Location: LEMON/LEMON-official/lemon/max_cardinality_search.h

Load file history
gravatar
alpar (Alpar Juttner)
Intel C++ compatibility fix in max_cardinality_search.h
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_MAX_CARDINALITY_SEARCH_H
#define LEMON_MAX_CARDINALITY_SEARCH_H
/// \ingroup search
/// \file
/// \brief Maximum cardinality search in undirected digraphs.
#include <lemon/bin_heap.h>
#include <lemon/bucket_heap.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <functional>
namespace lemon {
/// \brief Default traits class of MaxCardinalitySearch class.
///
/// Default traits class of MaxCardinalitySearch class.
/// \param Digraph Digraph type.
/// \param CapacityMap Type of capacity map.
template <typename GR, typename CAP>
struct MaxCardinalitySearchDefaultTraits {
/// The digraph type the algorithm runs on.
typedef GR Digraph;
template <typename CM>
struct CapMapSelector {
typedef CM CapacityMap;
static CapacityMap *createCapacityMap(const Digraph& g) {
return new CapacityMap(g);
}
};
template <typename CM>
struct CapMapSelector<ConstMap<CM, Const<int, 1> > > {
typedef ConstMap<CM, Const<int, 1> > CapacityMap;
static CapacityMap *createCapacityMap(const Digraph&) {
return new CapacityMap;
}
};
/// \brief The type of the map that stores the arc capacities.
///
/// The type of the map that stores the arc capacities.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef typename CapMapSelector<CAP>::CapacityMap CapacityMap;
/// \brief The type of the capacity of the arcs.
typedef typename CapacityMap::Value Value;
/// \brief Instantiates a CapacityMap.
///
/// This function instantiates a \ref CapacityMap.
/// \param digraph is the digraph, to which we would like to define
/// the CapacityMap.
static CapacityMap *createCapacityMap(const Digraph& digraph) {
return CapMapSelector<CapacityMap>::createCapacityMap(digraph);
}
/// \brief The cross reference type used by heap.
///
/// The cross reference type used by heap.
/// Usually it is \c Digraph::NodeMap<int>.
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
/// \brief Instantiates a HeapCrossRef.
///
/// This function instantiates a \ref HeapCrossRef.
/// \param digraph is the digraph, to which we would like to define the
/// HeapCrossRef.
static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
return new HeapCrossRef(digraph);
}
template <typename CapacityMap>
struct HeapSelector {
template <typename Value, typename Ref>
struct Selector {
typedef BinHeap<Value, Ref, std::greater<Value> > Heap;
};
};
template <typename CapacityKey>
struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > {
template <typename Value, typename Ref>
struct Selector {
typedef BucketHeap<Ref, false > Heap;
};
};
/// \brief The heap type used by MaxCardinalitySearch algorithm.
///
/// The heap type used by MaxCardinalitySearch algorithm. It should
/// maximalize the priorities. The default heap type is
/// the \ref BinHeap, but it is specialized when the
/// CapacityMap is ConstMap<Digraph::Node, Const<int, 1> >
/// to BucketHeap.
///
/// \sa MaxCardinalitySearch
typedef typename HeapSelector<CapacityMap>
::template Selector<Value, HeapCrossRef>
::Heap Heap;
/// \brief Instantiates a Heap.
///
/// This function instantiates a \ref Heap.
/// \param crossref The cross reference of the heap.
static Heap *createHeap(HeapCrossRef& crossref) {
return new Heap(crossref);
}
/// \brief The type of the map that stores whether a node is processed.
///
/// The type of the map that stores whether a node is processed.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
/// By default it is a NullMap.
typedef NullMap<typename Digraph::Node, bool> ProcessedMap;
/// \brief Instantiates a ProcessedMap.
///
/// This function instantiates a \ref ProcessedMap.
/// \param digraph is the digraph, to which
/// we would like to define the \ref ProcessedMap
#ifdef DOXYGEN
static ProcessedMap *createProcessedMap(const Digraph &digraph)
#else
static ProcessedMap *createProcessedMap(const Digraph &)
#endif
{
return new ProcessedMap();
}
/// \brief The type of the map that stores the cardinalities of the nodes.
///
/// The type of the map that stores the cardinalities of the nodes.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<Value> CardinalityMap;
/// \brief Instantiates a CardinalityMap.
///
/// This function instantiates a \ref CardinalityMap.
/// \param digraph is the digraph, to which we would like to define the \ref
/// CardinalityMap
static CardinalityMap *createCardinalityMap(const Digraph &digraph) {
return new CardinalityMap(digraph);
}
};
/// \ingroup search
///
/// \brief Maximum Cardinality Search algorithm class.
///
/// This class provides an efficient implementation of Maximum Cardinality
/// Search algorithm. The maximum cardinality search first chooses any
/// node of the digraph. Then every time it chooses one unprocessed node
/// with maximum cardinality, i.e the sum of capacities on out arcs to the nodes
/// which were previusly processed.
/// If there is a cut in the digraph the algorithm should choose
/// again any unprocessed node of the digraph.
/// The arc capacities are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of capacity.
///
/// The type of the capacity is determined by the \ref
/// concepts::ReadMap::Value "Value" of the capacity map.
///
/// It is also possible to change the underlying priority heap.
///
///
/// \param GR The digraph type the algorithm runs on. The value of
/// Digraph is not used directly by the search algorithm, it
/// is only passed to \ref MaxCardinalitySearchDefaultTraits.
/// \param CAP This read-only ArcMap determines the capacities of
/// the arcs. It is read once for each arc, so the map may involve in
/// relatively time consuming process to compute the arc capacity if
/// it is necessary. The default map type is \ref
/// ConstMap "ConstMap<concepts::Digraph::Arc, Const<int,1> >". The value
/// of CapacityMap is not used directly by search algorithm, it is only
/// passed to \ref MaxCardinalitySearchDefaultTraits.
/// \param TR Traits class to set various data types used by the
/// algorithm. The default traits class is
/// \ref MaxCardinalitySearchDefaultTraits
/// "MaxCardinalitySearchDefaultTraits<GR, CAP>".
/// See \ref MaxCardinalitySearchDefaultTraits
/// for the documentation of a MaxCardinalitySearch traits class.
#ifdef DOXYGEN
template <typename GR, typename CAP, typename TR>
#else
template <typename GR, typename CAP =
ConstMap<typename GR::Arc, Const<int,1> >,
typename TR =
MaxCardinalitySearchDefaultTraits<GR, CAP> >
#endif
class MaxCardinalitySearch {
public:
typedef TR Traits;
///The type of the underlying digraph.
typedef typename Traits::Digraph Digraph;
///The type of the capacity of the arcs.
typedef typename Traits::CapacityMap::Value Value;
///The type of the map that stores the arc capacities.
typedef typename Traits::CapacityMap CapacityMap;
///The type of the map indicating if a node is processed.
typedef typename Traits::ProcessedMap ProcessedMap;
///The type of the map that stores the cardinalities of the nodes.
typedef typename Traits::CardinalityMap CardinalityMap;
///The cross reference type used for the current heap.
typedef typename Traits::HeapCrossRef HeapCrossRef;
///The heap type used by the algorithm. It maximizes the priorities.
typedef typename Traits::Heap Heap;
private:
// Pointer to the underlying digraph.
const Digraph *_graph;
// Pointer to the capacity map
const CapacityMap *_capacity;
// Indicates if \ref _capacity is locally allocated (\c true) or not.
bool local_capacity;
// Pointer to the map of cardinality.
CardinalityMap *_cardinality;
// Indicates if \ref _cardinality is locally allocated (\c true) or not.
bool local_cardinality;
// Pointer to the map of processed status of the nodes.
ProcessedMap *_processed;
// Indicates if \ref _processed is locally allocated (\c true) or not.
bool local_processed;
// Pointer to the heap cross references.
HeapCrossRef *_heap_cross_ref;
// Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
bool local_heap_cross_ref;
// Pointer to the heap.
Heap *_heap;
// Indicates if \ref _heap is locally allocated (\c true) or not.
bool local_heap;
public :
typedef MaxCardinalitySearch Create;
///\name Named template parameters
///@{
template <class T>
struct DefCapacityMapTraits : public Traits {
typedef T CapacityMap;
static CapacityMap *createCapacityMap(const Digraph &) {
LEMON_ASSERT(false,"Uninitialized parameter.");
return 0;
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// CapacityMap type
///
/// \ref named-templ-param "Named parameter" for setting CapacityMap type
/// for the algorithm.
template <class T>
struct SetCapacityMap
: public MaxCardinalitySearch<Digraph, CapacityMap,
DefCapacityMapTraits<T> > {
typedef MaxCardinalitySearch<Digraph, CapacityMap,
DefCapacityMapTraits<T> > Create;
};
template <class T>
struct DefCardinalityMapTraits : public Traits {
typedef T CardinalityMap;
static CardinalityMap *createCardinalityMap(const Digraph &)
{
LEMON_ASSERT(false,"Uninitialized parameter.");
return 0;
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// CardinalityMap type
///
/// \ref named-templ-param "Named parameter" for setting CardinalityMap
/// type for the algorithm.
template <class T>
struct SetCardinalityMap
: public MaxCardinalitySearch<Digraph, CapacityMap,
DefCardinalityMapTraits<T> > {
typedef MaxCardinalitySearch<Digraph, CapacityMap,
DefCardinalityMapTraits<T> > Create;
};
template <class T>
struct DefProcessedMapTraits : public Traits {
typedef T ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &) {
LEMON_ASSERT(false,"Uninitialized parameter.");
return 0;
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// ProcessedMap type
///
/// \ref named-templ-param "Named parameter" for setting ProcessedMap type
/// for the algorithm.
template <class T>
struct SetProcessedMap
: public MaxCardinalitySearch<Digraph, CapacityMap,
DefProcessedMapTraits<T> > {
typedef MaxCardinalitySearch<Digraph, CapacityMap,
DefProcessedMapTraits<T> > Create;
};
template <class H, class CR>
struct DefHeapTraits : public Traits {
typedef CR HeapCrossRef;
typedef H Heap;
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
LEMON_ASSERT(false,"Uninitialized parameter.");
return 0;
}
static Heap *createHeap(HeapCrossRef &) {
LEMON_ASSERT(false,"Uninitialized parameter.");
return 0;
}
};
/// \brief \ref named-templ-param "Named parameter" for setting heap
/// and cross reference type
///
/// \ref named-templ-param "Named parameter" for setting heap and cross
/// reference type for the algorithm.
template <class H, class CR = typename Digraph::template NodeMap<int> >
struct SetHeap
: public MaxCardinalitySearch<Digraph, CapacityMap,
DefHeapTraits<H, CR> > {
typedef MaxCardinalitySearch< Digraph, CapacityMap,
DefHeapTraits<H, CR> > Create;
};
template <class H, class CR>
struct DefStandardHeapTraits : public Traits {
typedef CR HeapCrossRef;
typedef H Heap;
static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
return new HeapCrossRef(digraph);
}
static Heap *createHeap(HeapCrossRef &crossref) {
return new Heap(crossref);
}
};
/// \brief \ref named-templ-param "Named parameter" for setting heap and
/// cross reference type with automatic allocation
///
/// \ref named-templ-param "Named parameter" for setting heap and cross
/// reference type. It can allocate the heap and the cross reference
/// object if the cross reference's constructor waits for the digraph as
/// parameter and the heap's constructor waits for the cross reference.
template <class H, class CR = typename Digraph::template NodeMap<int> >
struct SetStandardHeap
: public MaxCardinalitySearch<Digraph, CapacityMap,
DefStandardHeapTraits<H, CR> > {
typedef MaxCardinalitySearch<Digraph, CapacityMap,
DefStandardHeapTraits<H, CR> >
Create;
};
///@}
protected:
MaxCardinalitySearch() {}
public:
/// \brief Constructor.
///
///\param digraph the digraph the algorithm will run on.
///\param capacity the capacity map used by the algorithm.
MaxCardinalitySearch(const Digraph& digraph,
const CapacityMap& capacity) :
_graph(&digraph),
_capacity(&capacity), local_capacity(false),
_cardinality(0), local_cardinality(false),
_processed(0), local_processed(false),
_heap_cross_ref(0), local_heap_cross_ref(false),
_heap(0), local_heap(false)
{ }
/// \brief Constructor.
///
///\param digraph the digraph the algorithm will run on.
///
///A constant 1 capacity map will be allocated.
MaxCardinalitySearch(const Digraph& digraph) :
_graph(&digraph),
_capacity(0), local_capacity(false),
_cardinality(0), local_cardinality(false),
_processed(0), local_processed(false),
_heap_cross_ref(0), local_heap_cross_ref(false),
_heap(0), local_heap(false)
{ }
/// \brief Destructor.
~MaxCardinalitySearch() {
if(local_capacity) delete _capacity;
if(local_cardinality) delete _cardinality;
if(local_processed) delete _processed;
if(local_heap_cross_ref) delete _heap_cross_ref;
if(local_heap) delete _heap;
}
/// \brief Sets the capacity map.
///
/// Sets the capacity map.
/// \return <tt> (*this) </tt>
MaxCardinalitySearch &capacityMap(const CapacityMap &m) {
if (local_capacity) {
delete _capacity;
local_capacity=false;
}
_capacity=&m;
return *this;
}
/// \brief Returns a const reference to the capacity map.
///
/// Returns a const reference to the capacity map used by
/// the algorithm.
const CapacityMap &capacityMap() const {
return *_capacity;
}
/// \brief Sets the map storing the cardinalities calculated by the
/// algorithm.
///
/// Sets the map storing the cardinalities calculated by the algorithm.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated map, of course.
/// \return <tt> (*this) </tt>
MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) {
if(local_cardinality) {
delete _cardinality;
local_cardinality=false;
}
_cardinality = &m;
return *this;
}
/// \brief Sets the map storing the processed nodes.
///
/// Sets the map storing the processed nodes.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated map, of course.
/// \return <tt> (*this) </tt>
MaxCardinalitySearch &processedMap(ProcessedMap &m)
{
if(local_processed) {
delete _processed;
local_processed=false;
}
_processed = &m;
return *this;
}
/// \brief Returns a const reference to the cardinality map.
///
/// Returns a const reference to the cardinality map used by
/// the algorithm.
const ProcessedMap &processedMap() const {
return *_processed;
}
/// \brief Sets the heap and the cross reference used by algorithm.
///
/// Sets the heap and the cross reference used by algorithm.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated map, of course.
/// \return <tt> (*this) </tt>
MaxCardinalitySearch &heap(Heap& hp, HeapCrossRef &cr) {
if(local_heap_cross_ref) {
delete _heap_cross_ref;
local_heap_cross_ref = false;
}
_heap_cross_ref = &cr;
if(local_heap) {
delete _heap;
local_heap = false;
}
_heap = &hp;
return *this;
}
/// \brief Returns a const reference to the heap.
///
/// Returns a const reference to the heap used by
/// the algorithm.
const Heap &heap() const {
return *_heap;
}
/// \brief Returns a const reference to the cross reference.
///
/// Returns a const reference to the cross reference
/// of the heap.
const HeapCrossRef &heapCrossRef() const {
return *_heap_cross_ref;
}
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::InArcIt InArcIt;
void create_maps() {
if(!_capacity) {
local_capacity = true;
_capacity = Traits::createCapacityMap(*_graph);
}
if(!_cardinality) {
local_cardinality = true;
_cardinality = Traits::createCardinalityMap(*_graph);
}
if(!_processed) {
local_processed = true;
_processed = Traits::createProcessedMap(*_graph);
}
if (!_heap_cross_ref) {
local_heap_cross_ref = true;
_heap_cross_ref = Traits::createHeapCrossRef(*_graph);
}
if (!_heap) {
local_heap = true;
_heap = Traits::createHeap(*_heap_cross_ref);
}
}
void finalizeNodeData(Node node, Value capacity) {
_processed->set(node, true);
_cardinality->set(node, capacity);
}
public:
/// \name Execution control
/// The simplest way to execute the algorithm is to use
/// one of the member functions called \ref run().
/// \n
/// If you need more control on the execution,
/// first you must call \ref init(), then you can add several source nodes
/// with \ref addSource().
/// Finally \ref start() will perform the computation.
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures, and clears the heap.
void init() {
create_maps();
_heap->clear();
for (NodeIt it(*_graph) ; it != INVALID ; ++it) {
_processed->set(it, false);
_heap_cross_ref->set(it, Heap::PRE_HEAP);
}
}
/// \brief Adds a new source node.
///
/// Adds a new source node to the priority heap.
///
/// It checks if the node has not yet been added to the heap.
void addSource(Node source, Value capacity = 0) {
if(_heap->state(source) == Heap::PRE_HEAP) {
_heap->push(source, capacity);
}
}
/// \brief Processes the next node in the priority heap
///
/// Processes the next node in the priority heap.
///
/// \return The processed node.
///
/// \warning The priority heap must not be empty!
Node processNextNode() {
Node node = _heap->top();
finalizeNodeData(node, _heap->prio());
_heap->pop();
for (InArcIt it(*_graph, node); it != INVALID; ++it) {
Node source = _graph->source(it);
switch (_heap->state(source)) {
case Heap::PRE_HEAP:
_heap->push(source, (*_capacity)[it]);
break;
case Heap::IN_HEAP:
_heap->decrease(source, (*_heap)[source] + (*_capacity)[it]);
break;
case Heap::POST_HEAP:
break;
}
}
return node;
}
/// \brief Next node to be processed.
///
/// Next node to be processed.
///
/// \return The next node to be processed or INVALID if the
/// priority heap is empty.
Node nextNode() {
return !_heap->empty() ? _heap->top() : INVALID;
}
/// \brief Returns \c false if there are nodes
/// to be processed in the priority heap
///
/// Returns \c false if there are nodes
/// to be processed in the priority heap
bool emptyQueue() { return _heap->empty(); }
/// \brief Returns the number of the nodes to be processed
/// in the priority heap
///
/// Returns the number of the nodes to be processed in the priority heap
int emptySize() { return _heap->size(); }
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
///\pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// This method runs the Maximum Cardinality Search algorithm from the
/// source node(s).
void start() {
while ( !_heap->empty() ) processNextNode();
}
/// \brief Executes the algorithm until \c dest is reached.
///
/// Executes the algorithm until \c dest is reached.
///
/// \pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// This method runs the %MaxCardinalitySearch algorithm from the source
/// nodes.
void start(Node dest) {
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio());
}
/// \brief Executes the algorithm until a condition is met.
///
/// Executes the algorithm until a condition is met.
///
/// \pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// \param nm must be a bool (or convertible) node map. The algorithm
/// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
template <typename NodeBoolMap>
void start(const NodeBoolMap &nm) {
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
}
/// \brief Runs the maximum cardinality search algorithm from node \c s.
///
/// This method runs the %MaxCardinalitySearch algorithm from a root
/// node \c s.
///
///\note d.run(s) is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Runs the maximum cardinality search algorithm for the
/// whole digraph.
///
/// This method runs the %MaxCardinalitySearch algorithm from all
/// unprocessed node of the digraph.
///
///\note d.run(s) is just a shortcut of the following code.
///\code
/// d.init();
/// for (NodeIt it(digraph); it != INVALID; ++it) {
/// if (!d.reached(it)) {
/// d.addSource(s);
/// d.start();
/// }
/// }
///\endcode
void run() {
init();
for (NodeIt it(*_graph); it != INVALID; ++it) {
if (!reached(it)) {
addSource(it);
start();
}
}
}
///@}
/// \name Query Functions
/// The results of the maximum cardinality search algorithm can be
/// obtained using these functions.
/// \n
/// Before the use of these functions, either run() or start() must be
/// called.
///@{
/// \brief The cardinality of a node.
///
/// Returns the cardinality of a node.
/// \pre \ref run() must be called before using this function.
/// \warning If node \c v in unreachable from the root the return value
/// of this funcion is undefined.
Value cardinality(Node node) const { return (*_cardinality)[node]; }
/// \brief The current cardinality of a node.
///
/// Returns the current cardinality of a node.
/// \pre the given node should be reached but not processed
Value currentCardinality(Node node) const { return (*_heap)[node]; }
/// \brief Returns a reference to the NodeMap of cardinalities.
///
/// Returns a reference to the NodeMap of cardinalities. \pre \ref run()
/// must be called before using this function.
const CardinalityMap &cardinalityMap() const { return *_cardinality;}
/// \brief Checks if a node is reachable from the root.
///
/// Returns \c true if \c v is reachable from the root.
/// \warning The source nodes are initated as unreached.
/// \pre \ref run() must be called before using this function.
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
/// \brief Checks if a node is processed.
///
/// Returns \c true if \c v is processed, i.e. the shortest
/// path to \c v has already found.
/// \pre \ref run() must be called before using this function.
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
///@}
};
}
#endif