Location: LEMON/LEMON-official/lemon/bits/array_map.h

Load file history
gravatar
alpar (Alpar Juttner)
Merge 4 backouts (#50, #312)
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BITS_ARRAY_MAP_H
#define LEMON_BITS_ARRAY_MAP_H
#include <memory>
#include <lemon/bits/traits.h>
#include <lemon/bits/alteration_notifier.h>
#include <lemon/concept_check.h>
#include <lemon/concepts/maps.h>
// \ingroup graphbits
// \file
// \brief Graph map based on the array storage.
namespace lemon {
// \ingroup graphbits
//
// \brief Graph map based on the array storage.
//
// The ArrayMap template class is graph map structure that automatically
// updates the map when a key is added to or erased from the graph.
// This map uses the allocators to implement the container functionality.
//
// The template parameters are the Graph, the current Item type and
// the Value type of the map.
template <typename _Graph, typename _Item, typename _Value>
class ArrayMap
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
public:
// The graph type.
typedef _Graph GraphType;
// The item type.
typedef _Item Item;
// The reference map tag.
typedef True ReferenceMapTag;
// The key type of the map.
typedef _Item Key;
// The value type of the map.
typedef _Value Value;
// The const reference type of the map.
typedef const _Value& ConstReference;
// The reference type of the map.
typedef _Value& Reference;
// The map type.
typedef ArrayMap Map;
// The notifier type.
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
private:
// The MapBase of the Map which imlements the core regisitry function.
typedef typename Notifier::ObserverBase Parent;
typedef std::allocator<Value> Allocator;
public:
// \brief Graph initialized map constructor.
//
// Graph initialized map constructor.
explicit ArrayMap(const GraphType& graph) {
Parent::attach(graph.notifier(Item()));
allocate_memory();
Notifier* nf = Parent::notifier();
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);;
allocator.construct(&(values[id]), Value());
}
}
// \brief Constructor to use default value to initialize the map.
//
// It constructs a map and initialize all of the the map.
ArrayMap(const GraphType& graph, const Value& value) {
Parent::attach(graph.notifier(Item()));
allocate_memory();
Notifier* nf = Parent::notifier();
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);;
allocator.construct(&(values[id]), value);
}
}
private:
// \brief Constructor to copy a map of the same map type.
//
// Constructor to copy a map of the same map type.
ArrayMap(const ArrayMap& copy) : Parent() {
if (copy.attached()) {
attach(*copy.notifier());
}
capacity = copy.capacity;
if (capacity == 0) return;
values = allocator.allocate(capacity);
Notifier* nf = Parent::notifier();
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);;
allocator.construct(&(values[id]), copy.values[id]);
}
}
// \brief Assign operator.
//
// This operator assigns for each item in the map the
// value mapped to the same item in the copied map.
// The parameter map should be indiced with the same
// itemset because this assign operator does not change
// the container of the map.
ArrayMap& operator=(const ArrayMap& cmap) {
return operator=<ArrayMap>(cmap);
}
// \brief Template assign operator.
//
// The given parameter should conform to the ReadMap
// concecpt and could be indiced by the current item set of
// the NodeMap. In this case the value for each item
// is assigned by the value of the given ReadMap.
template <typename CMap>
ArrayMap& operator=(const CMap& cmap) {
checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
const typename Parent::Notifier* nf = Parent::notifier();
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
set(it, cmap[it]);
}
return *this;
}
public:
// \brief The destructor of the map.
//
// The destructor of the map.
virtual ~ArrayMap() {
if (attached()) {
clear();
detach();
}
}
protected:
using Parent::attach;
using Parent::detach;
using Parent::attached;
public:
// \brief The subscript operator.
//
// The subscript operator. The map can be subscripted by the
// actual keys of the graph.
Value& operator[](const Key& key) {
int id = Parent::notifier()->id(key);
return values[id];
}
// \brief The const subscript operator.
//
// The const subscript operator. The map can be subscripted by the
// actual keys of the graph.
const Value& operator[](const Key& key) const {
int id = Parent::notifier()->id(key);
return values[id];
}
// \brief Setter function of the map.
//
// Setter function of the map. Equivalent with map[key] = val.
// This is a compatibility feature with the not dereferable maps.
void set(const Key& key, const Value& val) {
(*this)[key] = val;
}
protected:
// \brief Adds a new key to the map.
//
// It adds a new key to the map. It is called by the observer notifier
// and it overrides the add() member function of the observer base.
virtual void add(const Key& key) {
Notifier* nf = Parent::notifier();
int id = nf->id(key);
if (id >= capacity) {
int new_capacity = (capacity == 0 ? 1 : capacity);
while (new_capacity <= id) {
new_capacity <<= 1;
}
Value* new_values = allocator.allocate(new_capacity);
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int jd = nf->id(it);;
if (id != jd) {
allocator.construct(&(new_values[jd]), values[jd]);
allocator.destroy(&(values[jd]));
}
}
if (capacity != 0) allocator.deallocate(values, capacity);
values = new_values;
capacity = new_capacity;
}
allocator.construct(&(values[id]), Value());
}
// \brief Adds more new keys to the map.
//
// It adds more new keys to the map. It is called by the observer notifier
// and it overrides the add() member function of the observer base.
virtual void add(const std::vector<Key>& keys) {
Notifier* nf = Parent::notifier();
int max_id = -1;
for (int i = 0; i < int(keys.size()); ++i) {
int id = nf->id(keys[i]);
if (id > max_id) {
max_id = id;
}
}
if (max_id >= capacity) {
int new_capacity = (capacity == 0 ? 1 : capacity);
while (new_capacity <= max_id) {
new_capacity <<= 1;
}
Value* new_values = allocator.allocate(new_capacity);
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);
bool found = false;
for (int i = 0; i < int(keys.size()); ++i) {
int jd = nf->id(keys[i]);
if (id == jd) {
found = true;
break;
}
}
if (found) continue;
allocator.construct(&(new_values[id]), values[id]);
allocator.destroy(&(values[id]));
}
if (capacity != 0) allocator.deallocate(values, capacity);
values = new_values;
capacity = new_capacity;
}
for (int i = 0; i < int(keys.size()); ++i) {
int id = nf->id(keys[i]);
allocator.construct(&(values[id]), Value());
}
}
// \brief Erase a key from the map.
//
// Erase a key from the map. It is called by the observer notifier
// and it overrides the erase() member function of the observer base.
virtual void erase(const Key& key) {
int id = Parent::notifier()->id(key);
allocator.destroy(&(values[id]));
}
// \brief Erase more keys from the map.
//
// Erase more keys from the map. It is called by the observer notifier
// and it overrides the erase() member function of the observer base.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
int id = Parent::notifier()->id(keys[i]);
allocator.destroy(&(values[id]));
}
}
// \brief Builds the map.
//
// It builds the map. It is called by the observer notifier
// and it overrides the build() member function of the observer base.
virtual void build() {
Notifier* nf = Parent::notifier();
allocate_memory();
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);;
allocator.construct(&(values[id]), Value());
}
}
// \brief Clear the map.
//
// It erase all items from the map. It is called by the observer notifier
// and it overrides the clear() member function of the observer base.
virtual void clear() {
Notifier* nf = Parent::notifier();
if (capacity != 0) {
Item it;
for (nf->first(it); it != INVALID; nf->next(it)) {
int id = nf->id(it);
allocator.destroy(&(values[id]));
}
allocator.deallocate(values, capacity);
capacity = 0;
}
}
private:
void allocate_memory() {
int max_id = Parent::notifier()->maxId();
if (max_id == -1) {
capacity = 0;
values = 0;
return;
}
capacity = 1;
while (capacity <= max_id) {
capacity <<= 1;
}
values = allocator.allocate(capacity);
}
int capacity;
Value* values;
Allocator allocator;
};
}
#endif