Location: LEMON/LEMON-official/test/dfs_test.cc

Load file history
gravatar
alpar (Alpar Juttner)
Merge
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/concepts/digraph.h>
#include <lemon/smart_graph.h>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/dfs.h>
#include <lemon/path.h>
#include "graph_test.h"
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"@arcs\n"
" label\n"
"0 1 0\n"
"1 2 1\n"
"2 3 2\n"
"1 4 3\n"
"4 2 4\n"
"4 5 5\n"
"5 0 6\n"
"6 3 7\n"
"@attributes\n"
"source 0\n"
"target 5\n"
"source1 6\n"
"target1 3\n";
void checkDfsCompile()
{
typedef concepts::Digraph Digraph;
typedef Dfs<Digraph> DType;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
Digraph G;
Node s, t;
Arc e;
int l, i;
bool b;
DType::DistMap d(G);
DType::PredMap p(G);
Path<Digraph> pp;
concepts::ReadMap<Arc,bool> am;
{
DType dfs_test(G);
const DType& const_dfs_test = dfs_test;
dfs_test.run(s);
dfs_test.run(s,t);
dfs_test.run();
dfs_test.init();
dfs_test.addSource(s);
e = dfs_test.processNextArc();
e = const_dfs_test.nextArc();
b = const_dfs_test.emptyQueue();
i = const_dfs_test.queueSize();
dfs_test.start();
dfs_test.start(t);
dfs_test.start(am);
l = const_dfs_test.dist(t);
e = const_dfs_test.predArc(t);
s = const_dfs_test.predNode(t);
b = const_dfs_test.reached(t);
d = const_dfs_test.distMap();
p = const_dfs_test.predMap();
pp = const_dfs_test.path(t);
}
{
DType
::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
::SetDistMap<concepts::ReadWriteMap<Node,int> >
::SetReachedMap<concepts::ReadWriteMap<Node,bool> >
::SetStandardProcessedMap
::SetProcessedMap<concepts::WriteMap<Node,bool> >
::Create dfs_test(G);
concepts::ReadWriteMap<Node,Arc> pred_map;
concepts::ReadWriteMap<Node,int> dist_map;
concepts::ReadWriteMap<Node,bool> reached_map;
concepts::WriteMap<Node,bool> processed_map;
dfs_test
.predMap(pred_map)
.distMap(dist_map)
.reachedMap(reached_map)
.processedMap(processed_map);
dfs_test.run(s);
dfs_test.run(s,t);
dfs_test.run();
dfs_test.init();
dfs_test.addSource(s);
e = dfs_test.processNextArc();
e = dfs_test.nextArc();
b = dfs_test.emptyQueue();
i = dfs_test.queueSize();
dfs_test.start();
dfs_test.start(t);
dfs_test.start(am);
l = dfs_test.dist(t);
e = dfs_test.predArc(t);
s = dfs_test.predNode(t);
b = dfs_test.reached(t);
pp = dfs_test.path(t);
}
}
void checkDfsFunctionCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef Digraph::Arc Arc;
typedef Digraph::Node Node;
Digraph g;
bool b;
dfs(g).run(Node());
b=dfs(g).run(Node(),Node());
dfs(g).run();
dfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.run(Node());
b=dfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.path(concepts::Path<Digraph>())
.dist(VType())
.run(Node(),Node());
dfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.run();
}
template <class Digraph>
void checkDfs() {
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
Digraph G;
Node s, t;
Node s1, t1;
std::istringstream input(test_lgf);
digraphReader(G, input).
node("source", s).
node("target", t).
node("source1", s1).
node("target1", t1).
run();
Dfs<Digraph> dfs_test(G);
dfs_test.run(s);
Path<Digraph> p = dfs_test.path(t);
check(p.length() == dfs_test.dist(t),"path() found a wrong path.");
check(checkPath(G, p),"path() found a wrong path.");
check(pathSource(G, p) == s,"path() found a wrong path.");
check(pathTarget(G, p) == t,"path() found a wrong path.");
for(NodeIt v(G); v!=INVALID; ++v) {
if (dfs_test.reached(v)) {
check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree.");
if (dfs_test.predArc(v)!=INVALID ) {
Arc e=dfs_test.predArc(v);
Node u=G.source(e);
check(u==dfs_test.predNode(v),"Wrong tree.");
check(dfs_test.dist(v) - dfs_test.dist(u) == 1,
"Wrong distance. (" << dfs_test.dist(u) << "->"
<< dfs_test.dist(v) << ")");
}
}
}
{
Dfs<Digraph> dfs(G);
check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6.");
}
{
NullMap<Node,Arc> myPredMap;
dfs(G).predMap(myPredMap).run(s);
}
}
int main()
{
checkDfs<ListDigraph>();
checkDfs<SmartDigraph>();
return 0;
}