Location: LEMON/LEMON-official/lemon/hartmann_orlin.h

Load file history
gravatar
kpeter (Peter Kovacs)
More options for run() in scaling MCF algorithms (#180) - Three methods can be selected and the scaling factor can be given for CostScaling. - The scaling factor can be given for CapacityScaling.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_HARTMANN_ORLIN_H
#define LEMON_HARTMANN_ORLIN_H
/// \ingroup min_mean_cycle
///
/// \file
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/path.h>
#include <lemon/tolerance.h>
#include <lemon/connectivity.h>
namespace lemon {
/// \brief Default traits class of HartmannOrlin algorithm.
///
/// Default traits class of HartmannOrlin algorithm.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template <typename GR, typename LEN,
bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
#endif
struct HartmannOrlinDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the length map
typedef LEN LengthMap;
/// The type of the arc lengths
typedef typename LengthMap::Value Value;
/// \brief The large value type used for internal computations
///
/// The large value type used for internal computations.
/// It is \c long \c long if the \c Value type is integer,
/// otherwise it is \c double.
/// \c Value must be convertible to \c LargeValue.
typedef double LargeValue;
/// The tolerance type used for internal computations
typedef lemon::Tolerance<LargeValue> Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addFront() function.
typedef lemon::Path<Digraph> Path;
};
// Default traits class for integer value types
template <typename GR, typename LEN>
struct HartmannOrlinDefaultTraits<GR, LEN, true>
{
typedef GR Digraph;
typedef LEN LengthMap;
typedef typename LengthMap::Value Value;
#ifdef LEMON_HAVE_LONG_LONG
typedef long long LargeValue;
#else
typedef long LargeValue;
#endif
typedef lemon::Tolerance<LargeValue> Tolerance;
typedef lemon::Path<Digraph> Path;
};
/// \addtogroup min_mean_cycle
/// @{
/// \brief Implementation of the Hartmann-Orlin algorithm for finding
/// a minimum mean cycle.
///
/// This class implements the Hartmann-Orlin algorithm for finding
/// a directed cycle of minimum mean length (cost) in a digraph
/// \ref amo93networkflows, \ref dasdan98minmeancycle.
/// It is an improved version of \ref Karp "Karp"'s original algorithm,
/// it applies an efficient early termination scheme.
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam LEN The type of the length map. The default
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int>,
typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
#endif
class HartmannOrlin
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the length map
typedef typename TR::LengthMap LengthMap;
/// The type of the arc lengths
typedef typename TR::Value Value;
/// \brief The large value type
///
/// The large value type used for internal computations.
/// Using the \ref HartmannOrlinDefaultTraits "default traits class",
/// it is \c long \c long if the \c Value type is integer,
/// otherwise it is \c double.
typedef typename TR::LargeValue LargeValue;
/// The tolerance type
typedef typename TR::Tolerance Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// Using the \ref HartmannOrlinDefaultTraits "default traits class",
/// it is \ref lemon::Path "Path<Digraph>".
typedef typename TR::Path Path;
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
typedef TR Traits;
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
// Data sturcture for path data
struct PathData
{
LargeValue dist;
Arc pred;
PathData(LargeValue d, Arc p = INVALID) :
dist(d), pred(p) {}
};
typedef typename Digraph::template NodeMap<std::vector<PathData> >
PathDataNodeMap;
private:
// The digraph the algorithm runs on
const Digraph &_gr;
// The length of the arcs
const LengthMap &_length;
// Data for storing the strongly connected components
int _comp_num;
typename Digraph::template NodeMap<int> _comp;
std::vector<std::vector<Node> > _comp_nodes;
std::vector<Node>* _nodes;
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
// Data for the found cycles
bool _curr_found, _best_found;
LargeValue _curr_length, _best_length;
int _curr_size, _best_size;
Node _curr_node, _best_node;
int _curr_level, _best_level;
Path *_cycle_path;
bool _local_path;
// Node map for storing path data
PathDataNodeMap _data;
// The processed nodes in the last round
std::vector<Node> _process;
Tolerance _tolerance;
// Infinite constant
const LargeValue INF;
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetLargeValueTraits : public Traits {
typedef T LargeValue;
typedef lemon::Tolerance<T> Tolerance;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c LargeValue type.
///
/// \ref named-templ-param "Named parameter" for setting \c LargeValue
/// type. It is used for internal computations in the algorithm.
template <typename T>
struct SetLargeValue
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
};
template <typename T>
struct SetPathTraits : public Traits {
typedef T Path;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c %Path type.
///
/// \ref named-templ-param "Named parameter" for setting the \c %Path
/// type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addFront() function.
template <typename T>
struct SetPath
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
};
/// @}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param digraph The digraph the algorithm runs on.
/// \param length The lengths (costs) of the arcs.
HartmannOrlin( const Digraph &digraph,
const LengthMap &length ) :
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
_best_found(false), _best_length(0), _best_size(1),
_cycle_path(NULL), _local_path(false), _data(digraph),
INF(std::numeric_limits<LargeValue>::has_infinity ?
std::numeric_limits<LargeValue>::infinity() :
std::numeric_limits<LargeValue>::max())
{}
/// Destructor.
~HartmannOrlin() {
if (_local_path) delete _cycle_path;
}
/// \brief Set the path structure for storing the found cycle.
///
/// This function sets an external path structure for storing the
/// found cycle.
///
/// If you don't call this function before calling \ref run() or
/// \ref findMinMean(), it will allocate a local \ref Path "path"
/// structure. The destuctor deallocates this automatically
/// allocated object, of course.
///
/// \note The algorithm calls only the \ref lemon::Path::addFront()
/// "addFront()" function of the given path structure.
///
/// \return <tt>(*this)</tt>
HartmannOrlin& cycle(Path &path) {
if (_local_path) {
delete _cycle_path;
_local_path = false;
}
_cycle_path = &path;
return *this;
}
/// \brief Set the tolerance used by the algorithm.
///
/// This function sets the tolerance object used by the algorithm.
///
/// \return <tt>(*this)</tt>
HartmannOrlin& tolerance(const Tolerance& tolerance) {
_tolerance = tolerance;
return *this;
}
/// \brief Return a const reference to the tolerance.
///
/// This function returns a const reference to the tolerance object
/// used by the algorithm.
const Tolerance& tolerance() const {
return _tolerance;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to call the \ref run()
/// function.\n
/// If you only need the minimum mean length, you may call
/// \ref findMinMean().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// It can be called more than once (e.g. if the underlying digraph
/// and/or the arc lengths have been modified).
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
/// \code
/// return mmc.findMinMean() && mmc.findCycle();
/// \endcode
bool run() {
return findMinMean() && findCycle();
}
/// \brief Find the minimum cycle mean.
///
/// This function finds the minimum mean length of the directed
/// cycles in the digraph.
///
/// \return \c true if a directed cycle exists in the digraph.
bool findMinMean() {
// Initialization and find strongly connected components
init();
findComponents();
// Find the minimum cycle mean in the components
for (int comp = 0; comp < _comp_num; ++comp) {
if (!initComponent(comp)) continue;
processRounds();
// Update the best cycle (global minimum mean cycle)
if ( _curr_found && (!_best_found ||
_curr_length * _best_size < _best_length * _curr_size) ) {
_best_found = true;
_best_length = _curr_length;
_best_size = _curr_size;
_best_node = _curr_node;
_best_level = _curr_level;
}
}
return _best_found;
}
/// \brief Find a minimum mean directed cycle.
///
/// This function finds a directed cycle of minimum mean length
/// in the digraph using the data computed by findMinMean().
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \pre \ref findMinMean() must be called before using this function.
bool findCycle() {
if (!_best_found) return false;
IntNodeMap reached(_gr, -1);
int r = _best_level + 1;
Node u = _best_node;
while (reached[u] < 0) {
reached[u] = --r;
u = _gr.source(_data[u][r].pred);
}
r = reached[u];
Arc e = _data[u][r].pred;
_cycle_path->addFront(e);
_best_length = _length[e];
_best_size = 1;
Node v;
while ((v = _gr.source(e)) != u) {
e = _data[v][--r].pred;
_cycle_path->addFront(e);
_best_length += _length[e];
++_best_size;
}
return true;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The algorithm should be executed before using them.
/// @{
/// \brief Return the total length of the found cycle.
///
/// This function returns the total length of the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
LargeValue cycleLength() const {
return _best_length;
}
/// \brief Return the number of arcs on the found cycle.
///
/// This function returns the number of arcs on the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
int cycleArcNum() const {
return _best_size;
}
/// \brief Return the mean length of the found cycle.
///
/// This function returns the mean length of the found cycle.
///
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
/// following code.
/// \code
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
/// \endcode
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
double cycleMean() const {
return static_cast<double>(_best_length) / _best_size;
}
/// \brief Return the found cycle.
///
/// This function returns a const reference to the path structure
/// storing the found cycle.
///
/// \pre \ref run() or \ref findCycle() must be called before using
/// this function.
const Path& cycle() const {
return *_cycle_path;
}
///@}
private:
// Initialization
void init() {
if (!_cycle_path) {
_local_path = true;
_cycle_path = new Path;
}
_cycle_path->clear();
_best_found = false;
_best_length = 0;
_best_size = 1;
_cycle_path->clear();
for (NodeIt u(_gr); u != INVALID; ++u)
_data[u].clear();
}
// Find strongly connected components and initialize _comp_nodes
// and _out_arcs
void findComponents() {
_comp_num = stronglyConnectedComponents(_gr, _comp);
_comp_nodes.resize(_comp_num);
if (_comp_num == 1) {
_comp_nodes[0].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
_comp_nodes[0].push_back(n);
_out_arcs[n].clear();
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
_out_arcs[n].push_back(a);
}
}
} else {
for (int i = 0; i < _comp_num; ++i)
_comp_nodes[i].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
int k = _comp[n];
_comp_nodes[k].push_back(n);
_out_arcs[n].clear();
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
}
}
}
}
// Initialize path data for the current component
bool initComponent(int comp) {
_nodes = &(_comp_nodes[comp]);
int n = _nodes->size();
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
return false;
}
for (int i = 0; i < n; ++i) {
_data[(*_nodes)[i]].resize(n + 1, PathData(INF));
}
return true;
}
// Process all rounds of computing path data for the current component.
// _data[v][k] is the length of a shortest directed walk from the root
// node to node v containing exactly k arcs.
void processRounds() {
Node start = (*_nodes)[0];
_data[start][0] = PathData(0);
_process.clear();
_process.push_back(start);
int k, n = _nodes->size();
int next_check = 4;
bool terminate = false;
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
processNextBuildRound(k);
if (k == next_check || k == n) {
terminate = checkTermination(k);
next_check = next_check * 3 / 2;
}
}
for ( ; k <= n && !terminate; ++k) {
processNextFullRound(k);
if (k == next_check || k == n) {
terminate = checkTermination(k);
next_check = next_check * 3 / 2;
}
}
}
// Process one round and rebuild _process
void processNextBuildRound(int k) {
std::vector<Node> next;
Node u, v;
Arc e;
LargeValue d;
for (int i = 0; i < int(_process.size()); ++i) {
u = _process[i];
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
e = _out_arcs[u][j];
v = _gr.target(e);
d = _data[u][k-1].dist + _length[e];
if (_tolerance.less(d, _data[v][k].dist)) {
if (_data[v][k].dist == INF) next.push_back(v);
_data[v][k] = PathData(d, e);
}
}
}
_process.swap(next);
}
// Process one round using _nodes instead of _process
void processNextFullRound(int k) {
Node u, v;
Arc e;
LargeValue d;
for (int i = 0; i < int(_nodes->size()); ++i) {
u = (*_nodes)[i];
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
e = _out_arcs[u][j];
v = _gr.target(e);
d = _data[u][k-1].dist + _length[e];
if (_tolerance.less(d, _data[v][k].dist)) {
_data[v][k] = PathData(d, e);
}
}
}
}
// Check early termination
bool checkTermination(int k) {
typedef std::pair<int, int> Pair;
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
typename GR::template NodeMap<LargeValue> pi(_gr);
int n = _nodes->size();
LargeValue length;
int size;
Node u;
// Search for cycles that are already found
_curr_found = false;
for (int i = 0; i < n; ++i) {
u = (*_nodes)[i];
if (_data[u][k].dist == INF) continue;
for (int j = k; j >= 0; --j) {
if (level[u].first == i && level[u].second > 0) {
// A cycle is found
length = _data[u][level[u].second].dist - _data[u][j].dist;
size = level[u].second - j;
if (!_curr_found || length * _curr_size < _curr_length * size) {
_curr_length = length;
_curr_size = size;
_curr_node = u;
_curr_level = level[u].second;
_curr_found = true;
}
}
level[u] = Pair(i, j);
if (j != 0) {
u = _gr.source(_data[u][j].pred);
}
}
}
// If at least one cycle is found, check the optimality condition
LargeValue d;
if (_curr_found && k < n) {
// Find node potentials
for (int i = 0; i < n; ++i) {
u = (*_nodes)[i];
pi[u] = INF;
for (int j = 0; j <= k; ++j) {
if (_data[u][j].dist < INF) {
d = _data[u][j].dist * _curr_size - j * _curr_length;
if (_tolerance.less(d, pi[u])) pi[u] = d;
}
}
}
// Check the optimality condition for all arcs
bool done = true;
for (ArcIt a(_gr); a != INVALID; ++a) {
if (_tolerance.less(_length[a] * _curr_size - _curr_length,
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
done = false;
break;
}
}
return done;
}
return (k == n);
}
}; //class HartmannOrlin
///@}
} //namespace lemon
#endif //LEMON_HARTMANN_ORLIN_H