/* -*- mode: C++; indent-tabs-mode: nil; -*-
  * This file is a part of LEMON, a generic C++ optimization library.
  * Copyright (C) 2003-2009
  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  * (Egervary Research Group on Combinatorial Optimization, EGRES).
  * Permission to use, modify and distribute this software is granted
  * provided that this copyright notice appears in all copies. For
  * precise terms see the accompanying LICENSE file.
  * This software is provided "AS IS" with no warranty of any kind,
  * express or implied, and with no claim as to its suitability for any
 #ifndef LEMON_PAIRING_HEAP_H
 #define LEMON_PAIRING_HEAP_H
 ///\brief Pairing heap implementation.
   /// This class implements the \e pairing \e heap data structure.
   /// It fully conforms to the \ref concepts::Heap "heap concept".
   /// The methods \ref increase() and \ref erase() are not efficient
   /// in a pairing heap. In case of many calls of these operations,
   /// it is better to use other heap structure, e.g. \ref BinHeap
   /// \tparam PR Type of the priorities of the items.
   /// \tparam IM A read-writable item map with \c int values, used
   /// internally to handle the cross references.
   /// \tparam CMP A functor class for comparing the priorities.
   /// The default is \c std::less<PR>.
   template <typename PR, typename IM, typename CMP>
   template <typename PR, typename IM, typename CMP = std::less<PR> >
     /// Type of the item-int map.
     /// Type of the priorities.
     /// Type of the items stored in the heap.
     typedef typename ItemIntMap::Key Item;
     /// Functor type for comparing the priorities.
     /// \brief Type to represent the states of the items.
     /// Each item has a state associated to it. It can be "in heap",
     /// "pre-heap" or "post-heap". The latter two are indifferent from the
     /// heap's point of view, but may be useful to the user.
     /// The item-int map must be initialized in such way that it assigns
     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
       PRE_HEAP = -1,  ///< = -1.
       POST_HEAP = -2  ///< = -2.
     std::vector<store> _data;
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     explicit PairingHeap(ItemIntMap &map)
       : _min(0), _iim(map), _num_items(0) {}
     /// \param map A map that assigns \c int values to the items.
     /// It is used internally to handle the cross references.
     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     /// \param comp The function object used for comparing the priorities.
     PairingHeap(ItemIntMap &map, const Compare &comp)
       : _min(0), _iim(map), _comp(comp), _num_items(0) {}
     /// \brief The number of items stored in the heap.
     /// This function returns the number of items stored in the heap.
     int size() const { return _num_items; }
     /// \brief Check if the heap is empty.
     /// This function returns \c true if the heap is empty.
     bool empty() const { return _num_items==0; }
     /// \brief Make the heap empty.
     /// This functon makes the heap empty.
     /// It does not change the cross reference map. If you want to reuse
     /// a heap that is not surely empty, you should first clear it and
     /// then you should set the cross reference map to \c PRE_HEAP
     /// \brief Set the priority of an item or insert it, if it is
     /// not stored in the heap.
     /// This method sets the priority of the given item if it is
     /// already stored in the heap. Otherwise it inserts the given
     /// item into the heap with the given priority.
     /// \param item The item.
     /// \param value The priority.
     void set (const Item& item, const Prio& value) {
       if ( i>=0 && _data[i].in ) {
         if ( _comp(value, _data[i].prio) ) decrease(item, value);
         if ( _comp(_data[i].prio, value) ) increase(item, value);
       } else push(item, value);
     /// \brief Insert an item into the heap with the given priority.
     /// This function inserts the given item into the heap with the
     /// \param item The item to insert.
     /// \param value The priority of the item.
     /// \pre \e item must not be stored in the heap.
     void push (const Item& item, const Prio& value) {
         _data[i].parent=_data[i].child=-1;
         _data[i].left_child=false;
         if ( _comp( value, _data[_min].prio) ) {
     /// \brief Return the item having minimum priority.
     /// This function returns the item having minimum priority.
     /// \pre The heap must be non-empty.
     Item top() const { return _data[_min].name; }
     /// \brief The minimum priority.
     /// This function returns the minimum priority.
     /// \pre The heap must be non-empty.
     const Prio& prio() const { return _data[_min].prio; }
     /// \brief The priority of the given item.
     /// This function returns the priority of the given item.
     /// \param item The item.
     /// \pre \e item must be in the heap.
     const Prio& operator[](const Item& item) const {
       return _data[_iim[item]].prio;
     /// \brief Remove the item having minimum priority.
     /// This function removes the item having minimum priority.
     /// \pre The heap must be non-empty.
       int i=0, child_right = 0;
       if( -1!=_data[_min].child ) {
         while( _data[i].child!=-1 ) {
           if( _data[ch].left_child && i==_data[ch].parent ) {
             if( _data[ch].left_child ) {
               child_right=_data[ch].parent;
             _data[child_right].parent = -1;
             trees.push_back(child_right);
         int num_child = trees.size();
         for( i=0; i<num_child-1; i+=2 ) {
           if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
           fuse( trees[i], trees[i+1] );
         i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
           if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
           fuse( trees[i-2], trees[i] );
         _min = _data[_min].child;
       if (_min >= 0) _data[_min].left_child = false;
     /// \brief Remove the given item from the heap.
     /// This function removes the given item from the heap if it is
     /// \param item The item to delete.
     /// \pre \e item must be in the heap.
     void erase (const Item& item) {
       if ( i>=0 && _data[i].in ) {
         decrease( item, _data[_min].prio-1 );
     /// \brief Decrease the priority of an item to the given value.
     /// This function decreases the priority of an item to the given value.
     /// \param item The item.
     /// \param value The priority.
     /// \pre \e item must be stored in the heap with priority at least \e value.
     void decrease (Item item, const Prio& value) {
       if( _data[i].left_child && i!=_data[p].child ) {
       if ( p!=-1 && _comp(value,_data[p].prio) ) {
         if ( _comp(_data[_min].prio,value) ) {
     /// \brief Increase the priority of an item to the given value.
     /// This function increases the priority of an item to the given value.
     /// \param item The item.
     /// \param value The priority.
     /// \pre \e item must be stored in the heap with priority at most \e value.
     void increase (Item item, const Prio& value) {
     /// \brief Return the state of an item.
     /// This method returns \c PRE_HEAP if the given item has never
     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
     /// and \c POST_HEAP otherwise.
     /// In the latter case it is possible that the item will get back
     /// \param item The item.
     State state(const Item &item) const {
     /// \brief Set the state of an item in the heap.
     /// This function sets the state of the given item in the heap.
     /// It can be used to manually clear the heap when it is important
     /// to achive better time complexity.
     /// \param st The state. It should not be \c IN_HEAP.
     void state(const Item& i, State st) {
         if (state(i) == IN_HEAP) erase(i);
       switch (_data[a].degree) {
           child_a = _data[_data[a].child].parent;
           if( _data[a].left_child ) {
             _data[child_a].left_child=true;
             _data[child_a].parent=_data[a].parent;
             _data[child_a].left_child=false;
               _data[_data[b].child].parent=child_a;
           _data[_data[a].child].parent=a;
           child_a = _data[a].child;
           if( !_data[child_a].left_child ) {
             if( _data[a].left_child ) {
               _data[child_a].left_child=true;
               _data[child_a].parent=_data[a].parent;
               _data[child_a].left_child=false;
                 _data[_data[b].child].parent=child_a;
             if( _data[a].left_child ) {
                 (1==_data[b].degree) ? _data[a].parent : -1;
                 _data[_data[b].child].parent=b;
           if( _data[a].left_child ) {
               (0!=_data[b].degree) ? _data[a].parent : -1;
               _data[_data[b].child].parent=b;
       _data[a].left_child=false;
     void fuse(int a, int b) {
       int child_a = _data[a].child;
       int child_b = _data[b].child;
       _data[b].left_child=true;
         _data[child_a].left_child=false;
            _data[child_b].parent=child_a;
       else { ++_data[a].degree; }
       friend class PairingHeap;
       store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
 #endif //LEMON_PAIRING_HEAP_H