/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_CONNECTIVITY_H
#define LEMON_CONNECTIVITY_H
#include <lemon/adaptors.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concepts/graph.h>
#include <lemon/concept_check.h>
/// \ingroup graph_properties
/// \brief Connectivity algorithms
/// Connectivity algorithms
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is connected.
/// This function checks whether the given undirected graph is connected,
/// i.e. there is a path between any two nodes in the graph.
/// \return \c true if the graph is connected.
/// \note By definition, the empty graph is connected.
/// \see countConnectedComponents(), connectedComponents()
/// \see stronglyConnected()
template <typename Graph>
bool connected(const Graph& graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
if (NodeIt(graph) == INVALID) return true;
for (NodeIt it(graph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Count the number of connected components of an undirected graph
/// This function counts the number of connected components of the given
/// The connected components are the classes of an equivalence relation
/// on the nodes of an undirected graph. Two nodes are in the same class
/// if they are connected with a path.
/// \return The number of connected components.
/// \note By definition, the empty graph consists
/// of zero connected components.
/// \see connected(), connectedComponents()
template <typename Graph>
int countConnectedComponents(const Graph &graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
typedef NullMap<Node, Arc> PredMap;
typedef NullMap<Node, int> DistMap;
template SetPredMap<PredMap>::
template SetDistMap<DistMap>::
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
/// \ingroup graph_properties
/// \brief Find the connected components of an undirected graph
/// This function finds the connected components of the given undirected
/// The connected components are the classes of an equivalence relation
/// on the nodes of an undirected graph. Two nodes are in the same class
/// if they are connected with a path.
/// \image html connected_components.png
/// \image latex connected_components.eps "Connected components" width=\textwidth
/// \param graph The undirected graph.
/// \retval compMap A writable node map. The values will be set from 0 to
/// the number of the connected components minus one. Each value of the map
/// will be set exactly once, and the values of a certain component will be
/// \return The number of connected components.
/// \note By definition, the empty graph consists
/// of zero connected components.
/// \see connected(), countConnectedComponents()
template <class Graph, class NodeMap>
int connectedComponents(const Graph &graph, NodeMap &compMap) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
typedef NullMap<Node, Arc> PredMap;
typedef NullMap<Node, int> DistMap;
template SetPredMap<PredMap>::
template SetDistMap<DistMap>::
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
while (!bfs.emptyQueue()) {
compMap.set(bfs.nextNode(), compNum);
namespace _connectivity_bits {
template <typename Digraph, typename Iterator >
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
LeaveOrderVisitor(Iterator it) : _it(it) {}
void leave(const Node& node) {
template <typename Digraph, typename Map>
struct FillMapVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Map::Value Value;
FillMapVisitor(Map& map, Value& value)
: _map(map), _value(value) {}
void reach(const Node& node) {
template <typename Digraph, typename ArcMap>
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
StronglyConnectedCutArcsVisitor(const Digraph& digraph,
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
_compMap(digraph, -1), _num(-1) {
void start(const Node&) {
void reach(const Node& node) {
_compMap.set(node, _num);
void examine(const Arc& arc) {
if (_compMap[_digraph.source(arc)] !=
_compMap[_digraph.target(arc)]) {
typename Digraph::template NodeMap<int> _compMap;
/// \ingroup graph_properties
/// \brief Check whether a directed graph is strongly connected.
/// This function checks whether the given directed graph is strongly
/// connected, i.e. any two nodes of the digraph are
/// connected with directed paths in both direction.
/// \return \c true if the digraph is strongly connected.
/// \note By definition, the empty digraph is strongly connected.
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
template <typename Digraph>
bool stronglyConnected(const Digraph& digraph) {
checkConcept<concepts::Digraph, Digraph>();
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typename Digraph::Node source = NodeIt(digraph);
if (source == INVALID) return true;
using namespace _connectivity_bits;
typedef DfsVisitor<Digraph> Visitor;
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
for (NodeIt it(digraph); it != INVALID; ++it) {
typedef ReverseDigraph<const Digraph> RDigraph;
typedef typename RDigraph::NodeIt RNodeIt;
RDigraph rdigraph(digraph);
typedef DfsVisitor<RDigraph> RVisitor;
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Count the number of strongly connected components of a
/// This function counts the number of strongly connected components of
/// the given directed graph.
/// The strongly connected components are the classes of an
/// equivalence relation on the nodes of a digraph. Two nodes are in
/// the same class if they are connected with directed paths in both
/// \return The number of strongly connected components.
/// \note By definition, the empty digraph has zero
/// strongly connected components.
/// \see stronglyConnected(), stronglyConnectedComponents()
template <typename Digraph>
int countStronglyConnectedComponents(const Digraph& digraph) {
checkConcept<concepts::Digraph, Digraph>();
using namespace _connectivity_bits;
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::ArcIt ArcIt;
typedef std::vector<Node> Container;
typedef typename Container::iterator Iterator;
Container nodes(countNodes(digraph));
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
Visitor visitor(nodes.begin());
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
for (NodeIt it(digraph); it != INVALID; ++it) {
typedef typename Container::reverse_iterator RIterator;
typedef ReverseDigraph<const Digraph> RDigraph;
RDigraph rdigraph(digraph);
typedef DfsVisitor<Digraph> RVisitor;
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
if (!rdfs.reached(*it)) {
/// \ingroup graph_properties
/// \brief Find the strongly connected components of a directed graph
/// This function finds the strongly connected components of the given
/// directed graph. In addition, the numbering of the components will
/// satisfy that there is no arc going from a higher numbered component
/// to a lower one (i.e. it provides a topological order of the components).
/// The strongly connected components are the classes of an
/// equivalence relation on the nodes of a digraph. Two nodes are in
/// the same class if they are connected with directed paths in both
/// \image html strongly_connected_components.png
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
/// \param digraph The digraph.
/// \retval compMap A writable node map. The values will be set from 0 to
/// the number of the strongly connected components minus one. Each value
/// of the map will be set exactly once, and the values of a certain
/// component will be set continuously.
/// \return The number of strongly connected components.
/// \note By definition, the empty digraph has zero
/// strongly connected components.
/// \see stronglyConnected(), countStronglyConnectedComponents()
template <typename Digraph, typename NodeMap>
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
checkConcept<concepts::Digraph, Digraph>();
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
using namespace _connectivity_bits;
typedef std::vector<Node> Container;
typedef typename Container::iterator Iterator;
Container nodes(countNodes(digraph));
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
Visitor visitor(nodes.begin());
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
for (NodeIt it(digraph); it != INVALID; ++it) {
typedef typename Container::reverse_iterator RIterator;
typedef ReverseDigraph<const Digraph> RDigraph;
RDigraph rdigraph(digraph);
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
RVisitor rvisitor(compMap, compNum);
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
if (!rdfs.reached(*it)) {
/// \ingroup graph_properties
/// \brief Find the cut arcs of the strongly connected components.
/// This function finds the cut arcs of the strongly connected components
/// of the given digraph.
/// The strongly connected components are the classes of an
/// equivalence relation on the nodes of a digraph. Two nodes are in
/// the same class if they are connected with directed paths in both
/// The strongly connected components are separated by the cut arcs.
/// \param digraph The digraph.
/// \retval cutMap A writable arc map. The values will be set to \c true
/// for the cut arcs (exactly once for each cut arc), and will not be
/// changed for other arcs.
/// \return The number of cut arcs.
/// \see stronglyConnected(), stronglyConnectedComponents()
template <typename Digraph, typename ArcMap>
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
checkConcept<concepts::Digraph, Digraph>();
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::NodeIt NodeIt;
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
using namespace _connectivity_bits;
typedef std::vector<Node> Container;
typedef typename Container::iterator Iterator;
Container nodes(countNodes(digraph));
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
Visitor visitor(nodes.begin());
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
for (NodeIt it(digraph); it != INVALID; ++it) {
typedef typename Container::reverse_iterator RIterator;
typedef ReverseDigraph<const Digraph> RDigraph;
RDigraph rdigraph(digraph);
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
RVisitor rvisitor(rdigraph, cutMap, cutNum);
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
if (!rdfs.reached(*it)) {
namespace _connectivity_bits {
template <typename Digraph>
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
: _graph(graph), _compNum(compNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap.set(node, INVALID);
void reach(const Node& node) {
void discover(const Arc& edge) {
_predMap.set(_graph.target(edge), _graph.source(edge));
void examine(const Arc& edge) {
if (_graph.source(edge) == _graph.target(edge) &&
_graph.direction(edge)) {
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
void backtrack(const Arc& edge) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Node> _predMap;
template <typename Digraph, typename ArcMap>
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
BiNodeConnectedComponentsVisitor(const Digraph& graph,
ArcMap& compMap, int &compNum)
: _graph(graph), _compMap(compMap), _compNum(compNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap.set(node, INVALID);
void reach(const Node& node) {
void discover(const Arc& edge) {
Node target = _graph.target(edge);
_predMap.set(target, edge);
void examine(const Arc& edge) {
Node source = _graph.source(edge);
Node target = _graph.target(edge);
if (source == target && _graph.direction(edge)) {
_compMap.set(edge, _compNum);
if (_numMap[target] < _numMap[source]) {
if (_predMap[source] != _graph.oppositeArc(edge)) {
if (_predMap[source] != INVALID &&
target == _graph.source(_predMap[source])) {
if (_retMap[source] > _numMap[target]) {
_retMap.set(source, _numMap[target]);
void backtrack(const Arc& edge) {
Node source = _graph.source(edge);
Node target = _graph.target(edge);
if (_retMap[source] > _retMap[target]) {
_retMap.set(source, _retMap[target]);
if (_numMap[source] <= _retMap[target]) {
while (_edgeStack.top() != edge) {
_compMap.set(_edgeStack.top(), _compNum);
_compMap.set(edge, _compNum);
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Arc> _predMap;
std::stack<Edge> _edgeStack;
template <typename Digraph, typename NodeMap>
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap.set(node, INVALID);
void reach(const Node& node) {
void discover(const Arc& edge) {
_predMap.set(_graph.target(edge), _graph.source(edge));
void examine(const Arc& edge) {
if (_graph.source(edge) == _graph.target(edge) &&
_graph.direction(edge)) {
if (!_cutMap[_graph.source(edge)]) {
_cutMap.set(_graph.source(edge), true);
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
void backtrack(const Arc& edge) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
if (_predMap[_graph.source(edge)] != INVALID) {
if (!_cutMap[_graph.source(edge)]) {
_cutMap.set(_graph.source(edge), true);
if (!_cutMap[_graph.source(edge)]) {
_cutMap.set(_graph.source(edge), true);
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Node> _predMap;
std::stack<Edge> _edgeStack;
template <typename Graph>
int countBiNodeConnectedComponents(const Graph& graph);
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is bi-node-connected.
/// This function checks whether the given undirected graph is
/// bi-node-connected, i.e. any two edges are on same circle.
/// \return \c true if the graph bi-node-connected.
/// \note By definition, the empty graph is bi-node-connected.
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
template <typename Graph>
bool biNodeConnected(const Graph& graph) {
return countBiNodeConnectedComponents(graph) <= 1;
/// \ingroup graph_properties
/// \brief Count the number of bi-node-connected components of an
/// This function counts the number of bi-node-connected components of
/// the given undirected graph.
/// The bi-node-connected components are the classes of an equivalence
/// relation on the edges of a undirected graph. Two edges are in the
/// same class if they are on same circle.
/// \return The number of bi-node-connected components.
/// \see biNodeConnected(), biNodeConnectedComponents()
template <typename Graph>
int countBiNodeConnectedComponents(const Graph& graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
using namespace _connectivity_bits;
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
Visitor visitor(graph, compNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Find the bi-node-connected components of an undirected graph.
/// This function finds the bi-node-connected components of the given
/// The bi-node-connected components are the classes of an equivalence
/// relation on the edges of a undirected graph. Two edges are in the
/// same class if they are on same circle.
/// \image html node_biconnected_components.png
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
/// \param graph The undirected graph.
/// \retval compMap A writable edge map. The values will be set from 0
/// to the number of the bi-node-connected components minus one. Each
/// value of the map will be set exactly once, and the values of a
/// certain component will be set continuously.
/// \return The number of bi-node-connected components.
/// \see biNodeConnected(), countBiNodeConnectedComponents()
template <typename Graph, typename EdgeMap>
int biNodeConnectedComponents(const Graph& graph,
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Edge Edge;
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
using namespace _connectivity_bits;
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
Visitor visitor(graph, compMap, compNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Find the bi-node-connected cut nodes in an undirected graph.
/// This function finds the bi-node-connected cut nodes in the given
/// The bi-node-connected components are the classes of an equivalence
/// relation on the edges of a undirected graph. Two edges are in the
/// same class if they are on same circle.
/// The bi-node-connected components are separted by the cut nodes of
/// \param graph The undirected graph.
/// \retval cutMap A writable node map. The values will be set to
/// \c true for the nodes that separate two or more components
/// (exactly once for each cut node), and will not be changed for
/// \return The number of the cut nodes.
/// \see biNodeConnected(), biNodeConnectedComponents()
template <typename Graph, typename NodeMap>
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
using namespace _connectivity_bits;
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
Visitor visitor(graph, cutMap, cutNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
namespace _connectivity_bits {
template <typename Digraph>
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
: _graph(graph), _compNum(compNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap.set(node, INVALID);
void reach(const Node& node) {
void leave(const Node& node) {
if (_numMap[node] <= _retMap[node]) {
void discover(const Arc& edge) {
_predMap.set(_graph.target(edge), edge);
void examine(const Arc& edge) {
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
void backtrack(const Arc& edge) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Arc> _predMap;
template <typename Digraph, typename NodeMap>
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
BiEdgeConnectedComponentsVisitor(const Digraph& graph,
NodeMap& compMap, int &compNum)
: _graph(graph), _compMap(compMap), _compNum(compNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap.set(node, INVALID);
void reach(const Node& node) {
void leave(const Node& node) {
if (_numMap[node] <= _retMap[node]) {
while (_nodeStack.top() != node) {
_compMap.set(_nodeStack.top(), _compNum);
_compMap.set(node, _compNum);
void discover(const Arc& edge) {
_predMap.set(_graph.target(edge), edge);
void examine(const Arc& edge) {
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
void backtrack(const Arc& edge) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Arc> _predMap;
std::stack<Node> _nodeStack;
template <typename Digraph, typename ArcMap>
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Edge Edge;
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
ArcMap& cutMap, int &cutNum)
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
void start(const Node& node) {
_predMap[node] = INVALID;
void reach(const Node& node) {
void leave(const Node& node) {
if (_numMap[node] <= _retMap[node]) {
if (_predMap[node] != INVALID) {
_cutMap.set(_predMap[node], true);
void discover(const Arc& edge) {
_predMap.set(_graph.target(edge), edge);
void examine(const Arc& edge) {
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
void backtrack(const Arc& edge) {
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
typename Digraph::template NodeMap<int> _numMap;
typename Digraph::template NodeMap<int> _retMap;
typename Digraph::template NodeMap<Arc> _predMap;
template <typename Graph>
int countBiEdgeConnectedComponents(const Graph& graph);
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is bi-edge-connected.
/// This function checks whether the given undirected graph is
/// bi-edge-connected, i.e. any two nodes are connected with at least
/// two edge-disjoint paths.
/// \return \c true if the graph is bi-edge-connected.
/// \note By definition, the empty graph is bi-edge-connected.
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
template <typename Graph>
bool biEdgeConnected(const Graph& graph) {
return countBiEdgeConnectedComponents(graph) <= 1;
/// \ingroup graph_properties
/// \brief Count the number of bi-edge-connected components of an
/// This function counts the number of bi-edge-connected components of
/// the given undirected graph.
/// The bi-edge-connected components are the classes of an equivalence
/// relation on the nodes of an undirected graph. Two nodes are in the
/// same class if they are connected with at least two edge-disjoint
/// \return The number of bi-edge-connected components.
/// \see biEdgeConnected(), biEdgeConnectedComponents()
template <typename Graph>
int countBiEdgeConnectedComponents(const Graph& graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
using namespace _connectivity_bits;
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
Visitor visitor(graph, compNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Find the bi-edge-connected components of an undirected graph.
/// This function finds the bi-edge-connected components of the given
/// The bi-edge-connected components are the classes of an equivalence
/// relation on the nodes of an undirected graph. Two nodes are in the
/// same class if they are connected with at least two edge-disjoint
/// \image html edge_biconnected_components.png
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
/// \param graph The undirected graph.
/// \retval compMap A writable node map. The values will be set from 0 to
/// the number of the bi-edge-connected components minus one. Each value
/// of the map will be set exactly once, and the values of a certain
/// component will be set continuously.
/// \return The number of bi-edge-connected components.
/// \see biEdgeConnected(), countBiEdgeConnectedComponents()
template <typename Graph, typename NodeMap>
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Node Node;
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
using namespace _connectivity_bits;
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
Visitor visitor(graph, compMap, compNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Find the bi-edge-connected cut edges in an undirected graph.
/// This function finds the bi-edge-connected cut edges in the given
/// The bi-edge-connected components are the classes of an equivalence
/// relation on the nodes of an undirected graph. Two nodes are in the
/// same class if they are connected with at least two edge-disjoint
/// The bi-edge-connected components are separted by the cut edges of
/// \param graph The undirected graph.
/// \retval cutMap A writable edge map. The values will be set to \c true
/// for the cut edges (exactly once for each cut edge), and will not be
/// changed for other edges.
/// \return The number of cut edges.
/// \see biEdgeConnected(), biEdgeConnectedComponents()
template <typename Graph, typename EdgeMap>
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Edge Edge;
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
using namespace _connectivity_bits;
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
Visitor visitor(graph, cutMap, cutNum);
DfsVisit<Graph, Visitor> dfs(graph, visitor);
for (NodeIt it(graph); it != INVALID; ++it) {
namespace _connectivity_bits {
template <typename Digraph, typename IntNodeMap>
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
typedef typename Digraph::Node Node;
typedef typename Digraph::Arc edge;
TopologicalSortVisitor(IntNodeMap& order, int num)
: _order(order), _num(num) {}
void leave(const Node& node) {
_order.set(node, --_num);
/// \ingroup graph_properties
/// \brief Check whether a digraph is DAG.
/// This function checks whether the given digraph is DAG, i.e.
/// \e Directed \e Acyclic \e Graph.
/// \return \c true if there is no directed cycle in the digraph.
template <typename Digraph>
bool dag(const Digraph& digraph) {
checkConcept<concepts::Digraph, Digraph>();
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
ProcessedMap processed(digraph);
dfs.processedMap(processed);
for (NodeIt it(digraph); it != INVALID; ++it) {
while (!dfs.emptyQueue()) {
Node target = digraph.target(arc);
if (dfs.reached(target) && !processed[target]) {
/// \ingroup graph_properties
/// \brief Sort the nodes of a DAG into topolgical order.
/// This function sorts the nodes of the given acyclic digraph (DAG)
/// into topolgical order.
/// \param digraph The digraph, which must be DAG.
/// \retval order A writable node map. The values will be set from 0 to
/// the number of the nodes in the digraph minus one. Each value of the
/// map will be set exactly once, and the values will be set descending
/// \see dag(), checkedTopologicalSort()
template <typename Digraph, typename NodeMap>
void topologicalSort(const Digraph& digraph, NodeMap& order) {
using namespace _connectivity_bits;
checkConcept<concepts::Digraph, Digraph>();
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
TopologicalSortVisitor<Digraph, NodeMap>
visitor(order, countNodes(digraph));
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
for (NodeIt it(digraph); it != INVALID; ++it) {
/// \ingroup graph_properties
/// \brief Sort the nodes of a DAG into topolgical order.
/// This function sorts the nodes of the given acyclic digraph (DAG)
/// into topolgical order and also checks whether the given digraph
/// \param digraph The digraph.
/// \retval order A readable and writable node map. The values will be
/// set from 0 to the number of the nodes in the digraph minus one.
/// Each value of the map will be set exactly once, and the values will
/// be set descending order.
/// \return \c false if the digraph is not DAG.
/// \see dag(), topologicalSort()
template <typename Digraph, typename NodeMap>
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
using namespace _connectivity_bits;
checkConcept<concepts::Digraph, Digraph>();
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
for (NodeIt it(digraph); it != INVALID; ++it) {
TopologicalSortVisitor<Digraph, NodeMap>
visitor(order, countNodes(digraph));
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
for (NodeIt it(digraph); it != INVALID; ++it) {
while (!dfs.emptyQueue()) {
Node target = digraph.target(arc);
if (dfs.reached(target) && order[target] == -1) {
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is acyclic.
/// This function checks whether the given undirected graph is acyclic.
/// \return \c true if there is no cycle in the graph.
template <typename Graph>
bool acyclic(const Graph& graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Arc Arc;
for (NodeIt it(graph); it != INVALID; ++it) {
while (!dfs.emptyQueue()) {
Node source = graph.source(arc);
Node target = graph.target(arc);
if (dfs.reached(target) &&
dfs.predArc(source) != graph.oppositeArc(arc)) {
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is tree.
/// This function checks whether the given undirected graph is tree.
/// \return \c true if the graph is acyclic and connected.
/// \see acyclic(), connected()
template <typename Graph>
bool tree(const Graph& graph) {
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Arc Arc;
if (NodeIt(graph) == INVALID) return true;
dfs.addSource(NodeIt(graph));
while (!dfs.emptyQueue()) {
Node source = graph.source(arc);
Node target = graph.target(arc);
if (dfs.reached(target) &&
dfs.predArc(source) != graph.oppositeArc(arc)) {
for (NodeIt it(graph); it != INVALID; ++it) {
namespace _connectivity_bits {
template <typename Digraph>
class BipartiteVisitor : public BfsVisitor<Digraph> {
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
BipartiteVisitor(const Digraph& graph, bool& bipartite)
: _graph(graph), _part(graph), _bipartite(bipartite) {}
void start(const Node& node) {
void discover(const Arc& edge) {
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
void examine(const Arc& edge) {
_bipartite = _bipartite &&
_part[_graph.target(edge)] != _part[_graph.source(edge)];
typename Digraph::template NodeMap<bool> _part;
template <typename Digraph, typename PartMap>
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
BipartitePartitionsVisitor(const Digraph& graph,
PartMap& part, bool& bipartite)
: _graph(graph), _part(part), _bipartite(bipartite) {}
void start(const Node& node) {
void discover(const Arc& edge) {
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
void examine(const Arc& edge) {
_bipartite = _bipartite &&
_part[_graph.target(edge)] != _part[_graph.source(edge)];
/// \ingroup graph_properties
/// \brief Check whether an undirected graph is bipartite.
/// The function checks whether the given undirected graph is bipartite.
/// \return \c true if the graph is bipartite.
/// \see bipartitePartitions()
bool bipartite(const Graph &graph){
using namespace _connectivity_bits;
checkConcept<concepts::Graph, Graph>();
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::ArcIt ArcIt;
visitor(graph, bipartite);
BfsVisit<Graph, BipartiteVisitor<Graph> >
for(NodeIt it(graph); it != INVALID; ++it) {
while (!bfs.emptyQueue()) {
if (!bipartite) return false;
/// \ingroup graph_properties
/// \brief Find the bipartite partitions of an undirected graph.
/// This function checks whether the given undirected graph is bipartite
/// and gives back the bipartite partitions.
/// \image html bipartite_partitions.png
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
/// \param graph The undirected graph.
/// \retval partMap A writable node map of \c bool (or convertible) value
/// type. The values will be set to \c true for one component and
/// \c false for the other one.
/// \return \c true if the graph is bipartite, \c false otherwise.
template<typename Graph, typename NodeMap>
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
using namespace _connectivity_bits;
checkConcept<concepts::Graph, Graph>();
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::ArcIt ArcIt;
BipartitePartitionsVisitor<Graph, NodeMap>
visitor(graph, partMap, bipartite);
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
for(NodeIt it(graph); it != INVALID; ++it) {
while (!bfs.emptyQueue()) {
if (!bipartite) return false;
/// \ingroup graph_properties
/// \brief Check whether the given graph contains no loop arcs/edges.
/// This function returns \c true if there are no loop arcs/edges in
/// the given graph. It works for both directed and undirected graphs.
template <typename Graph>
bool loopFree(const Graph& graph) {
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
if (graph.source(it) == graph.target(it)) return false;
/// \ingroup graph_properties
/// \brief Check whether the given graph contains no parallel arcs/edges.
/// This function returns \c true if there are no parallel arcs/edges in
/// the given graph. It works for both directed and undirected graphs.
template <typename Graph>
bool parallelFree(const Graph& graph) {
typename Graph::template NodeMap<int> reached(graph, 0);
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
if (reached[graph.target(a)] == cnt) return false;
reached[graph.target(a)] = cnt;
/// \ingroup graph_properties
/// \brief Check whether the given graph is simple.
/// This function returns \c true if the given graph is simple, i.e.
/// it contains no loop arcs/edges and no parallel arcs/edges.
/// The function works for both directed and undirected graphs.
/// \see loopFree(), parallelFree()
template <typename Graph>
bool simpleGraph(const Graph& graph) {
typename Graph::template NodeMap<int> reached(graph, 0);
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
if (reached[graph.target(a)] == cnt) return false;
reached[graph.target(a)] = cnt;
#endif //LEMON_CONNECTIVITY_H