+1]);
|
|
303 |
if (level+1>_highest_active) ++_highest_active;
|
|
304 |
}
|
|
305 |
|
|
306 |
///Lift the active item returned by \c activeOn(level) to the given level.
|
|
307 |
|
|
308 |
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
|
309 |
///to the given level.
|
|
310 |
void liftActiveOn(int level, int new_level)
|
|
311 |
{
|
|
312 |
const Item ai = *_last_active[level];
|
|
313 |
|
|
314 |
copy(--_first[level+1], _last_active[level]--);
|
|
315 |
for(int l=level+1;l<new_level;l++)
|
|
316 |
{
|
|
317 |
copy(_last_active[l],_first[l]);
|
|
318 |
copy(--_first[l+1], _last_active[l]--);
|
|
319 |
}
|
|
320 |
copy(ai,_first[new_level]);
|
|
321 |
_level.set(ai,new_level);
|
|
322 |
if (new_level>_highest_active) _highest_active=new_level;
|
|
323 |
}
|
|
324 |
|
|
325 |
///Lift the active item returned by \c activeOn(level) to the top level.
|
|
326 |
|
|
327 |
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
|
328 |
///to the top level and deactivate it.
|
|
329 |
void liftActiveToTop(int level)
|
|
330 |
{
|
|
331 |
const Item ai = *_last_active[level];
|
|
332 |
|
|
333 |
copy(--_first[level+1],_last_active[level]--);
|
|
334 |
for(int l=level+1;l<_max_level;l++)
|
|
335 |
{
|
|
336 |
copy(_last_active[l],_first[l]);
|
|
337 |
copy(--_first[l+1], _last_active[l]--);
|
|
338 |
}
|
|
339 |
copy(ai,_first[_max_level]);
|
|
340 |
--_last_active[_max_level];
|
|
341 |
_level.set(ai,_max_level);
|
|
342 |
|
|
343 |
if (_highest_active==level) {
|
|
344 |
while(_highest_active>=0 &&
|
|
345 |
_last_active[_highest_active]<_first[_highest_active])
|
|
346 |
_highest_active--;
|
|
347 |
}
|
|
348 |
}
|
|
349 |
|
|
350 |
///@}
|
|
351 |
|
|
352 |
///Lift an active item to a higher level.
|
|
353 |
|
|
354 |
///Lift an active item to a higher level.
|
|
355 |
///\param i The item to be lifted. It must be active.
|
|
356 |
///\param new_level The new level of \c i. It must be strictly higher
|
|
357 |
///than the current level.
|
|
358 |
///
|
|
359 |
void lift(Item i, int new_level)
|
|
360 |
{
|
|
361 |
const int lo = _level[i];
|
|
362 |
const Vit w = _where[i];
|
|
363 |
|
|
364 |
copy(_last_active[lo],w);
|
|
365 |
copy(--_first[lo+1],_last_active[lo]--);
|
|
366 |
for(int l=lo+1;l<new_level;l++)
|
|
367 |
{
|
|
368 |
copy(_last_active[l],_first[l]);
|
|
369 |
copy(--_first[l+1],_last_active[l]--);
|
|
370 |
}
|
|
371 |
copy(i,_first[new_level]);
|
|
372 |
_level.set(i,new_level);
|
|
373 |
if(new_level>_highest_active) _highest_active=new_level;
|
|
374 |
}
|
|
375 |
|
|
376 |
///Move an inactive item to the top but one level (in a dirty way).
|
|
377 |
|
|
378 |
///This function moves an inactive item from the top level to the top
|
|
379 |
///but one level (in a dirty way).
|
|
380 |
///\warning It makes the underlying datastructure corrupt, so use it
|
|
381 |
///only if you really know what it is for.
|
|
382 |
///\pre The item is on the top level.
|
|
383 |
void dirtyTopButOne(Item i) {
|
|
384 |
_level.set(i,_max_level - 1);
|
|
385 |
}
|
|
386 |
|
|
387 |
///Lift all items on and above the given level to the top level.
|
|
388 |
|
|
389 |
///This function lifts all items on and above level \c l to the top
|
|
390 |
///level and deactivates them.
|
|
391 |
void liftToTop(int l)
|
|
392 |
{
|
|
393 |
const Vit f=_first[l];
|
|
394 |
const Vit tl=_first[_max_level];
|
|
395 |
for(Vit i=f;i!=tl;++i)
|
|
396 |
_level.set(*i,_max_level);
|
|
397 |
for(int i=l;i<=_max_level;i++)
|
|
398 |
{
|
|
399 |
_first[i]=f;
|
|
400 |
_last_active[i]=f-1;
|
|
401 |
}
|
|
402 |
for(_highest_active=l-1;
|
|
403 |
_highest_active>=0 &&
|
|
404 |
_last_active[_highest_active]<_first[_highest_active];
|
|
405 |
_highest_active--) ;
|
|
406 |
}
|
|
407 |
|
|
408 |
private:
|
|
409 |
int _init_lev;
|
|
410 |
Vit _init_num;
|
|
411 |
|
|
412 |
public:
|
|
413 |
|
|
414 |
///\name Initialization
|
|
415 |
///Using these functions you can initialize the levels of the items.
|
|
416 |
///\n
|
|
417 |
///The initialization must be started with calling \c initStart().
|
|
418 |
///Then the items should be listed level by level starting with the
|
|
419 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
|
|
420 |
///Finally \c initFinish() must be called.
|
|
421 |
///The items not listed are put on the highest level.
|
|
422 |
///@{
|
|
423 |
|
|
424 |
///Start the initialization process.
|
|
425 |
void initStart()
|
|
426 |
{
|
|
427 |
_init_lev=0;
|
|
428 |
_init_num=&_items[0];
|
|
429 |
_first[0]=&_items[0];
|
|
430 |
_last_active[0]=&_items[0]-1;
|
|
431 |
Vit n=&_items[0];
|
|
432 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
|
|
433 |
{
|
|
434 |
*n=i;
|
|
435 |
_where.set(i,n);
|
|
436 |
_level.set(i,_max_level);
|
|
437 |
++n;
|
|
438 |
}
|
|
439 |
}
|
|
440 |
|
|
441 |
///Add an item to the current level.
|
|
442 |
void initAddItem(Item i)
|
|
443 |
{
|
|
444 |
swap(_where[i],_init_num);
|
|
445 |
_level.set(i,_init_lev);
|
|
446 |
++_init_num;
|
|
447 |
}
|
|
448 |
|
|
449 |
///Start a new level.
|
|
450 |
|
|
451 |
///Start a new level.
|
|
452 |
///It shouldn't be used before the items on level 0 are listed.
|
|
453 |
void initNewLevel()
|
|
454 |
{
|
|
455 |
_init_lev++;
|
|
456 |
_first[_init_lev]=_init_num;
|
|
457 |
_last_active[_init_lev]=_init_num-1;
|
|
458 |
}
|
|
459 |
|
|
460 |
///Finalize the initialization process.
|
|
461 |
void initFinish()
|
|
462 |
{
|
|
463 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++)
|
|
464 |
{
|
|
465 |
_first[_init_lev]=_init_num;
|
|
466 |
_last_active[_init_lev]=_init_num-1;
|
|
467 |
}
|
|
468 |
_first[_max_level+1]=&_items[0]+_item_num;
|
|
469 |
_last_active[_max_level+1]=&_items[0]+_item_num-1;
|
|
470 |
_highest_active = -1;
|
|
471 |
}
|
|
472 |
|
|
473 |
///@}
|
|
474 |
|
|
475 |
};
|
|
476 |
|
|
477 |
///Class for handling "labels" in push-relabel type algorithms.
|
|
478 |
|
|
479 |
///A class for handling "labels" in push-relabel type algorithms.
|
|
480 |
///
|
|
481 |
///\ingroup auxdat
|
|
482 |
///Using this class you can assign "labels" (nonnegative integer numbers)
|
|
483 |
///to the edges or nodes of a graph, manipulate and query them through
|
|
484 |
///operations typically arising in "push-relabel" type algorithms.
|
|
485 |
///
|
|
486 |
///Each item is either \em active or not, and you can also choose a
|
|
487 |
///highest level active item.
|
|
488 |
///
|
|
489 |
///\sa Elevator
|
|
490 |
///
|
|
491 |
///\param Graph Type of the underlying graph.
|
|
492 |
///\param Item Type of the items the data is assigned to (Graph::Node,
|
|
493 |
///Graph::Arc, Graph::Edge).
|
|
494 |
template <class Graph, class Item>
|
|
495 |
class LinkedElevator {
|
|
496 |
public:
|
|
497 |
|
|
498 |
typedef Item Key;
|
|
499 |
typedef int Value;
|
|
500 |
|
|
501 |
private:
|
|
502 |
|
|
503 |
typedef typename ItemSetTraits<Graph,Item>::
|
|
504 |
template Map<Item>::Type ItemMap;
|
|
505 |
typedef typename ItemSetTraits<Graph,Item>::
|
|
506 |
template Map<int>::Type IntMap;
|
|
507 |
typedef typename ItemSetTraits<Graph,Item>::
|
|
508 |
template Map<bool>::Type BoolMap;
|
|
509 |
|
|
510 |
const Graph &_graph;
|
|
511 |
int _max_level;
|
|
512 |
int _item_num;
|
|
513 |
std::vector<Item> _first, _last;
|
|
514 |
ItemMap _prev, _next;
|
|
515 |
int _highest_active;
|
|
516 |
IntMap _level;
|
|
517 |
BoolMap _active;
|
|
518 |
|
|
519 |
public:
|
|
520 |
///Constructor with given maximum level.
|
|
521 |
|
|
522 |
///Constructor with given maximum level.
|
|
523 |
///
|
|
524 |
///\param graph The underlying graph.
|
|
525 |
///\param max_level The maximum allowed level.
|
|
526 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
|
|
527 |
LinkedElevator(const Graph& graph, int max_level)
|
|
528 |
: _graph(graph), _max_level(max_level), _item_num(_max_level),
|
|
529 |
_first(_max_level + 1), _last(_max_level + 1),
|
|
530 |
_prev(graph), _next(graph),
|
|
531 |
_highest_active(-1), _level(graph), _active(graph) {}
|
|
532 |
|
|
533 |
///Constructor.
|
|
534 |
|
|
535 |
///Constructor.
|
|
536 |
///
|
|
537 |
///\param graph The underlying graph.
|
|
538 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
|
|
539 |
///where \c max_level is equal to the number of labeled items in the graph.
|
|
540 |
LinkedElevator(const Graph& graph)
|
|
541 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)),
|
|
542 |
_item_num(_max_level),
|
|
543 |
_first(_max_level + 1), _last(_max_level + 1),
|
|
544 |
_prev(graph, INVALID), _next(graph, INVALID),
|
|
545 |
_highest_active(-1), _level(graph), _active(graph) {}
|
|
546 |
|
|
547 |
|
|
548 |
///Activate item \c i.
|
|
549 |
|
|
550 |
///Activate item \c i.
|
|
551 |
///\pre Item \c i shouldn't be active before.
|
|
552 |
void activate(Item i) {
|
|
553 |
_active.set(i, true);
|
|
554 |
|
|
555 |
int level = _level[i];
|
|
556 |
if (level > _highest_active) {
|
|
557 |
_highest_active = level;
|
|
558 |
}
|
|
559 |
|
|
560 |
if (_prev[i] == INVALID || _active[_prev[i]]) return;
|
|
561 |
//unlace
|
|
562 |
_next.set(_prev[i], _next[i]);
|
|
563 |
if (_next[i] != INVALID) {
|
|
564 |
_prev.set(_next[i], _prev[i]);
|
|
565 |
} else {
|
|
566 |
_last[level] = _prev[i];
|
|
567 |
}
|
|
568 |
//lace
|
|
569 |
_next.set(i, _first[level]);
|
|
570 |
_prev.set(_first[level], i);
|
|
571 |
_prev.set(i, INVALID);
|
|
572 |
_first[level] = i;
|
|
573 |
|
|
574 |
}
|
|
575 |
|
|
576 |
///Deactivate item \c i.
|
|
577 |
|
|
578 |
///Deactivate item \c i.
|
|
579 |
///\pre Item \c i must be active before.
|
|
580 |
void deactivate(Item i) {
|
|
581 |
_active.set(i, false);
|
|
582 |
int level = _level[i];
|
|
583 |
|
|
584 |
if (_next[i] == INVALID || !_active[_next[i]])
|
|
585 |
goto find_highest_level;
|
|
586 |
|
|
587 |
//unlace
|
|
588 |
_prev.set(_next[i], _prev[i]);
|
|
589 |
if (_prev[i] != INVALID) {
|
|
590 |
_next.set(_prev[i], _next[i]);
|
|
591 |
} else {
|
|
592 |
_first[_level[i]] = _next[i];
|
|
593 |
}
|
|
594 |
//lace
|
|
595 |
_prev.set(i, _last[level]);
|
|
596 |
_next.set(_last[level], i);
|
|
597 |
_next.set(i, INVALID);
|
|
598 |
_last[level] = i;
|
|
599 |
|
|
600 |
find_highest_level:
|
|
601 |
if (level == _highest_active) {
|
|
602 |
while (_highest_active >= 0 && activeFree(_highest_active))
|
|
603 |
--_highest_active;
|
|
604 |
}
|
|
605 |
}
|
|
606 |
|
|
607 |
///Query whether item \c i is active
|
|
608 |
bool active(Item i) const { return _active[i]; }
|
|
609 |
|
|
610 |
///Return the level of item \c i.
|
|
611 |
int operator[](Item i) const { return _level[i]; }
|
|
612 |
|
|
613 |
///Return the number of items on level \c l.
|
|
614 |
int onLevel(int l) const {
|
|
615 |
int num = 0;
|
|
616 |
Item n = _first[l];
|
|
617 |
while (n != INVALID) {
|
|
618 |
++num;
|
|
619 |
n = _next[n];
|
|
620 |
}
|
|
621 |
return num;
|
|
622 |
}
|
|
623 |
|
|
624 |
///Return true if the level is empty.
|
|
625 |
bool emptyLevel(int l) const {
|
|
626 |
return _first[l] == INVALID;
|
|
627 |
}
|
|
628 |
|
|
629 |
///Return the number of items above level \c l.
|
|
630 |
int aboveLevel(int l) const {
|
|
631 |
int num = 0;
|
|
632 |
for (int level = l + 1; level < _max_level; ++level)
|
|
633 |
num += onLevel(level);
|
|
634 |
return num;
|
|
635 |
}
|
|
636 |
|
|
637 |
///Return the number of active items on level \c l.
|
|
638 |
int activesOnLevel(int l) const {
|
|
639 |
int num = 0;
|
|
640 |
Item n = _first[l];
|
|
641 |
while (n != INVALID && _active[n]) {
|
|
642 |
++num;
|
|
643 |
n = _next[n];
|
|
644 |
}
|
|
645 |
return num;
|
|
646 |
}
|
|
647 |
|
|
648 |
///Return true if there is no active item on level \c l.
|
|
649 |
bool activeFree(int l) const {
|
|
650 |
return _first[l] == INVALID || !_active[_first[l]];
|
|
651 |
}
|
|
652 |
|
|
653 |
///Return the maximum allowed level.
|
|
654 |
int maxLevel() const {
|
|
655 |
return _max_level;
|
|
656 |
}
|
|
657 |
|
|
658 |
///\name Highest Active Item
|
|
659 |
///Functions for working with the highest level
|
|
660 |
///active item.
|
|
661 |
|
|
662 |
///@{
|
|
663 |
|
|
664 |
///Return a highest level active item.
|
|
665 |
|
|
666 |
///Return a highest level active item or INVALID if there is no active
|
|
667 |
///item.
|
|
668 |
Item highestActive() const {
|
|
669 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID;
|
|
670 |
}
|
|
671 |
|
|
672 |
///Return the highest active level.
|
|
673 |
|
|
674 |
///Return the level of the highest active item or -1 if there is no active
|
|
675 |
///item.
|
|
676 |
int highestActiveLevel() const {
|
|
677 |
return _highest_active;
|
|
678 |
}
|
|
679 |
|
|
680 |
///Lift the highest active item by one.
|
|
681 |
|
|
682 |
///Lift the item returned by highestActive() by one.
|
|
683 |
///
|
|
684 |
void liftHighestActive() {
|
|
685 |
Item i = _first[_highest_active];
|
|
686 |
if (_next[i] != INVALID) {
|
|
687 |
_prev.set(_next[i], INVALID);
|
|
688 |
_first[_highest_active] = _next[i];
|
|
689 |
} else {
|
|
690 |
_first[_highest_active] = INVALID;
|
|
691 |
_last[_highest_active] = INVALID;
|
|
692 |
}
|
|
693 |
_level.set(i, ++_highest_active);
|
|
694 |
if (_first[_highest_active] == INVALID) {
|
|
695 |
_first[_highest_active] = i;
|
|
696 |
_last[_highest_active] = i;
|
|
697 |
_prev.set(i, INVALID);
|
|
698 |
_next.set(i, INVALID);
|
|
699 |
} else {
|
|
700 |
_prev.set(_first[_highest_active], i);
|
|
701 |
_next.set(i, _first[_highest_active]);
|
|
702 |
_first[_highest_active] = i;
|
|
703 |
}
|
|
704 |
}
|
|
705 |
|
|
706 |
///Lift the highest active item to the given level.
|
|
707 |
|
|
708 |
///Lift the item returned by highestActive() to level \c new_level.
|
|
709 |
///
|
|
710 |
///\warning \c new_level must be strictly higher
|
|
711 |
///than the current level.
|
|
712 |
///
|
|
713 |
void liftHighestActive(int new_level) {
|
|
714 |
Item i = _first[_highest_active];
|
|
715 |
if (_next[i] != INVALID) {
|
|
716 |
_prev.set(_next[i], INVALID);
|
|
717 |
_first[_highest_active] = _next[i];
|
|
718 |
} else {
|
|
719 |
_first[_highest_active] = INVALID;
|
|
720 |
_last[_highest_active] = INVALID;
|
|
721 |
}
|
|
722 |
_level.set(i, _highest_active = new_level);
|
|
723 |
if (_first[_highest_active] == INVALID) {
|
|
724 |
_first[_highest_active] = _last[_highest_active] = i;
|
|
725 |
_prev.set(i, INVALID);
|
|
726 |
_next.set(i, INVALID);
|
|
727 |
} else {
|
|
728 |
_prev.set(_first[_highest_active], i);
|
|
729 |
_next.set(i, _first[_highest_active]);
|
|
730 |
_first[_highest_active] = i;
|
|
731 |
}
|
|
732 |
}
|
|
733 |
|
|
734 |
///Lift the highest active item to the top level.
|
|
735 |
|
|
736 |
///Lift the item returned by highestActive() to the top level and
|
|
737 |
///deactivate it.
|
|
738 |
void liftHighestActiveToTop() {
|
|
739 |
Item i = _first[_highest_active];
|
|
740 |
_level.set(i, _max_level);
|
|
741 |
if (_next[i] != INVALID) {
|
|
742 |
_prev.set(_next[i], INVALID);
|
|
743 |
_first[_highest_active] = _next[i];
|
|
744 |
} else {
|
|
745 |
_first[_highest_active] = INVALID;
|
|
746 |
_last[_highest_active] = INVALID;
|
|
747 |
}
|
|
748 |
while (_highest_active >= 0 && activeFree(_highest_active))
|
|
749 |
--_highest_active;
|
|
750 |
}
|
|
751 |
|
|
752 |
///@}
|
|
753 |
|
|
754 |
///\name Active Item on Certain Level
|
|
755 |
///Functions for working with the active items.
|
|
756 |
|
|
757 |
///@{
|
|
758 |
|
|
759 |
///Return an active item on level \c l.
|
|
760 |
|
|
761 |
///Return an active item on level \c l or \ref INVALID if there is no such
|
|
762 |
///an item. (\c l must be from the range [0...\c max_level].
|
|
763 |
Item activeOn(int l) const
|
|
764 |
{
|
|
765 |
return _active[_first[l]] ? _first[l] : INVALID;
|
|
766 |
}
|
|
767 |
|
|
768 |
///Lift the active item returned by \c activeOn(l) by one.
|
|
769 |
|
|
770 |
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
|
771 |
///by one.
|
|
772 |
Item liftActiveOn(int l)
|
|
773 |
{
|
|
774 |
Item i = _first[l];
|
|
775 |
if (_next[i] != INVALID) {
|
|
776 |
_prev.set(_next[i], INVALID);
|
|
777 |
_first[l] = _next[i];
|
|
778 |
} else {
|
|
779 |
_first[l] = INVALID;
|
|
780 |
_last[l] = INVALID;
|
|
781 |
}
|
|
782 |
_level.set(i, ++l);
|
|
783 |
if (_first[l] == INVALID) {
|
|
784 |
_first[l] = _last[l] = i;
|
|
785 |
_prev.set(i, INVALID);
|
|
786 |
_next.set(i, INVALID);
|
|
787 |
} else {
|
|
788 |
_prev.set(_first[l], i);
|
|
789 |
_next.set(i, _first[l]);
|
|
790 |
_first[l] = i;
|
|
791 |
}
|
|
792 |
if (_highest_active < l) {
|
|
793 |
_highest_active = l;
|
|
794 |
}
|
|
795 |
}
|
|
796 |
|
|
797 |
///Lift the active item returned by \c activeOn(l) to the given level.
|
|
798 |
|
|
799 |
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
|
800 |
///to the given level.
|
|
801 |
void liftActiveOn(int l, int new_level)
|
|
802 |
{
|
|
803 |
Item i = _first[l];
|
|
804 |
if (_next[i] != INVALID) {
|
|
805 |
_prev.set(_next[i], INVALID);
|
|
806 |
_first[l] = _next[i];
|
|
807 |
} else {
|
|
808 |
_first[l] = INVALID;
|
|
809 |
_last[l] = INVALID;
|
|
810 |
}
|
|
811 |
_level.set(i, l = new_level);
|
|
812 |
if (_first[l] == INVALID) {
|
|
813 |
_first[l] = _last[l] = i;
|
|
814 |
_prev.set(i, INVALID);
|
|
815 |
_next.set(i, INVALID);
|
|
816 |
} else {
|
|
817 |
_prev.set(_first[l], i);
|
|
818 |
_next.set(i, _first[l]);
|
|
819 |
_first[l] = i;
|
|
820 |
}
|
|
821 |
if (_highest_active < l) {
|
|
822 |
_highest_active = l;
|
|
823 |
}
|
|
824 |
}
|
|
825 |
|
|
826 |
///Lift the active item returned by \c activeOn(l) to the top level.
|
|
827 |
|
|
828 |
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
|
829 |
///to the top level and deactivate it.
|
|
830 |
void liftActiveToTop(int l)
|
|
831 |
{
|
|
832 |
Item i = _first[l];
|
|
833 |
if (_next[i] != INVALID) {
|
|
834 |
_prev.set(_next[i], INVALID);
|
|
835 |
_first[l] = _next[i];
|
|
836 |
} else {
|
|
837 |
_first[l] = INVALID;
|
|
838 |
_last[l] = INVALID;
|
|
839 |
}
|
|
840 |
_level.set(i, _max_level);
|
|
841 |
if (l == _highest_active) {
|
|
842 |
while (_highest_active >= 0 && activeFree(_highest_active))
|
|
843 |
--_highest_active;
|
|
844 |
}
|
|
845 |
}
|
|
846 |
|
|
847 |
///@}
|
|
848 |
|
|
849 |
/// \brief Lift an active item to a higher level.
|
|
850 |
///
|
|
851 |
/// Lift an active item to a higher level.
|
|
852 |
/// \param i The item to be lifted. It must be active.
|
|
853 |
/// \param new_level The new level of \c i. It must be strictly higher
|
|
854 |
/// than the current level.
|
|
855 |
///
|
|
856 |
void lift(Item i, int new_level) {
|
|
857 |
if (_next[i] != INVALID) {
|
|
858 |
_prev.set(_next[i], _prev[i]);
|
|
859 |
} else {
|
|
860 |
_last[new_level] = _prev[i];
|
|
861 |
}
|
|
862 |
if (_prev[i] != INVALID) {
|
|
863 |
_next.set(_prev[i], _next[i]);
|
|
864 |
} else {
|
|
865 |
_first[new_level] = _next[i];
|
|
866 |
}
|
|
867 |
_level.set(i, new_level);
|
|
868 |
if (_first[new_level] == INVALID) {
|
|
869 |
_first[new_level] = _last[new_level] = i;
|
|
870 |
_prev.set(i, INVALID);
|
|
871 |
_next.set(i, INVALID);
|
|
872 |
} else {
|
|
873 |
_prev.set(_first[new_level], i);
|
|
874 |
_next.set(i, _first[new_level]);
|
|
875 |
_first[new_level] = i;
|
|
876 |
}
|
|
877 |
if (_highest_active < new_level) {
|
|
878 |
_highest_active = new_level;
|
|
879 |
}
|
|
880 |
}
|
|
881 |
|
|
882 |
///Move an inactive item to the top but one level (in a dirty way).
|
|
883 |
|
|
884 |
///This function moves an inactive item from the top level to the top
|
|
885 |
///but one level (in a dirty way).
|
|
886 |
///\warning It makes the underlying datastructure corrupt, so use it
|
|
887 |
///only if you really know what it is for.
|
|
888 |
///\pre The item is on the top level.
|
|
889 |
void dirtyTopButOne(Item i) {
|
|
890 |
_level.set(i, _max_level - 1);
|
|
891 |
}
|
|
892 |
|
|
893 |
///Lift all items on and above the given level to the top level.
|
|
894 |
|
|
895 |
///This function lifts all items on and above level \c l to the top
|
|
896 |
///level and deactivates them.
|
|
897 |
void liftToTop(int l) {
|
|
898 |
for (int i = l + 1; _first[i] != INVALID; ++i) {
|
|
899 |
Item n = _first[i];
|
|
900 |
while (n != INVALID) {
|
|
901 |
_level.set(n, _max_level);
|
|
902 |
n = _next[n];
|
|
903 |
}
|
|
904 |
_first[i] = INVALID;
|
|
905 |
_last[i] = INVALID;
|
|
906 |
}
|
|
907 |
if (_highest_active > l - 1) {
|
|
908 |
_highest_active = l - 1;
|
|
909 |
while (_highest_active >= 0 && activeFree(_highest_active))
|
|
910 |
--_highest_active;
|
|
911 |
}
|
|
912 |
}
|
|
913 |
|
|
914 |
private:
|
|
915 |
|
|
916 |
int _init_level;
|
|
917 |
|
|
918 |
public:
|
|
919 |
|
|
920 |
///\name Initialization
|
|
921 |
///Using these functions you can initialize the levels of the items.
|
|
922 |
///\n
|
|
923 |
///The initialization must be started with calling \c initStart().
|
|
924 |
///Then the items should be listed level by level starting with the
|
|
925 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
|
|
926 |
///Finally \c initFinish() must be called.
|
|
927 |
///The items not listed are put on the highest level.
|
|
928 |
///@{
|
|
929 |
|
|
930 |
///Start the initialization process.
|
|
931 |
void initStart() {
|
|
932 |
|
|
933 |
for (int i = 0; i <= _max_level; ++i) {
|
|
934 |
_first[i] = _last[i] = INVALID;
|
|
935 |
}
|
|
936 |
_init_level = 0;
|
|
937 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph);
|
|
938 |
i != INVALID; ++i) {
|
|
939 |
_level.set(i, _max_level);
|
|
940 |
_active.set(i, false);
|
|
941 |
}
|
|
942 |
}
|
|
943 |
|
|
944 |
///Add an item to the current level.
|
|
945 |
void initAddItem(Item i) {
|
|
946 |
_level.set(i, _init_level);
|
|
947 |
if (_last[_init_level] == INVALID) {
|
|
948 |
_first[_init_level] = i;
|
|
949 |
_last[_init_level] = i;
|
|
950 |
_prev.set(i, INVALID);
|
|
951 |
_next.set(i, INVALID);
|
|
952 |
} else {
|
|
953 |
_prev.set(i, _last[_init_level]);
|
|
954 |
_next.set(i, INVALID);
|
|
955 |
_next.set(_last[_init_level], i);
|
|
956 |
_last[_init_level] = i;
|
|
957 |
}
|
|
958 |
}
|
|
959 |
|
|
960 |
///Start a new level.
|
|
961 |
|
|
962 |
///Start a new level.
|
|
963 |
///It shouldn't be used before the items on level 0 are listed.
|
|
964 |
void initNewLevel() {
|
|
965 |
++_init_level;
|
|
966 |
}
|
|
967 |
|
|
968 |
///Finalize the initialization process.
|
|
969 |
void initFinish() {
|
|
970 |
_highest_active = -1;
|
|
971 |
}
|
|
972 |
|
|
973 |
///@}
|
|
974 |
|
|
975 |
};
|
|
976 |
|
|
977 |
|
|
978 |
} //END OF NAMESPACE LEMON
|
|
979 |
|
|
980 |
#endif
|
|
981 |
|