Location: LEMON/LEMON-official/lemon/maps.h

Load file history
gravatar
alpar (Alpar Juttner)
Unify sources
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_MAPS_H
#define LEMON_MAPS_H
#include <iterator>
#include <functional>
#include <vector>
#include <lemon/core.h>
///\file
///\ingroup maps
///\brief Miscellaneous property maps
#include <map>
namespace lemon {
/// \addtogroup maps
/// @{
/// Base class of maps.
/// Base class of maps. It provides the necessary type definitions
/// required by the map %concepts.
template<typename K, typename V>
class MapBase {
public:
/// \brief The key type of the map.
typedef K Key;
/// \brief The value type of the map.
/// (The type of objects associated with the keys).
typedef V Value;
};
/// Null map. (a.k.a. DoNothingMap)
/// This map can be used if you have to provide a map only for
/// its type definitions, or if you have to provide a writable map,
/// but data written to it is not required (i.e. it will be sent to
/// <tt>/dev/null</tt>).
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
///
/// \sa ConstMap
template<typename K, typename V>
class NullMap : public MapBase<K, V> {
public:
typedef MapBase<K, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Gives back a default constructed element.
Value operator[](const Key&) const { return Value(); }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c NullMap class
/// This function just returns a \c NullMap class.
/// \relates NullMap
template <typename K, typename V>
NullMap<K, V> nullMap() {
return NullMap<K, V>();
}
/// Constant map.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V>
class ConstMap : public MapBase<K, V> {
private:
V _value;
public:
typedef MapBase<K, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Default constructor
/// Default constructor.
/// The value of the map will be default constructed.
ConstMap() {}
/// Constructor with specified initial value
/// Constructor with specified initial value.
/// \param v The initial value of the map.
ConstMap(const Value &v) : _value(v) {}
/// Gives back the specified value.
Value operator[](const Key&) const { return _value; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
/// Sets the value that is assigned to each key.
void setAll(const Value &v) {
_value = v;
}
template<typename V1>
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
};
/// Returns a \c ConstMap class
/// This function just returns a \c ConstMap class.
/// \relates ConstMap
template<typename K, typename V>
inline ConstMap<K, V> constMap(const V &v) {
return ConstMap<K, V>(v);
}
template<typename K, typename V>
inline ConstMap<K, V> constMap() {
return ConstMap<K, V>();
}
template<typename T, T v>
struct Const {};
/// Constant map with inlined constant value.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V, V v>
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
public:
typedef MapBase<K, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor.
ConstMap() {}
/// Gives back the specified value.
Value operator[](const Key&) const { return v; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c ConstMap class with inlined constant value
/// This function just returns a \c ConstMap class with inlined
/// constant value.
/// \relates ConstMap
template<typename K, typename V, V v>
inline ConstMap<K, Const<V, v> > constMap() {
return ConstMap<K, Const<V, v> >();
}
/// Identity map.
/// This \ref concepts::ReadMap "read-only map" gives back the given
/// key as value without any modification.
///
/// \sa ConstMap
template <typename T>
class IdentityMap : public MapBase<T, T> {
public:
typedef MapBase<T, T> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Gives back the given value without any modification.
Value operator[](const Key &k) const {
return k;
}
};
/// Returns an \c IdentityMap class
/// This function just returns an \c IdentityMap class.
/// \relates IdentityMap
template<typename T>
inline IdentityMap<T> identityMap() {
return IdentityMap<T>();
}
/// \brief Map for storing values for integer keys from the range
/// <tt>[0..size-1]</tt>.
///
/// This map is essentially a wrapper for \c std::vector. It assigns
/// values to integer keys from the range <tt>[0..size-1]</tt>.
/// It can be used with some data structures, for example
/// \c UnionFind, \c BinHeap, when the used items are small
/// integers. This map conforms the \ref concepts::ReferenceMap
/// "ReferenceMap" concept.
///
/// The simplest way of using this map is through the rangeMap()
/// function.
template <typename V>
class RangeMap : public MapBase<int, V> {
template <typename V1>
friend class RangeMap;
private:
typedef std::vector<V> Vector;
Vector _vector;
public:
typedef MapBase<int, V> Parent;
/// Key type
typedef typename Parent::Key Key;
/// Value type
typedef typename Parent::Value Value;
/// Reference type
typedef typename Vector::reference Reference;
/// Const reference type
typedef typename Vector::const_reference ConstReference;
typedef True ReferenceMapTag;
public:
/// Constructor with specified default value.
RangeMap(int size = 0, const Value &value = Value())
: _vector(size, value) {}
/// Constructs the map from an appropriate \c std::vector.
template <typename V1>
RangeMap(const std::vector<V1>& vector)
: _vector(vector.begin(), vector.end()) {}
/// Constructs the map from another \c RangeMap.
template <typename V1>
RangeMap(const RangeMap<V1> &c)
: _vector(c._vector.begin(), c._vector.end()) {}
/// Returns the size of the map.
int size() {
return _vector.size();
}
/// Resizes the map.
/// Resizes the underlying \c std::vector container, so changes the
/// keyset of the map.
/// \param size The new size of the map. The new keyset will be the
/// range <tt>[0..size-1]</tt>.
/// \param value The default value to assign to the new keys.
void resize(int size, const Value &value = Value()) {
_vector.resize(size, value);
}
private:
RangeMap& operator=(const RangeMap&);
public:
///\e
Reference operator[](const Key &k) {
return _vector[k];
}
///\e
ConstReference operator[](const Key &k) const {
return _vector[k];
}
///\e
void set(const Key &k, const Value &v) {
_vector[k] = v;
}
};
/// Returns a \c RangeMap class
/// This function just returns a \c RangeMap class.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
return RangeMap<V>(size, value);
}
/// \brief Returns a \c RangeMap class created from an appropriate
/// \c std::vector
/// This function just returns a \c RangeMap class created from an
/// appropriate \c std::vector.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
return RangeMap<V>(vector);
}
/// Map type based on \c std::map
/// This map is essentially a wrapper for \c std::map with addition
/// that you can specify a default value for the keys that are not
/// stored actually. This value can be different from the default
/// contructed value (i.e. \c %Value()).
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
/// concept.
///
/// This map is useful if a default value should be assigned to most of
/// the keys and different values should be assigned only to a few
/// keys (i.e. the map is "sparse").
/// The name of this type also refers to this important usage.
///
/// Apart form that this map can be used in many other cases since it
/// is based on \c std::map, which is a general associative container.
/// However keep in mind that it is usually not as efficient as other
/// maps.
///
/// The simplest way of using this map is through the sparseMap()
/// function.
template <typename K, typename V, typename Compare = std::less<K> >
class SparseMap : public MapBase<K, V> {
template <typename K1, typename V1, typename C1>
friend class SparseMap;
public:
typedef MapBase<K, V> Parent;
/// Key type
typedef typename Parent::Key Key;
/// Value type
typedef typename Parent::Value Value;
/// Reference type
typedef Value& Reference;
/// Const reference type
typedef const Value& ConstReference;
typedef True ReferenceMapTag;
private:
typedef std::map<K, V, Compare> Map;
Map _map;
Value _value;
public:
/// \brief Constructor with specified default value.
SparseMap(const Value &value = Value()) : _value(value) {}
/// \brief Constructs the map from an appropriate \c std::map, and
/// explicitly specifies a default value.
template <typename V1, typename Comp1>
SparseMap(const std::map<Key, V1, Comp1> &map,
const Value &value = Value())
: _map(map.begin(), map.end()), _value(value) {}
/// \brief Constructs the map from another \c SparseMap.
template<typename V1, typename Comp1>
SparseMap(const SparseMap<Key, V1, Comp1> &c)
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
private:
SparseMap& operator=(const SparseMap&);
public:
///\e
Reference operator[](const Key &k) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
return it->second;
else
return _map.insert(it, std::make_pair(k, _value))->second;
}
///\e
ConstReference operator[](const Key &k) const {
typename Map::const_iterator it = _map.find(k);
if (it != _map.end())
return it->second;
else
return _value;
}
///\e
void set(const Key &k, const Value &v) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
it->second = v;
else
_map.insert(it, std::make_pair(k, v));
}
///\e
void setAll(const Value &v) {
_value = v;
_map.clear();
}
};
/// Returns a \c SparseMap class
/// This function just returns a \c SparseMap class with specified
/// default value.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
return SparseMap<K, V, Compare>(value);
}
template<typename K, typename V>
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
return SparseMap<K, V, std::less<K> >(value);
}
/// \brief Returns a \c SparseMap class created from an appropriate
/// \c std::map
/// This function just returns a \c SparseMap class created from an
/// appropriate \c std::map.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare>
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
{
return SparseMap<K, V, Compare>(map, value);
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Composition of two maps
/// This \ref concepts::ReadMap "read-only map" returns the
/// composition of two given maps. That is to say, if \c m1 is of
/// type \c M1 and \c m2 is of \c M2, then for
/// \code
/// ComposeMap<M1, M2> cm(m1,m2);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
///
/// The \c Key type of the map is inherited from \c M2 and the
/// \c Value type is from \c M1.
/// \c M2::Value must be convertible to \c M1::Key.
///
/// The simplest way of using this map is through the composeMap()
/// function.
///
/// \sa CombineMap
template <typename M1, typename M2>
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M2::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
typename MapTraits<M1>::ConstReturnValue
operator[](const Key &k) const { return _m1[_m2[k]]; }
};
/// Returns a \c ComposeMap class
/// This function just returns a \c ComposeMap class.
///
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
/// will be equal to <tt>m1[m2[x]]</tt>.
///
/// \relates ComposeMap
template <typename M1, typename M2>
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
return ComposeMap<M1, M2>(m1, m2);
}
/// Combination of two maps using an STL (binary) functor.
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
/// binary functor and returns the combination of the two given maps
/// using the functor.
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
/// and \c f is of \c F, then for
/// \code
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
///
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
/// \c M2::Value and \c M1::Value must be convertible to the
/// corresponding input parameter of \c F and the return type of \c F
/// must be convertible to \c V.
///
/// The simplest way of using this map is through the combineMap()
/// function.
///
/// \sa ComposeMap
template<typename M1, typename M2, typename F,
typename V = typename F::result_type>
class CombineMap : public MapBase<typename M1::Key, V> {
const M1 &_m1;
const M2 &_m2;
F _f;
public:
typedef MapBase<typename M1::Key, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
: _m1(m1), _m2(m2), _f(f) {}
/// \e
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
};
/// Returns a \c CombineMap class
/// This function just returns a \c CombineMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then
/// \code
/// combineMap(m1,m2,std::plus<double>())
/// \endcode
/// is equivalent to
/// \code
/// addMap(m1,m2)
/// \endcode
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates CombineMap
template<typename M1, typename M2, typename F, typename V>
inline CombineMap<M1, M2, F, V>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return CombineMap<M1, M2, F, V>(m1,m2,f);
}
template<typename M1, typename M2, typename F>
inline CombineMap<M1, M2, F, typename F::result_type>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
}
template<typename M1, typename M2, typename K1, typename K2, typename V>
inline CombineMap<M1, M2, V (*)(K1, K2), V>
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
}
/// Converts an STL style (unary) functor to a map
/// This \ref concepts::ReadMap "read-only map" returns the value
/// of a given functor. Actually, it just wraps the functor and
/// provides the \c Key and \c Value typedefs.
///
/// Template parameters \c K and \c V will become its \c Key and
/// \c Value. In most cases they have to be given explicitly because
/// a functor typically does not provide \c argument_type and
/// \c result_type typedefs.
/// Parameter \c F is the type of the used functor.
///
/// The simplest way of using this map is through the functorToMap()
/// function.
///
/// \sa MapToFunctor
template<typename F,
typename K = typename F::argument_type,
typename V = typename F::result_type>
class FunctorToMap : public MapBase<K, V> {
F _f;
public:
typedef MapBase<K, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
FunctorToMap(const F &f = F()) : _f(f) {}
/// \e
Value operator[](const Key &k) const { return _f(k); }
};
/// Returns a \c FunctorToMap class
/// This function just returns a \c FunctorToMap class.
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates FunctorToMap
template<typename K, typename V, typename F>
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
return FunctorToMap<F, K, V>(f);
}
template <typename F>
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
functorToMap(const F &f)
{
return FunctorToMap<F, typename F::argument_type,
typename F::result_type>(f);
}
template <typename K, typename V>
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
return FunctorToMap<V (*)(K), K, V>(f);
}
/// Converts a map to an STL style (unary) functor
/// This class converts a map to an STL style (unary) functor.
/// That is it provides an <tt>operator()</tt> to read its values.
///
/// For the sake of convenience it also works as a usual
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
/// and the \c Key and \c Value typedefs also exist.
///
/// The simplest way of using this map is through the mapToFunctor()
/// function.
///
///\sa FunctorToMap
template <typename M>
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
typedef typename Parent::Key argument_type;
typedef typename Parent::Value result_type;
/// Constructor
MapToFunctor(const M &m) : _m(m) {}
/// \e
Value operator()(const Key &k) const { return _m[k]; }
/// \e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c MapToFunctor class
/// This function just returns a \c MapToFunctor class.
/// \relates MapToFunctor
template<typename M>
inline MapToFunctor<M> mapToFunctor(const M &m) {
return MapToFunctor<M>(m);
}
/// \brief Map adaptor to convert the \c Value type of a map to
/// another type using the default conversion.
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
/// "readable map" to another type using the default conversion.
/// The \c Key type of it is inherited from \c M and the \c Value
/// type is \c V.
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
///
/// The simplest way of using this map is through the convertMap()
/// function.
template <typename M, typename V>
class ConvertMap : public MapBase<typename M::Key, V> {
const M &_m;
public:
typedef MapBase<typename M::Key, V> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
/// Constructor.
/// \param m The underlying map.
ConvertMap(const M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c ConvertMap class
/// This function just returns a \c ConvertMap class.
/// \relates ConvertMap
template<typename V, typename M>
inline ConvertMap<M, V> convertMap(const M &map) {
return ConvertMap<M, V>(map);
}
/// Applies all map setting operations to two maps
/// This map has two \ref concepts::WriteMap "writable map" parameters
/// and each write request will be passed to both of them.
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
/// operations will return the corresponding values of \c M1.
///
/// The \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible from those
/// of \c M1.
///
/// The simplest way of using this map is through the forkMap()
/// function.
template<typename M1, typename M2>
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
M1 &_m1;
M2 &_m2;
public:
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
/// Returns the value associated with the given key in the first map.
Value operator[](const Key &k) const { return _m1[k]; }
/// Sets the value associated with the given key in both maps.
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
};
/// Returns a \c ForkMap class
/// This function just returns a \c ForkMap class.
/// \relates ForkMap
template <typename M1, typename M2>
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
return ForkMap<M1,M2>(m1,m2);
}
/// Sum of two maps
/// This \ref concepts::ReadMap "read-only map" returns the sum
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AddMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
///
/// The simplest way of using this map is through the addMap()
/// function.
///
/// \sa SubMap, MulMap, DivMap
/// \sa ShiftMap, ShiftWriteMap
template<typename M1, typename M2>
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
};
/// Returns an \c AddMap class
/// This function just returns an \c AddMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]+m2[x]</tt>.
///
/// \relates AddMap
template<typename M1, typename M2>
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
return AddMap<M1, M2>(m1,m2);
}
/// Difference of two maps
/// This \ref concepts::ReadMap "read-only map" returns the difference
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// SubMap<M1,M2> sm(m1,m2);
/// \endcode
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
///
/// The simplest way of using this map is through the subMap()
/// function.
///
/// \sa AddMap, MulMap, DivMap
template<typename M1, typename M2>
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
};
/// Returns a \c SubMap class
/// This function just returns a \c SubMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]-m2[x]</tt>.
///
/// \relates SubMap
template<typename M1, typename M2>
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
return SubMap<M1, M2>(m1,m2);
}
/// Product of two maps
/// This \ref concepts::ReadMap "read-only map" returns the product
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// MulMap<M1,M2> mm(m1,m2);
/// \endcode
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
///
/// The simplest way of using this map is through the mulMap()
/// function.
///
/// \sa AddMap, SubMap, DivMap
/// \sa ScaleMap, ScaleWriteMap
template<typename M1, typename M2>
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
};
/// Returns a \c MulMap class
/// This function just returns a \c MulMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]*m2[x]</tt>.
///
/// \relates MulMap
template<typename M1, typename M2>
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
return MulMap<M1, M2>(m1,m2);
}
/// Quotient of two maps
/// This \ref concepts::ReadMap "read-only map" returns the quotient
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// DivMap<M1,M2> dm(m1,m2);
/// \endcode
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
///
/// The simplest way of using this map is through the divMap()
/// function.
///
/// \sa AddMap, SubMap, MulMap
template<typename M1, typename M2>
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
};
/// Returns a \c DivMap class
/// This function just returns a \c DivMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]/m2[x]</tt>.
///
/// \relates DivMap
template<typename M1, typename M2>
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
return DivMap<M1, M2>(m1,m2);
}
/// Shifts a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the sum of
/// the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ShiftMap<M> sh(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
/// \endcode
///
/// The simplest way of using this map is through the shiftMap()
/// function.
///
/// \sa ShiftWriteMap
template<typename M, typename C = typename M::Value>
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
/// \e
Value operator[](const Key &k) const { return _m[k]+_v; }
};
/// Shifts a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
/// of the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// The simplest way of using this map is through the shiftWriteMap()
/// function.
///
/// \sa ShiftMap
template<typename M, typename C = typename M::Value>
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
/// \e
Value operator[](const Key &k) const { return _m[k]+_v; }
/// \e
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
};
/// Returns a \c ShiftMap class
/// This function just returns a \c ShiftMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
///
/// \relates ShiftMap
template<typename M, typename C>
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
return ShiftMap<M, C>(m,v);
}
/// Returns a \c ShiftWriteMap class
/// This function just returns a \c ShiftWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ShiftWriteMap
template<typename M, typename C>
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
return ShiftWriteMap<M, C>(m,v);
}
/// Scales a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ScaleMap<M> sc(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
/// \endcode
///
/// The simplest way of using this map is through the scaleMap()
/// function.
///
/// \sa ScaleWriteMap
template<typename M, typename C = typename M::Value>
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
/// \e
Value operator[](const Key &k) const { return _v*_m[k]; }
};
/// Scales a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
/// It can also be used as write map if the \c / operator is defined
/// between \c Value and \c C and the given multiplier is not zero.
///
/// The simplest way of using this map is through the scaleWriteMap()
/// function.
///
/// \sa ScaleMap
template<typename M, typename C = typename M::Value>
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
/// \e
Value operator[](const Key &k) const { return _v*_m[k]; }
/// \e
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
};
/// Returns a \c ScaleMap class
/// This function just returns a \c ScaleMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
///
/// \relates ScaleMap
template<typename M, typename C>
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
return ScaleMap<M, C>(m,v);
}
/// Returns a \c ScaleWriteMap class
/// This function just returns a \c ScaleWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ScaleWriteMap
template<typename M, typename C>
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
return ScaleWriteMap<M, C>(m,v);
}
/// Negative of a map
/// This \ref concepts::ReadMap "read-only map" returns the negative
/// of the values of the given map (using the unary \c - operator).
/// Its \c Key and \c Value are inherited from \c M.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negMap()
/// function.
///
/// \sa NegWriteMap
template<typename M>
class NegMap : public MapBase<typename M::Key, typename M::Value> {
const M& _m;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
NegMap(const M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const { return -_m[k]; }
};
/// Negative of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// negative of the values of the given map (using the unary \c -
/// operator).
/// Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegWriteMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleWriteMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negWriteMap()
/// function.
///
/// \sa NegMap
template<typename M>
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
NegWriteMap(M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const { return -_m[k]; }
/// \e
void set(const Key &k, const Value &v) { _m.set(k, -v); }
};
/// Returns a \c NegMap class
/// This function just returns a \c NegMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
///
/// \relates NegMap
template <typename M>
inline NegMap<M> negMap(const M &m) {
return NegMap<M>(m);
}
/// Returns a \c NegWriteMap class
/// This function just returns a \c NegWriteMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NegWriteMap
template <typename M>
inline NegWriteMap<M> negWriteMap(M &m) {
return NegWriteMap<M>(m);
}
/// Absolute value of a map
/// This \ref concepts::ReadMap "read-only map" returns the absolute
/// value of the values of the given map.
/// Its \c Key and \c Value are inherited from \c M.
/// \c Value must be comparable to \c 0 and the unary \c -
/// operator must be defined for it, of course.
///
/// The simplest way of using this map is through the absMap()
/// function.
template<typename M>
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
typedef MapBase<typename M::Key, typename M::Value> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
AbsMap(const M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const {
Value tmp = _m[k];
return tmp >= 0 ? tmp : -tmp;
}
};
/// Returns an \c AbsMap class
/// This function just returns an \c AbsMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
/// negative.
///
/// \relates AbsMap
template<typename M>
inline AbsMap<M> absMap(const M &m) {
return AbsMap<M>(m);
}
/// @}
// Logical maps and map adaptors:
/// \addtogroup maps
/// @{
/// Constant \c true map.
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// each key.
///
/// Note that
/// \code
/// TrueMap<K> tm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> tm(true);
/// \endcode
///
/// \sa FalseMap
/// \sa ConstMap
template <typename K>
class TrueMap : public MapBase<K, bool> {
public:
typedef MapBase<K, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Gives back \c true.
Value operator[](const Key&) const { return true; }
};
/// Returns a \c TrueMap class
/// This function just returns a \c TrueMap class.
/// \relates TrueMap
template<typename K>
inline TrueMap<K> trueMap() {
return TrueMap<K>();
}
/// Constant \c false map.
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
/// each key.
///
/// Note that
/// \code
/// FalseMap<K> fm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> fm(false);
/// \endcode
///
/// \sa TrueMap
/// \sa ConstMap
template <typename K>
class FalseMap : public MapBase<K, bool> {
public:
typedef MapBase<K, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Gives back \c false.
Value operator[](const Key&) const { return false; }
};
/// Returns a \c FalseMap class
/// This function just returns a \c FalseMap class.
/// \relates FalseMap
template<typename K>
inline FalseMap<K> falseMap() {
return FalseMap<K>();
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Logical 'and' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'and' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AndMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
///
/// The simplest way of using this map is through the andMap()
/// function.
///
/// \sa OrMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class AndMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
};
/// Returns an \c AndMap class
/// This function just returns an \c AndMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]&&m2[x]</tt>.
///
/// \relates AndMap
template<typename M1, typename M2>
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
return AndMap<M1, M2>(m1,m2);
}
/// Logical 'or' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'or' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// OrMap<M1,M2> om(m1,m2);
/// \endcode
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
///
/// The simplest way of using this map is through the orMap()
/// function.
///
/// \sa AndMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class OrMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
};
/// Returns an \c OrMap class
/// This function just returns an \c OrMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]||m2[x]</tt>.
///
/// \relates OrMap
template<typename M1, typename M2>
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
return OrMap<M1, M2>(m1,m2);
}
/// Logical 'not' of a map
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
///
/// The simplest way of using this map is through the notMap()
/// function.
///
/// \sa NotWriteMap
template <typename M>
class NotMap : public MapBase<typename M::Key, bool> {
const M &_m;
public:
typedef MapBase<typename M::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
NotMap(const M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const { return !_m[k]; }
};
/// Logical 'not' of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// logical negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
/// It makes also possible to write the map. When a value is set,
/// the opposite value is set to the original map.
///
/// The simplest way of using this map is through the notWriteMap()
/// function.
///
/// \sa NotMap
template <typename M>
class NotWriteMap : public MapBase<typename M::Key, bool> {
M &_m;
public:
typedef MapBase<typename M::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
NotWriteMap(M &m) : _m(m) {}
/// \e
Value operator[](const Key &k) const { return !_m[k]; }
/// \e
void set(const Key &k, bool v) { _m.set(k, !v); }
};
/// Returns a \c NotMap class
/// This function just returns a \c NotMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
///
/// \relates NotMap
template <typename M>
inline NotMap<M> notMap(const M &m) {
return NotMap<M>(m);
}
/// Returns a \c NotWriteMap class
/// This function just returns a \c NotWriteMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NotWriteMap
template <typename M>
inline NotWriteMap<M> notWriteMap(M &m) {
return NotWriteMap<M>(m);
}
/// Combination of two maps using the \c == operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding values of the two maps are
/// equal.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// EqualMap<M1,M2> em(m1,m2);
/// \endcode
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
///
/// The simplest way of using this map is through the equalMap()
/// function.
///
/// \sa LessMap
template<typename M1, typename M2>
class EqualMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
};
/// Returns an \c EqualMap class
/// This function just returns an \c EqualMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]==m2[x]</tt>.
///
/// \relates EqualMap
template<typename M1, typename M2>
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
return EqualMap<M1, M2>(m1,m2);
}
/// Combination of two maps using the \c < operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding value of the first map is
/// less then the value of the second map.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// LessMap<M1,M2> lm(m1,m2);
/// \endcode
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
///
/// The simplest way of using this map is through the lessMap()
/// function.
///
/// \sa EqualMap
template<typename M1, typename M2>
class LessMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
typedef MapBase<typename M1::Key, bool> Parent;
typedef typename Parent::Key Key;
typedef typename Parent::Value Value;
/// Constructor
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
/// \e
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
};
/// Returns an \c LessMap class
/// This function just returns an \c LessMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]<m2[x]</tt>.
///
/// \relates LessMap
template<typename M1, typename M2>
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
return LessMap<M1, M2>(m1,m2);
}
namespace _maps_bits {
template <typename _Iterator, typename Enable = void>
struct IteratorTraits {
typedef typename std::iterator_traits<_Iterator>::value_type Value;
};
template <typename _Iterator>
struct IteratorTraits<_Iterator,
typename exists<typename _Iterator::container_type>::type>
{
typedef typename _Iterator::container_type::value_type Value;
};
}
/// @}
/// \addtogroup maps
/// @{
/// \brief Writable bool map for logging each \c true assigned element
///
/// A \ref concepts::WriteMap "writable" bool map for logging
/// each \c true assigned element, i.e it copies subsequently each
/// keys set to \c true to the given iterator.
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
///
/// There are several algorithms that provide solutions through bool
/// maps and most of them assign \c true at most once for each key.
/// In these cases it is a natural request to store each \c true
/// assigned elements (in order of the assignment), which can be
/// easily done with LoggerBoolMap.
///
/// The simplest way of using this map is through the loggerBoolMap()
/// function.
///
/// \tparam It The type of the iterator.
/// \tparam Ke The key type of the map. The default value set
/// according to the iterator type should work in most cases.
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
#ifdef DOXYGEN
template <typename It, typename Ke>
#else
template <typename It,
typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
#endif
class LoggerBoolMap {
public:
typedef It Iterator;
typedef Ke Key;
typedef bool Value;
/// Constructor
LoggerBoolMap(Iterator it)
: _begin(it), _end(it) {}
/// Gives back the given iterator set for the first key
Iterator begin() const {
return _begin;
}
/// Gives back the the 'after the last' iterator
Iterator end() const {
return _end;
}
/// The set function of the map
void set(const Key& key, Value value) {
if (value) {
*_end++ = key;
}
}
private:
Iterator _begin;
Iterator _end;
};
/// Returns a \c LoggerBoolMap class
/// This function just returns a \c LoggerBoolMap class.
///
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
/// For example it makes easier to store the nodes in the processing
/// order of Dfs algorithm, as the following examples show.
/// \code
/// std::vector<Node> v;
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
/// \endcode
/// \code
/// std::vector<Node> v(countNodes(g));
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
/// \endcode
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
///
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
/// it cannot be used when a readable map is needed, for example as
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
///
/// \relates LoggerBoolMap
template<typename Iterator>
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
return LoggerBoolMap<Iterator>(it);
}
/// @}
/// \addtogroup graph_maps
/// @{
/// Provides an immutable and unique id for each item in the graph.
/// The IdMap class provides a unique and immutable id for each item of the
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
/// different items (nodes) get different ids <li>\b immutable: the id of an
/// item (node) does not change (even if you delete other nodes). </ul>
/// Through this map you get access (i.e. can read) the inner id values of
/// the items stored in the graph. This map can be inverted with its member
/// class \c InverseMap or with the \c operator() member.
///
template <typename _Graph, typename _Item>
class IdMap {
public:
typedef _Graph Graph;
typedef int Value;
typedef _Item Item;
typedef _Item Key;
/// \brief Constructor.
///
/// Constructor of the map.
explicit IdMap(const Graph& graph) : _graph(&graph) {}
/// \brief Gives back the \e id of the item.
///
/// Gives back the immutable and unique \e id of the item.
int operator[](const Item& item) const { return _graph->id(item);}
/// \brief Gives back the item by its id.
///
/// Gives back the item by its id.
Item operator()(int id) { return _graph->fromId(id, Item()); }
private:
const Graph* _graph;
public:
/// \brief The class represents the inverse of its owner (IdMap).
///
/// The class represents the inverse of its owner (IdMap).
/// \see inverse()
class InverseMap {
public:
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
/// \brief Gives back the given item from its id.
///
/// Gives back the given item from its id.
///
Item operator[](int id) const { return _graph->fromId(id, Item());}
private:
const Graph* _graph;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the IdMap.
InverseMap inverse() const { return InverseMap(*_graph);}
};
/// \brief Returns the source of the given arc.
///
/// The SourceMap gives back the source Node of the given arc.
/// \see TargetMap
template <typename Digraph>
class SourceMap {
public:
typedef typename Digraph::Node Value;
typedef typename Digraph::Arc Key;
/// \brief Constructor
///
/// Constructor
/// \param digraph The digraph that the map belongs to.
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
/// \brief The subscript operator.
///
/// The subscript operator.
/// \param arc The arc
/// \return The source of the arc
Value operator[](const Key& arc) const {
return _digraph.source(arc);
}
private:
const Digraph& _digraph;
};
/// \brief Returns a \c SourceMap class.
///
/// This function just returns an \c SourceMap class.
/// \relates SourceMap
template <typename Digraph>
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
return SourceMap<Digraph>(digraph);
}
/// \brief Returns the target of the given arc.
///
/// The TargetMap gives back the target Node of the given arc.
/// \see SourceMap
template <typename Digraph>
class TargetMap {
public:
typedef typename Digraph::Node Value;
typedef typename Digraph::Arc Key;
/// \brief Constructor
///
/// Constructor
/// \param digraph The digraph that the map belongs to.
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
/// \brief The subscript operator.
///
/// The subscript operator.
/// \param e The arc
/// \return The target of the arc
Value operator[](const Key& e) const {
return _digraph.target(e);
}
private:
const Digraph& _digraph;
};
/// \brief Returns a \c TargetMap class.
///
/// This function just returns a \c TargetMap class.
/// \relates TargetMap
template <typename Digraph>
inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
return TargetMap<Digraph>(digraph);
}
/// \brief Returns the "forward" directed arc view of an edge.
///
/// Returns the "forward" directed arc view of an edge.
/// \see BackwardMap
template <typename Graph>
class ForwardMap {
public:
typedef typename Graph::Arc Value;
typedef typename Graph::Edge Key;
/// \brief Constructor
///
/// Constructor
/// \param graph The graph that the map belongs to.
explicit ForwardMap(const Graph& graph) : _graph(graph) {}
/// \brief The subscript operator.
///
/// The subscript operator.
/// \param key An edge
/// \return The "forward" directed arc view of edge
Value operator[](const Key& key) const {
return _graph.direct(key, true);
}
private:
const Graph& _graph;
};
/// \brief Returns a \c ForwardMap class.
///
/// This function just returns an \c ForwardMap class.
/// \relates ForwardMap
template <typename Graph>
inline ForwardMap<Graph> forwardMap(const Graph& graph) {
return ForwardMap<Graph>(graph);
}
/// \brief Returns the "backward" directed arc view of an edge.
///
/// Returns the "backward" directed arc view of an edge.
/// \see ForwardMap
template <typename Graph>
class BackwardMap {
public:
typedef typename Graph::Arc Value;
typedef typename Graph::Edge Key;
/// \brief Constructor
///
/// Constructor
/// \param graph The graph that the map belongs to.
explicit BackwardMap(const Graph& graph) : _graph(graph) {}
/// \brief The subscript operator.
///
/// The subscript operator.
/// \param key An edge
/// \return The "backward" directed arc view of edge
Value operator[](const Key& key) const {
return _graph.direct(key, false);
}
private:
const Graph& _graph;
};
/// \brief Returns a \c BackwardMap class
/// This function just returns a \c BackwardMap class.
/// \relates BackwardMap
template <typename Graph>
inline BackwardMap<Graph> backwardMap(const Graph& graph) {
return BackwardMap<Graph>(graph);
}
/// \brief Potential difference map
///
/// If there is an potential map on the nodes then we
/// can get an arc map as we get the substraction of the
/// values of the target and source.
template <typename Digraph, typename NodeMap>
class PotentialDifferenceMap {
public:
typedef typename Digraph::Arc Key;
typedef typename NodeMap::Value Value;
/// \brief Constructor
///
/// Contructor of the map
explicit PotentialDifferenceMap(const Digraph& digraph,
const NodeMap& potential)
: _digraph(digraph), _potential(potential) {}
/// \brief Const subscription operator
///
/// Const subscription operator
Value operator[](const Key& arc) const {
return _potential[_digraph.target(arc)] -
_potential[_digraph.source(arc)];
}
private:
const Digraph& _digraph;
const NodeMap& _potential;
};
/// \brief Returns a PotentialDifferenceMap.
///
/// This function just returns a PotentialDifferenceMap.
/// \relates PotentialDifferenceMap
template <typename Digraph, typename NodeMap>
PotentialDifferenceMap<Digraph, NodeMap>
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
}
/// \brief Map of the node in-degrees.
///
/// This map returns the in-degree of a node. Once it is constructed,
/// the degrees are stored in a standard NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides addNode() and addArc(), a digraph structure may provide
/// alternative ways to modify the digraph. The correct behavior of InDegMap
/// is not guarantied if these additional features are used. For example
/// the functions \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa OutDegMap
template <typename _Digraph>
class InDegMap
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
::ItemNotifier::ObserverBase {
public:
typedef _Digraph Digraph;
typedef int Value;
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating in-degree map.
explicit InDegMap(const Digraph& digraph)
: _digraph(digraph), _deg(digraph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
/// Gives back the in-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.target(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.target(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.target(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.target(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// \brief Map of the node out-degrees.
///
/// This map returns the out-degree of a node. Once it is constructed,
/// the degrees are stored in a standard NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides addNode() and addArc(), a digraph structure may provide
/// alternative ways to modify the digraph. The correct behavior of OutDegMap
/// is not guarantied if these additional features are used. For example
/// the functions \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa InDegMap
template <typename _Digraph>
class OutDegMap
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
::ItemNotifier::ObserverBase {
public:
typedef _Digraph Digraph;
typedef int Value;
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating out-degree map.
explicit OutDegMap(const Digraph& digraph)
: _digraph(digraph), _deg(digraph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
/// Gives back the out-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.source(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.source(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.source(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.source(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// @}
}
#endif // LEMON_MAPS_H