/* -*- mode: C++; indent-tabs-mode: nil; -*-
  * This file is a part of LEMON, a generic C++ optimization library.
  * Copyright (C) 2003-2009
  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  * (Egervary Research Group on Combinatorial Optimization, EGRES).
  * Permission to use, modify and distribute this software is granted
  * provided that this copyright notice appears in all copies. For
  * precise terms see the accompanying LICENSE file.
  * This software is provided "AS IS" with no warranty of any kind,
  * express or implied, and with no claim as to its suitability for any
 ///\brief Fibonacci heap implementation.
   /// \brief Fibonacci heap data structure.
   /// This class implements the \e Fibonacci \e heap data structure.
   /// It fully conforms to the \ref concepts::Heap "heap concept".
   /// The methods \ref increase() and \ref erase() are not efficient in a
   /// Fibonacci heap. In case of many calls of these operations, it is
   /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
   /// \tparam PR Type of the priorities of the items.
   /// \tparam IM A read-writable item map with \c int values, used
   /// internally to handle the cross references.
   /// \tparam CMP A functor class for comparing the priorities.
   /// The default is \c std::less<PR>.
   template <typename PR, typename IM, typename CMP>
   template <typename PR, typename IM, typename CMP = std::less<PR> >
     /// Type of the item-int map.
     /// Type of the priorities.
     /// Type of the items stored in the heap.
     typedef typename ItemIntMap::Key Item;
     /// Type of the item-priority pairs.
     typedef std::pair<Item,Prio> Pair;
     /// Functor type for comparing the priorities.
     std::vector<Store> _data;
     /// \brief Type to represent the states of the items.
     /// Each item has a state associated to it. It can be "in heap",
     /// "pre-heap" or "post-heap". The latter two are indifferent from the
     /// heap's point of view, but may be useful to the user.
     /// The item-int map must be initialized in such way that it assigns
     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
       PRE_HEAP = -1,  ///< = -1.
       POST_HEAP = -2  ///< = -2.
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     explicit FibHeap(ItemIntMap &map)
       : _minimum(0), _iim(map), _num() {}
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     /// \param comp The function object used for comparing the priorities.
     FibHeap(ItemIntMap &map, const Compare &comp)
       : _minimum(0), _iim(map), _comp(comp), _num() {}
     /// \brief The number of items stored in the heap.
     /// This function returns the number of items stored in the heap.
     int size() const { return _num; }
     /// \brief Check if the heap is empty.
     /// This function returns \c true if the heap is empty.
     bool empty() const { return _num==0; }
     /// \brief Make the heap empty.
     /// This functon makes the heap empty.
     /// It does not change the cross reference map. If you want to reuse
     /// a heap that is not surely empty, you should first clear it and
     /// then you should set the cross reference map to \c PRE_HEAP
       _data.clear(); _minimum = 0; _num = 0;
     /// \brief Insert an item into the heap with the given priority.
     /// This function inserts the given item into the heap with the
     /// \param item The item to insert.
     /// \param prio The priority of the item.
     /// \pre \e item must not be stored in the heap.
     void push (const Item& item, const Prio& prio) {
         _data[i].parent=_data[i].child=-1;
         _data[_data[_minimum].right_neighbor].left_neighbor=i;
         _data[i].right_neighbor=_data[_minimum].right_neighbor;
         _data[_minimum].right_neighbor=i;
         _data[i].left_neighbor=_minimum;
         if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
         _data[i].right_neighbor=_data[i].left_neighbor=i;
     /// \brief Return the item having minimum priority.
     /// This function returns the item having minimum priority.
     /// \pre The heap must be non-empty.
     Item top() const { return _data[_minimum].name; }
     /// \brief The minimum priority.
     /// This function returns the minimum priority.
     /// \pre The heap must be non-empty.
     Prio prio() const { return _data[_minimum].prio; }
     /// \brief Remove the item having minimum priority.
     /// This function removes the item having minimum priority.
     /// \pre The heap must be non-empty.
       /*The first case is that there are only one root.*/
       if ( _data[_minimum].left_neighbor==_minimum ) {
         _data[_minimum].in=false;
         if ( _data[_minimum].degree!=0 ) {
           makeRoot(_data[_minimum].child);
           _minimum=_data[_minimum].child;
         int right=_data[_minimum].right_neighbor;
         _data[_minimum].in=false;
         if ( _data[_minimum].degree > 0 ) {
           int left=_data[_minimum].left_neighbor;
           int child=_data[_minimum].child;
           int last_child=_data[child].left_neighbor;
           _data[left].right_neighbor=child;
           _data[child].left_neighbor=left;
           _data[right].left_neighbor=last_child;
           _data[last_child].right_neighbor=right;
       } // the case where there are more roots
     /// \brief Remove the given item from the heap.
     /// This function removes the given item from the heap if it is
     /// \param item The item to delete.
     /// \pre \e item must be in the heap.
     void erase (const Item& item) {
       if ( i >= 0 && _data[i].in ) {
         if ( _data[i].parent!=-1 ) {
         _minimum=i;     //As if its prio would be -infinity
     /// \brief The priority of the given item.
     /// This function returns the priority of the given item.
     /// \param item The item.
     /// \pre \e item must be in the heap.
     Prio operator[](const Item& item) const {
       return _data[_iim[item]].prio;
     /// \brief Set the priority of an item or insert it, if it is
     /// not stored in the heap.
     /// This method sets the priority of the given item if it is
     /// already stored in the heap. Otherwise it inserts the given
     /// item into the heap with the given priority.
     /// \param item The item.
     /// \param prio The priority.
     void set (const Item& item, const Prio& prio) {
       if ( i >= 0 && _data[i].in ) {
         if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
         if ( _comp(_data[i].prio, prio) ) increase(item, prio);
     /// \brief Decrease the priority of an item to the given value.
     /// This function decreases the priority of an item to the given value.
     /// \param item The item.
     /// \param prio The priority.
     /// \pre \e item must be stored in the heap with priority at least \e prio.
     void decrease (const Item& item, const Prio& prio) {
       if ( p!=-1 && _comp(prio, _data[p].prio) ) {
       if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
     /// \brief Increase the priority of an item to the given value.
     /// This function increases the priority of an item to the given value.
     /// \param item The item.
     /// \param prio The priority.
     /// \pre \e item must be stored in the heap with priority at most \e prio.
     void increase (const Item& item, const Prio& prio) {
     /// \brief Return the state of an item.
     /// This method returns \c PRE_HEAP if the given item has never
     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
     /// and \c POST_HEAP otherwise.
     /// In the latter case it is possible that the item will get back
     /// \param item The item.
     State state(const Item &item) const {
     /// \brief Set the state of an item in the heap.
     /// This function sets the state of the given item in the heap.
     /// It can be used to manually clear the heap when it is important
     /// to achive better time complexity.
     /// \param st The state. It should not be \c IN_HEAP.
     void state(const Item& i, State st) {
         if (state(i) == IN_HEAP) {
       int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
       std::vector<int> A(maxdeg,-1);
        *Recall that now minimum does not point to the minimum prio element.
        *We set minimum to this during balance().
       int anchor=_data[_minimum].left_neighbor;
         if ( anchor==active ) end=true;
         int d=_data[active].degree;
         next=_data[active].right_neighbor;
           if( _comp(_data[active].prio, _data[A[d]].prio) ) {
       while ( _data[_minimum].parent >=0 )
         _minimum=_data[_minimum].parent;
         if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
         s=_data[s].right_neighbor;
         s=_data[s].right_neighbor;
        *Replacing a from the children of b.
       if ( _data[b].degree !=0 ) {
         int child=_data[b].child;
           _data[b].child=_data[child].right_neighbor;
       /*Lacing a to the roots.*/
       int right=_data[_minimum].right_neighbor;
       _data[_minimum].right_neighbor=a;
       _data[a].left_neighbor=_minimum;
       _data[a].right_neighbor=right;
       _data[right].left_neighbor=a;
       if ( _data[a].parent!=-1 ) {
         if ( _data[a].marked==false ) _data[a].marked=true;
     void fuse(int a, int b) {
       if (_data[a].degree==0) {
         _data[b].left_neighbor=b;
         _data[b].right_neighbor=b;
         int child=_data[a].child;
         int last_child=_data[child].left_neighbor;
         _data[child].left_neighbor=b;
         _data[b].right_neighbor=child;
         _data[last_child].right_neighbor=b;
         _data[b].left_neighbor=last_child;
      *It is invoked only if a has siblings.
       int leftn=_data[a].left_neighbor;
       int rightn=_data[a].right_neighbor;
       _data[leftn].right_neighbor=rightn;
       _data[rightn].left_neighbor=leftn;
       Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
 #endif //LEMON_FIB_HEAP_H