/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_CONCEPTS_DIGRAPH_H
#define LEMON_CONCEPTS_DIGRAPH_H
///\ingroup graph_concepts
///\brief The concept of directed graphs.
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/concepts/graph_components.h>
/// \ingroup graph_concepts
/// \brief Class describing the concept of directed graphs.
/// This class describes the common interface of all directed
/// Like all concept classes, it only provides an interface
/// without any sensible implementation. So any general algorithm for
/// directed graphs should compile with this class, but it will not
/// run properly, of course.
/// An actual digraph implementation like \ref ListDigraph or
/// \ref SmartDigraph may have additional functionality.
/// Diraphs are \e not copy constructible. Use DigraphCopy instead.
Digraph(const Digraph &) {}
/// \brief Assignment of a digraph to another one is \e not allowed.
/// Use DigraphCopy instead.
void operator=(const Digraph &) {}
/// The node type of the digraph
/// This class identifies a node of the digraph. It also serves
/// as a base class of the node iterators,
/// thus they convert to this type.
/// \warning It sets the object to an undefined value.
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Node) const { return true; }
bool operator!=(Node) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
/// \note This operator only has to define some strict ordering of
/// the nodes; this order has nothing to do with the iteration
/// ordering of the nodes.
bool operator<(Node) const { return false; }
/// Iterator class for the nodes.
/// This iterator goes through each node of the digraph.
/// Its usage is quite simple, for example, you can count the number
/// of nodes in a digraph \c g of type \c %Digraph like this:
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
class NodeIt : public Node {
/// \warning It sets the iterator to an undefined value.
NodeIt(const NodeIt& n) : Node(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
/// Sets the iterator to the first node.
/// Sets the iterator to the first node of the given digraph.
explicit NodeIt(const Digraph&) { }
/// Sets the iterator to the given node.
/// Sets the iterator to the given node of the given digraph.
NodeIt(const Digraph&, const Node&) { }
/// Assign the iterator to the next node.
NodeIt& operator++() { return *this; }
/// The arc type of the digraph
/// This class identifies an arc of the digraph. It also serves
/// as a base class of the arc iterators,
/// thus they will convert to this type.
/// \warning It sets the object to an undefined value.
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Arc) const { return true; }
bool operator!=(Arc) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
/// \note This operator only has to define some strict ordering of
/// the arcs; this order has nothing to do with the iteration
/// ordering of the arcs.
bool operator<(Arc) const { return false; }
/// Iterator class for the outgoing arcs of a node.
/// This iterator goes trough the \e outgoing arcs of a certain node
/// Its usage is quite simple, for example, you can count the number
/// of outgoing arcs of a node \c n
/// in a digraph \c g of type \c %Digraph as follows.
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
class OutArcIt : public Arc {
/// \warning It sets the iterator to an undefined value.
OutArcIt(const OutArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
/// Sets the iterator to the first outgoing arc.
/// Sets the iterator to the first outgoing arc of the given node.
OutArcIt(const Digraph&, const Node&) { }
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given digraph.
OutArcIt(const Digraph&, const Arc&) { }
/// Assign the iterator to the next
/// outgoing arc of the corresponding node.
OutArcIt& operator++() { return *this; }
/// Iterator class for the incoming arcs of a node.
/// This iterator goes trough the \e incoming arcs of a certain node
/// Its usage is quite simple, for example, you can count the number
/// of incoming arcs of a node \c n
/// in a digraph \c g of type \c %Digraph as follows.
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
class InArcIt : public Arc {
/// \warning It sets the iterator to an undefined value.
InArcIt(const InArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
/// Sets the iterator to the first incoming arc.
/// Sets the iterator to the first incoming arc of the given node.
InArcIt(const Digraph&, const Node&) { }
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given digraph.
InArcIt(const Digraph&, const Arc&) { }
/// Assign the iterator to the next
/// incoming arc of the corresponding node.
InArcIt& operator++() { return *this; }
/// Iterator class for the arcs.
/// This iterator goes through each arc of the digraph.
/// Its usage is quite simple, for example, you can count the number
/// of arcs in a digraph \c g of type \c %Digraph as follows:
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
class ArcIt : public Arc {
/// \warning It sets the iterator to an undefined value.
ArcIt(const ArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
/// Sets the iterator to the first arc.
/// Sets the iterator to the first arc of the given digraph.
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given digraph.
ArcIt(const Digraph&, const Arc&) { }
/// Assign the iterator to the next arc.
ArcIt& operator++() { return *this; }
/// \brief The source node of the arc.
/// Returns the source node of the given arc.
Node source(Arc) const { return INVALID; }
/// \brief The target node of the arc.
/// Returns the target node of the given arc.
Node target(Arc) const { return INVALID; }
/// \brief The ID of the node.
/// Returns the ID of the given node.
int id(Node) const { return -1; }
/// \brief The ID of the arc.
/// Returns the ID of the given arc.
int id(Arc) const { return -1; }
/// \brief The node with the given ID.
/// Returns the node with the given ID.
/// \pre The argument should be a valid node ID in the digraph.
Node nodeFromId(int) const { return INVALID; }
/// \brief The arc with the given ID.
/// Returns the arc with the given ID.
/// \pre The argument should be a valid arc ID in the digraph.
Arc arcFromId(int) const { return INVALID; }
/// \brief An upper bound on the node IDs.
/// Returns an upper bound on the node IDs.
int maxNodeId() const { return -1; }
/// \brief An upper bound on the arc IDs.
/// Returns an upper bound on the arc IDs.
int maxArcId() const { return -1; }
void first(Node&) const {}
void next(Node&) const {}
void first(Arc&) const {}
void firstIn(Arc&, const Node&) const {}
void nextIn(Arc&) const {}
void firstOut(Arc&, const Node&) const {}
void nextOut(Arc&) const {}
// The second parameter is dummy.
Node fromId(int, Node) const { return INVALID; }
// The second parameter is dummy.
Arc fromId(int, Arc) const { return INVALID; }
int maxId(Node) const { return -1; }
int maxId(Arc) const { return -1; }
/// \brief The opposite node on the arc.
/// Returns the opposite node on the given arc.
Node oppositeNode(Node, Arc) const { return INVALID; }
/// \brief The base node of the iterator.
/// Returns the base node of the given outgoing arc iterator
/// (i.e. the source node of the corresponding arc).
Node baseNode(OutArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
/// Returns the running node of the given outgoing arc iterator
/// (i.e. the target node of the corresponding arc).
Node runningNode(OutArcIt) const { return INVALID; }
/// \brief The base node of the iterator.
/// Returns the base node of the given incomming arc iterator
/// (i.e. the target node of the corresponding arc).
Node baseNode(InArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
/// Returns the running node of the given incomming arc iterator
/// (i.e. the source node of the corresponding arc).
Node runningNode(InArcIt) const { return INVALID; }
/// \brief Standard graph map type for the nodes.
/// Standard graph map type for the nodes.
/// It conforms to the ReferenceMap concept.
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
explicit NodeMap(const Digraph&) { }
/// Constructor with given initial value
NodeMap(const Digraph&, T) { }
NodeMap(const NodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
/// \brief Standard graph map type for the arcs.
/// Standard graph map type for the arcs.
/// It conforms to the ReferenceMap concept.
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
explicit ArcMap(const Digraph&) { }
/// Constructor with given initial value
ArcMap(const Digraph&, T) { }
ArcMap(const ArcMap& em) :
ReferenceMap<Arc, T, T&, const T&>(em) { }
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, T>, CMap>();
template <typename _Digraph>
checkConcept<BaseDigraphComponent, _Digraph>();
checkConcept<IterableDigraphComponent<>, _Digraph>();
checkConcept<IDableDigraphComponent<>, _Digraph>();
checkConcept<MappableDigraphComponent<>, _Digraph>();