Location: LEMON/LEMON-official/lemon/core.h

Load file history
gravatar
retvari@tmit.bme.hu
Fix LpBase::Constr two-side limit bug (#430)
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CORE_H
#define LEMON_CORE_H
#include <vector>
#include <algorithm>
#include <lemon/config.h>
#include <lemon/bits/enable_if.h>
#include <lemon/bits/traits.h>
#include <lemon/assert.h>
// Disable the following warnings when compiling with MSVC:
// C4250: 'class1' : inherits 'class2::member' via dominance
// C4355: 'this' : used in base member initializer list
// C4503: 'function' : decorated name length exceeded, name was truncated
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
// C4996: 'function': was declared deprecated
#ifdef _MSC_VER
#pragma warning( disable : 4250 4355 4503 4800 4996 )
#endif
///\file
///\brief LEMON core utilities.
///
///This header file contains core utilities for LEMON.
///It is automatically included by all graph types, therefore it usually
///do not have to be included directly.
namespace lemon {
/// \brief Dummy type to make it easier to create invalid iterators.
///
/// Dummy type to make it easier to create invalid iterators.
/// See \ref INVALID for the usage.
struct Invalid {
public:
bool operator==(Invalid) { return true; }
bool operator!=(Invalid) { return false; }
bool operator< (Invalid) { return false; }
};
/// \brief Invalid iterators.
///
/// \ref Invalid is a global type that converts to each iterator
/// in such a way that the value of the target iterator will be invalid.
#ifdef LEMON_ONLY_TEMPLATES
const Invalid INVALID = Invalid();
#else
extern const Invalid INVALID;
#endif
/// \addtogroup gutils
/// @{
///Create convenience typedefs for the digraph types and iterators
///This \c \#define creates convenient type definitions for the following
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
///
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
///macro.
#define DIGRAPH_TYPEDEFS(Digraph) \
typedef Digraph::Node Node; \
typedef Digraph::NodeIt NodeIt; \
typedef Digraph::Arc Arc; \
typedef Digraph::ArcIt ArcIt; \
typedef Digraph::InArcIt InArcIt; \
typedef Digraph::OutArcIt OutArcIt; \
typedef Digraph::NodeMap<bool> BoolNodeMap; \
typedef Digraph::NodeMap<int> IntNodeMap; \
typedef Digraph::NodeMap<double> DoubleNodeMap; \
typedef Digraph::ArcMap<bool> BoolArcMap; \
typedef Digraph::ArcMap<int> IntArcMap; \
typedef Digraph::ArcMap<double> DoubleArcMap
///Create convenience typedefs for the digraph types and iterators
///\see DIGRAPH_TYPEDEFS
///
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
typedef typename Digraph::Node Node; \
typedef typename Digraph::NodeIt NodeIt; \
typedef typename Digraph::Arc Arc; \
typedef typename Digraph::ArcIt ArcIt; \
typedef typename Digraph::InArcIt InArcIt; \
typedef typename Digraph::OutArcIt OutArcIt; \
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
typedef typename Digraph::template NodeMap<int> IntNodeMap; \
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
typedef typename Digraph::template ArcMap<int> IntArcMap; \
typedef typename Digraph::template ArcMap<double> DoubleArcMap
///Create convenience typedefs for the graph types and iterators
///This \c \#define creates the same convenient type definitions as defined
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
///\c DoubleEdgeMap.
///
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
///macro.
#define GRAPH_TYPEDEFS(Graph) \
DIGRAPH_TYPEDEFS(Graph); \
typedef Graph::Edge Edge; \
typedef Graph::EdgeIt EdgeIt; \
typedef Graph::IncEdgeIt IncEdgeIt; \
typedef Graph::EdgeMap<bool> BoolEdgeMap; \
typedef Graph::EdgeMap<int> IntEdgeMap; \
typedef Graph::EdgeMap<double> DoubleEdgeMap
///Create convenience typedefs for the graph types and iterators
///\see GRAPH_TYPEDEFS
///
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
typedef typename Graph::Edge Edge; \
typedef typename Graph::EdgeIt EdgeIt; \
typedef typename Graph::IncEdgeIt IncEdgeIt; \
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
/// \brief Function to count the items in a graph.
///
/// This function counts the items (nodes, arcs etc.) in a graph.
/// The complexity of the function is linear because
/// it iterates on all of the items.
template <typename Graph, typename Item>
inline int countItems(const Graph& g) {
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
int num = 0;
for (ItemIt it(g); it != INVALID; ++it) {
++num;
}
return num;
}
// Node counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountNodesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Node>(g);
}
};
template <typename Graph>
struct CountNodesSelector<
Graph, typename
enable_if<typename Graph::NodeNumTag, void>::type>
{
static int count(const Graph &g) {
return g.nodeNum();
}
};
}
/// \brief Function to count the nodes in the graph.
///
/// This function counts the nodes in the graph.
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c nodeNum() member function and a
/// \c NodeNumTag tag then this function calls directly the member
/// function to query the cardinality of the node set.
template <typename Graph>
inline int countNodes(const Graph& g) {
return _core_bits::CountNodesSelector<Graph>::count(g);
}
// Arc counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountArcsSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Arc>(g);
}
};
template <typename Graph>
struct CountArcsSelector<
Graph,
typename enable_if<typename Graph::ArcNumTag, void>::type>
{
static int count(const Graph &g) {
return g.arcNum();
}
};
}
/// \brief Function to count the arcs in the graph.
///
/// This function counts the arcs in the graph.
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c arcNum() member function and a
/// \c ArcNumTag tag then this function calls directly the member
/// function to query the cardinality of the arc set.
template <typename Graph>
inline int countArcs(const Graph& g) {
return _core_bits::CountArcsSelector<Graph>::count(g);
}
// Edge counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountEdgesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Edge>(g);
}
};
template <typename Graph>
struct CountEdgesSelector<
Graph,
typename enable_if<typename Graph::EdgeNumTag, void>::type>
{
static int count(const Graph &g) {
return g.edgeNum();
}
};
}
/// \brief Function to count the edges in the graph.
///
/// This function counts the edges in the graph.
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c edgeNum() member function and a
/// \c EdgeNumTag tag then this function calls directly the member
/// function to query the cardinality of the edge set.
template <typename Graph>
inline int countEdges(const Graph& g) {
return _core_bits::CountEdgesSelector<Graph>::count(g);
}
template <typename Graph, typename DegIt>
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
int num = 0;
for (DegIt it(_g, _n); it != INVALID; ++it) {
++num;
}
return num;
}
/// \brief Function to count the number of the out-arcs from node \c n.
///
/// This function counts the number of the out-arcs from node \c n
/// in the graph \c g.
template <typename Graph>
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
}
/// \brief Function to count the number of the in-arcs to node \c n.
///
/// This function counts the number of the in-arcs to node \c n
/// in the graph \c g.
template <typename Graph>
inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
}
/// \brief Function to count the number of the inc-edges to node \c n.
///
/// This function counts the number of the inc-edges to node \c n
/// in the undirected graph \c g.
template <typename Graph>
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
}
namespace _core_bits {
template <typename Digraph, typename Item, typename RefMap>
class MapCopyBase {
public:
virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
virtual ~MapCopyBase() {}
};
template <typename Digraph, typename Item, typename RefMap,
typename FromMap, typename ToMap>
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
MapCopy(const FromMap& map, ToMap& tmap)
: _map(map), _tmap(tmap) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_tmap.set(refMap[it], _map[it]);
}
}
private:
const FromMap& _map;
ToMap& _tmap;
};
template <typename Digraph, typename Item, typename RefMap, typename It>
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
virtual void copy(const Digraph&, const RefMap& refMap) {
_it = refMap[_item];
}
private:
Item _item;
It& _it;
};
template <typename Digraph, typename Item, typename RefMap, typename Ref>
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
RefCopy(Ref& map) : _map(map) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_map.set(it, refMap[it]);
}
}
private:
Ref& _map;
};
template <typename Digraph, typename Item, typename RefMap,
typename CrossRef>
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_cmap.set(refMap[it], it);
}
}
private:
CrossRef& _cmap;
};
template <typename Digraph, typename Enable = void>
struct DigraphCopySelector {
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(const From& from, Digraph &to,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
}
for (typename From::ArcIt it(from); it != INVALID; ++it) {
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
nodeRefMap[from.target(it)]);
}
}
};
template <typename Digraph>
struct DigraphCopySelector<
Digraph,
typename enable_if<typename Digraph::BuildTag, void>::type>
{
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(const From& from, Digraph &to,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
to.build(from, nodeRefMap, arcRefMap);
}
};
template <typename Graph, typename Enable = void>
struct GraphCopySelector {
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(const From& from, Graph &to,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
}
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
nodeRefMap[from.v(it)]);
}
}
};
template <typename Graph>
struct GraphCopySelector<
Graph,
typename enable_if<typename Graph::BuildTag, void>::type>
{
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(const From& from, Graph &to,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
to.build(from, nodeRefMap, edgeRefMap);
}
};
}
/// \brief Class to copy a digraph.
///
/// Class to copy a digraph to another digraph (duplicate a digraph). The
/// simplest way of using it is through the \c digraphCopy() function.
///
/// This class not only make a copy of a digraph, but it can create
/// references and cross references between the nodes and arcs of
/// the two digraphs, and it can copy maps to use with the newly created
/// digraph.
///
/// To make a copy from a digraph, first an instance of DigraphCopy
/// should be created, then the data belongs to the digraph should
/// assigned to copy. In the end, the \c run() member should be
/// called.
///
/// The next code copies a digraph with several data:
///\code
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
/// // Create references for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// cg.nodeRef(nr);
/// // Create cross references (inverse) for the arcs
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
/// cg.arcCrossRef(acr);
/// // Copy an arc map
/// OrigGraph::ArcMap<double> oamap(orig_graph);
/// NewGraph::ArcMap<double> namap(new_graph);
/// cg.arcMap(oamap, namap);
/// // Copy a node
/// OrigGraph::Node on;
/// NewGraph::Node nn;
/// cg.node(on, nn);
/// // Execute copying
/// cg.run();
///\endcode
template <typename From, typename To>
class DigraphCopy {
private:
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template ArcMap<TArc> ArcRefMap;
public:
/// \brief Constructor of DigraphCopy.
///
/// Constructor of DigraphCopy for copying the content of the
/// \c from digraph into the \c to digraph.
DigraphCopy(const From& from, To& to)
: _from(from), _to(to) {}
/// \brief Destructor of DigraphCopy
///
/// Destructor of DigraphCopy.
~DigraphCopy() {
for (int i = 0; i < int(_node_maps.size()); ++i) {
delete _node_maps[i];
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
delete _arc_maps[i];
}
}
/// \brief Copy the node references into the given map.
///
/// This function copies the node references into the given map.
/// The parameter should be a map, whose key type is the Node type of
/// the source digraph, while the value type is the Node type of the
/// destination digraph.
template <typename NodeRef>
DigraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
return *this;
}
/// \brief Copy the node cross references into the given map.
///
/// This function copies the node cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Node type of the destination digraph, while the value type is
/// the Node type of the source digraph.
template <typename NodeCrossRef>
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given node map.
///
/// This function makes a copy of the given node map for the newly
/// created digraph.
/// The key type of the new map \c tmap should be the Node type of the
/// destination digraph, and the key type of the original map \c map
/// should be the Node type of the source digraph.
template <typename FromMap, typename ToMap>
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
NodeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given node.
///
/// This function makes a copy of the given node.
DigraphCopy& node(const Node& node, TNode& tnode) {
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(node, tnode));
return *this;
}
/// \brief Copy the arc references into the given map.
///
/// This function copies the arc references into the given map.
/// The parameter should be a map, whose key type is the Arc type of
/// the source digraph, while the value type is the Arc type of the
/// destination digraph.
template <typename ArcRef>
DigraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
return *this;
}
/// \brief Copy the arc cross references into the given map.
///
/// This function copies the arc cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Arc type of the destination digraph, while the value type is
/// the Arc type of the source digraph.
template <typename ArcCrossRef>
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given arc map.
///
/// This function makes a copy of the given arc map for the newly
/// created digraph.
/// The key type of the new map \c tmap should be the Arc type of the
/// destination digraph, and the key type of the original map \c map
/// should be the Arc type of the source digraph.
template <typename FromMap, typename ToMap>
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
ArcRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given arc.
///
/// This function makes a copy of the given arc.
DigraphCopy& arc(const Arc& arc, TArc& tarc) {
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(arc, tarc));
return *this;
}
/// \brief Execute copying.
///
/// This function executes the copying of the digraph along with the
/// copying of the assigned data.
void run() {
NodeRefMap nodeRefMap(_from);
ArcRefMap arcRefMap(_from);
_core_bits::DigraphCopySelector<To>::
copy(_from, _to, nodeRefMap, arcRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
}
}
protected:
const From& _from;
To& _to;
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
_node_maps;
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
_arc_maps;
};
/// \brief Copy a digraph to another digraph.
///
/// This function copies a digraph to another digraph.
/// The complete usage of it is detailed in the DigraphCopy class, but
/// a short example shows a basic work:
///\code
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
///\endcode
///
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from digraph to the nodes of the \c to digraph and
/// \c acr will contain the mapping from the arcs of the \c to digraph
/// to the arcs of the \c from digraph.
///
/// \see DigraphCopy
template <typename From, typename To>
DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
return DigraphCopy<From, To>(from, to);
}
/// \brief Class to copy a graph.
///
/// Class to copy a graph to another graph (duplicate a graph). The
/// simplest way of using it is through the \c graphCopy() function.
///
/// This class not only make a copy of a graph, but it can create
/// references and cross references between the nodes, edges and arcs of
/// the two graphs, and it can copy maps for using with the newly created
/// graph.
///
/// To make a copy from a graph, first an instance of GraphCopy
/// should be created, then the data belongs to the graph should
/// assigned to copy. In the end, the \c run() member should be
/// called.
///
/// The next code copies a graph with several data:
///\code
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
/// // Create references for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// cg.nodeRef(nr);
/// // Create cross references (inverse) for the edges
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
/// cg.edgeCrossRef(ecr);
/// // Copy an edge map
/// OrigGraph::EdgeMap<double> oemap(orig_graph);
/// NewGraph::EdgeMap<double> nemap(new_graph);
/// cg.edgeMap(oemap, nemap);
/// // Copy a node
/// OrigGraph::Node on;
/// NewGraph::Node nn;
/// cg.node(on, nn);
/// // Execute copying
/// cg.run();
///\endcode
template <typename From, typename To>
class GraphCopy {
private:
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename From::Edge Edge;
typedef typename From::EdgeIt EdgeIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename To::Edge TEdge;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
struct ArcRefMap {
ArcRefMap(const From& from, const To& to,
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
: _from(from), _to(to),
_edge_ref(edge_ref), _node_ref(node_ref) {}
typedef typename From::Arc Key;
typedef typename To::Arc Value;
Value operator[](const Key& key) const {
bool forward = _from.u(key) != _from.v(key) ?
_node_ref[_from.source(key)] ==
_to.source(_to.direct(_edge_ref[key], true)) :
_from.direction(key);
return _to.direct(_edge_ref[key], forward);
}
const From& _from;
const To& _to;
const EdgeRefMap& _edge_ref;
const NodeRefMap& _node_ref;
};
public:
/// \brief Constructor of GraphCopy.
///
/// Constructor of GraphCopy for copying the content of the
/// \c from graph into the \c to graph.
GraphCopy(const From& from, To& to)
: _from(from), _to(to) {}
/// \brief Destructor of GraphCopy
///
/// Destructor of GraphCopy.
~GraphCopy() {
for (int i = 0; i < int(_node_maps.size()); ++i) {
delete _node_maps[i];
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
delete _arc_maps[i];
}
for (int i = 0; i < int(_edge_maps.size()); ++i) {
delete _edge_maps[i];
}
}
/// \brief Copy the node references into the given map.
///
/// This function copies the node references into the given map.
/// The parameter should be a map, whose key type is the Node type of
/// the source graph, while the value type is the Node type of the
/// destination graph.
template <typename NodeRef>
GraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
return *this;
}
/// \brief Copy the node cross references into the given map.
///
/// This function copies the node cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Node type of the destination graph, while the value type is
/// the Node type of the source graph.
template <typename NodeCrossRef>
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given node map.
///
/// This function makes a copy of the given node map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Node type of the
/// destination graph, and the key type of the original map \c map
/// should be the Node type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
NodeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given node.
///
/// This function makes a copy of the given node.
GraphCopy& node(const Node& node, TNode& tnode) {
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(node, tnode));
return *this;
}
/// \brief Copy the arc references into the given map.
///
/// This function copies the arc references into the given map.
/// The parameter should be a map, whose key type is the Arc type of
/// the source graph, while the value type is the Arc type of the
/// destination graph.
template <typename ArcRef>
GraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
return *this;
}
/// \brief Copy the arc cross references into the given map.
///
/// This function copies the arc cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Arc type of the destination graph, while the value type is
/// the Arc type of the source graph.
template <typename ArcCrossRef>
GraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given arc map.
///
/// This function makes a copy of the given arc map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Arc type of the
/// destination graph, and the key type of the original map \c map
/// should be the Arc type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
ArcRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given arc.
///
/// This function makes a copy of the given arc.
GraphCopy& arc(const Arc& arc, TArc& tarc) {
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(arc, tarc));
return *this;
}
/// \brief Copy the edge references into the given map.
///
/// This function copies the edge references into the given map.
/// The parameter should be a map, whose key type is the Edge type of
/// the source graph, while the value type is the Edge type of the
/// destination graph.
template <typename EdgeRef>
GraphCopy& edgeRef(EdgeRef& map) {
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
EdgeRefMap, EdgeRef>(map));
return *this;
}
/// \brief Copy the edge cross references into the given map.
///
/// This function copies the edge cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Edge type of the destination graph, while the value type is
/// the Edge type of the source graph.
template <typename EdgeCrossRef>
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
_edge_maps.push_back(new _core_bits::CrossRefCopy<From,
Edge, EdgeRefMap, EdgeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given edge map.
///
/// This function makes a copy of the given edge map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Edge type of the
/// destination graph, and the key type of the original map \c map
/// should be the Edge type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
EdgeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given edge.
///
/// This function makes a copy of the given edge.
GraphCopy& edge(const Edge& edge, TEdge& tedge) {
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
EdgeRefMap, TEdge>(edge, tedge));
return *this;
}
/// \brief Execute copying.
///
/// This function executes the copying of the graph along with the
/// copying of the assigned data.
void run() {
NodeRefMap nodeRefMap(_from);
EdgeRefMap edgeRefMap(_from);
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
_core_bits::GraphCopySelector<To>::
copy(_from, _to, nodeRefMap, edgeRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
}
for (int i = 0; i < int(_edge_maps.size()); ++i) {
_edge_maps[i]->copy(_from, edgeRefMap);
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
}
}
private:
const From& _from;
To& _to;
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
_node_maps;
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
_arc_maps;
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
_edge_maps;
};
/// \brief Copy a graph to another graph.
///
/// This function copies a graph to another graph.
/// The complete usage of it is detailed in the GraphCopy class,
/// but a short example shows a basic work:
///\code
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
///\endcode
///
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from graph to the nodes of the \c to graph and
/// \c ecr will contain the mapping from the edges of the \c to graph
/// to the edges of the \c from graph.
///
/// \see GraphCopy
template <typename From, typename To>
GraphCopy<From, To>
graphCopy(const From& from, To& to) {
return GraphCopy<From, To>(from, to);
}
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct FindArcSelector {
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc e) {
if (e == INVALID) {
g.firstOut(e, u);
} else {
g.nextOut(e);
}
while (e != INVALID && g.target(e) != v) {
g.nextOut(e);
}
return e;
}
};
template <typename Graph>
struct FindArcSelector<
Graph,
typename enable_if<typename Graph::FindArcTag, void>::type>
{
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
return g.findArc(u, v, prev);
}
};
}
/// \brief Find an arc between two nodes of a digraph.
///
/// This function finds an arc from node \c u to node \c v in the
/// digraph \c g.
///
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first arc from \c u to \c v. Otherwise it looks for
/// the next arc from \c u to \c v after \c prev.
/// \return The found arc or \ref INVALID if there is no such an arc.
///
/// Thus you can iterate through each arc from \c u to \c v as it follows.
///\code
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
/// ...
/// }
///\endcode
///
/// \note \ref ConArcIt provides iterator interface for the same
/// functionality.
///
///\sa ConArcIt
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
template <typename Graph>
inline typename Graph::Arc
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Arc prev = INVALID) {
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
}
/// \brief Iterator for iterating on parallel arcs connecting the same nodes.
///
/// Iterator for iterating on parallel arcs connecting the same nodes. It is
/// a higher level interface for the \ref findArc() function. You can
/// use it the following way:
///\code
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
/// ...
/// }
///\endcode
///
///\sa findArc()
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
template <typename GR>
class ConArcIt : public GR::Arc {
typedef typename GR::Arc Parent;
public:
typedef typename GR::Arc Arc;
typedef typename GR::Node Node;
/// \brief Constructor.
///
/// Construct a new ConArcIt iterating on the arcs that
/// connects nodes \c u and \c v.
ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
Parent::operator=(findArc(_graph, u, v));
}
/// \brief Constructor.
///
/// Construct a new ConArcIt that continues the iterating from arc \c a.
ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
/// \brief Increment operator.
///
/// It increments the iterator and gives back the next arc.
ConArcIt& operator++() {
Parent::operator=(findArc(_graph, _graph.source(*this),
_graph.target(*this), *this));
return *this;
}
private:
const GR& _graph;
};
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct FindEdgeSelector {
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge e) {
bool b;
if (u != v) {
if (e == INVALID) {
g.firstInc(e, b, u);
} else {
b = g.u(e) == u;
g.nextInc(e, b);
}
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
g.nextInc(e, b);
}
} else {
if (e == INVALID) {
g.firstInc(e, b, u);
} else {
b = true;
g.nextInc(e, b);
}
while (e != INVALID && (!b || g.v(e) != v)) {
g.nextInc(e, b);
}
}
return e;
}
};
template <typename Graph>
struct FindEdgeSelector<
Graph,
typename enable_if<typename Graph::FindEdgeTag, void>::type>
{
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
return g.findEdge(u, v, prev);
}
};
}
/// \brief Find an edge between two nodes of a graph.
///
/// This function finds an edge from node \c u to node \c v in graph \c g.
/// If node \c u and node \c v is equal then each loop edge
/// will be enumerated once.
///
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first edge from \c u to \c v. Otherwise it looks for
/// the next edge from \c u to \c v after \c prev.
/// \return The found edge or \ref INVALID if there is no such an edge.
///
/// Thus you can iterate through each edge between \c u and \c v
/// as it follows.
///\code
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
/// ...
/// }
///\endcode
///
/// \note \ref ConEdgeIt provides iterator interface for the same
/// functionality.
///
///\sa ConEdgeIt
template <typename Graph>
inline typename Graph::Edge
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Edge p = INVALID) {
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
}
/// \brief Iterator for iterating on parallel edges connecting the same nodes.
///
/// Iterator for iterating on parallel edges connecting the same nodes.
/// It is a higher level interface for the findEdge() function. You can
/// use it the following way:
///\code
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
/// ...
/// }
///\endcode
///
///\sa findEdge()
template <typename GR>
class ConEdgeIt : public GR::Edge {
typedef typename GR::Edge Parent;
public:
typedef typename GR::Edge Edge;
typedef typename GR::Node Node;
/// \brief Constructor.
///
/// Construct a new ConEdgeIt iterating on the edges that
/// connects nodes \c u and \c v.
ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
Parent::operator=(findEdge(_graph, _u, _v));
}
/// \brief Constructor.
///
/// Construct a new ConEdgeIt that continues iterating from edge \c e.
ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
/// \brief Increment operator.
///
/// It increments the iterator and gives back the next edge.
ConEdgeIt& operator++() {
Parent::operator=(findEdge(_graph, _u, _v, *this));
return *this;
}
private:
const GR& _graph;
Node _u, _v;
};
///Dynamic arc look-up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in amortized time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the out-degree of the source node.
///
///It is possible to find \e all parallel arcs between two nodes with
///the \c operator() member.
///
///This is a dynamic data structure. Consider to use \ref ArcLookUp or
///\ref AllArcLookUp if your digraph is not changed so frequently.
///
///This class uses a self-adjusting binary search tree, the Splay tree
///of Sleator and Tarjan to guarantee the logarithmic amortized
///time bound for arc look-ups. This class also guarantees the
///optimal time bound in a constant factor for any distribution of
///queries.
///
///\tparam GR The type of the underlying digraph.
///
///\sa ArcLookUp
///\sa AllArcLookUp
template <typename GR>
class DynArcLookUp
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
{
typedef typename ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase Parent;
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
public:
/// The Digraph type
typedef GR Digraph;
protected:
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
public:
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
virtual void add(const Node& node) {
Parent::add(node);
Parent::set(node, INVALID);
}
virtual void add(const std::vector<Node>& nodes) {
Parent::add(nodes);
for (int i = 0; i < int(nodes.size()); ++i) {
Parent::set(nodes[i], INVALID);
}
}
virtual void build() {
Parent::build();
Node it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, INVALID);
}
}
};
class ArcLess {
const Digraph &g;
public:
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
{
return g.target(a)<g.target(b);
}
};
protected:
const Digraph &_g;
AutoNodeMap _head;
typename Digraph::template ArcMap<Arc> _parent;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
public:
///Constructor
///Constructor.
///
///It builds up the search database.
DynArcLookUp(const Digraph &g)
: _g(g),_head(g),_parent(g),_left(g),_right(g)
{
Parent::attach(_g.notifier(typename Digraph::Arc()));
refresh();
}
protected:
virtual void add(const Arc& arc) {
insert(arc);
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
insert(arcs[i]);
}
}
virtual void erase(const Arc& arc) {
remove(arc);
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
remove(arcs[i]);
}
}
virtual void build() {
refresh();
}
virtual void clear() {
for(NodeIt n(_g);n!=INVALID;++n) {
_head[n] = INVALID;
}
}
void insert(Arc arc) {
Node s = _g.source(arc);
Node t = _g.target(arc);
_left[arc] = INVALID;
_right[arc] = INVALID;
Arc e = _head[s];
if (e == INVALID) {
_head[s] = arc;
_parent[arc] = INVALID;
return;
}
while (true) {
if (t < _g.target(e)) {
if (_left[e] == INVALID) {
_left[e] = arc;
_parent[arc] = e;
splay(arc);
return;
} else {
e = _left[e];
}
} else {
if (_right[e] == INVALID) {
_right[e] = arc;
_parent[arc] = e;
splay(arc);
return;
} else {
e = _right[e];
}
}
}
}
void remove(Arc arc) {
if (_left[arc] == INVALID) {
if (_right[arc] != INVALID) {
_parent[_right[arc]] = _parent[arc];
}
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left[_parent[arc]] = _right[arc];
} else {
_right[_parent[arc]] = _right[arc];
}
} else {
_head[_g.source(arc)] = _right[arc];
}
} else if (_right[arc] == INVALID) {
_parent[_left[arc]] = _parent[arc];
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left[_parent[arc]] = _left[arc];
} else {
_right[_parent[arc]] = _left[arc];
}
} else {
_head[_g.source(arc)] = _left[arc];
}
} else {
Arc e = _left[arc];
if (_right[e] != INVALID) {
e = _right[e];
while (_right[e] != INVALID) {
e = _right[e];
}
Arc s = _parent[e];
_right[_parent[e]] = _left[e];
if (_left[e] != INVALID) {
_parent[_left[e]] = _parent[e];
}
_left[e] = _left[arc];
_parent[_left[arc]] = e;
_right[e] = _right[arc];
_parent[_right[arc]] = e;
_parent[e] = _parent[arc];
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left[_parent[arc]] = e;
} else {
_right[_parent[arc]] = e;
}
}
splay(s);
} else {
_right[e] = _right[arc];
_parent[_right[arc]] = e;
_parent[e] = _parent[arc];
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left[_parent[arc]] = e;
} else {
_right[_parent[arc]] = e;
}
} else {
_head[_g.source(arc)] = e;
}
}
}
}
Arc refreshRec(std::vector<Arc> &v,int a,int b)
{
int m=(a+b)/2;
Arc me=v[m];
if (a < m) {
Arc left = refreshRec(v,a,m-1);
_left[me] = left;
_parent[left] = me;
} else {
_left[me] = INVALID;
}
if (m < b) {
Arc right = refreshRec(v,m+1,b);
_right[me] = right;
_parent[right] = me;
} else {
_right[me] = INVALID;
}
return me;
}
void refresh() {
for(NodeIt n(_g);n!=INVALID;++n) {
std::vector<Arc> v;
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
if (!v.empty()) {
std::sort(v.begin(),v.end(),ArcLess(_g));
Arc head = refreshRec(v,0,v.size()-1);
_head[n] = head;
_parent[head] = INVALID;
}
else _head[n] = INVALID;
}
}
void zig(Arc v) {
Arc w = _parent[v];
_parent[v] = _parent[w];
_parent[w] = v;
_left[w] = _right[v];
_right[v] = w;
if (_parent[v] != INVALID) {
if (_right[_parent[v]] == w) {
_right[_parent[v]] = v;
} else {
_left[_parent[v]] = v;
}
}
if (_left[w] != INVALID){
_parent[_left[w]] = w;
}
}
void zag(Arc v) {
Arc w = _parent[v];
_parent[v] = _parent[w];
_parent[w] = v;
_right[w] = _left[v];
_left[v] = w;
if (_parent[v] != INVALID){
if (_left[_parent[v]] == w) {
_left[_parent[v]] = v;
} else {
_right[_parent[v]] = v;
}
}
if (_right[w] != INVALID){
_parent[_right[w]] = w;
}
}
void splay(Arc v) {
while (_parent[v] != INVALID) {
if (v == _left[_parent[v]]) {
if (_parent[_parent[v]] == INVALID) {
zig(v);
} else {
if (_parent[v] == _left[_parent[_parent[v]]]) {
zig(_parent[v]);
zig(v);
} else {
zig(v);
zag(v);
}
}
} else {
if (_parent[_parent[v]] == INVALID) {
zag(v);
} else {
if (_parent[v] == _left[_parent[_parent[v]]]) {
zag(v);
zig(v);
} else {
zag(_parent[v]);
zag(v);
}
}
}
}
_head[_g.source(v)] = v;
}
public:
///Find an arc between two nodes.
///Find an arc between two nodes.
///\param s The source node.
///\param t The target node.
///\param p The previous arc between \c s and \c t. It it is INVALID or
///not given, the operator finds the first appropriate arc.
///\return An arc from \c s to \c t after \c p or
///\ref INVALID if there is no more.
///
///For example, you can count the number of arcs from \c u to \c v in the
///following way.
///\code
///DynArcLookUp<ListDigraph> ae(g);
///...
///int n = 0;
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
///\endcode
///
///Finding the arcs take at most <em>O</em>(log<em>d</em>)
///amortized time, specifically, the time complexity of the lookups
///is equal to the optimal search tree implementation for the
///current query distribution in a constant factor.
///
///\note This is a dynamic data structure, therefore the data
///structure is updated after each graph alteration. Thus although
///this data structure is theoretically faster than \ref ArcLookUp
///and \ref AllArcLookUp, it often provides worse performance than
///them.
Arc operator()(Node s, Node t, Arc p = INVALID) const {
if (p == INVALID) {
Arc a = _head[s];
if (a == INVALID) return INVALID;
Arc r = INVALID;
while (true) {
if (_g.target(a) < t) {
if (_right[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
return r;
} else {
a = _right[a];
}
} else {
if (_g.target(a) == t) {
r = a;
}
if (_left[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
return r;
} else {
a = _left[a];
}
}
}
} else {
Arc a = p;
if (_right[a] != INVALID) {
a = _right[a];
while (_left[a] != INVALID) {
a = _left[a];
}
const_cast<DynArcLookUp&>(*this).splay(a);
} else {
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
a = _parent[a];
}
if (_parent[a] == INVALID) {
return INVALID;
} else {
a = _parent[a];
const_cast<DynArcLookUp&>(*this).splay(a);
}
}
if (_g.target(a) == t) return a;
else return INVALID;
}
}
};
///Fast arc look-up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the out-degree of the source node.
///
///It is not possible to find \e all parallel arcs between two nodes.
///Use \ref AllArcLookUp for this purpose.
///
///\warning This class is static, so you should call refresh() (or at
///least refresh(Node)) to refresh this data structure whenever the
///digraph changes. This is a time consuming (superlinearly proportional
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
///
///\tparam GR The type of the underlying digraph.
///
///\sa DynArcLookUp
///\sa AllArcLookUp
template<class GR>
class ArcLookUp
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
public:
/// The Digraph type
typedef GR Digraph;
protected:
const Digraph &_g;
typename Digraph::template NodeMap<Arc> _head;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
class ArcLess {
const Digraph &g;
public:
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
{
return g.target(a)<g.target(b);
}
};
public:
///Constructor
///Constructor.
///
///It builds up the search database, which remains valid until the digraph
///changes.
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
private:
Arc refreshRec(std::vector<Arc> &v,int a,int b)
{
int m=(a+b)/2;
Arc me=v[m];
_left[me] = a<m?refreshRec(v,a,m-1):INVALID;
_right[me] = m<b?refreshRec(v,m+1,b):INVALID;
return me;
}
public:
///Refresh the search data structure at a node.
///Build up the search database of node \c n.
///
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
///is the number of the outgoing arcs of \c n.
void refresh(Node n)
{
std::vector<Arc> v;
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
if(v.size()) {
std::sort(v.begin(),v.end(),ArcLess(_g));
_head[n]=refreshRec(v,0,v.size()-1);
}
else _head[n]=INVALID;
}
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
///the number of the arcs in the digraph and <em>D</em> is the maximum
///out-degree of the digraph.
void refresh()
{
for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
}
///Find an arc between two nodes.
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the number of outgoing arcs of \c s.
///\param s The source node.
///\param t The target node.
///\return An arc from \c s to \c t if there exists,
///\ref INVALID otherwise.
///
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
Arc operator()(Node s, Node t) const
{
Arc e;
for(e=_head[s];
e!=INVALID&&_g.target(e)!=t;
e = t < _g.target(e)?_left[e]:_right[e]) ;
return e;
}
};
///Fast look-up of all arcs between given endpoints.
///This class is the same as \ref ArcLookUp, with the addition
///that it makes it possible to find all parallel arcs between given
///endpoints.
///
///\warning This class is static, so you should call refresh() (or at
///least refresh(Node)) to refresh this data structure whenever the
///digraph changes. This is a time consuming (superlinearly proportional
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
///
///\tparam GR The type of the underlying digraph.
///
///\sa DynArcLookUp
///\sa ArcLookUp
template<class GR>
class AllArcLookUp : public ArcLookUp<GR>
{
using ArcLookUp<GR>::_g;
using ArcLookUp<GR>::_right;
using ArcLookUp<GR>::_left;
using ArcLookUp<GR>::_head;
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typename GR::template ArcMap<Arc> _next;
Arc refreshNext(Arc head,Arc next=INVALID)
{
if(head==INVALID) return next;
else {
next=refreshNext(_right[head],next);
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
? next : INVALID;
return refreshNext(_left[head],head);
}
}
void refreshNext()
{
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
}
public:
/// The Digraph type
typedef GR Digraph;
///Constructor
///Constructor.
///
///It builds up the search database, which remains valid until the digraph
///changes.
AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
///Refresh the data structure at a node.
///Build up the search database of node \c n.
///
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
///the number of the outgoing arcs of \c n.
void refresh(Node n)
{
ArcLookUp<GR>::refresh(n);
refreshNext(_head[n]);
}
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
///the number of the arcs in the digraph and <em>D</em> is the maximum
///out-degree of the digraph.
void refresh()
{
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
}
///Find an arc between two nodes.
///Find an arc between two nodes.
///\param s The source node.
///\param t The target node.
///\param prev The previous arc between \c s and \c t. It it is INVALID or
///not given, the operator finds the first appropriate arc.
///\return An arc from \c s to \c t after \c prev or
///\ref INVALID if there is no more.
///
///For example, you can count the number of arcs from \c u to \c v in the
///following way.
///\code
///AllArcLookUp<ListDigraph> ae(g);
///...
///int n = 0;
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
///\endcode
///
///Finding the first arc take <em>O</em>(log<em>d</em>) time,
///where <em>d</em> is the number of outgoing arcs of \c s. Then the
///consecutive arcs are found in constant time.
///
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
///
#ifdef DOXYGEN
Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
#else
using ArcLookUp<GR>::operator() ;
Arc operator()(Node s, Node t, Arc prev) const
{
return prev==INVALID?(*this)(s,t):_next[prev];
}
#endif
};
/// @}
} //namespace lemon
#endif