Location: LEMON/LEMON-official/test/suurballe_test.cc

Load file history
gravatar
alpar (Alpar Juttner)
Unify sources
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/path.h>
#include <lemon/suurballe.h>
#include <lemon/concepts/digraph.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"8\n"
"9\n"
"10\n"
"11\n"
"12\n"
"@arcs\n"
" length\n"
" 1 2 70\n"
" 1 3 150\n"
" 1 4 80\n"
" 2 8 80\n"
" 3 5 140\n"
" 4 6 60\n"
" 4 7 80\n"
" 4 8 110\n"
" 5 7 60\n"
" 5 11 120\n"
" 6 3 0\n"
" 6 9 140\n"
" 6 10 90\n"
" 7 1 30\n"
" 8 12 60\n"
" 9 12 50\n"
"10 12 70\n"
"10 2 100\n"
"10 7 60\n"
"11 10 20\n"
"12 11 30\n"
"@attributes\n"
"source 1\n"
"target 12\n"
"@end\n";
// Check the interface of Suurballe
void checkSuurballeCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
typedef concepts::ReadMap<Arc, VType> LengthMap;
typedef Suurballe<Digraph, LengthMap> SuurballeType;
Digraph g;
Node n;
Arc e;
LengthMap len;
SuurballeType::FlowMap flow(g);
SuurballeType::PotentialMap pi(g);
SuurballeType suurb_test(g, len);
const SuurballeType& const_suurb_test = suurb_test;
suurb_test
.flowMap(flow)
.potentialMap(pi);
int k;
k = suurb_test.run(n, n);
k = suurb_test.run(n, n, k);
suurb_test.init(n);
k = suurb_test.findFlow(n);
k = suurb_test.findFlow(n, k);
suurb_test.findPaths();
int f;
VType c;
c = const_suurb_test.totalLength();
f = const_suurb_test.flow(e);
const SuurballeType::FlowMap& fm =
const_suurb_test.flowMap();
c = const_suurb_test.potential(n);
const SuurballeType::PotentialMap& pm =
const_suurb_test.potentialMap();
k = const_suurb_test.pathNum();
Path<Digraph> p = const_suurb_test.path(k);
ignore_unused_variable_warning(fm);
ignore_unused_variable_warning(pm);
}
// Check the feasibility of the flow
template <typename Digraph, typename FlowMap>
bool checkFlow( const Digraph& gr, const FlowMap& flow,
typename Digraph::Node s, typename Digraph::Node t,
int value )
{
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
for (ArcIt e(gr); e != INVALID; ++e)
if (!(flow[e] == 0 || flow[e] == 1)) return false;
for (NodeIt n(gr); n != INVALID; ++n) {
int sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
if (n == s && sum != value) return false;
if (n == t && sum != -value) return false;
if (n != s && n != t && sum != 0) return false;
}
return true;
}
// Check the optimalitiy of the flow
template < typename Digraph, typename CostMap,
typename FlowMap, typename PotentialMap >
bool checkOptimality( const Digraph& gr, const CostMap& cost,
const FlowMap& flow, const PotentialMap& pi )
{
// Check the "Complementary Slackness" optimality condition
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
bool opt = true;
for (ArcIt e(gr); e != INVALID; ++e) {
typename CostMap::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
opt = (flow[e] == 0 && red_cost >= 0) ||
(flow[e] == 1 && red_cost <= 0);
if (!opt) break;
}
return opt;
}
// Check a path
template <typename Digraph, typename Path>
bool checkPath( const Digraph& gr, const Path& path,
typename Digraph::Node s, typename Digraph::Node t)
{
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
Node n = s;
for (int i = 0; i < path.length(); ++i) {
if (gr.source(path.nth(i)) != n) return false;
n = gr.target(path.nth(i));
}
return n == t;
}
int main()
{
DIGRAPH_TYPEDEFS(ListDigraph);
// Read the test digraph
ListDigraph digraph;
ListDigraph::ArcMap<int> length(digraph);
Node s, t;
std::istringstream input(test_lgf);
DigraphReader<ListDigraph>(digraph, input).
arcMap("length", length).
node("source", s).
node("target", t).
run();
// Find 2 paths
{
Suurballe<ListDigraph> suurballe(digraph, length);
check(suurballe.run(s, t) == 2, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2),
"The flow is not feasible");
check(suurballe.totalLength() == 510, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
}
// Find 3 paths
{
Suurballe<ListDigraph> suurballe(digraph, length);
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3),
"The flow is not feasible");
check(suurballe.totalLength() == 1040, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
}
// Find 5 paths (only 3 can be found)
{
Suurballe<ListDigraph> suurballe(digraph, length);
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3),
"The flow is not feasible");
check(suurballe.totalLength() == 1040, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
}
return 0;
}