/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_RADIX_HEAP_H
#define LEMON_RADIX_HEAP_H
///\brief Radix Heap implementation.
/// \brief A Radix Heap implementation.
/// This class implements the \e radix \e heap data structure. A \e heap
/// is a data structure for storing items with specified values called \e
/// priorities in such a way that finding the item with minimum priority is
/// efficient. This heap type can store only items with \e int priority.
/// In a heap one can change the priority of an item, add or erase an
/// item, but the priority cannot be decreased under the last removed
/// \param IM A read and writable Item int map, used internally
/// to handle the cross references.
typedef typename IM::Key Item;
/// \brief Exception thrown by RadixHeap.
/// This Exception is thrown when a smaller priority
/// is inserted into the \e RadixHeap then the last time erased.
class UnderFlowPriorityError : public Exception {
virtual const char* what() const throw() {
return "lemon::RadixHeap::UnderFlowPriorityError";
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The ItemIntMap \e should be initialized in such way that it maps
/// PRE_HEAP (-1) to any element to be put in the heap...
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
std::vector<RadixItem> data;
std::vector<RadixBox> boxes;
/// \brief The constructor.
/// \param map It should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
/// \param minimal The initial minimal value of the heap.
/// \param capacity It determines the initial capacity of the heap.
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
boxes.push_back(RadixBox(minimal, 1));
boxes.push_back(RadixBox(minimal + 1, 1));
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
/// The number of items stored in the heap.
/// \brief Returns the number of items stored in the heap.
int size() const { return data.size(); }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return data.empty(); }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
void clear(int minimal = 0, int capacity = 0) {
data.clear(); boxes.clear();
boxes.push_back(RadixBox(minimal, 1));
boxes.push_back(RadixBox(minimal + 1, 1));
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
bool upper(int box, Prio pr) {
return pr < boxes[box].min;
bool lower(int box, Prio pr) {
return pr >= boxes[box].min + boxes[box].size;
/// \brief Remove item from the box list.
if (data[index].prev >= 0) {
data[data[index].prev].next = data[index].next;
boxes[data[index].box].first = data[index].next;
if (data[index].next >= 0) {
data[data[index].next].prev = data[index].prev;
/// \brief Insert item into the box list.
void insert(int box, int index) {
if (boxes[box].first == -1) {
boxes[box].first = index;
data[index].next = data[index].prev = -1;
data[index].next = boxes[box].first;
data[boxes[box].first].prev = index;
boxes[box].first = index;
/// \brief Add a new box to the box list.
int min = boxes.back().min + boxes.back().size;
int bs = 2 * boxes.back().size;
boxes.push_back(RadixBox(min, bs));
/// \brief Move an item up into the proper box.
void bubble_up(int index) {
if (!lower(data[index].box, data[index].prio)) return;
int box = findUp(data[index].box, data[index].prio);
/// \brief Find up the proper box for the item with the given prio.
int findUp(int start, int pr) {
while (lower(start, pr)) {
if (++start == int(boxes.size())) {
/// \brief Move an item down into the proper box.
void bubble_down(int index) {
if (!upper(data[index].box, data[index].prio)) return;
int box = findDown(data[index].box, data[index].prio);
/// \brief Find up the proper box for the item with the given prio.
int findDown(int start, int pr) {
while (upper(start, pr)) {
if (--start < 0) throw UnderFlowPriorityError();
/// \brief Find the first not empty box.
while (boxes[first].first == -1) ++first;
/// \brief Gives back the minimal prio of the box.
int min = data[boxes[box].first].prio;
for (int k = boxes[box].first; k != -1; k = data[k].next) {
if (data[k].prio < min) min = data[k].prio;
/// \brief Rearrange the items of the heap and makes the
for (int i = 0; i <= box; ++i) {
int curr = boxes[box].first, next;
void relocate_last(int index) {
if (index != int(data.size()) - 1) {
data[index] = data.back();
if (data[index].prev != -1) {
data[data[index].prev].next = index;
boxes[data[index].box].first = index;
if (data[index].next != -1) {
data[data[index].next].prev = index;
_iim[data[index].item] = index;
/// \brief Insert an item into the heap with the given priority.
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) {
data.push_back(RadixItem(i, p));
while (lower(boxes.size() - 1, p)) {
int box = findDown(boxes.size() - 1, p);
/// \brief Returns the item with minimum priority.
/// This method returns the item with minimum priority.
/// \pre The heap must be nonempty.
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
return data[boxes[0].first].item;
/// \brief Returns the minimum priority.
/// It returns the minimum priority.
/// \pre The heap must be nonempty.
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
return data[boxes[0].first].prio;
/// \brief Deletes the item with minimum priority.
/// This method deletes the item with minimum priority.
/// \pre The heap must be non-empty.
int index = boxes[0].first;
_iim[data[index].item] = POST_HEAP;
/// \brief Deletes \c i from the heap.
/// This method deletes item \c i from the heap, if \c i was
/// already stored in the heap.
/// \param i The item to erase.
void erase(const Item &i) {
/// \brief Returns the priority of \c i.
/// This function returns the priority of item \c i.
/// \pre \c i must be in the heap.
Prio operator[](const Item &i) const {
/// \brief \c i gets to the heap with priority \c p independently
/// if \c i was already there.
/// This method calls \ref push(\c i, \c p) if \c i is not stored
/// in the heap and sets the priority of \c i to \c p otherwise.
/// It may throw an \e UnderFlowPriorityException.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
else if( p >= data[idx].prio ) {
/// \brief Decreases the priority of \c i to \c p.
/// This method decreases the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at least \c p, and
/// \c should be greater or equal to the last removed item's priority.
/// \param p The priority.
void decrease(const Item &i, const Prio &p) {
/// \brief Increases the priority of \c i to \c p.
/// This method sets the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at most \c p
/// \param p The priority.
void increase(const Item &i, const Prio &p) {
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &i) const {
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
#endif // LEMON_RADIX_HEAP_H