1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_ELEVATOR_H |
|
20 |
#define LEMON_ELEVATOR_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Elevator class |
|
25 |
/// |
|
26 |
///Elevator class implements an efficient data structure |
|
27 |
///for labeling items in push-relabel type algorithms. |
|
28 |
/// |
|
29 |
|
|
30 |
#include <lemon/bits/traits.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
|
|
34 |
///Class for handling "labels" in push-relabel type algorithms. |
|
35 |
|
|
36 |
///A class for handling "labels" in push-relabel type algorithms. |
|
37 |
/// |
|
38 |
///\ingroup auxdat |
|
39 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
|
40 |
///to the edges or nodes of a graph, manipulate and query them through |
|
41 |
///operations typically arising in "push-relabel" type algorithms. |
|
42 |
/// |
|
43 |
///Each item is either \em active or not, and you can also choose a |
|
44 |
///highest level active item. |
|
45 |
/// |
|
46 |
///\sa LinkedElevator |
|
47 |
/// |
|
48 |
///\param Graph Type of the underlying graph. |
|
49 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
|
50 |
///Graph::Arc, Graph::Edge). |
|
51 |
template<class Graph, class Item> |
|
52 |
class Elevator |
|
53 |
{ |
|
54 |
public: |
|
55 |
|
|
56 |
typedef Item Key; |
|
57 |
typedef int Value; |
|
58 |
|
|
59 |
private: |
|
60 |
|
|
61 |
typedef Item *Vit; |
|
62 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
|
63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
|
64 |
|
|
65 |
const Graph &_g; |
|
66 |
int _max_level; |
|
67 |
int _item_num; |
|
68 |
VitMap _where; |
|
69 |
IntMap _level; |
|
70 |
std::vector<Item> _items; |
|
71 |
std::vector<Vit> _first; |
|
72 |
std::vector<Vit> _last_active; |
|
73 |
|
|
74 |
int _highest_active; |
|
75 |
|
|
76 |
void copy(Item i, Vit p) |
|
77 |
{ |
|
78 |
_where.set(*p=i,p); |
|
79 |
} |
|
80 |
void copy(Vit s, Vit p) |
|
81 |
{ |
|
82 |
if(s!=p) |
|
83 |
{ |
|
84 |
Item i=*s; |
|
85 |
*p=i; |
|
86 |
_where.set(i,p); |
|
87 |
} |
|
88 |
} |
|
89 |
void swap(Vit i, Vit j) |
|
90 |
{ |
|
91 |
Item ti=*i; |
|
92 |
Vit ct = _where[ti]; |
|
93 |
_where.set(ti,_where[*i=*j]); |
|
94 |
_where.set(*j,ct); |
|
95 |
*j=ti; |
|
96 |
} |
|
97 |
|
|
98 |
public: |
|
99 |
|
|
100 |
///Constructor with given maximum level. |
|
101 |
|
|
102 |
///Constructor with given maximum level. |
|
103 |
/// |
|
104 |
///\param graph The underlying graph. |
|
105 |
///\param max_level The maximum allowed level. |
|
106 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
107 |
Elevator(const Graph &graph,int max_level) : |
|
108 |
_g(graph), |
|
109 |
_max_level(max_level), |
|
110 |
_item_num(_max_level), |
|
111 |
_where(graph), |
|
112 |
_level(graph,0), |
|
113 |
_items(_max_level), |
|
114 |
_first(_max_level+2), |
|
115 |
_last_active(_max_level+2), |
|
116 |
_highest_active(-1) {} |
|
117 |
///Constructor. |
|
118 |
|
|
119 |
///Constructor. |
|
120 |
/// |
|
121 |
///\param graph The underlying graph. |
|
122 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
123 |
///where \c max_level is equal to the number of labeled items in the graph. |
|
124 |
Elevator(const Graph &graph) : |
|
125 |
_g(graph), |
|
126 |
_max_level(countItems<Graph, Item>(graph)), |
|
127 |
_item_num(_max_level), |
|
128 |
_where(graph), |
|
129 |
_level(graph,0), |
|
130 |
_items(_max_level), |
|
131 |
_first(_max_level+2), |
|
132 |
_last_active(_max_level+2), |
|
133 |
_highest_active(-1) |
|
134 |
{ |
|
135 |
} |
|
136 |
|
|
137 |
///Activate item \c i. |
|
138 |
|
|
139 |
///Activate item \c i. |
|
140 |
///\pre Item \c i shouldn't be active before. |
|
141 |
void activate(Item i) |
|
142 |
{ |
|
143 |
const int l=_level[i]; |
|
144 |
swap(_where[i],++_last_active[l]); |
|
145 |
if(l>_highest_active) _highest_active=l; |
|
146 |
} |
|
147 |
|
|
148 |
///Deactivate item \c i. |
|
149 |
|
|
150 |
///Deactivate item \c i. |
|
151 |
///\pre Item \c i must be active before. |
|
152 |
void deactivate(Item i) |
|
153 |
{ |
|
154 |
swap(_where[i],_last_active[_level[i]]--); |
|
155 |
while(_highest_active>=0 && |
|
156 |
_last_active[_highest_active]<_first[_highest_active]) |
|
157 |
_highest_active--; |
|
158 |
} |
|
159 |
|
|
160 |
///Query whether item \c i is active |
|
161 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
|
162 |
|
|
163 |
///Return the level of item \c i. |
|
164 |
int operator[](Item i) const { return _level[i]; } |
|
165 |
|
|
166 |
///Return the number of items on level \c l. |
|
167 |
int onLevel(int l) const |
|
168 |
{ |
|
169 |
return _first[l+1]-_first[l]; |
|
170 |
} |
|
171 |
///Return true if level \c l is empty. |
|
172 |
bool emptyLevel(int l) const |
|
173 |
{ |
|
174 |
return _first[l+1]-_first[l]==0; |
|
175 |
} |
|
176 |
///Return the number of items above level \c l. |
|
177 |
int aboveLevel(int l) const |
|
178 |
{ |
|
179 |
return _first[_max_level+1]-_first[l+1]; |
|
180 |
} |
|
181 |
///Return the number of active items on level \c l. |
|
182 |
int activesOnLevel(int l) const |
|
183 |
{ |
|
184 |
return _last_active[l]-_first[l]+1; |
|
185 |
} |
|
186 |
///Return true if there is no active item on level \c l. |
|
187 |
bool activeFree(int l) const |
|
188 |
{ |
|
189 |
return _last_active[l]<_first[l]; |
|
190 |
} |
|
191 |
///Return the maximum allowed level. |
|
192 |
int maxLevel() const |
|
193 |
{ |
|
194 |
return _max_level; |
|
195 |
} |
|
196 |
|
|
197 |
///\name Highest Active Item |
|
198 |
///Functions for working with the highest level |
|
199 |
///active item. |
|
200 |
|
|
201 |
///@{ |
|
202 |
|
|
203 |
///Return a highest level active item. |
|
204 |
|
|
205 |
///Return a highest level active item or INVALID if there is no active |
|
206 |
///item. |
|
207 |
Item highestActive() const |
|
208 |
{ |
|
209 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
|
210 |
} |
|
211 |
|
|
212 |
///Return the highest active level. |
|
213 |
|
|
214 |
///Return the level of the highest active item or -1 if there is no active |
|
215 |
///item. |
|
216 |
int highestActiveLevel() const |
|
217 |
{ |
|
218 |
return _highest_active; |
|
219 |
} |
|
220 |
|
|
221 |
///Lift the highest active item by one. |
|
222 |
|
|
223 |
///Lift the item returned by highestActive() by one. |
|
224 |
/// |
|
225 |
void liftHighestActive() |
|
226 |
{ |
|
227 |
Item it = *_last_active[_highest_active]; |
|
228 |
_level.set(it,_level[it]+1); |
|
229 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
|
230 |
--_first[++_highest_active]; |
|
231 |
} |
|
232 |
|
|
233 |
///Lift the highest active item to the given level. |
|
234 |
|
|
235 |
///Lift the item returned by highestActive() to level \c new_level. |
|
236 |
/// |
|
237 |
///\warning \c new_level must be strictly higher |
|
238 |
///than the current level. |
|
239 |
/// |
|
240 |
void liftHighestActive(int new_level) |
|
241 |
{ |
|
242 |
const Item li = *_last_active[_highest_active]; |
|
243 |
|
|
244 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
|
245 |
for(int l=_highest_active+1;l<new_level;l++) |
|
246 |
{ |
|
247 |
copy(--_first[l+1],_first[l]); |
|
248 |
--_last_active[l]; |
|
249 |
} |
|
250 |
copy(li,_first[new_level]); |
|
251 |
_level.set(li,new_level); |
|
252 |
_highest_active=new_level; |
|
253 |
} |
|
254 |
|
|
255 |
///Lift the highest active item to the top level. |
|
256 |
|
|
257 |
///Lift the item returned by highestActive() to the top level and |
|
258 |
///deactivate it. |
|
259 |
void liftHighestActiveToTop() |
|
260 |
{ |
|
261 |
const Item li = *_last_active[_highest_active]; |
|
262 |
|
|
263 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
|
264 |
for(int l=_highest_active+1;l<_max_level;l++) |
|
265 |
{ |
|
266 |
copy(--_first[l+1],_first[l]); |
|
267 |
--_last_active[l]; |
|
268 |
} |
|
269 |
copy(li,_first[_max_level]); |
|
270 |
--_last_active[_max_level]; |
|
271 |
_level.set(li,_max_level); |
|
272 |
|
|
273 |
while(_highest_active>=0 && |
|
274 |
_last_active[_highest_active]<_first[_highest_active]) |
|
275 |
_highest_active--; |
|
276 |
} |
|
277 |
|
|
278 |
///@} |
|
279 |
|
|
280 |
///\name Active Item on Certain Level |
|
281 |
///Functions for working with the active items. |
|
282 |
|
|
283 |
///@{ |
|
284 |
|
|
285 |
///Return an active item on level \c l. |
|
286 |
|
|
287 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
288 |
///an item. (\c l must be from the range [0...\c max_level]. |
|
289 |
Item activeOn(int l) const |
|
290 |
{ |
|
291 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
|
292 |
} |
|
293 |
|
|
294 |
///Lift the active item returned by \c activeOn(level) by one. |
|
295 |
|
|
296 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
297 |
///by one. |
|
298 |
Item liftActiveOn(int level) |
|
299 |
{ |
|
300 |
Item it =*_last_active[level]; |
|
301 |
_level.set(it,_level[it]+1); |
|
302 |
swap(_last_active[level]--, --_first[level+1]); |
|
303 |
if (level+1>_highest_active) ++_highest_active; |
|
304 |
} |
|
305 |
|
|
306 |
///Lift the active item returned by \c activeOn(level) to the given level. |
|
307 |
|
|
308 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
309 |
///to the given level. |
|
310 |
void liftActiveOn(int level, int new_level) |
|
311 |
{ |
|
312 |
const Item ai = *_last_active[level]; |
|
313 |
|
|
314 |
copy(--_first[level+1], _last_active[level]--); |
|
315 |
for(int l=level+1;l<new_level;l++) |
|
316 |
{ |
|
317 |
copy(_last_active[l],_first[l]); |
|
318 |
copy(--_first[l+1], _last_active[l]--); |
|
319 |
} |
|
320 |
copy(ai,_first[new_level]); |
|
321 |
_level.set(ai,new_level); |
|
322 |
if (new_level>_highest_active) _highest_active=new_level; |
|
323 |
} |
|
324 |
|
|
325 |
///Lift the active item returned by \c activeOn(level) to the top level. |
|
326 |
|
|
327 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
328 |
///to the top level and deactivate it. |
|
329 |
void liftActiveToTop(int level) |
|
330 |
{ |
|
331 |
const Item ai = *_last_active[level]; |
|
332 |
|
|
333 |
copy(--_first[level+1],_last_active[level]--); |
|
334 |
for(int l=level+1;l<_max_level;l++) |
|
335 |
{ |
|
336 |
copy(_last_active[l],_first[l]); |
|
337 |
copy(--_first[l+1], _last_active[l]--); |
|
338 |
} |
|
339 |
copy(ai,_first[_max_level]); |
|
340 |
--_last_active[_max_level]; |
|
341 |
_level.set(ai,_max_level); |
|
342 |
|
|
343 |
if (_highest_active==level) { |
|
344 |
while(_highest_active>=0 && |
|
345 |
_last_active[_highest_active]<_first[_highest_active]) |
|
346 |
_highest_active--; |
|
347 |
} |
|
348 |
} |
|
349 |
|
|
350 |
///@} |
|
351 |
|
|
352 |
///Lift an active item to a higher level. |
|
353 |
|
|
354 |
///Lift an active item to a higher level. |
|
355 |
///\param i The item to be lifted. It must be active. |
|
356 |
///\param new_level The new level of \c i. It must be strictly higher |
|
357 |
///than the current level. |
|
358 |
/// |
|
359 |
void lift(Item i, int new_level) |
|
360 |
{ |
|
361 |
const int lo = _level[i]; |
|
362 |
const Vit w = _where[i]; |
|
363 |
|
|
364 |
copy(_last_active[lo],w); |
|
365 |
copy(--_first[lo+1],_last_active[lo]--); |
|
366 |
for(int l=lo+1;l<new_level;l++) |
|
367 |
{ |
|
368 |
copy(_last_active[l],_first[l]); |
|
369 |
copy(--_first[l+1],_last_active[l]--); |
|
370 |
} |
|
371 |
copy(i,_first[new_level]); |
|
372 |
_level.set(i,new_level); |
|
373 |
if(new_level>_highest_active) _highest_active=new_level; |
|
374 |
} |
|
375 |
|
|
376 |
///Move an inactive item to the top but one level (in a dirty way). |
|
377 |
|
|
378 |
///This function moves an inactive item from the top level to the top |
|
379 |
///but one level (in a dirty way). |
|
380 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
381 |
///only if you really know what it is for. |
|
382 |
///\pre The item is on the top level. |
|
383 |
void dirtyTopButOne(Item i) { |
|
384 |
_level.set(i,_max_level - 1); |
|
385 |
} |
|
386 |
|
|
387 |
///Lift all items on and above the given level to the top level. |
|
388 |
|
|
389 |
///This function lifts all items on and above level \c l to the top |
|
390 |
///level and deactivates them. |
|
391 |
void liftToTop(int l) |
|
392 |
{ |
|
393 |
const Vit f=_first[l]; |
|
394 |
const Vit tl=_first[_max_level]; |
|
395 |
for(Vit i=f;i!=tl;++i) |
|
396 |
_level.set(*i,_max_level); |
|
397 |
for(int i=l;i<=_max_level;i++) |
|
398 |
{ |
|
399 |
_first[i]=f; |
|
400 |
_last_active[i]=f-1; |
|
401 |
} |
|
402 |
for(_highest_active=l-1; |
|
403 |
_highest_active>=0 && |
|
404 |
_last_active[_highest_active]<_first[_highest_active]; |
|
405 |
_highest_active--) ; |
|
406 |
} |
|
407 |
|
|
408 |
private: |
|
409 |
int _init_lev; |
|
410 |
Vit _init_num; |
|
411 |
|
|
412 |
public: |
|
413 |
|
|
414 |
///\name Initialization |
|
415 |
///Using these functions you can initialize the levels of the items. |
|
416 |
///\n |
|
417 |
///The initialization must be started with calling \c initStart(). |
|
418 |
///Then the items should be listed level by level starting with the |
|
419 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
420 |
///Finally \c initFinish() must be called. |
|
421 |
///The items not listed are put on the highest level. |
|
422 |
///@{ |
|
423 |
|
|
424 |
///Start the initialization process. |
|
425 |
void initStart() |
|
426 |
{ |
|
427 |
_init_lev=0; |
|
428 |
_init_num=&_items[0]; |
|
429 |
_first[0]=&_items[0]; |
|
430 |
_last_active[0]=&_items[0]-1; |
|
431 |
Vit n=&_items[0]; |
|
432 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
|
433 |
{ |
|
434 |
*n=i; |
|
435 |
_where.set(i,n); |
|
436 |
_level.set(i,_max_level); |
|
437 |
++n; |
|
438 |
} |
|
439 |
} |
|
440 |
|
|
441 |
///Add an item to the current level. |
|
442 |
void initAddItem(Item i) |
|
443 |
{ |
|
444 |
swap(_where[i],_init_num); |
|
445 |
_level.set(i,_init_lev); |
|
446 |
++_init_num; |
|
447 |
} |
|
448 |
|
|
449 |
///Start a new level. |
|
450 |
|
|
451 |
///Start a new level. |
|
452 |
///It shouldn't be used before the items on level 0 are listed. |
|
453 |
void initNewLevel() |
|
454 |
{ |
|
455 |
_init_lev++; |
|
456 |
_first[_init_lev]=_init_num; |
|
457 |
_last_active[_init_lev]=_init_num-1; |
|
458 |
} |
|
459 |
|
|
460 |
///Finalize the initialization process. |
|
461 |
void initFinish() |
|
462 |
{ |
|
463 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
|
464 |
{ |
|
465 |
_first[_init_lev]=_init_num; |
|
466 |
_last_active[_init_lev]=_init_num-1; |
|
467 |
} |
|
468 |
_first[_max_level+1]=&_items[0]+_item_num; |
|
469 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
|
470 |
_highest_active = -1; |
|
471 |
} |
|
472 |
|
|
473 |
///@} |
|
474 |
|
|
475 |
}; |
|
476 |
|
|
477 |
///Class for handling "labels" in push-relabel type algorithms. |
|
478 |
|
|
479 |
///A class for handling "labels" in push-relabel type algorithms. |
|
480 |
/// |
|
481 |
///\ingroup auxdat |
|
482 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
|
483 |
///to the edges or nodes of a graph, manipulate and query them through |
|
484 |
///operations typically arising in "push-relabel" type algorithms. |
|
485 |
/// |
|
486 |
///Each item is either \em active or not, and you can also choose a |
|
487 |
///highest level active item. |
|
488 |
/// |
|
489 |
///\sa Elevator |
|
490 |
/// |
|
491 |
///\param Graph Type of the underlying graph. |
|
492 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
|
493 |
///Graph::Arc, Graph::Edge). |
|
494 |
template <class Graph, class Item> |
|
495 |
class LinkedElevator { |
|
496 |
public: |
|
497 |
|
|
498 |
typedef Item Key; |
|
499 |
typedef int Value; |
|
500 |
|
|
501 |
private: |
|
502 |
|
|
503 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
504 |
template Map<Item>::Type ItemMap; |
|
505 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
506 |
template Map<int>::Type IntMap; |
|
507 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
508 |
template Map<bool>::Type BoolMap; |
|
509 |
|
|
510 |
const Graph &_graph; |
|
511 |
int _max_level; |
|
512 |
int _item_num; |
|
513 |
std::vector<Item> _first, _last; |
|
514 |
ItemMap _prev, _next; |
|
515 |
int _highest_active; |
|
516 |
IntMap _level; |
|
517 |
BoolMap _active; |
|
518 |
|
|
519 |
public: |
|
520 |
///Constructor with given maximum level. |
|
521 |
|
|
522 |
///Constructor with given maximum level. |
|
523 |
/// |
|
524 |
///\param graph The underlying graph. |
|
525 |
///\param max_level The maximum allowed level. |
|
526 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
527 |
LinkedElevator(const Graph& graph, int max_level) |
|
528 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
|
529 |
_first(_max_level + 1), _last(_max_level + 1), |
|
530 |
_prev(graph), _next(graph), |
|
531 |
_highest_active(-1), _level(graph), _active(graph) {} |
|
532 |
|
|
533 |
///Constructor. |
|
534 |
|
|
535 |
///Constructor. |
|
536 |
/// |
|
537 |
///\param graph The underlying graph. |
|
538 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
539 |
///where \c max_level is equal to the number of labeled items in the graph. |
|
540 |
LinkedElevator(const Graph& graph) |
|
541 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
|
542 |
_item_num(_max_level), |
|
543 |
_first(_max_level + 1), _last(_max_level + 1), |
|
544 |
_prev(graph, INVALID), _next(graph, INVALID), |
|
545 |
_highest_active(-1), _level(graph), _active(graph) {} |
|
546 |
|
|
547 |
|
|
548 |
///Activate item \c i. |
|
549 |
|
|
550 |
///Activate item \c i. |
|
551 |
///\pre Item \c i shouldn't be active before. |
|
552 |
void activate(Item i) { |
|
553 |
_active.set(i, true); |
|
554 |
|
|
555 |
int level = _level[i]; |
|
556 |
if (level > _highest_active) { |
|
557 |
_highest_active = level; |
|
558 |
} |
|
559 |
|
|
560 |
if (_prev[i] == INVALID || _active[_prev[i]]) return; |
|
561 |
//unlace |
|
562 |
_next.set(_prev[i], _next[i]); |
|
563 |
if (_next[i] != INVALID) { |
|
564 |
_prev.set(_next[i], _prev[i]); |
|
565 |
} else { |
|
566 |
_last[level] = _prev[i]; |
|
567 |
} |
|
568 |
//lace |
|
569 |
_next.set(i, _first[level]); |
|
570 |
_prev.set(_first[level], i); |
|
571 |
_prev.set(i, INVALID); |
|
572 |
_first[level] = i; |
|
573 |
|
|
574 |
} |
|
575 |
|
|
576 |
///Deactivate item \c i. |
|
577 |
|
|
578 |
///Deactivate item \c i. |
|
579 |
///\pre Item \c i must be active before. |
|
580 |
void deactivate(Item i) { |
|
581 |
_active.set(i, false); |
|
582 |
int level = _level[i]; |
|
583 |
|
|
584 |
if (_next[i] == INVALID || !_active[_next[i]]) |
|
585 |
goto find_highest_level; |
|
586 |
|
|
587 |
//unlace |
|
588 |
_prev.set(_next[i], _prev[i]); |
|
589 |
if (_prev[i] != INVALID) { |
|
590 |
_next.set(_prev[i], _next[i]); |
|
591 |
} else { |
|
592 |
_first[_level[i]] = _next[i]; |
|
593 |
} |
|
594 |
//lace |
|
595 |
_prev.set(i, _last[level]); |
|
596 |
_next.set(_last[level], i); |
|
597 |
_next.set(i, INVALID); |
|
598 |
_last[level] = i; |
|
599 |
|
|
600 |
find_highest_level: |
|
601 |
if (level == _highest_active) { |
|
602 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
603 |
--_highest_active; |
|
604 |
} |
|
605 |
} |
|
606 |
|
|
607 |
///Query whether item \c i is active |
|
608 |
bool active(Item i) const { return _active[i]; } |
|
609 |
|
|
610 |
///Return the level of item \c i. |
|
611 |
int operator[](Item i) const { return _level[i]; } |
|
612 |
|
|
613 |
///Return the number of items on level \c l. |
|
614 |
int onLevel(int l) const { |
|
615 |
int num = 0; |
|
616 |
Item n = _first[l]; |
|
617 |
while (n != INVALID) { |
|
618 |
++num; |
|
619 |
n = _next[n]; |
|
620 |
} |
|
621 |
return num; |
|
622 |
} |
|
623 |
|
|
624 |
///Return true if the level is empty. |
|
625 |
bool emptyLevel(int l) const { |
|
626 |
return _first[l] == INVALID; |
|
627 |
} |
|
628 |
|
|
629 |
///Return the number of items above level \c l. |
|
630 |
int aboveLevel(int l) const { |
|
631 |
int num = 0; |
|
632 |
for (int level = l + 1; level < _max_level; ++level) |
|
633 |
num += onLevel(level); |
|
634 |
return num; |
|
635 |
} |
|
636 |
|
|
637 |
///Return the number of active items on level \c l. |
|
638 |
int activesOnLevel(int l) const { |
|
639 |
int num = 0; |
|
640 |
Item n = _first[l]; |
|
641 |
while (n != INVALID && _active[n]) { |
|
642 |
++num; |
|
643 |
n = _next[n]; |
|
644 |
} |
|
645 |
return num; |
|
646 |
} |
|
647 |
|
|
648 |
///Return true if there is no active item on level \c l. |
|
649 |
bool activeFree(int l) const { |
|
650 |
return _first[l] == INVALID || !_active[_first[l]]; |
|
651 |
} |
|
652 |
|
|
653 |
///Return the maximum allowed level. |
|
654 |
int maxLevel() const { |
|
655 |
return _max_level; |
|
656 |
} |
|
657 |
|
|
658 |
///\name Highest Active Item |
|
659 |
///Functions for working with the highest level |
|
660 |
///active item. |
|
661 |
|
|
662 |
///@{ |
|
663 |
|
|
664 |
///Return a highest level active item. |
|
665 |
|
|
666 |
///Return a highest level active item or INVALID if there is no active |
|
667 |
///item. |
|
668 |
Item highestActive() const { |
|
669 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
|
670 |
} |
|
671 |
|
|
672 |
///Return the highest active level. |
|
673 |
|
|
674 |
///Return the level of the highest active item or -1 if there is no active |
|
675 |
///item. |
|
676 |
int highestActiveLevel() const { |
|
677 |
return _highest_active; |
|
678 |
} |
|
679 |
|
|
680 |
///Lift the highest active item by one. |
|
681 |
|
|
682 |
///Lift the item returned by highestActive() by one. |
|
683 |
/// |
|
684 |
void liftHighestActive() { |
|
685 |
Item i = _first[_highest_active]; |
|
686 |
if (_next[i] != INVALID) { |
|
687 |
_prev.set(_next[i], INVALID); |
|
688 |
_first[_highest_active] = _next[i]; |
|
689 |
} else { |
|
690 |
_first[_highest_active] = INVALID; |
|
691 |
_last[_highest_active] = INVALID; |
|
692 |
} |
|
693 |
_level.set(i, ++_highest_active); |
|
694 |
if (_first[_highest_active] == INVALID) { |
|
695 |
_first[_highest_active] = i; |
|
696 |
_last[_highest_active] = i; |
|
697 |
_prev.set(i, INVALID); |
|
698 |
_next.set(i, INVALID); |
|
699 |
} else { |
|
700 |
_prev.set(_first[_highest_active], i); |
|
701 |
_next.set(i, _first[_highest_active]); |
|
702 |
_first[_highest_active] = i; |
|
703 |
} |
|
704 |
} |
|
705 |
|
|
706 |
///Lift the highest active item to the given level. |
|
707 |
|
|
708 |
///Lift the item returned by highestActive() to level \c new_level. |
|
709 |
/// |
|
710 |
///\warning \c new_level must be strictly higher |
|
711 |
///than the current level. |
|
712 |
/// |
|
713 |
void liftHighestActive(int new_level) { |
|
714 |
Item i = _first[_highest_active]; |
|
715 |
if (_next[i] != INVALID) { |
|
716 |
_prev.set(_next[i], INVALID); |
|
717 |
_first[_highest_active] = _next[i]; |
|
718 |
} else { |
|
719 |
_first[_highest_active] = INVALID; |
|
720 |
_last[_highest_active] = INVALID; |
|
721 |
} |
|
722 |
_level.set(i, _highest_active = new_level); |
|
723 |
if (_first[_highest_active] == INVALID) { |
|
724 |
_first[_highest_active] = _last[_highest_active] = i; |
|
725 |
_prev.set(i, INVALID); |
|
726 |
_next.set(i, INVALID); |
|
727 |
} else { |
|
728 |
_prev.set(_first[_highest_active], i); |
|
729 |
_next.set(i, _first[_highest_active]); |
|
730 |
_first[_highest_active] = i; |
|
731 |
} |
|
732 |
} |
|
733 |
|
|
734 |
///Lift the highest active item to the top level. |
|
735 |
|
|
736 |
///Lift the item returned by highestActive() to the top level and |
|
737 |
///deactivate it. |
|
738 |
void liftHighestActiveToTop() { |
|
739 |
Item i = _first[_highest_active]; |
|
740 |
_level.set(i, _max_level); |
|
741 |
if (_next[i] != INVALID) { |
|
742 |
_prev.set(_next[i], INVALID); |
|
743 |
_first[_highest_active] = _next[i]; |
|
744 |
} else { |
|
745 |
_first[_highest_active] = INVALID; |
|
746 |
_last[_highest_active] = INVALID; |
|
747 |
} |
|
748 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
749 |
--_highest_active; |
|
750 |
} |
|
751 |
|
|
752 |
///@} |
|
753 |
|
|
754 |
///\name Active Item on Certain Level |
|
755 |
///Functions for working with the active items. |
|
756 |
|
|
757 |
///@{ |
|
758 |
|
|
759 |
///Return an active item on level \c l. |
|
760 |
|
|
761 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
762 |
///an item. (\c l must be from the range [0...\c max_level]. |
|
763 |
Item activeOn(int l) const |
|
764 |
{ |
|
765 |
return _active[_first[l]] ? _first[l] : INVALID; |
|
766 |
} |
|
767 |
|
|
768 |
///Lift the active item returned by \c activeOn(l) by one. |
|
769 |
|
|
770 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
771 |
///by one. |
|
772 |
Item liftActiveOn(int l) |
|
773 |
{ |
|
774 |
Item i = _first[l]; |
|
775 |
if (_next[i] != INVALID) { |
|
776 |
_prev.set(_next[i], INVALID); |
|
777 |
_first[l] = _next[i]; |
|
778 |
} else { |
|
779 |
_first[l] = INVALID; |
|
780 |
_last[l] = INVALID; |
|
781 |
} |
|
782 |
_level.set(i, ++l); |
|
783 |
if (_first[l] == INVALID) { |
|
784 |
_first[l] = _last[l] = i; |
|
785 |
_prev.set(i, INVALID); |
|
786 |
_next.set(i, INVALID); |
|
787 |
} else { |
|
788 |
_prev.set(_first[l], i); |
|
789 |
_next.set(i, _first[l]); |
|
790 |
_first[l] = i; |
|
791 |
} |
|
792 |
if (_highest_active < l) { |
|
793 |
_highest_active = l; |
|
794 |
} |
|
795 |
} |
|
796 |
|
|
797 |
///Lift the active item returned by \c activeOn(l) to the given level. |
|
798 |
|
|
799 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
800 |
///to the given level. |
|
801 |
void liftActiveOn(int l, int new_level) |
|
802 |
{ |
|
803 |
Item i = _first[l]; |
|
804 |
if (_next[i] != INVALID) { |
|
805 |
_prev.set(_next[i], INVALID); |
|
806 |
_first[l] = _next[i]; |
|
807 |
} else { |
|
808 |
_first[l] = INVALID; |
|
809 |
_last[l] = INVALID; |
|
810 |
} |
|
811 |
_level.set(i, l = new_level); |
|
812 |
if (_first[l] == INVALID) { |
|
813 |
_first[l] = _last[l] = i; |
|
814 |
_prev.set(i, INVALID); |
|
815 |
_next.set(i, INVALID); |
|
816 |
} else { |
|
817 |
_prev.set(_first[l], i); |
|
818 |
_next.set(i, _first[l]); |
|
819 |
_first[l] = i; |
|
820 |
} |
|
821 |
if (_highest_active < l) { |
|
822 |
_highest_active = l; |
|
823 |
} |
|
824 |
} |
|
825 |
|
|
826 |
///Lift the active item returned by \c activeOn(l) to the top level. |
|
827 |
|
|
828 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
829 |
///to the top level and deactivate it. |
|
830 |
void liftActiveToTop(int l) |
|
831 |
{ |
|
832 |
Item i = _first[l]; |
|
833 |
if (_next[i] != INVALID) { |
|
834 |
_prev.set(_next[i], INVALID); |
|
835 |
_first[l] = _next[i]; |
|
836 |
} else { |
|
837 |
_first[l] = INVALID; |
|
838 |
_last[l] = INVALID; |
|
839 |
} |
|
840 |
_level.set(i, _max_level); |
|
841 |
if (l == _highest_active) { |
|
842 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
843 |
--_highest_active; |
|
844 |
} |
|
845 |
} |
|
846 |
|
|
847 |
///@} |
|
848 |
|
|
849 |
/// \brief Lift an active item to a higher level. |
|
850 |
/// |
|
851 |
/// Lift an active item to a higher level. |
|
852 |
/// \param i The item to be lifted. It must be active. |
|
853 |
/// \param new_level The new level of \c i. It must be strictly higher |
|
854 |
/// than the current level. |
|
855 |
/// |
|
856 |
void lift(Item i, int new_level) { |
|
857 |
if (_next[i] != INVALID) { |
|
858 |
_prev.set(_next[i], _prev[i]); |
|
859 |
} else { |
|
860 |
_last[new_level] = _prev[i]; |
|
861 |
} |
|
862 |
if (_prev[i] != INVALID) { |
|
863 |
_next.set(_prev[i], _next[i]); |
|
864 |
} else { |
|
865 |
_first[new_level] = _next[i]; |
|
866 |
} |
|
867 |
_level.set(i, new_level); |
|
868 |
if (_first[new_level] == INVALID) { |
|
869 |
_first[new_level] = _last[new_level] = i; |
|
870 |
_prev.set(i, INVALID); |
|
871 |
_next.set(i, INVALID); |
|
872 |
} else { |
|
873 |
_prev.set(_first[new_level], i); |
|
874 |
_next.set(i, _first[new_level]); |
|
875 |
_first[new_level] = i; |
|
876 |
} |
|
877 |
if (_highest_active < new_level) { |
|
878 |
_highest_active = new_level; |
|
879 |
} |
|
880 |
} |
|
881 |
|
|
882 |
///Move an inactive item to the top but one level (in a dirty way). |
|
883 |
|
|
884 |
///This function moves an inactive item from the top level to the top |
|
885 |
///but one level (in a dirty way). |
|
886 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
887 |
///only if you really know what it is for. |
|
888 |
///\pre The item is on the top level. |
|
889 |
void dirtyTopButOne(Item i) { |
|
890 |
_level.set(i, _max_level - 1); |
|
891 |
} |
|
892 |
|
|
893 |
///Lift all items on and above the given level to the top level. |
|
894 |
|
|
895 |
///This function lifts all items on and above level \c l to the top |
|
896 |
///level and deactivates them. |
|
897 |
void liftToTop(int l) { |
|
898 |
for (int i = l + 1; _first[i] != INVALID; ++i) { |
|
899 |
Item n = _first[i]; |
|
900 |
while (n != INVALID) { |
|
901 |
_level.set(n, _max_level); |
|
902 |
n = _next[n]; |
|
903 |
} |
|
904 |
_first[i] = INVALID; |
|
905 |
_last[i] = INVALID; |
|
906 |
} |
|
907 |
if (_highest_active > l - 1) { |
|
908 |
_highest_active = l - 1; |
|
909 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
910 |
--_highest_active; |
|
911 |
} |
|
912 |
} |
|
913 |
|
|
914 |
private: |
|
915 |
|
|
916 |
int _init_level; |
|
917 |
|
|
918 |
public: |
|
919 |
|
|
920 |
///\name Initialization |
|
921 |
///Using these functions you can initialize the levels of the items. |
|
922 |
///\n |
|
923 |
///The initialization must be started with calling \c initStart(). |
|
924 |
///Then the items should be listed level by level starting with the |
|
925 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
926 |
///Finally \c initFinish() must be called. |
|
927 |
///The items not listed are put on the highest level. |
|
928 |
///@{ |
|
929 |
|
|
930 |
///Start the initialization process. |
|
931 |
void initStart() { |
|
932 |
|
|
933 |
for (int i = 0; i <= _max_level; ++i) { |
|
934 |
_first[i] = _last[i] = INVALID; |
|
935 |
} |
|
936 |
_init_level = 0; |
|
937 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
|
938 |
i != INVALID; ++i) { |
|
939 |
_level.set(i, _max_level); |
|
940 |
_active.set(i, false); |
|
941 |
} |
|
942 |
} |
|
943 |
|
|
944 |
///Add an item to the current level. |
|
945 |
void initAddItem(Item i) { |
|
946 |
_level.set(i, _init_level); |
|
947 |
if (_last[_init_level] == INVALID) { |
|
948 |
_first[_init_level] = i; |
|
949 |
_last[_init_level] = i; |
|
950 |
_prev.set(i, INVALID); |
|
951 |
_next.set(i, INVALID); |
|
952 |
} else { |
|
953 |
_prev.set(i, _last[_init_level]); |
|
954 |
_next.set(i, INVALID); |
|
955 |
_next.set(_last[_init_level], i); |
|
956 |
_last[_init_level] = i; |
|
957 |
} |
|
958 |
} |
|
959 |
|
|
960 |
///Start a new level. |
|
961 |
|
|
962 |
///Start a new level. |
|
963 |
///It shouldn't be used before the items on level 0 are listed. |
|
964 |
void initNewLevel() { |
|
965 |
++_init_level; |
|
966 |
} |
|
967 |
|
|
968 |
///Finalize the initialization process. |
|
969 |
void initFinish() { |
|
970 |
_highest_active = -1; |
|
971 |
} |
|
972 |
|
|
973 |
///@} |
|
974 |
|
|
975 |
}; |
|
976 |
|
|
977 |
|
|
978 |
} //END OF NAMESPACE LEMON |
|
979 |
|
|
980 |
#endif |
|
981 |
|
0 comments (0 inline)