/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2011
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Miscellaneous property maps
/// Base class of maps. It provides the necessary type definitions
/// required by the map %concepts.
template<typename K, typename V>
/// \brief The key type of the map.
/// \brief The value type of the map.
/// (The type of objects associated with the keys).
/// Null map. (a.k.a. DoNothingMap)
/// This map can be used if you have to provide a map only for
/// its type definitions, or if you have to provide a writable map,
/// but data written to it is not required (i.e. it will be sent to
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
template<typename K, typename V>
class NullMap : public MapBase<K, V> {
/// Gives back a default constructed element.
Value operator[](const Key&) const { return Value(); }
void set(const Key&, const Value&) {}
/// Returns a \c NullMap class
/// This function just returns a \c NullMap class.
template <typename K, typename V>
NullMap<K, V> nullMap() {
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
/// The simplest way of using this map is through the constMap()
template<typename K, typename V>
class ConstMap : public MapBase<K, V> {
/// The value of the map will be default constructed.
/// Constructor with specified initial value
/// Constructor with specified initial value.
/// \param v The initial value of the map.
ConstMap(const Value &v) : _value(v) {}
/// Gives back the specified value.
Value operator[](const Key&) const { return _value; }
void set(const Key&, const Value&) {}
/// Sets the value that is assigned to each key.
void setAll(const Value &v) {
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
/// Returns a \c ConstMap class
/// This function just returns a \c ConstMap class.
template<typename K, typename V>
inline ConstMap<K, V> constMap(const V &v) {
return ConstMap<K, V>(v);
template<typename K, typename V>
inline ConstMap<K, V> constMap() {
template<typename T, T v>
/// Constant map with inlined constant value.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
/// The simplest way of using this map is through the constMap()
template<typename K, typename V, V v>
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
/// Gives back the specified value.
Value operator[](const Key&) const { return v; }
void set(const Key&, const Value&) {}
/// Returns a \c ConstMap class with inlined constant value
/// This function just returns a \c ConstMap class with inlined
template<typename K, typename V, V v>
inline ConstMap<K, Const<V, v> > constMap() {
return ConstMap<K, Const<V, v> >();
/// This \ref concepts::ReadMap "read-only map" gives back the given
/// key as value without any modification.
class IdentityMap : public MapBase<T, T> {
/// Gives back the given value without any modification.
Value operator[](const Key &k) const {
/// Returns an \c IdentityMap class
/// This function just returns an \c IdentityMap class.
inline IdentityMap<T> identityMap() {
/// \brief Map for storing values for integer keys from the range
/// <tt>[0..size-1]</tt>.
/// This map is essentially a wrapper for \c std::vector. It assigns
/// values to integer keys from the range <tt>[0..size-1]</tt>.
/// It can be used with some data structures, for example
/// \c UnionFind, \c BinHeap, when the used items are small
/// integers. This map conforms the \ref concepts::ReferenceMap
/// "ReferenceMap" concept.
/// The simplest way of using this map is through the rangeMap()
class RangeMap : public MapBase<int, V> {
typedef std::vector<V> Vector;
typedef typename Vector::reference Reference;
typedef typename Vector::const_reference ConstReference;
typedef True ReferenceMapTag;
/// Constructor with specified default value.
RangeMap(int size = 0, const Value &value = Value())
: _vector(size, value) {}
/// Constructs the map from an appropriate \c std::vector.
RangeMap(const std::vector<V1>& vector)
: _vector(vector.begin(), vector.end()) {}
/// Constructs the map from another \c RangeMap.
RangeMap(const RangeMap<V1> &c)
: _vector(c._vector.begin(), c._vector.end()) {}
/// Returns the size of the map.
/// Resizes the underlying \c std::vector container, so changes the
/// \param size The new size of the map. The new keyset will be the
/// range <tt>[0..size-1]</tt>.
/// \param value The default value to assign to the new keys.
void resize(int size, const Value &value = Value()) {
_vector.resize(size, value);
RangeMap& operator=(const RangeMap&);
Reference operator[](const Key &k) {
ConstReference operator[](const Key &k) const {
void set(const Key &k, const Value &v) {
/// Returns a \c RangeMap class
/// This function just returns a \c RangeMap class.
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
return RangeMap<V>(size, value);
/// \brief Returns a \c RangeMap class created from an appropriate
/// This function just returns a \c RangeMap class created from an
/// appropriate \c std::vector.
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
return RangeMap<V>(vector);
/// Map type based on \c std::map
/// This map is essentially a wrapper for \c std::map with addition
/// that you can specify a default value for the keys that are not
/// stored actually. This value can be different from the default
/// contructed value (i.e. \c %Value()).
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
/// This map is useful if a default value should be assigned to most of
/// the keys and different values should be assigned only to a few
/// keys (i.e. the map is "sparse").
/// The name of this type also refers to this important usage.
/// Apart form that this map can be used in many other cases since it
/// is based on \c std::map, which is a general associative container.
/// However keep in mind that it is usually not as efficient as other
/// The simplest way of using this map is through the sparseMap()
template <typename K, typename V, typename Comp = std::less<K> >
class SparseMap : public MapBase<K, V> {
template <typename K1, typename V1, typename C1>
typedef Value& Reference;
typedef const Value& ConstReference;
typedef True ReferenceMapTag;
typedef std::map<K, V, Comp> Map;
/// \brief Constructor with specified default value.
SparseMap(const Value &value = Value()) : _value(value) {}
/// \brief Constructs the map from an appropriate \c std::map, and
/// explicitly specifies a default value.
template <typename V1, typename Comp1>
SparseMap(const std::map<Key, V1, Comp1> &map,
const Value &value = Value())
: _map(map.begin(), map.end()), _value(value) {}
/// \brief Constructs the map from another \c SparseMap.
template<typename V1, typename Comp1>
SparseMap(const SparseMap<Key, V1, Comp1> &c)
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
SparseMap& operator=(const SparseMap&);
Reference operator[](const Key &k) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
return _map.insert(it, std::make_pair(k, _value))->second;
ConstReference operator[](const Key &k) const {
typename Map::const_iterator it = _map.find(k);
void set(const Key &k, const Value &v) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
_map.insert(it, std::make_pair(k, v));
void setAll(const Value &v) {
/// Returns a \c SparseMap class
/// This function just returns a \c SparseMap class with specified
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
return SparseMap<K, V, Compare>(value);
template<typename K, typename V>
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
return SparseMap<K, V, std::less<K> >(value);
/// \brief Returns a \c SparseMap class created from an appropriate
/// This function just returns a \c SparseMap class created from an
/// appropriate \c std::map.
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare>
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
return SparseMap<K, V, Compare>(map, value);
/// \addtogroup map_adaptors
/// Composition of two maps
/// This \ref concepts::ReadMap "read-only map" returns the
/// composition of two given maps. That is to say, if \c m1 is of
/// type \c M1 and \c m2 is of \c M2, then for
/// ComposeMap<M1, M2> cm(m1,m2);
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
/// The \c Key type of the map is inherited from \c M2 and the
/// \c Value type is from \c M1.
/// \c M2::Value must be convertible to \c M1::Key.
/// The simplest way of using this map is through the composeMap()
template <typename M1, typename M2>
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
typedef typename M2::Key Key;
typedef typename M1::Value Value;
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
typename MapTraits<M1>::ConstReturnValue
operator[](const Key &k) const { return _m1[_m2[k]]; }
/// Returns a \c ComposeMap class
/// This function just returns a \c ComposeMap class.
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
/// will be equal to <tt>m1[m2[x]]</tt>.
template <typename M1, typename M2>
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
return ComposeMap<M1, M2>(m1, m2);
/// Combination of two maps using an STL (binary) functor.
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
/// binary functor and returns the combination of the two given maps
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
/// and \c f is of \c F, then for
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
/// \c M2::Value and \c M1::Value must be convertible to the
/// corresponding input parameter of \c F and the return type of \c F
/// must be convertible to \c V.
/// The simplest way of using this map is through the combineMap()
template<typename M1, typename M2, typename F,
typename V = typename F::result_type>
class CombineMap : public MapBase<typename M1::Key, V> {
typedef typename M1::Key Key;
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
: _m1(m1), _m2(m2), _f(f) {}
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
/// Returns a \c CombineMap class
/// This function just returns a \c CombineMap class.
/// For example, if \c m1 and \c m2 are both maps with \c double
/// combineMap(m1,m2,std::plus<double>())
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
template<typename M1, typename M2, typename F, typename V>
inline CombineMap<M1, M2, F, V>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return CombineMap<M1, M2, F, V>(m1,m2,f);
template<typename M1, typename M2, typename F>
inline CombineMap<M1, M2, F, typename F::result_type>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
template<typename M1, typename M2, typename K1, typename K2, typename V>
inline CombineMap<M1, M2, V (*)(K1, K2), V>
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
/// Converts an STL style (unary) functor to a map
/// This \ref concepts::ReadMap "read-only map" returns the value
/// of a given functor. Actually, it just wraps the functor and
/// provides the \c Key and \c Value typedefs.
/// Template parameters \c K and \c V will become its \c Key and
/// \c Value. In most cases they have to be given explicitly because
/// a functor typically does not provide \c argument_type and
/// \c result_type typedefs.
/// Parameter \c F is the type of the used functor.
/// The simplest way of using this map is through the functorToMap()
typename K = typename F::argument_type,
typename V = typename F::result_type>
class FunctorToMap : public MapBase<K, V> {
FunctorToMap(const F &f = F()) : _f(f) {}
Value operator[](const Key &k) const { return _f(k); }
/// Returns a \c FunctorToMap class
/// This function just returns a \c FunctorToMap class.
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
/// \relates FunctorToMap
template<typename K, typename V, typename F>
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
return FunctorToMap<F, K, V>(f);
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
return FunctorToMap<F, typename F::argument_type,
typename F::result_type>(f);
template <typename K, typename V>
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
return FunctorToMap<V (*)(K), K, V>(f);
/// Converts a map to an STL style (unary) functor
/// This class converts a map to an STL style (unary) functor.
/// That is it provides an <tt>operator()</tt> to read its values.
/// For the sake of convenience it also works as a usual
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
/// and the \c Key and \c Value typedefs also exist.
/// The simplest way of using this map is through the mapToFunctor()
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
typedef typename M::Key argument_type;
typedef typename M::Value result_type;
MapToFunctor(const M &m) : _m(m) {}
Value operator()(const Key &k) const { return _m[k]; }
Value operator[](const Key &k) const { return _m[k]; }
/// Returns a \c MapToFunctor class
/// This function just returns a \c MapToFunctor class.
/// \relates MapToFunctor
inline MapToFunctor<M> mapToFunctor(const M &m) {
return MapToFunctor<M>(m);
/// \brief Map adaptor to convert the \c Value type of a map to
/// another type using the default conversion.
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
/// "readable map" to another type using the default conversion.
/// The \c Key type of it is inherited from \c M and the \c Value
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
/// The simplest way of using this map is through the convertMap()
template <typename M, typename V>
class ConvertMap : public MapBase<typename M::Key, V> {
typedef typename M::Key Key;
/// \param m The underlying map.
ConvertMap(const M &m) : _m(m) {}
Value operator[](const Key &k) const { return _m[k]; }
/// Returns a \c ConvertMap class
/// This function just returns a \c ConvertMap class.
template<typename V, typename M>
inline ConvertMap<M, V> convertMap(const M &map) {
return ConvertMap<M, V>(map);
/// Applies all map setting operations to two maps
/// This map has two \ref concepts::WriteMap "writable map" parameters
/// and each write request will be passed to both of them.
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
/// operations will return the corresponding values of \c M1.
/// The \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible from those
/// The simplest way of using this map is through the forkMap()
template<typename M1, typename M2>
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
typedef typename M1::Key Key;
typedef typename M1::Value Value;
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
/// Returns the value associated with the given key in the first map.
Value operator[](const Key &k) const { return _m1[k]; }
/// Sets the value associated with the given key in both maps.
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
/// Returns a \c ForkMap class
/// This function just returns a \c ForkMap class.
template <typename M1, typename M2>
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
return ForkMap<M1,M2>(m1,m2);
/// This \ref concepts::ReadMap "read-only map" returns the sum
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// AddMap<M1,M2> am(m1,m2);
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
/// The simplest way of using this map is through the addMap()
/// \sa SubMap, MulMap, DivMap
/// \sa ShiftMap, ShiftWriteMap
template<typename M1, typename M2>
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
typedef typename M1::Key Key;
typedef typename M1::Value Value;
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
/// Returns an \c AddMap class
/// This function just returns an \c AddMap class.
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]+m2[x]</tt>.
template<typename M1, typename M2>
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
return AddMap<M1, M2>(m1,m2);
/// Difference of two maps
/// This \ref concepts::ReadMap "read-only map" returns the difference
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// SubMap<M1,M2> sm(m1,m2);
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
/// The simplest way of using this map is through the subMap()
/// \sa AddMap, MulMap, DivMap
template<typename M1, typename M2>
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
typedef typename M1::Key Key;
typedef typename M1::Value Value;
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
/// Returns a \c SubMap class
/// This function just returns a \c SubMap class.
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]-m2[x]</tt>.
template<typename M1, typename M2>
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
return SubMap<M1, M2>(m1,m2);
/// This \ref concepts::ReadMap "read-only map" returns the product
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// MulMap<M1,M2> mm(m1,m2);
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
/// The simplest way of using this map is through the mulMap()
/// \sa AddMap, SubMap, DivMap
/// \sa ScaleMap, ScaleWriteMap
template<typename M1, typename M2>
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
typedef typename M1::Key Key;
typedef typename M1::Value Value;
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
/// Returns a \c MulMap class
/// This function just returns a \c MulMap class.
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]*m2[x]</tt>.
template<typename M1, typename M2>
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
return MulMap<M1, M2>(m1,m2);
/// This \ref concepts::ReadMap "read-only map" returns the quotient
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// DivMap<M1,M2> dm(m1,m2);
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
/// The simplest way of using this map is through the divMap()
/// \sa AddMap, SubMap, MulMap
template<typename M1, typename M2>
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
typedef typename M1::Key Key;
typedef typename M1::Value Value;
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
/// Returns a \c DivMap class
/// This function just returns a \c DivMap class.
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]/m2[x]</tt>.
template<typename M1, typename M2>
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
return DivMap<M1, M2>(m1,m2);
/// Shifts a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the sum of
/// the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
/// ConstMap<M::Key, M::Value> cm(v);
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
/// The simplest way of using this map is through the shiftMap()
template<typename M, typename C = typename M::Value>
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
/// \param m The undelying map.
/// \param v The constant value.
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
Value operator[](const Key &k) const { return _m[k]+_v; }
/// Shifts a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
/// of the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
/// The simplest way of using this map is through the shiftWriteMap()
template<typename M, typename C = typename M::Value>
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
/// \param m The undelying map.
/// \param v The constant value.
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
Value operator[](const Key &k) const { return _m[k]+_v; }
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
/// Returns a \c ShiftMap class
/// This function just returns a \c ShiftMap class.
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
template<typename M, typename C>
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
return ShiftMap<M, C>(m,v);
/// Returns a \c ShiftWriteMap class
/// This function just returns a \c ShiftWriteMap class.
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
/// Moreover it makes also possible to write the map.
/// \relates ShiftWriteMap
template<typename M, typename C>
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
return ShiftWriteMap<M, C>(m,v);
/// Scales a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
/// ConstMap<M::Key, M::Value> cm(v);
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
/// The simplest way of using this map is through the scaleMap()
template<typename M, typename C = typename M::Value>
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
/// \param m The undelying map.
/// \param v The constant value.
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
Value operator[](const Key &k) const { return _v*_m[k]; }
/// Scales a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
/// It can also be used as write map if the \c / operator is defined
/// between \c Value and \c C and the given multiplier is not zero.
/// The simplest way of using this map is through the scaleWriteMap()
template<typename M, typename C = typename M::Value>
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
/// \param m The undelying map.
/// \param v The constant value.
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
Value operator[](const Key &k) const { return _v*_m[k]; }
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
/// Returns a \c ScaleMap class
/// This function just returns a \c ScaleMap class.
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
template<typename M, typename C>
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
return ScaleMap<M, C>(m,v);
/// Returns a \c ScaleWriteMap class
/// This function just returns a \c ScaleWriteMap class.
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
/// Moreover it makes also possible to write the map.
/// \relates ScaleWriteMap
template<typename M, typename C>
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
return ScaleWriteMap<M, C>(m,v);
/// This \ref concepts::ReadMap "read-only map" returns the negative
/// of the values of the given map (using the unary \c - operator).
/// Its \c Key and \c Value are inherited from \c M.
/// If M::Value is \c int, \c double etc., then
/// ScaleMap<M> neg(m,-1);
/// The simplest way of using this map is through the negMap()
class NegMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
NegMap(const M &m) : _m(m) {}
Value operator[](const Key &k) const { return -_m[k]; }
/// Negative of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// negative of the values of the given map (using the unary \c -
/// Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
/// If M::Value is \c int, \c double etc., then
/// NegWriteMap<M> neg(m);
/// ScaleWriteMap<M> neg(m,-1);
/// The simplest way of using this map is through the negWriteMap()
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
NegWriteMap(M &m) : _m(m) {}
Value operator[](const Key &k) const { return -_m[k]; }
void set(const Key &k, const Value &v) { _m.set(k, -v); }
/// Returns a \c NegMap class
/// This function just returns a \c NegMap class.
/// For example, if \c m is a map with \c double values, then
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
inline NegMap<M> negMap(const M &m) {
/// Returns a \c NegWriteMap class
/// This function just returns a \c NegWriteMap class.
/// For example, if \c m is a map with \c double values, then
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
/// Moreover it makes also possible to write the map.
inline NegWriteMap<M> negWriteMap(M &m) {
return NegWriteMap<M>(m);
/// Absolute value of a map
/// This \ref concepts::ReadMap "read-only map" returns the absolute
/// value of the values of the given map.
/// Its \c Key and \c Value are inherited from \c M.
/// \c Value must be comparable to \c 0 and the unary \c -
/// operator must be defined for it, of course.
/// The simplest way of using this map is through the absMap()
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
typedef typename M::Key Key;
typedef typename M::Value Value;
AbsMap(const M &m) : _m(m) {}
Value operator[](const Key &k) const {
return tmp >= 0 ? tmp : -tmp;
/// Returns an \c AbsMap class
/// This function just returns an \c AbsMap class.
/// For example, if \c m is a map with \c double values, then
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
inline AbsMap<M> absMap(const M &m) {
// Logical maps and map adaptors:
/// Constant \c true map.
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// ConstMap<K,bool> tm(true);
class TrueMap : public MapBase<K, bool> {
Value operator[](const Key&) const { return true; }
/// Returns a \c TrueMap class
/// This function just returns a \c TrueMap class.
inline TrueMap<K> trueMap() {
/// Constant \c false map.
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
/// ConstMap<K,bool> fm(false);
class FalseMap : public MapBase<K, bool> {
Value operator[](const Key&) const { return false; }
/// Returns a \c FalseMap class
/// This function just returns a \c FalseMap class.
inline FalseMap<K> falseMap() {
/// \addtogroup map_adaptors
/// Logical 'and' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'and' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// AndMap<M1,M2> am(m1,m2);
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
/// The simplest way of using this map is through the andMap()
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class AndMap : public MapBase<typename M1::Key, bool> {
typedef typename M1::Key Key;
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
/// Returns an \c AndMap class
/// This function just returns an \c AndMap class.
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]&&m2[x]</tt>.
template<typename M1, typename M2>
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
return AndMap<M1, M2>(m1,m2);
/// Logical 'or' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'or' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// OrMap<M1,M2> om(m1,m2);
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
/// The simplest way of using this map is through the orMap()
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class OrMap : public MapBase<typename M1::Key, bool> {
typedef typename M1::Key Key;
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
/// Returns an \c OrMap class
/// This function just returns an \c OrMap class.
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]||m2[x]</tt>.
template<typename M1, typename M2>
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
return OrMap<M1, M2>(m1,m2);
/// Logical 'not' of a map
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
/// The simplest way of using this map is through the notMap()
class NotMap : public MapBase<typename M::Key, bool> {
typedef typename M::Key Key;
NotMap(const M &m) : _m(m) {}
Value operator[](const Key &k) const { return !_m[k]; }
/// Logical 'not' of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// logical negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
/// It makes also possible to write the map. When a value is set,
/// the opposite value is set to the original map.
/// The simplest way of using this map is through the notWriteMap()
class NotWriteMap : public MapBase<typename M::Key, bool> {
typedef typename M::Key Key;
NotWriteMap(M &m) : _m(m) {}
Value operator[](const Key &k) const { return !_m[k]; }
void set(const Key &k, bool v) { _m.set(k, !v); }
/// Returns a \c NotMap class
/// This function just returns a \c NotMap class.
/// For example, if \c m is a map with \c bool values, then
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
inline NotMap<M> notMap(const M &m) {
/// Returns a \c NotWriteMap class
/// This function just returns a \c NotWriteMap class.
/// For example, if \c m is a map with \c bool values, then
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
/// Moreover it makes also possible to write the map.
inline NotWriteMap<M> notWriteMap(M &m) {
return NotWriteMap<M>(m);
/// Combination of two maps using the \c == operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding values of the two maps are
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// EqualMap<M1,M2> em(m1,m2);
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
/// The simplest way of using this map is through the equalMap()
template<typename M1, typename M2>
class EqualMap : public MapBase<typename M1::Key, bool> {
typedef typename M1::Key Key;
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
/// Returns an \c EqualMap class
/// This function just returns an \c EqualMap class.
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]==m2[x]</tt>.
template<typename M1, typename M2>
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
return EqualMap<M1, M2>(m1,m2);
/// Combination of two maps using the \c < operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding value of the first map is
/// less then the value of the second map.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// LessMap<M1,M2> lm(m1,m2);
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
/// The simplest way of using this map is through the lessMap()
template<typename M1, typename M2>
class LessMap : public MapBase<typename M1::Key, bool> {
typedef typename M1::Key Key;
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
/// Returns an \c LessMap class
/// This function just returns an \c LessMap class.
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]<m2[x]</tt>.
template<typename M1, typename M2>
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
return LessMap<M1, M2>(m1,m2);
template <typename _Iterator, typename Enable = void>
typedef typename std::iterator_traits<_Iterator>::value_type Value;
template <typename _Iterator>
struct IteratorTraits<_Iterator,
typename exists<typename _Iterator::container_type>::type>
typedef typename _Iterator::container_type::value_type Value;
/// \brief Writable bool map for logging each \c true assigned element
/// A \ref concepts::WriteMap "writable" bool map for logging
/// each \c true assigned element, i.e it copies subsequently each
/// keys set to \c true to the given iterator.
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
/// There are several algorithms that provide solutions through bool
/// maps and most of them assign \c true at most once for each key.
/// In these cases it is a natural request to store each \c true
/// assigned elements (in order of the assignment), which can be
/// easily done with LoggerBoolMap.
/// The simplest way of using this map is through the loggerBoolMap()
/// \tparam IT The type of the iterator.
/// \tparam KEY The key type of the map. The default value set
/// according to the iterator type should work in most cases.
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
template <typename IT, typename KEY>
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
class LoggerBoolMap : public MapBase<KEY, bool> {
LoggerBoolMap(Iterator it)
: _begin(it), _end(it) {}
/// Gives back the given iterator set for the first key
/// Gives back the the 'after the last' iterator
/// The set function of the map
void set(const Key& key, Value value) {
/// Returns a \c LoggerBoolMap class
/// This function just returns a \c LoggerBoolMap class.
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
/// For example it makes easier to store the nodes in the processing
/// order of Dfs algorithm, as the following examples show.
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
/// std::vector<Node> v(countNodes(g));
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
/// it cannot be used when a readable map is needed, for example as
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
/// \relates LoggerBoolMap
template<typename Iterator>
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
return LoggerBoolMap<Iterator>(it);
/// \addtogroup graph_maps
/// \brief Provides an immutable and unique id for each item in a graph.
/// IdMap provides a unique and immutable id for each item of the
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b immutable: the id of an item does not change (even if you
/// Using this map you get access (i.e. can read) the inner id values of
/// the items stored in the graph, which is returned by the \c id()
/// function of the graph. This map can be inverted with its member
/// class \c InverseMap or with the \c operator() member.
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
template <typename GR, typename K>
class IdMap : public MapBase<K, int> {
/// The graph type of IdMap.
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
/// The value type of IdMap.
/// Constructor of the map.
explicit IdMap(const Graph& graph) : _graph(&graph) {}
/// \brief Gives back the \e id of the item.
/// Gives back the immutable and unique \e id of the item.
int operator[](const Item& item) const { return _graph->id(item);}
/// \brief Gives back the \e item by its id.
/// Gives back the \e item by its id.
Item operator()(int id) { return _graph->fromId(id, Item()); }
/// \brief This class represents the inverse of its owner (IdMap).
/// This class represents the inverse of its owner (IdMap).
/// Constructor for creating an id-to-item map.
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
/// Constructor for creating an id-to-item map.
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
/// \brief Gives back the given item from its id.
/// Gives back the given item from its id.
Item operator[](int id) const { return _graph->fromId(id, Item());}
/// \brief Gives back the inverse of the map.
/// Gives back the inverse of the IdMap.
InverseMap inverse() const { return InverseMap(*_graph);}
/// \brief General cross reference graph map type.
/// This class provides simple invertable graph maps.
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
/// and if a key is set to a new value, then stores it in the inverse map.
/// The values of the map can be accessed
/// with stl compatible forward iterator.
/// This type is not reference map, so it cannot be modified with
/// the subscript operator.
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \tparam V The value type of the map.
/// \see IterableValueMap
template <typename GR, typename K, typename V>
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
typedef typename ItemSetTraits<GR, K>::
template Map<V>::Type Map;
typedef std::multimap<V, K> Container;
/// The graph type of CrossRefMap.
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
/// The value type of CrossRefMap.
/// Construct a new CrossRefMap for the given graph.
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
/// \brief Forward iterator for values.
/// This iterator is an stl compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
/// They are considered with multiplicity, so each value is
/// traversed for each item it is assigned to.
: public std::iterator<std::forward_iterator_tag, Value> {
friend class CrossRefMap;
ValueIterator(typename Container::const_iterator _it)
ValueIterator& operator++() { ++it; return *this; }
ValueIterator operator++(int) {
ValueIterator tmp(*this);
const Value& operator*() const { return it->first; }
const Value* operator->() const { return &(it->first); }
bool operator==(ValueIterator jt) const { return it == jt.it; }
bool operator!=(ValueIterator jt) const { return it != jt.it; }
typename Container::const_iterator it;
/// \brief Returns an iterator to the first value.
/// Returns an stl compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
ValueIterator beginValue() const {
return ValueIterator(_inv_map.begin());
/// \brief Returns an iterator after the last value.
/// Returns an stl compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
ValueIterator endValue() const {
return ValueIterator(_inv_map.end());
/// \brief Sets the value associated with the given key.
/// Sets the value associated with the given key.
void set(const Key& key, const Value& val) {
Value oldval = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(oldval).first;
it != _inv_map.equal_range(oldval).second; ++it) {
_inv_map.insert(std::make_pair(val, key));
/// \brief Returns the value associated with the given key.
/// Returns the value associated with the given key.
typename MapTraits<Map>::ConstReturnValue
operator[](const Key& key) const {
return Map::operator[](key);
/// \brief Gives back an item by its value.
/// This function gives back an item that is assigned to
/// the given value or \c INVALID if no such item exists.
/// If there are more items with the same associated value,
/// only one of them is returned.
Key operator()(const Value& val) const {
typename Container::const_iterator it = _inv_map.find(val);
return it != _inv_map.end() ? it->second : INVALID;
/// \brief Erase the key from the map and the inverse map.
/// Erase the key from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Key& key) {
Value val = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
/// \brief Erase more keys from the map and the inverse map.
/// Erase more keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
Value val = Map::operator[](keys[i]);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
if (it->second == keys[i]) {
/// \brief Clear the keys from the map and the inverse map.
/// Clear the keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
/// \brief The inverse map type.
/// The inverse of this map. The subscript operator of the map
/// gives back the item that was last assigned to the value.
/// Constructor of the InverseMap.
explicit InverseMap(const CrossRefMap& inverted)
/// The value type of the InverseMap.
typedef typename CrossRefMap::Key Value;
/// The key type of the InverseMap.
typedef typename CrossRefMap::Value Key;
/// \brief Subscript operator.
/// Subscript operator. It gives back an item
/// that is assigned to the given value or \c INVALID
/// if no such item exists.
Value operator[](const Key& key) const {
const CrossRefMap& _inverted;
/// \brief It gives back the read-only inverse map.
/// It gives back the read-only inverse map.
InverseMap inverse() const {
return InverseMap(*this);
/// \brief Provides continuous and unique ID for the
/// RangeIdMap provides a unique and continuous
/// ID for each item of a given type (\c Node, \c Arc or
/// \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b continuous: the range of the ids is the set of integers
/// between 0 and \c n-1, where \c n is the number of the items of
/// this type (\c Node, \c Arc or \c Edge).
/// - So, the ids can change when deleting an item of the same type.
/// Thus this id is not (necessarily) the same as what can get using
/// the \c id() function of the graph or \ref IdMap.
/// This map can be inverted with its member class \c InverseMap,
/// or with the \c operator() member.
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
template <typename GR, typename K>
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
/// The graph type of RangeIdMap.
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
/// The value type of RangeIdMap.
explicit RangeIdMap(const Graph& gr) : Map(gr) {
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
/// \brief Adds a new key to the map.
/// Add a new key to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const Item& item) {
Map::set(item, _inv_map.size());
_inv_map.push_back(item);
/// \brief Add more new keys to the map.
/// Add more new keys to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(items[i], _inv_map.size());
_inv_map.push_back(items[i]);
/// \brief Erase the key from the map.
/// Erase the key from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Item& item) {
Map::set(_inv_map.back(), Map::operator[](item));
_inv_map[Map::operator[](item)] = _inv_map.back();
/// \brief Erase more keys from the map.
/// Erase more keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(_inv_map.back(), Map::operator[](items[i]));
_inv_map[Map::operator[](items[i])] = _inv_map.back();
/// \brief Build the unique map.
/// Build the unique map. It is called by the
/// \c AlterationNotifier.
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
/// \brief Clear the keys from the map.
/// Clear the keys from the map. It is called by the
/// \c AlterationNotifier.
/// \brief Returns the maximal value plus one.
/// Returns the maximal value plus one in the map.
unsigned int size() const {
/// \brief Swaps the position of the two items in the map.
/// Swaps the position of the two items in the map.
void swap(const Item& p, const Item& q) {
int pi = Map::operator[](p);
int qi = Map::operator[](q);
/// \brief Gives back the \e RangeId of the item
/// Gives back the \e RangeId of the item.
int operator[](const Item& item) const {
return Map::operator[](item);
/// \brief Gives back the item belonging to a \e RangeId
/// Gives back the item belonging to a \e RangeId.
Item operator()(int id) const {
typedef std::vector<Item> Container;
/// \brief The inverse map type of RangeIdMap.
/// The inverse map type of RangeIdMap.
/// Constructor of the InverseMap.
explicit InverseMap(const RangeIdMap& inverted)
/// The value type of the InverseMap.
typedef typename RangeIdMap::Key Value;
/// The key type of the InverseMap.
typedef typename RangeIdMap::Value Key;
/// \brief Subscript operator.
/// Subscript operator. It gives back the item
/// that the descriptor currently belongs to.
Value operator[](const Key& key) const {
/// \brief Size of the map.
/// Returns the size of the map.
unsigned int size() const {
const RangeIdMap& _inverted;
/// \brief Gives back the inverse of the map.
/// Gives back the inverse of the map.
const InverseMap inverse() const {
return InverseMap(*this);
/// \brief Map of the source nodes of arcs in a digraph.
/// SourceMap provides access for the source node of each arc in a digraph,
/// which is returned by the \c source() function of the digraph.
/// \tparam GR The digraph type.
typedef typename GR::Arc Key;
typedef typename GR::Node Value;
/// \param digraph The digraph that the map belongs to.
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the source node of the given arc.
/// Returns the source node of the given arc.
Value operator[](const Key& arc) const {
return _graph.source(arc);
/// \brief Returns a \c SourceMap class.
/// This function just returns an \c SourceMap class.
inline SourceMap<GR> sourceMap(const GR& graph) {
return SourceMap<GR>(graph);
/// \brief Map of the target nodes of arcs in a digraph.
/// TargetMap provides access for the target node of each arc in a digraph,
/// which is returned by the \c target() function of the digraph.
/// \tparam GR The digraph type.
typedef typename GR::Arc Key;
typedef typename GR::Node Value;
/// \param digraph The digraph that the map belongs to.
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the target node of the given arc.
/// Returns the target node of the given arc.
Value operator[](const Key& e) const {
/// \brief Returns a \c TargetMap class.
/// This function just returns a \c TargetMap class.
inline TargetMap<GR> targetMap(const GR& graph) {
return TargetMap<GR>(graph);
/// \brief Map of the "forward" directed arc view of edges in a graph.
/// ForwardMap provides access for the "forward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c true parameter.
/// \tparam GR The graph type.
typedef typename GR::Arc Value;
typedef typename GR::Edge Key;
/// \param graph The graph that the map belongs to.
explicit ForwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "forward" directed arc view of the given edge.
/// Returns the "forward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, true);
/// \brief Returns a \c ForwardMap class.
/// This function just returns an \c ForwardMap class.
inline ForwardMap<GR> forwardMap(const GR& graph) {
return ForwardMap<GR>(graph);
/// \brief Map of the "backward" directed arc view of edges in a graph.
/// BackwardMap provides access for the "backward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c false parameter.
/// \tparam GR The graph type.
typedef typename GR::Arc Value;
typedef typename GR::Edge Key;
/// \param graph The graph that the map belongs to.
explicit BackwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "backward" directed arc view of the given edge.
/// Returns the "backward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, false);
/// \brief Returns a \c BackwardMap class
/// This function just returns a \c BackwardMap class.
inline BackwardMap<GR> backwardMap(const GR& graph) {
return BackwardMap<GR>(graph);
/// \brief Map of the in-degrees of nodes in a digraph.
/// This map returns the in-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of InDegMap is not guarantied if these additional
/// features are used. For example the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
/// The graph type of InDegMap
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
virtual void add(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
/// Constructor for creating an in-degree map.
explicit InDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
/// \brief Gives back the in-degree of a Node.
/// Gives back the in-degree of a Node.
int operator[](const Key& key) const {
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.target(arc)];
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.target(arcs[i])];
virtual void erase(const Arc& arc) {
--_deg[_digraph.target(arc)];
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.target(arcs[i])];
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
/// \brief Map of the out-degrees of nodes in a digraph.
/// This map returns the out-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of OutDegMap is not guarantied if these additional
/// features are used. For example the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
/// The graph type of OutDegMap
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
virtual void add(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
/// Constructor for creating an out-degree map.
explicit OutDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
/// \brief Gives back the out-degree of a Node.
/// Gives back the out-degree of a Node.
int operator[](const Key& key) const {
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.source(arc)];
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.source(arcs[i])];
virtual void erase(const Arc& arc) {
--_deg[_digraph.source(arc)];
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.source(arcs[i])];
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
/// \brief Potential difference map
/// PotentialDifferenceMap returns the difference between the potentials of
/// the source and target nodes of each arc in a digraph, i.e. it returns
/// potential[gr.target(arc)] - potential[gr.source(arc)].
/// \tparam GR The digraph type.
/// \tparam POT A node map storing the potentials.
template <typename GR, typename POT>
class PotentialDifferenceMap {
typedef typename GR::Arc Key;
typedef typename POT::Value Value;
/// Contructor of the map.
explicit PotentialDifferenceMap(const GR& gr,
: _digraph(gr), _potential(potential) {}
/// \brief Returns the potential difference for the given arc.
/// Returns the potential difference for the given arc, i.e.
/// potential[gr.target(arc)] - potential[gr.source(arc)].
Value operator[](const Key& arc) const {
return _potential[_digraph.target(arc)] -
_potential[_digraph.source(arc)];
/// \brief Returns a PotentialDifferenceMap.
/// This function just returns a PotentialDifferenceMap.
/// \relates PotentialDifferenceMap
template <typename GR, typename POT>
PotentialDifferenceMap<GR, POT>
potentialDifferenceMap(const GR& gr, const POT& potential) {
return PotentialDifferenceMap<GR, POT>(gr, potential);