/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2011
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Binary Heap implementation.
///\brief A Binary Heap implementation.
///This class implements the \e binary \e heap data structure.
///A \e heap is a data structure for storing items with specified values
///called \e priorities in such a way that finding the item with minimum
///priority is efficient. \c CMP specifies the ordering of the priorities.
///In a heap one can change the priority of an item, add or erase an
///\tparam PR Type of the priority of the items.
///\tparam IM A read and writable item map with int values, used internally
///to handle the cross references.
///\tparam CMP A functor class for the ordering of the priorities.
///The default is \c std::less<PR>.
template <typename PR, typename IM, typename CMP = std::less<PR> >
typedef typename ItemIntMap::Key Item;
typedef std::pair<Item,Prio> Pair;
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
/// \brief The constructor.
/// \param map should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
/// \brief The constructor.
/// \param map should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
/// \param comp The comparator function object.
BinHeap(ItemIntMap &map, const Compare &comp)
: _iim(map), _comp(comp) {}
/// The number of items stored in the heap.
/// \brief Returns the number of items stored in the heap.
int size() const { return _data.size(); }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return _data.empty(); }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference map.
/// If you want to reuse what is not surely empty you should first clear
/// the heap and after that you should set the cross reference map for
/// each item to \c PRE_HEAP.
static int parent(int i) { return (i-1)/2; }
static int second_child(int i) { return 2*i+2; }
bool less(const Pair &p1, const Pair &p2) const {
return _comp(p1.second, p2.second);
int bubble_up(int hole, Pair p) {
while( hole>0 && less(p,_data[par]) ) {
int bubble_down(int hole, Pair p, int length) {
int child = second_child(hole);
if( less(_data[child-1], _data[child]) ) {
if( !less(_data[child], p) )
move(_data[child], hole);
child = second_child(hole);
if( child<length && less(_data[child], p) ) {
move(_data[child], hole);
void move(const Pair &p, int i) {
/// \brief Insert a pair of item and priority into the heap.
/// Adds \c p.first to the heap with priority \c p.second.
/// \param p The pair to insert.
void push(const Pair &p) {
/// \brief Insert an item into the heap with the given heap.
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
/// \brief Returns the item with minimum priority relative to \c Compare.
/// This method returns the item with minimum priority relative to \c
/// \pre The heap must be nonempty.
/// \brief Returns the minimum priority relative to \c Compare.
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
/// \brief Deletes the item with minimum priority relative to \c Compare.
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
_iim.set(_data[0].first, POST_HEAP);
bubble_down(0, _data[n], n);
/// \brief Deletes \c i from the heap.
/// This method deletes item \c i from the heap.
/// \param i The item to erase.
/// \pre The item should be in the heap.
void erase(const Item &i) {
_iim.set(_data[h].first, POST_HEAP);
if ( bubble_up(h, _data[n]) == h) {
bubble_down(h, _data[n], n);
/// \brief Returns the priority of \c i.
/// This function returns the priority of item \c i.
/// \pre \c i must be in the heap.
Prio operator[](const Item &i) const {
return _data[idx].second;
/// \brief \c i gets to the heap with priority \c p independently
/// if \c i was already there.
/// This method calls \ref push(\c i, \c p) if \c i is not stored
/// in the heap and sets the priority of \c i to \c p otherwise.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
else if( _comp(p, _data[idx].second) ) {
bubble_up(idx, Pair(i,p));
bubble_down(idx, Pair(i,p), _data.size());
/// \brief Decreases the priority of \c i to \c p.
/// This method decreases the priority of item \c i to \c p.
/// \param p The priority.
/// \pre \c i must be stored in the heap with priority at least \c
/// p relative to \c Compare.
void decrease(const Item &i, const Prio &p) {
bubble_up(idx, Pair(i,p));
/// \brief Increases the priority of \c i to \c p.
/// This method sets the priority of item \c i to \c p.
/// \param p The priority.
/// \pre \c i must be stored in the heap with priority at most \c
/// p relative to \c Compare.
void increase(const Item &i, const Prio &p) {
bubble_down(idx, Pair(i,p), _data.size());
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &i) const {
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
/// \brief Replaces an item in the heap.
/// The \c i item is replaced with \c j item. The \c i item should
/// be in the heap, while the \c j should be out of the heap. The
/// \c i item will out of the heap and \c j will be in the heap
/// with the same prioriority as prevoiusly the \c i item.
void replace(const Item& i, const Item& j) {
#endif // LEMON_BIN_HEAP_H