/* -*- mode: C++; indent-tabs-mode: nil; -*-
  * This file is a part of LEMON, a generic C++ optimization library.
  * Copyright (C) 2003-2009
  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  * (Egervary Research Group on Combinatorial Optimization, EGRES).
  * Permission to use, modify and distribute this software is granted
  * provided that this copyright notice appears in all copies. For
  * precise terms see the accompanying LICENSE file.
  * This software is provided "AS IS" with no warranty of any kind,
  * express or implied, and with no claim as to its suitability for any
 #ifndef LEMON_BINOM_HEAP_H
 #define LEMON_BINOM_HEAP_H
 ///\brief Binomial Heap implementation.
 #include <lemon/counter.h>
   ///\brief Binomial heap data structure.
   /// This class implements the \e binomial \e heap data structure.
   /// It fully conforms to the \ref concepts::Heap "heap concept".
   /// The methods \ref increase() and \ref erase() are not efficient
   /// in a binomial heap. In case of many calls of these operations,
   /// it is better to use other heap structure, e.g. \ref BinHeap
   /// \tparam PR Type of the priorities of the items.
   /// \tparam IM A read-writable item map with \c int values, used
   /// internally to handle the cross references.
   /// \tparam CMP A functor class for comparing the priorities.
   /// The default is \c std::less<PR>.
   template <typename PR, typename IM, typename CMP>
   template <typename PR, typename IM, typename CMP = std::less<PR> >
     /// Type of the item-int map.
     /// Type of the priorities.
     /// Type of the items stored in the heap.
     typedef typename ItemIntMap::Key Item;
     /// Functor type for comparing the priorities.
     /// \brief Type to represent the states of the items.
     /// Each item has a state associated to it. It can be "in heap",
     /// "pre-heap" or "post-heap". The latter two are indifferent from the
     /// heap's point of view, but may be useful to the user.
     /// The item-int map must be initialized in such way that it assigns
     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
       PRE_HEAP = -1,  ///< = -1.
       POST_HEAP = -2  ///< = -2.
     std::vector<Store> _data;
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     explicit BinomHeap(ItemIntMap &map)
       : _min(0), _head(-1), _iim(map), _num_items(0) {}
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     /// \param comp The function object used for comparing the priorities.
     BinomHeap(ItemIntMap &map, const Compare &comp)
       : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
     /// \brief The number of items stored in the heap.
     /// This function returns the number of items stored in the heap.
     int size() const { return _num_items; }
     /// \brief Check if the heap is empty.
     /// This function returns \c true if the heap is empty.
     bool empty() const { return _num_items==0; }
     /// \brief Make the heap empty.
     /// This functon makes the heap empty.
     /// It does not change the cross reference map. If you want to reuse
     /// a heap that is not surely empty, you should first clear it and
     /// then you should set the cross reference map to \c PRE_HEAP
       _data.clear(); _min=0; _num_items=0; _head=-1;
     /// \brief Set the priority of an item or insert it, if it is
     /// not stored in the heap.
     /// This method sets the priority of the given item if it is
     /// already stored in the heap. Otherwise it inserts the given
     /// item into the heap with the given priority.
     /// \param item The item.
     /// \param value The priority.
     void set (const Item& item, const Prio& value) {
       if ( i >= 0 && _data[i].in ) {
         if ( _comp(value, _data[i].prio) ) decrease(item, value);
         if ( _comp(_data[i].prio, value) ) increase(item, value);
       } else push(item, value);
     /// \brief Insert an item into the heap with the given priority.
     /// This function inserts the given item into the heap with the
     /// \param item The item to insert.
     /// \param value The priority of the item.
     /// \pre \e item must not be stored in the heap.
     void push (const Item& item, const Prio& value) {
         _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
         if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
     /// \brief Return the item having minimum priority.
     /// This function returns the item having minimum priority.
     /// \pre The heap must be non-empty.
     Item top() const { return _data[_min].name; }
     /// \brief The minimum priority.
     /// This function returns the minimum priority.
     /// \pre The heap must be non-empty.
     Prio prio() const { return _data[_min].prio; }
     /// \brief The priority of the given item.
     /// This function returns the priority of the given item.
     /// \param item The item.
     /// \pre \e item must be in the heap.
     const Prio& operator[](const Item& item) const {
       return _data[_iim[item]].prio;
     /// \brief Remove the item having minimum priority.
     /// This function removes the item having minimum priority.
     /// \pre The heap must be non-empty.
       if ( _data[_min].child!=-1 ) {
         int child=_data[_min].child;
           neighb=_data[child].right_neighbor;
           _data[child].right_neighbor=head_child;
       if ( _data[_head].right_neighbor==-1 ) {
         // there was only one root
         if( _head!=_min )  { unlace(_min); }
         else { _head=_data[_head].right_neighbor; }
     /// \brief Remove the given item from the heap.
     /// This function removes the given item from the heap if it is
     /// \param item The item to delete.
     /// \pre \e item must be in the heap.
     void erase (const Item& item) {
       if ( i >= 0 && _data[i].in ) {
         decrease( item, _data[_min].prio-1 );
     /// \brief Decrease the priority of an item to the given value.
     /// This function decreases the priority of an item to the given value.
     /// \param item The item.
     /// \param value The priority.
     /// \pre \e item must be stored in the heap with priority at least \e value.
     void decrease (Item item, const Prio& value) {
       while( p!=-1 && _comp(value, _data[p].prio) ) {
         _data[i].name=_data[p].name;
         _data[i].prio=_data[p].prio;
       if ( _comp(value, _data[_min].prio) ) _min=i;
     /// \brief Increase the priority of an item to the given value.
     /// This function increases the priority of an item to the given value.
     /// \param item The item.
     /// \param value The priority.
     /// \pre \e item must be stored in the heap with priority at most \e value.
     void increase (Item item, const Prio& value) {
     /// \brief Return the state of an item.
     /// This method returns \c PRE_HEAP if the given item has never
     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
     /// and \c POST_HEAP otherwise.
     /// In the latter case it is possible that the item will get back
     /// \param item The item.
     State state(const Item &item) const {
     /// \brief Set the state of an item in the heap.
     /// This function sets the state of the given item in the heap.
     /// It can be used to manually clear the heap when it is important
     /// to achive better time complexity.
     /// \param st The state. It should not be \c IN_HEAP.
     void state(const Item& i, State st) {
         if (state(i) == IN_HEAP) {
     // Find the minimum of the roots
         int min_loc=_head, min_val=_data[_head].prio;
         for( int x=_data[_head].right_neighbor; x!=-1;
              x=_data[x].right_neighbor ) {
           if( _comp( _data[x].prio,min_val ) ) {
     // Merge the heap with another heap starting at the given position
       if( _head==-1 || a==-1 ) return;
       if( _data[a].right_neighbor==-1 &&
           _data[a].degree<=_data[_head].degree ) {
         _data[a].right_neighbor=_head;
       if( _data[_head].right_neighbor==-1 ) return;
       int x_prev=-1, x_next=_data[x].right_neighbor;
         if( _data[x].degree!=_data[x_next].degree ||
             ( _data[x_next].right_neighbor!=-1 &&
               _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
           if( _comp(_data[x_next].prio,_data[x].prio) ) {
               _data[x_prev].right_neighbor=x_next;
             _data[x].right_neighbor=_data[x_next].right_neighbor;
         x_next=_data[x].right_neighbor;
     // Interleave the elements of the given list into the list of the roots
       _data.push_back(Store());
       while( p!=-1 || q!=-1 ) {
         if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
           _data[curr].right_neighbor=p;
           p=_data[p].right_neighbor;
           _data[curr].right_neighbor=q;
           q=_data[q].right_neighbor;
       _head=_data.back().right_neighbor;
     // Lace node a under node b
     void fuse(int a, int b) {
       _data[a].right_neighbor=_data[b].child;
     // Unlace node a (if it has siblings)
       int neighb=_data[a].right_neighbor;
       while( _data[other].right_neighbor!=a )
         other=_data[other].right_neighbor;
       _data[other].right_neighbor=neighb;
       Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
 #endif //LEMON_BINOM_HEAP_H