/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2011
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Classes for representing paths in digraphs.
#include <lemon/concepts/path.h>
/// \brief A structure for representing directed paths in a digraph.
/// A structure for representing directed path in a digraph.
/// \tparam _Digraph The digraph type in which the path is.
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence, it
/// cannot enumerate the nodes of the path and the source node of
/// a zero length path is undefined.
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(1) time. The front and back
/// insertion and erase is done in O(1) (amortized) time. The
/// implementation uses two vectors for storing the front and back
template <typename _Digraph>
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
/// \brief Template copy constructor
/// This constuctor initializes the path from any other path type.
/// It simply makes a copy of the given path.
template <typename CPath>
Path(const CPath& cpath) {
/// \brief Template copy assignment
/// This operator makes a copy of a path of any other type.
template <typename CPath>
Path& operator=(const CPath& cpath) {
/// \brief LEMON style iterator for path arcs
/// This class is used to iterate on the arcs of the paths.
/// \brief Default constructor
/// \brief Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the iterator to the first arc of path
: path(&_path), idx(_path.empty() ? -1 : 0) {}
ArcIt(const Path &_path, int _idx)
: path(&_path), idx(_idx) {}
/// \brief Conversion to Arc
operator const Arc&() const {
if (idx >= path->length()) idx = -1;
/// \brief Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// \brief Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// \brief Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
/// \brief Length of the path.
int length() const { return head.size() + tail.size(); }
/// \brief Return whether the path is empty.
bool empty() const { return head.empty() && tail.empty(); }
/// \brief Reset the path to an empty one.
void clear() { head.clear(); tail.clear(); }
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
return n < int(head.size()) ? *(head.rbegin() + n) :
*(tail.begin() + (n - head.size()));
/// \brief Initialize arc iterator to point to the nth arc
/// \pre n is in the [0..length() - 1] range
ArcIt nthIt(int n) const {
/// \brief The first arc of the path
const Arc& front() const {
return head.empty() ? tail.front() : head.back();
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
/// \brief Erase the first arc of the path
int halfsize = tail.size() / 2;
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
tail.resize(tail.size() - halfsize - 1);
/// \brief The last arc of the path
const Arc& back() const {
return tail.empty() ? head.front() : tail.back();
/// \brief Add a new arc behind the current path
void addBack(const Arc& arc) {
/// \brief Erase the last arc of the path
int halfsize = head.size() / 2;
std::copy(head.begin() + 1, head.begin() + halfsize + 1,
std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
head.resize(head.size() - halfsize - 1);
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
typedef std::vector<Arc> Container;
/// \brief A structure for representing directed paths in a digraph.
/// A structure for representing directed path in a digraph.
/// \tparam _Digraph The digraph type in which the path is.
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
/// This implementation is a just back insertable and erasable path
/// type. It can be indexed in O(1) time. The back insertion and
/// erasure is amortized O(1) time. This implementation is faster
/// then the \c Path type because it use just one vector for the
template <typename _Digraph>
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
/// \brief Template copy constructor
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath(const CPath& cpath) {
/// \brief Template copy assignment
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath& operator=(const CPath& cpath) {
/// \brief Iterator class to iterate on the arcs of the paths
/// This class is used to iterate on the arcs of the paths
/// Of course it converts to Digraph::Arc
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const SimplePath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
/// Constructor with starting point
ArcIt(const SimplePath &_path, int _idx)
: idx(_idx), path(&_path) {}
///Conversion to Digraph::Arc
operator const Arc&() const {
if (idx >= path->length()) idx = -1;
bool operator==(const ArcIt& e) const { return idx==e.idx; }
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
bool operator<(const ArcIt& e) const { return idx<e.idx; }
/// \brief Length of the path.
int length() const { return data.size(); }
/// \brief Return true if the path is empty.
bool empty() const { return data.empty(); }
/// \brief Reset the path to an empty one.
void clear() { data.clear(); }
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
/// \brief The first arc of the path.
const Arc& front() const {
/// \brief The last arc of the path.
const Arc& back() const {
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
/// \brief Erase the last arc of the path
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
typedef std::vector<Arc> Container;
/// \brief A structure for representing directed paths in a digraph.
/// A structure for representing directed path in a digraph.
/// \tparam _Digraph The digraph type in which the path is.
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(k) time, where k is the rank
/// of the arc in the path. The length can be computed in O(n)
/// time. The front and back insertion and erasure is O(1) time
/// and it can be splited and spliced in O(1) time.
template <typename _Digraph>
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
// the std::list<> is incompatible
// hard to create invalid iterator
std::allocator<Node> alloc;
/// \brief Default constructor
ListPath() : first(0), last(0) {}
/// \brief Template copy constructor
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath(const CPath& cpath) : first(0), last(0) {
/// \brief Destructor of the path
/// Destructor of the path
/// \brief Template copy assignment
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath& operator=(const CPath& cpath) {
/// \brief Iterator class to iterate on the arcs of the paths
/// This class is used to iterate on the arcs of the paths
/// Of course it converts to Digraph::Arc
ArcIt(Invalid) : path(0), node(0) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const ListPath &_path)
: path(&_path), node(_path.first) {}
ArcIt(const ListPath &_path, Node *_node)
: path(&_path), node(_node) {}
///Conversion to Digraph::Arc
operator const Arc&() const {
bool operator==(const ArcIt& e) const { return node==e.node; }
bool operator!=(const ArcIt& e) const { return node!=e.node; }
bool operator<(const ArcIt& e) const { return node<e.node; }
/// This function looks for the nth arc in O(n) time.
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
for (int i = 0; i < n; ++i) {
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
for (int i = 0; i < n; ++i) {
return ArcIt(*this, node);
/// \brief Length of the path.
/// \brief Return true if the path is empty.
bool empty() const { return first == 0; }
/// \brief Reset the path to an empty one.
alloc.deallocate(first, 1);
/// \brief The first arc of the path
const Arc& front() const {
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
/// \brief Erase the first arc of the path
alloc.deallocate(node, 1);
/// \brief The last arc of the path.
const Arc& back() const {
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
/// \brief Erase the last arc of the path
alloc.deallocate(node, 1);
/// \brief Splice a path to the back of the current path.
/// It splices \c tpath to the back of the current path and \c
/// tpath becomes empty. The time complexity of this function is
void spliceBack(ListPath& tpath) {
last->next = tpath.first;
tpath.first->prev = last;
tpath.first = tpath.last = 0;
/// \brief Splice a path to the front of the current path.
/// It splices \c tpath before the current path and \c tpath
/// becomes empty. The time complexity of this function
void spliceFront(ListPath& tpath) {
first->prev = tpath.last;
tpath.last->next = first;
tpath.first = tpath.last = 0;
/// \brief Splice a path into the current path.
/// It splices the \c tpath into the current path before the
/// position of \c it iterator and \c tpath becomes empty. The
/// time complexity of this function is O(1). If the \c it is
/// \c INVALID then it will splice behind the current path.
void splice(ArcIt it, ListPath& tpath) {
tpath.first->prev = it.node->prev;
it.node->prev->next = tpath.first;
it.node->prev = tpath.last;
tpath.last->next = it.node;
last->next = tpath.first;
tpath.first->prev = last;
tpath.first = tpath.last = 0;
/// \brief Split the current path.
/// It splits the current path into two parts. The part before
/// the iterator \c it will remain in the current path and the part
/// \c it will put into \c tpath. If \c tpath have arcs
/// before the operation they are removed first. The time
/// complexity of this function is O(1) plus the the time of emtying
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath
void split(ArcIt it, ListPath& tpath) {
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
/// \brief A structure for representing directed paths in a digraph.
/// A structure for representing directed path in a digraph.
/// \tparam _Digraph The digraph type in which the path is.
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the source node of
/// a zero length path is undefined.
/// This implementation is completly static, i.e. it can be copy constucted
/// or copy assigned from another path, but otherwise it cannot be
/// Being the the most memory efficient path type in LEMON,
/// used when you want to store a large number of paths.
template <typename _Digraph>
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
StaticPath() : len(0), arcs(0) {}
/// \brief Template copy constructor
/// This path can be initialized from any other path type.
template <typename CPath>
StaticPath(const CPath& cpath) : arcs(0) {
/// \brief Destructor of the path
/// Destructor of the path
/// \brief Template copy assignment
/// This path can be made equal to any other path type. It simply
/// makes a copy of the given path.
template <typename CPath>
StaticPath& operator=(const CPath& cpath) {
/// \brief Iterator class to iterate on the arcs of the paths
/// This class is used to iterate on the arcs of the paths
/// Of course it converts to Digraph::Arc
ArcIt(Invalid) : path(0), idx(-1) {}
/// Initializate the constructor to the first arc of path
ArcIt(const StaticPath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
/// Constructor with starting point
ArcIt(const StaticPath &_path, int _idx)
: idx(_idx), path(&_path) {}
///Conversion to Digraph::Arc
operator const Arc&() const {
if (idx >= path->length()) idx = -1;
bool operator==(const ArcIt& e) const { return idx==e.idx; }
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
bool operator<(const ArcIt& e) const { return idx<e.idx; }
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
/// \brief The arc iterator pointing to the nth arc.
ArcIt nthIt(int n) const {
/// \brief The length of the path.
int length() const { return len; }
/// \brief Return true when the path is empty.
int empty() const { return len == 0; }
/// \brief Erase all arcs in the digraph.
/// \brief The first arc of the path.
const Arc& front() const {
/// \brief The last arc of the path.
const Arc& back() const {
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
template <typename Path, typename Enable = void>
struct RevPathTagIndicator {
static const bool value = false;
struct RevPathTagIndicator<
typename enable_if<typename Path::RevPathTag, void>::type
static const bool value = true;
template <typename Path, typename Enable = void>
struct BuildTagIndicator {
static const bool value = false;
struct BuildTagIndicator<
typename enable_if<typename Path::BuildTag, void>::type
static const bool value = true;
template <typename From, typename To,
bool buildEnable = BuildTagIndicator<To>::value>
struct PathCopySelectorForward {
static void copy(const From& from, To& to) {
for (typename From::ArcIt it(from); it != INVALID; ++it) {
template <typename From, typename To>
struct PathCopySelectorForward<From, To, true> {
static void copy(const From& from, To& to) {
template <typename From, typename To,
bool buildEnable = BuildTagIndicator<To>::value>
struct PathCopySelectorBackward {
static void copy(const From& from, To& to) {
for (typename From::RevArcIt it(from); it != INVALID; ++it) {
template <typename From, typename To>
struct PathCopySelectorBackward<From, To, true> {
static void copy(const From& from, To& to) {
template <typename From, typename To,
bool revEnable = RevPathTagIndicator<From>::value>
struct PathCopySelector {
static void copy(const From& from, To& to) {
PathCopySelectorForward<From, To>::copy(from, to);
template <typename From, typename To>
struct PathCopySelector<From, To, true> {
static void copy(const From& from, To& to) {
PathCopySelectorBackward<From, To>::copy(from, to);
/// \brief Make a copy of a path.
/// This function makes a copy of a path.
template <typename From, typename To>
void pathCopy(const From& from, To& to) {
checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
_path_bits::PathCopySelector<From, To>::copy(from, to);
/// \brief Deprecated version of \ref pathCopy().
/// Deprecated version of \ref pathCopy() (only for reverse compatibility).
template <typename To, typename From>
void copyPath(To& to, const From& from) {
/// \brief Check the consistency of a path.
/// This function checks that the target of each arc is the same
/// as the source of the next one.
template <typename Digraph, typename Path>
bool checkPath(const Digraph& digraph, const Path& path) {
typename Path::ArcIt it(path);
if (it == INVALID) return true;
typename Digraph::Node node = digraph.target(it);
if (digraph.source(it) != node) return false;
node = digraph.target(it);
/// \brief The source of a path
/// This function returns the source node of the given path.
/// If the path is empty, then it returns \c INVALID.
template <typename Digraph, typename Path>
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
return path.empty() ? INVALID : digraph.source(path.front());
/// \brief The target of a path
/// This function returns the target node of the given path.
/// If the path is empty, then it returns \c INVALID.
template <typename Digraph, typename Path>
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
return path.empty() ? INVALID : digraph.target(path.back());
/// \brief Class which helps to iterate through the nodes of a path
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores only this list. As a consequence, it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot have a source node.
/// This class implements the node iterator of a path structure. To
/// provide this feature, the underlying digraph should be passed to
/// the constructor of the iterator.
const typename Path::Digraph *_digraph;
typename Path::ArcIt _it;
typename Path::Digraph::Node _nd;
typedef typename Path::Digraph Digraph;
typedef typename Digraph::Node Node;
: _digraph(0), _it(INVALID), _nd(INVALID) {}
PathNodeIt(const Digraph& digraph, const Path& path)
: _digraph(&digraph), _it(path) {
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src)
: _digraph(&digraph), _it(path), _nd(src) {}
///Conversion to Digraph::Node
PathNodeIt& operator++() {
if (_it == INVALID) _nd = INVALID;
_nd = _digraph->target(_it);
bool operator==(const PathNodeIt& n) const {
return _it == n._it && _nd == n._nd;
bool operator!=(const PathNodeIt& n) const {
return _it != n._it || _nd != n._nd;
bool operator<(const PathNodeIt& n) const {
return (_it < n._it && _nd != INVALID);