/* -*- mode: C++; indent-tabs-mode: nil; -*-
  * This file is a part of LEMON, a generic C++ optimization library.
  * Copyright (C) 2003-2009
  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  * (Egervary Research Group on Combinatorial Optimization, EGRES).
  * Permission to use, modify and distribute this software is granted
  * provided that this copyright notice appears in all copies. For
  * precise terms see the accompanying LICENSE file.
  * This software is provided "AS IS" with no warranty of any kind,
  * express or implied, and with no claim as to its suitability for any
 ///\ingroup shortest_path
 ///\brief Dijkstra algorithm.
 #include <lemon/list_graph.h>
 #include <lemon/bin_heap.h>
 #include <lemon/bits/path_dump.h>
   /// \brief Default operation traits for the Dijkstra algorithm class.
   /// This operation traits class defines all computational operations and
   /// constants which are used in the Dijkstra algorithm.
   struct DijkstraDefaultOperationTraits {
     /// \brief Gives back the zero value of the type.
       return static_cast<Value>(0);
     /// \brief Gives back the sum of the given two elements.
     static Value plus(const Value& left, const Value& right) {
     /// \brief Gives back true only if the first value is less than the second.
     static bool less(const Value& left, const Value& right) {
   ///Default traits class of Dijkstra class.
   ///Default traits class of Dijkstra class.
   ///\tparam GR The type of the digraph.
   ///\tparam LEN The type of the length map.
   template<typename GR, typename LEN>
   struct DijkstraDefaultTraits
     ///The type of the digraph the algorithm runs on.
     ///The type of the map that stores the arc lengths.
     ///The type of the map that stores the arc lengths.
     ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
     ///The type of the arc lengths.
     typedef typename LEN::Value Value;
     /// Operation traits for %Dijkstra algorithm.
     /// This class defines the operations that are used in the algorithm.
     /// \see DijkstraDefaultOperationTraits
     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
     /// The cross reference type used by the heap.
     /// The cross reference type used by the heap.
     /// Usually it is \c Digraph::NodeMap<int>.
     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
     ///Instantiates a \c HeapCrossRef.
     ///This function instantiates a \ref HeapCrossRef.
     /// \param g is the digraph, to which we would like to define the
     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
       return new HeapCrossRef(g);
     ///The heap type used by the %Dijkstra algorithm.
     ///The heap type used by the Dijkstra algorithm.
     typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
     ///Instantiates a \c Heap.
     ///This function instantiates a \ref Heap.
     static Heap *createHeap(HeapCrossRef& r)
     ///\brief The type of the map that stores the predecessor
     ///arcs of the shortest paths.
     ///The type of the map that stores the predecessor
     ///arcs of the shortest paths.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
     ///Instantiates a \c PredMap.
     ///This function instantiates a \ref PredMap.
     ///\param g is the digraph, to which we would like to define the
     static PredMap *createPredMap(const Digraph &g)
     ///The type of the map that indicates which nodes are processed.
     ///The type of the map that indicates which nodes are processed.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     ///By default it is a NullMap.
     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
     ///Instantiates a \c ProcessedMap.
     ///This function instantiates a \ref ProcessedMap.
     ///\param g is the digraph, to which
     ///we would like to define the \ref ProcessedMap.
     static ProcessedMap *createProcessedMap(const Digraph &g)
     static ProcessedMap *createProcessedMap(const Digraph &)
       return new ProcessedMap();
     ///The type of the map that stores the distances of the nodes.
     ///The type of the map that stores the distances of the nodes.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
     ///Instantiates a \c DistMap.
     ///This function instantiates a \ref DistMap.
     ///\param g is the digraph, to which we would like to define
     static DistMap *createDistMap(const Digraph &g)
   ///%Dijkstra algorithm class.
   /// \ingroup shortest_path
   ///This class provides an efficient implementation of the %Dijkstra algorithm.
   ///The %Dijkstra algorithm solves the single-source shortest path problem
   ///when all arc lengths are non-negative. If there are negative lengths,
   ///the BellmanFord algorithm should be used instead.
   ///The arc lengths are passed to the algorithm using a
   ///\ref concepts::ReadMap "ReadMap",
   ///so it is easy to change it to any kind of length.
   ///The type of the length is determined by the
   ///\ref concepts::ReadMap::Value "Value" of the length map.
   ///It is also possible to change the underlying priority heap.
   ///There is also a \ref dijkstra() "function-type interface" for the
   ///%Dijkstra algorithm, which is convenient in the simplier cases and
   ///it can be used easier.
   ///\tparam GR The type of the digraph the algorithm runs on.
   ///The default type is \ref ListDigraph.
   ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
   ///the lengths of the arcs.
   ///It is read once for each arc, so the map may involve in
   ///relatively time consuming process to compute the arc lengths if
   ///it is necessary. The default map type is \ref
   ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
   template <typename GR, typename LEN, typename TR>
   template <typename GR=ListDigraph,
             typename LEN=typename GR::template ArcMap<int>,
             typename TR=DijkstraDefaultTraits<GR,LEN> >
     ///The type of the digraph the algorithm runs on.
     typedef typename TR::Digraph Digraph;
     ///The type of the arc lengths.
     typedef typename TR::LengthMap::Value Value;
     ///The type of the map that stores the arc lengths.
     typedef typename TR::LengthMap LengthMap;
     ///\brief The type of the map that stores the predecessor arcs of the
     typedef typename TR::PredMap PredMap;
     ///The type of the map that stores the distances of the nodes.
     typedef typename TR::DistMap DistMap;
     ///The type of the map that indicates which nodes are processed.
     typedef typename TR::ProcessedMap ProcessedMap;
     ///The type of the paths.
     typedef PredMapPath<Digraph, PredMap> Path;
     ///The cross reference type used for the current heap.
     typedef typename TR::HeapCrossRef HeapCrossRef;
     ///The heap type used by the algorithm.
     typedef typename TR::Heap Heap;
     ///\brief The \ref DijkstraDefaultOperationTraits "operation traits class"
     typedef typename TR::OperationTraits OperationTraits;
     ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
     typedef typename Digraph::Node Node;
     typedef typename Digraph::NodeIt NodeIt;
     typedef typename Digraph::Arc Arc;
     typedef typename Digraph::OutArcIt OutArcIt;
     //Pointer to the underlying digraph.
     //Pointer to the length map.
     const LengthMap *_length;
     //Pointer to the map of predecessors arcs.
     //Indicates if _pred is locally allocated (true) or not.
     //Pointer to the map of distances.
     //Indicates if _dist is locally allocated (true) or not.
     //Pointer to the map of processed status of the nodes.
     ProcessedMap *_processed;
     //Indicates if _processed is locally allocated (true) or not.
     //Pointer to the heap cross references.
     HeapCrossRef *_heap_cross_ref;
     //Indicates if _heap_cross_ref is locally allocated (true) or not.
     bool local_heap_cross_ref;
     //Indicates if _heap is locally allocated (true) or not.
     //Creates the maps if necessary.
         _pred = Traits::createPredMap(*G);
         _dist = Traits::createDistMap(*G);
         _processed = Traits::createProcessedMap(*G);
         local_heap_cross_ref = true;
         _heap_cross_ref = Traits::createHeapCrossRef(*G);
         _heap = Traits::createHeap(*_heap_cross_ref);
     ///\name Named Template Parameters
     struct SetPredMapTraits : public Traits {
       static PredMap *createPredMap(const Digraph &)
         LEMON_ASSERT(false, "PredMap is not initialized");
         return 0; // ignore warnings
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" for setting
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
       : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
       typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
     struct SetDistMapTraits : public Traits {
       static DistMap *createDistMap(const Digraph &)
         LEMON_ASSERT(false, "DistMap is not initialized");
         return 0; // ignore warnings
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" for setting
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
       : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
       typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
     struct SetProcessedMapTraits : public Traits {
       static ProcessedMap *createProcessedMap(const Digraph &)
         LEMON_ASSERT(false, "ProcessedMap is not initialized");
         return 0; // ignore warnings
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" for setting
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
       : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
       typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
     struct SetStandardProcessedMapTraits : public Traits {
       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
       static ProcessedMap *createProcessedMap(const Digraph &g)
         return new ProcessedMap(g);
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
     ///\ref named-templ-param "Named parameter" for setting
     ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
     ///If you don't set it explicitly, it will be automatically allocated.
     struct SetStandardProcessedMap
       : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
       typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
     template <class H, class CR>
     struct SetHeapTraits : public Traits {
       static HeapCrossRef *createHeapCrossRef(const Digraph &) {
         LEMON_ASSERT(false, "HeapCrossRef is not initialized");
         return 0; // ignore warnings
       static Heap *createHeap(HeapCrossRef &)
         LEMON_ASSERT(false, "Heap is not initialized");
         return 0; // ignore warnings
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///heap and cross reference types
     ///\ref named-templ-param "Named parameter" for setting heap and cross
     ///reference types. If this named parameter is used, then external
     ///heap and cross reference objects must be passed to the algorithm
     ///using the \ref heap() function before calling \ref run(Node) "run()"
     template <class H, class CR = typename Digraph::template NodeMap<int> >
       : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
       typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
     template <class H, class CR>
     struct SetStandardHeapTraits : public Traits {
       static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
         return new HeapCrossRef(G);
       static Heap *createHeap(HeapCrossRef &R)
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///heap and cross reference types with automatic allocation
     ///\ref named-templ-param "Named parameter" for setting heap and cross
     ///reference types with automatic allocation.
     ///They should have standard constructor interfaces to be able to
     ///automatically created by the algorithm (i.e. the digraph should be
     ///passed to the constructor of the cross reference and the cross
     ///reference should be passed to the constructor of the heap).
     ///However external heap and cross reference objects could also be
     ///passed to the algorithm using the \ref heap() function before
     ///calling \ref run(Node) "run()" or \ref init().
     template <class H, class CR = typename Digraph::template NodeMap<int> >
       : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
       typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
     struct SetOperationTraitsTraits : public Traits {
       typedef T OperationTraits;
     /// \brief \ref named-templ-param "Named parameter" for setting
     ///\c OperationTraits type
     ///\ref named-templ-param "Named parameter" for setting
     ///\c OperationTraits type.
     /// For more information see \ref DijkstraDefaultOperationTraits.
     struct SetOperationTraits
       : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
       typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
     ///\param g The digraph the algorithm runs on.
     ///\param length The length map used by the algorithm.
     Dijkstra(const Digraph& g, const LengthMap& length) :
       _pred(NULL), local_pred(false),
       _dist(NULL), local_dist(false),
       _processed(NULL), local_processed(false),
       _heap_cross_ref(NULL), local_heap_cross_ref(false),
       _heap(NULL), local_heap(false)
       if(local_pred) delete _pred;
       if(local_dist) delete _dist;
       if(local_processed) delete _processed;
       if(local_heap_cross_ref) delete _heap_cross_ref;
       if(local_heap) delete _heap;
     ///\return <tt> (*this) </tt>
     Dijkstra &lengthMap(const LengthMap &m)
     ///Sets the map that stores the predecessor arcs.
     ///Sets the map that stores the predecessor arcs.
     ///If you don't use this function before calling \ref run(Node) "run()"
     ///or \ref init(), an instance will be allocated automatically.
     ///The destructor deallocates this automatically allocated map,
     ///\return <tt> (*this) </tt>
     Dijkstra &predMap(PredMap &m)
     ///Sets the map that indicates which nodes are processed.
     ///Sets the map that indicates which nodes are processed.
     ///If you don't use this function before calling \ref run(Node) "run()"
     ///or \ref init(), an instance will be allocated automatically.
     ///The destructor deallocates this automatically allocated map,
     ///\return <tt> (*this) </tt>
     Dijkstra &processedMap(ProcessedMap &m)
     ///Sets the map that stores the distances of the nodes.
     ///Sets the map that stores the distances of the nodes calculated by the
     ///If you don't use this function before calling \ref run(Node) "run()"
     ///or \ref init(), an instance will be allocated automatically.
     ///The destructor deallocates this automatically allocated map,
     ///\return <tt> (*this) </tt>
     Dijkstra &distMap(DistMap &m)
     ///Sets the heap and the cross reference used by algorithm.
     ///Sets the heap and the cross reference used by algorithm.
     ///If you don't use this function before calling \ref run(Node) "run()"
     ///or \ref init(), heap and cross reference instances will be
     ///allocated automatically.
     ///The destructor deallocates these automatically allocated objects,
     ///\return <tt> (*this) </tt>
     Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
       if(local_heap_cross_ref) {
         local_heap_cross_ref=false;
     void finalizeNodeData(Node v,Value dst)
     ///\name Execution Control
     ///The simplest way to execute the %Dijkstra algorithm is to use
     ///one of the member functions called \ref run(Node) "run()".\n
     ///If you need better control on the execution, you have to call
     ///\ref init() first, then you can add several source nodes with
     ///\ref addSource(). Finally the actual path computation can be
     ///performed with one of the \ref start() functions.
     ///\brief Initializes the internal data structures.
     ///Initializes the internal data structures.
       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
         _processed->set(u,false);
         _heap_cross_ref->set(u,Heap::PRE_HEAP);
     ///Adds a new source node.
     ///Adds a new source node to the priority heap.
     ///The optional second parameter is the initial distance of the node.
     ///The function checks if the node has already been added to the heap and
     ///it is pushed to the heap only if either it was not in the heap
     ///or the shortest path found till then is shorter than \c dst.
     void addSource(Node s,Value dst=OperationTraits::zero())
       if(_heap->state(s) != Heap::IN_HEAP) {
       } else if(OperationTraits::less((*_heap)[s], dst)) {
     ///Processes the next node in the priority heap
     ///Processes the next node in the priority heap.
     ///\return The processed node.
     ///\warning The priority heap must not be empty.
       Value oldvalue=_heap->prio();
       finalizeNodeData(v,oldvalue);
       for(OutArcIt e(*G,v); e!=INVALID; ++e) {
         switch(_heap->state(w)) {
           _heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e]));
             Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]);
             if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
               _heap->decrease(w, newvalue);
     ///The next node to be processed.
     ///Returns the next node to be processed or \c INVALID if the
     ///priority heap is empty.
       return !_heap->empty()?_heap->top():INVALID;
     ///Returns \c false if there are nodes to be processed.
     ///Returns \c false if there are nodes to be processed
     bool emptyQueue() const { return _heap->empty(); }
     ///Returns the number of the nodes to be processed.
     ///Returns the number of the nodes to be processed
     int queueSize() const { return _heap->size(); }
     ///Executes the algorithm.
     ///Executes the algorithm.
     ///This method runs the %Dijkstra algorithm from the root node(s)
     ///in order to compute the shortest path to each node.
     ///The algorithm computes
     ///- the shortest path tree (forest),
     ///- the distance of each node from the root(s).
     ///\pre init() must be called and at least one root node should be
     ///added with addSource() before using this function.
     ///\note <tt>d.start()</tt> is just a shortcut of the following code.
     ///  while ( !d.emptyQueue() ) {
       while ( !emptyQueue() ) processNextNode();
     ///Executes the algorithm until the given target node is processed.
     ///Executes the algorithm until the given target node is processed.
     ///This method runs the %Dijkstra algorithm from the root node(s)
     ///in order to compute the shortest path to \c t.
     ///The algorithm computes
     ///- the shortest path to \c t,
     ///- the distance of \c t from the root(s).
     ///\pre init() must be called and at least one root node should be
     ///added with addSource() before using this function.
       while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
         finalizeNodeData(_heap->top(),_heap->prio());
     ///Executes the algorithm until a condition is met.
     ///Executes the algorithm until a condition is met.
     ///This method runs the %Dijkstra algorithm from the root node(s) in
     ///order to compute the shortest path to a node \c v with
     /// <tt>nm[v]</tt> true, if such a node can be found.
     ///\param nm A \c bool (or convertible) node map. The algorithm
     ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
     ///\return The reached node \c v with <tt>nm[v]</tt> true or
     ///\c INVALID if no such node was found.
     ///\pre init() must be called and at least one root node should be
     ///added with addSource() before using this function.
     template<class NodeBoolMap>
     Node start(const NodeBoolMap &nm)
       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
       if ( _heap->empty() ) return INVALID;
       finalizeNodeData(_heap->top(),_heap->prio());
     ///Runs the algorithm from the given source node.
     ///This method runs the %Dijkstra algorithm from node \c s
     ///in order to compute the shortest path to each node.
     ///The algorithm computes
     ///- the shortest path tree,
     ///- the distance of each node from the root.
     ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
     ///Finds the shortest path between \c s and \c t.
     ///This method runs the %Dijkstra algorithm from node \c s
     ///in order to compute the shortest path to node \c t
     ///(it stops searching when \c t is processed).
     ///\return \c true if \c t is reachable form \c s.
     ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
     ///shortcut of the following code.
     bool run(Node s,Node t) {
       return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
     ///The results of the %Dijkstra algorithm can be obtained using these
     ///Either \ref run(Node) "run()" or \ref init() should be called
     ///The shortest path to the given node.
     ///Returns the shortest path to the given node from the root(s).
     ///\warning \c t should be reached from the root(s).
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     Path path(Node t) const { return Path(*G, *_pred, t); }
     ///The distance of the given node from the root(s).
     ///Returns the distance of the given node from the root(s).
     ///\warning If node \c v is not reached from the root(s), then
     ///the return value of this function is undefined.
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     Value dist(Node v) const { return (*_dist)[v]; }
     ///\brief Returns the 'previous arc' of the shortest path tree for
     ///This function returns the 'previous arc' of the shortest path
     ///tree for the node \c v, i.e. it returns the last arc of a
     ///shortest path from a root to \c v. It is \c INVALID if \c v
     ///is not reached from the root(s) or if \c v is a root.
     ///The shortest path tree used here is equal to the shortest path
     ///tree used in \ref predNode() and \ref predMap().
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     Arc predArc(Node v) const { return (*_pred)[v]; }
     ///\brief Returns the 'previous node' of the shortest path tree for
     ///This function returns the 'previous node' of the shortest path
     ///tree for the node \c v, i.e. it returns the last but one node
     ///of a shortest path from a root to \c v. It is \c INVALID
     ///if \c v is not reached from the root(s) or if \c v is a root.
     ///The shortest path tree used here is equal to the shortest path
     ///tree used in \ref predArc() and \ref predMap().
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
                                   G->source((*_pred)[v]); }
     ///\brief Returns a const reference to the node map that stores the
     ///distances of the nodes.
     ///Returns a const reference to the node map that stores the distances
     ///of the nodes calculated by the algorithm.
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     const DistMap &distMap() const { return *_dist;}
     ///\brief Returns a const reference to the node map that stores the
     ///Returns a const reference to the node map that stores the predecessor
     ///arcs, which form the shortest path tree (forest).
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     const PredMap &predMap() const { return *_pred;}
     ///Checks if the given node is reached from the root(s).
     ///Returns \c true if \c v is reached from the root(s).
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
     ///Checks if a node is processed.
     ///Returns \c true if \c v is processed, i.e. the shortest
     ///path to \c v has already found.
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function.
     bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
     ///The current distance of the given node from the root(s).
     ///Returns the current distance of the given node from the root(s).
     ///It may be decreased in the following processes.
     ///\pre Either \ref run(Node) "run()" or \ref init()
     ///must be called before using this function and
     ///node \c v must be reached but not necessarily processed.
     Value currentDist(Node v) const {
       return processed(v) ? (*_dist)[v] : (*_heap)[v];
   ///Default traits class of dijkstra() function.
   ///Default traits class of dijkstra() function.
   ///\tparam GR The type of the digraph.
   ///\tparam LEN The type of the length map.
   template<class GR, class LEN>
   struct DijkstraWizardDefaultTraits
     ///The type of the digraph the algorithm runs on.
     ///The type of the map that stores the arc lengths.
     ///The type of the map that stores the arc lengths.
     ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
     ///The type of the arc lengths.
     typedef typename LEN::Value Value;
     /// Operation traits for Dijkstra algorithm.
     /// This class defines the operations that are used in the algorithm.
     /// \see DijkstraDefaultOperationTraits
     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
     /// The cross reference type used by the heap.
     /// The cross reference type used by the heap.
     /// Usually it is \c Digraph::NodeMap<int>.
     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
     ///Instantiates a \ref HeapCrossRef.
     ///This function instantiates a \ref HeapCrossRef.
     /// \param g is the digraph, to which we would like to define the
     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
       return new HeapCrossRef(g);
     ///The heap type used by the Dijkstra algorithm.
     ///The heap type used by the Dijkstra algorithm.
     typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
     ///Instantiates a \ref Heap.
     ///This function instantiates a \ref Heap.
     /// \param r is the HeapCrossRef which is used.
     static Heap *createHeap(HeapCrossRef& r)
     ///\brief The type of the map that stores the predecessor
     ///arcs of the shortest paths.
     ///The type of the map that stores the predecessor
     ///arcs of the shortest paths.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
     ///Instantiates a PredMap.
     ///This function instantiates a PredMap.
     ///\param g is the digraph, to which we would like to define the
     static PredMap *createPredMap(const Digraph &g)
     ///The type of the map that indicates which nodes are processed.
     ///The type of the map that indicates which nodes are processed.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     ///By default it is a NullMap.
     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
     ///Instantiates a ProcessedMap.
     ///This function instantiates a ProcessedMap.
     ///\param g is the digraph, to which
     ///we would like to define the ProcessedMap.
     static ProcessedMap *createProcessedMap(const Digraph &g)
     static ProcessedMap *createProcessedMap(const Digraph &)
       return new ProcessedMap();
     ///The type of the map that stores the distances of the nodes.
     ///The type of the map that stores the distances of the nodes.
     ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
     typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
     ///Instantiates a DistMap.
     ///This function instantiates a DistMap.
     ///\param g is the digraph, to which we would like to define
     static DistMap *createDistMap(const Digraph &g)
     ///The type of the shortest paths.
     ///The type of the shortest paths.
     ///It must conform to the \ref concepts::Path "Path" concept.
     typedef lemon::Path<Digraph> Path;
   /// Default traits class used by DijkstraWizard
   /// Default traits class used by DijkstraWizard.
   /// \tparam GR The type of the digraph.
   /// \tparam LEN The type of the length map.
   template<typename GR, typename LEN>
   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
     typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
     //The type of the nodes in the digraph.
     typedef typename Base::Digraph::Node Node;
     //Pointer to the digraph the algorithm runs on.
     //Pointer to the length map.
     //Pointer to the map of processed nodes.
     //Pointer to the map of predecessors arcs.
     //Pointer to the map of distances.
     //Pointer to the shortest path to the target node.
     //Pointer to the distance of the target node.
     /// This constructor does not require parameters, therefore it initiates
     /// all of the attributes to \c 0.
     DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
                            _dist(0), _path(0), _di(0) {}
     /// This constructor requires two parameters,
     /// others are initiated to \c 0.
     /// \param g The digraph the algorithm runs on.
     /// \param l The length map.
     DijkstraWizardBase(const GR &g,const LEN &l) :
       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
       _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
       _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
   /// Auxiliary class for the function-type interface of Dijkstra algorithm.
   /// This auxiliary class is created to implement the
   /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
   /// It does not have own \ref run(Node) "run()" method, it uses the
   /// functions and features of the plain \ref Dijkstra.
   /// This class should only be used through the \ref dijkstra() function,
   /// which makes it easier to use the algorithm.
   class DijkstraWizard : public TR
     typedef typename TR::Digraph Digraph;
     typedef typename Digraph::Node Node;
     typedef typename Digraph::NodeIt NodeIt;
     typedef typename Digraph::Arc Arc;
     typedef typename Digraph::OutArcIt OutArcIt;
     typedef typename TR::LengthMap LengthMap;
     typedef typename LengthMap::Value Value;
     typedef typename TR::PredMap PredMap;
     typedef typename TR::DistMap DistMap;
     typedef typename TR::ProcessedMap ProcessedMap;
     typedef typename TR::Path Path;
     typedef typename TR::Heap Heap;
     DijkstraWizard() : TR() {}
     /// Constructor that requires parameters.
     /// Constructor that requires parameters.
     /// These parameters will be the default values for the traits class.
     /// \param g The digraph the algorithm runs on.
     /// \param l The length map.
     DijkstraWizard(const Digraph &g, const LengthMap &l) :
     DijkstraWizard(const TR &b) : TR(b) {}
     ///Runs Dijkstra algorithm from the given source node.
     ///This method runs %Dijkstra algorithm from the given source node
     ///in order to compute the shortest path to each node.
       Dijkstra<Digraph,LengthMap,TR>
         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
              *reinterpret_cast<const LengthMap*>(Base::_length));
         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
     ///Finds the shortest path between \c s and \c t.
     ///This method runs the %Dijkstra algorithm from node \c s
     ///in order to compute the shortest path to node \c t
     ///(it stops searching when \c t is processed).
     ///\return \c true if \c t is reachable form \c s.
       Dijkstra<Digraph,LengthMap,TR>
         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
              *reinterpret_cast<const LengthMap*>(Base::_length));
         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
         *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
         *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
     struct SetPredMapBase : public Base {
       static PredMap *createPredMap(const Digraph &) { return 0; };
       SetPredMapBase(const TR &b) : TR(b) {}
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" function for setting
     ///the map that stores the predecessor arcs of the nodes.
     DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
       return DijkstraWizard<SetPredMapBase<T> >(*this);
     struct SetDistMapBase : public Base {
       static DistMap *createDistMap(const Digraph &) { return 0; };
       SetDistMapBase(const TR &b) : TR(b) {}
     ///\brief \ref named-templ-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" function for setting
     ///the map that stores the distances of the nodes calculated
     DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
       return DijkstraWizard<SetDistMapBase<T> >(*this);
     struct SetProcessedMapBase : public Base {
       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
       SetProcessedMapBase(const TR &b) : TR(b) {}
     ///\brief \ref named-func-param "Named parameter" for setting
     ///\ref named-templ-param "Named parameter" function for setting
     ///the map that indicates which nodes are processed.
     DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
       return DijkstraWizard<SetProcessedMapBase<T> >(*this);
     struct SetPathBase : public Base {
       SetPathBase(const TR &b) : TR(b) {}
     ///\brief \ref named-func-param "Named parameter"
     ///for getting the shortest path to the target node.
     ///\ref named-func-param "Named parameter"
     ///for getting the shortest path to the target node.
     DijkstraWizard<SetPathBase<T> > path(const T &t)
       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
       return DijkstraWizard<SetPathBase<T> >(*this);
     ///\brief \ref named-func-param "Named parameter"
     ///for getting the distance of the target node.
     ///\ref named-func-param "Named parameter"
     ///for getting the distance of the target node.
     DijkstraWizard dist(const Value &d)
       Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
   ///Function-type interface for Dijkstra algorithm.
   /// \ingroup shortest_path
   ///Function-type interface for Dijkstra algorithm.
   ///This function also has several \ref named-func-param "named parameters",
   ///they are declared as the members of class \ref DijkstraWizard.
   ///The following examples show how to use these parameters.
   ///  // Compute shortest path from node s to each node
   ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
   ///  // Compute shortest path from s to t
   ///  bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
   ///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()"
   ///to the end of the parameter list.
   template<typename GR, typename LEN>
   DijkstraWizard<DijkstraWizardBase<GR,LEN> >
   dijkstra(const GR &digraph, const LEN &length)
     return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length);
 } //END OF NAMESPACE LEMON