/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
//\brief Classes to compute with Bezier curves.
//Up to now this file is used internally by \ref graph_to_eps.h
typedef lemon::dim2::Point<double> Point;
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
class Bezier1 : public BezierBase
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
Point operator()(double t) const
// return conv(conv(p1,p2,t),conv(p2,p3,t),t);
Bezier1 before(double t) const
return Bezier1(p1,conv(p1,p2,t));
Bezier1 after(double t) const
return Bezier1(conv(p1,p2,t),p2);
Bezier1 revert() const { return Bezier1(p2,p1);}
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
Point grad() const { return p2-p1; }
Point norm() const { return rot90(p2-p1); }
Point grad(double) const { return grad(); }
Point norm(double t) const { return rot90(grad(t)); }
class Bezier2 : public BezierBase
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
Point operator()(double t) const
// return conv(conv(p1,p2,t),conv(p2,p3,t),t);
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
Bezier2 before(double t) const
return Bezier2(p1,q,conv(q,r,t));
Bezier2 after(double t) const
return Bezier2(conv(q,r,t),r,p3);
Bezier2 revert() const { return Bezier2(p3,p2,p1);}
Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
Point grad(double t) const { return grad()(t); }
Point norm(double t) const { return rot90(grad(t)); }
class Bezier3 : public BezierBase
Bezier3(Point _p1, Point _p2, Point _p3, Point _p4)
: p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)),
p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
Point operator()(double t) const
// return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
(3*t*t*(1-t))*p3+(t*t*t)*p4;
Bezier3 before(double t) const
return Bezier3(p1,p,a,c);
Bezier3 after(double t) const
return Bezier3(c,b,r,p4);
Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
Point grad(double t) const { return grad()(t); }
Point norm(double t) const { return rot90(grad(t)); }
template<class R,class F,class S,class D>
R recSplit(F &_f,const S &_s,D _d) const
R f1=_f(Bezier3(p1,a,d,e),_d);
R f2=_f(Bezier3(e,d,c,p4),_d);
} //END OF NAMESPACE dim2
} //END OF NAMESPACE lemon