/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
/// \ingroup graph_adaptors
/// \brief Adaptor classes for digraphs and graphs
/// This file contains several useful adaptors for digraphs and graphs.
#include <lemon/bits/variant.h>
#include <lemon/bits/graph_adaptor_extender.h>
#include <lemon/tolerance.h>
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
class DigraphAdaptorBase {
typedef DigraphAdaptorBase Adaptor;
DigraphAdaptorBase() : _digraph(0) { }
void initialize(DGR& digraph) { _digraph = &digraph; }
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
typedef typename DGR::Node Node;
typedef typename DGR::Arc Arc;
void first(Node& i) const { _digraph->first(i); }
void first(Arc& i) const { _digraph->first(i); }
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
void next(Node& i) const { _digraph->next(i); }
void next(Arc& i) const { _digraph->next(i); }
void nextIn(Arc& i) const { _digraph->nextIn(i); }
void nextOut(Arc& i) const { _digraph->nextOut(i); }
Node source(const Arc& a) const { return _digraph->source(a); }
Node target(const Arc& a) const { return _digraph->target(a); }
typedef NodeNumTagIndicator<DGR> NodeNumTag;
int nodeNum() const { return _digraph->nodeNum(); }
typedef ArcNumTagIndicator<DGR> ArcNumTag;
int arcNum() const { return _digraph->arcNum(); }
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
return _digraph->findArc(u, v, prev);
Node addNode() { return _digraph->addNode(); }
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
void erase(const Node& n) { _digraph->erase(n); }
void erase(const Arc& a) { _digraph->erase(a); }
void clear() { _digraph->clear(); }
int id(const Node& n) const { return _digraph->id(n); }
int id(const Arc& a) const { return _digraph->id(a); }
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
int maxNodeId() const { return _digraph->maxNodeId(); }
int maxArcId() const { return _digraph->maxArcId(); }
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
class NodeMap : public DGR::template NodeMap<V> {
typedef typename DGR::template NodeMap<V> Parent;
explicit NodeMap(const Adaptor& adaptor)
: Parent(*adaptor._digraph) {}
NodeMap(const Adaptor& adaptor, const V& value)
: Parent(*adaptor._digraph, value) { }
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
class ArcMap : public DGR::template ArcMap<V> {
typedef typename DGR::template ArcMap<V> Parent;
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
GraphAdaptorBase() : _graph(0) {}
void initialize(GR& graph) { _graph = &graph; }
GraphAdaptorBase(GR& graph) : _graph(&graph) {}
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef typename GR::Edge Edge;
void first(Node& i) const { _graph->first(i); }
void first(Arc& i) const { _graph->first(i); }
void first(Edge& i) const { _graph->first(i); }
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
void firstInc(Edge &i, bool &d, const Node &n) const {
_graph->firstInc(i, d, n);
void next(Node& i) const { _graph->next(i); }
void next(Arc& i) const { _graph->next(i); }
void next(Edge& i) const { _graph->next(i); }
void nextIn(Arc& i) const { _graph->nextIn(i); }
void nextOut(Arc& i) const { _graph->nextOut(i); }
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
Node u(const Edge& e) const { return _graph->u(e); }
Node v(const Edge& e) const { return _graph->v(e); }
Node source(const Arc& a) const { return _graph->source(a); }
Node target(const Arc& a) const { return _graph->target(a); }
typedef NodeNumTagIndicator<Graph> NodeNumTag;
int nodeNum() const { return _graph->nodeNum(); }
typedef ArcNumTagIndicator<Graph> ArcNumTag;
int arcNum() const { return _graph->arcNum(); }
typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
int edgeNum() const { return _graph->edgeNum(); }
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
return _graph->findArc(u, v, prev);
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
return _graph->findEdge(u, v, prev);
Node addNode() { return _graph->addNode(); }
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
void erase(const Node& i) { _graph->erase(i); }
void erase(const Edge& i) { _graph->erase(i); }
void clear() { _graph->clear(); }
bool direction(const Arc& a) const { return _graph->direction(a); }
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
int id(const Node& v) const { return _graph->id(v); }
int id(const Arc& a) const { return _graph->id(a); }
int id(const Edge& e) const { return _graph->id(e); }
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
int maxNodeId() const { return _graph->maxNodeId(); }
int maxArcId() const { return _graph->maxArcId(); }
int maxEdgeId() const { return _graph->maxEdgeId(); }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
class ArcMap : public GR::template ArcMap<V> {
typedef typename GR::template ArcMap<V> Parent;
explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
class EdgeMap : public GR::template EdgeMap<V> {
typedef typename GR::template EdgeMap<V> Parent;
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
EdgeMap& operator=(const CMap& cmap) {
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
typedef DigraphAdaptorBase<DGR> Parent;
ReverseDigraphBase() : Parent() { }
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
void nextIn(Arc& a) const { Parent::nextOut(a); }
void nextOut(Arc& a) const { Parent::nextIn(a); }
Node source(const Arc& a) const { return Parent::target(a); }
Node target(const Arc& a) const { return Parent::source(a); }
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
return Parent::findArc(v, u, prev);
/// \ingroup graph_adaptors
/// \brief Adaptor class for reversing the orientation of the arcs in
/// ReverseDigraph can be used for reversing the arcs in a digraph.
/// It conforms to the \ref concepts::Digraph "Digraph" concept.
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
/// The type of the adapted digraph.
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
/// Creates a reverse digraph adaptor for the given digraph.
explicit ReverseDigraph(DGR& digraph) {
Parent::initialize(digraph);
/// \brief Returns a read-only ReverseDigraph adaptor
/// This function just returns a read-only \ref ReverseDigraph adaptor.
/// \ingroup graph_adaptors
/// \relates ReverseDigraph
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
return ReverseDigraph<const DGR>(digraph);
template <typename DGR, typename NF, typename AF, bool ch = true>
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
typedef NF NodeFilterMap;
typedef SubDigraphBase Adaptor;
typedef DigraphAdaptorBase<DGR> Parent;
: Parent(), _node_filter(0), _arc_filter(0) { }
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph);
_node_filter = &node_filter;
_arc_filter = &arc_filter;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void first(Node& i) const {
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
void first(Arc& i) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
void firstIn(Arc& i, const Node& n) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
void firstOut(Arc& i, const Node& n) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
void next(Node& i) const {
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
void next(Arc& i) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
void nextIn(Arc& i) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
void nextOut(Arc& i) const {
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
typedef False NodeNumTag;
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& source, const Node& target,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
Arc arc = Parent::findArc(source, target, prev);
while (arc != INVALID && !(*_arc_filter)[arc]) {
arc = Parent::findArc(source, target, arc);
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
template <typename DGR, typename NF, typename AF>
class SubDigraphBase<DGR, NF, AF, false>
: public DigraphAdaptorBase<DGR> {
typedef NF NodeFilterMap;
typedef SubDigraphBase Adaptor;
typedef DigraphAdaptorBase<Digraph> Parent;
: Parent(), _node_filter(0), _arc_filter(0) { }
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph);
_node_filter = &node_filter;
_arc_filter = &arc_filter;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void first(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void first(Arc& i) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
void firstIn(Arc& i, const Node& n) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
void firstOut(Arc& i, const Node& n) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
void next(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void next(Arc& i) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
void nextIn(Arc& i) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
void nextOut(Arc& i) const {
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
typedef False NodeNumTag;
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& source, const Node& target,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
Arc arc = Parent::findArc(source, target, prev);
while (arc != INVALID && !(*_arc_filter)[arc]) {
arc = Parent::findArc(source, target, arc);
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
/// \ingroup graph_adaptors
/// \brief Adaptor class for hiding nodes and arcs in a digraph
/// SubDigraph can be used for hiding nodes and arcs in a digraph.
/// A \c bool node map and a \c bool arc map must be specified, which
/// define the filters for nodes and arcs.
/// Only the nodes and arcs with \c true filter value are
/// shown in the subdigraph. The arcs that are incident to hidden
/// nodes are also filtered out.
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
/// \tparam AF The type of the arc filter map.
/// It must be \c bool (or convertible) arc map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
template<typename DGR, typename NF, typename AF>
typename NF = typename DGR::template NodeMap<bool>,
typename AF = typename DGR::template ArcMap<bool> >
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
/// The type of the adapted digraph.
/// The type of the node filter map.
typedef NF NodeFilterMap;
/// The type of the arc filter map.
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
/// Creates a subdigraph for the given digraph with the
/// given node and arc filter maps.
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph, node_filter, arc_filter);
/// \brief Sets the status of the given node
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Sets the status of the given arc
/// This function sets the status of the given arc.
/// It is done by simply setting the assigned value of \c a
/// to \c v in the arc filter map.
void status(const Arc& a, bool v) const { Parent::status(a, v); }
/// \brief Returns the status of the given node
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Returns the status of the given arc
/// This function returns the status of the given arc.
/// It is \c true if the given arc is enabled (i.e. not hidden).
bool status(const Arc& a) const { return Parent::status(a); }
/// \brief Disables the given node
/// This function disables the given node in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Disables the given arc
/// This function disables the given arc in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(a, false)".
void disable(const Arc& a) const { Parent::status(a, false); }
/// \brief Enables the given node
/// This function enables the given node in the subdigraph.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
/// \brief Enables the given arc
/// This function enables the given arc in the subdigraph.
/// It is the same as \ref status() "status(a, true)".
void enable(const Arc& a) const { Parent::status(a, true); }
/// \brief Returns a read-only SubDigraph adaptor
/// This function just returns a read-only \ref SubDigraph adaptor.
/// \ingroup graph_adaptors
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, NF, AF>
subDigraph(const DGR& digraph,
NF& node_filter, AF& arc_filter) {
return SubDigraph<const DGR, NF, AF>
(digraph, node_filter, arc_filter);
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, const NF, AF>
subDigraph(const DGR& digraph,
const NF& node_filter, AF& arc_filter) {
return SubDigraph<const DGR, const NF, AF>
(digraph, node_filter, arc_filter);
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, NF, const AF>
subDigraph(const DGR& digraph,
NF& node_filter, const AF& arc_filter) {
return SubDigraph<const DGR, NF, const AF>
(digraph, node_filter, arc_filter);
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, const NF, const AF>
subDigraph(const DGR& digraph,
const NF& node_filter, const AF& arc_filter) {
return SubDigraph<const DGR, const NF, const AF>
(digraph, node_filter, arc_filter);
template <typename GR, typename NF, typename EF, bool ch = true>
class SubGraphBase : public GraphAdaptorBase<GR> {
typedef NF NodeFilterMap;
typedef EF EdgeFilterMap;
typedef SubGraphBase Adaptor;
typedef GraphAdaptorBase<GR> Parent;
: Parent(), _node_filter(0), _edge_filter(0) { }
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
Parent::initialize(graph);
_node_filter = &node_filter;
_edge_filter = &edge_filter;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
void first(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void first(Arc& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
void first(Edge& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
void firstIn(Arc& i, const Node& n) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
void firstOut(Arc& i, const Node& n) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
void firstInc(Edge& i, bool& d, const Node& n) const {
Parent::firstInc(i, d, n);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
void next(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void next(Arc& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
void next(Edge& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
void nextIn(Arc& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
void nextOut(Arc& i) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
void nextInc(Edge& i, bool& d) const {
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
typedef False NodeNumTag;
typedef False EdgeNumTag;
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
Arc arc = Parent::findArc(u, v, prev);
while (arc != INVALID && !(*_edge_filter)[arc]) {
arc = Parent::findArc(u, v, arc);
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
Edge edge = Parent::findEdge(u, v, prev);
while (edge != INVALID && !(*_edge_filter)[edge]) {
edge = Parent::findEdge(u, v, edge);
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
EdgeMap& operator=(const CMap& cmap) {
template <typename GR, typename NF, typename EF>
class SubGraphBase<GR, NF, EF, false>
: public GraphAdaptorBase<GR> {
typedef NF NodeFilterMap;
typedef EF EdgeFilterMap;
typedef SubGraphBase Adaptor;
typedef GraphAdaptorBase<GR> Parent;
: Parent(), _node_filter(0), _edge_filter(0) { }
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
Parent::initialize(graph);
_node_filter = &node_filter;
_edge_filter = &edge_filter;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
void first(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void first(Arc& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
void first(Edge& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
void firstIn(Arc& i, const Node& n) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
void firstOut(Arc& i, const Node& n) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
void firstInc(Edge& i, bool& d, const Node& n) const {
Parent::firstInc(i, d, n);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
void next(Node& i) const {
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
void next(Arc& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
void next(Edge& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
void nextIn(Arc& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
void nextOut(Arc& i) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
void nextInc(Edge& i, bool& d) const {
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
typedef False NodeNumTag;
typedef False EdgeNumTag;
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
Arc arc = Parent::findArc(u, v, prev);
while (arc != INVALID && !(*_edge_filter)[arc]) {
arc = Parent::findArc(u, v, arc);
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
Edge edge = Parent::findEdge(u, v, prev);
while (edge != INVALID && !(*_edge_filter)[edge]) {
edge = Parent::findEdge(u, v, edge);
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
EdgeMap& operator=(const CMap& cmap) {
/// \ingroup graph_adaptors
/// \brief Adaptor class for hiding nodes and edges in an undirected
/// SubGraph can be used for hiding nodes and edges in a graph.
/// A \c bool node map and a \c bool edge map must be specified, which
/// define the filters for nodes and edges.
/// Only the nodes and edges with \c true filter value are
/// shown in the subgraph. The edges that are incident to hidden
/// nodes are also filtered out.
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
/// \tparam EF The type of the edge filter map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
/// adapted graph are convertible to each other.
template<typename GR, typename NF, typename EF>
typename NF = typename GR::template NodeMap<bool>,
typename EF = typename GR::template EdgeMap<bool> >
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
/// The type of the adapted graph.
/// The type of the node filter map.
typedef NF NodeFilterMap;
/// The type of the edge filter map.
typedef EF EdgeFilterMap;
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
typedef typename Parent::Node Node;
typedef typename Parent::Edge Edge;
/// Creates a subgraph for the given graph with the given node
/// and edge filter maps.
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
initialize(graph, node_filter, edge_filter);
/// \brief Sets the status of the given node
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Sets the status of the given edge
/// This function sets the status of the given edge.
/// It is done by simply setting the assigned value of \c e
/// to \c v in the edge filter map.
void status(const Edge& e, bool v) const { Parent::status(e, v); }
/// \brief Returns the status of the given node
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Returns the status of the given edge
/// This function returns the status of the given edge.
/// It is \c true if the given edge is enabled (i.e. not hidden).
bool status(const Edge& e) const { return Parent::status(e); }
/// \brief Disables the given node
/// This function disables the given node in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Disables the given edge
/// This function disables the given edge in the subgraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(e, false)".
void disable(const Edge& e) const { Parent::status(e, false); }
/// \brief Enables the given node
/// This function enables the given node in the subdigraph.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
/// \brief Enables the given edge
/// This function enables the given edge in the subgraph.
/// It is the same as \ref status() "status(e, true)".
void enable(const Edge& e) const { Parent::status(e, true); }
/// \brief Returns a read-only SubGraph adaptor
/// This function just returns a read-only \ref SubGraph adaptor.
/// \ingroup graph_adaptors
template<typename GR, typename NF, typename EF>
SubGraph<const GR, NF, EF>
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
return SubGraph<const GR, NF, EF>
(graph, node_filter, edge_filter);
template<typename GR, typename NF, typename EF>
SubGraph<const GR, const NF, EF>
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
return SubGraph<const GR, const NF, EF>
(graph, node_filter, edge_filter);
template<typename GR, typename NF, typename EF>
SubGraph<const GR, NF, const EF>
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
return SubGraph<const GR, NF, const EF>
(graph, node_filter, edge_filter);
template<typename GR, typename NF, typename EF>
SubGraph<const GR, const NF, const EF>
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
return SubGraph<const GR, const NF, const EF>
(graph, node_filter, edge_filter);
/// \ingroup graph_adaptors
/// \brief Adaptor class for hiding nodes in a digraph or a graph.
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a
/// graph. A \c bool node map must be specified, which defines the filter
/// for the nodes. Only the nodes with \c true filter value and the
/// arcs/edges incident to nodes both with \c true filter value are shown
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept
/// depending on the \c GR template parameter.
/// The adapted (di)graph can also be modified through this adaptor
/// by adding or removing nodes or arcs/edges, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam GR The type of the adapted digraph or graph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept
/// or the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted (di)graph. The default type is
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
/// adapted (di)graph are convertible to each other.
template<typename GR, typename NF>
typename NF = typename GR::template NodeMap<bool>,
public DigraphAdaptorExtender<
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
typedef NF NodeFilterMap;
typedef DigraphAdaptorExtender<
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
typedef typename Parent::Node Node;
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
FilterNodes() : const_true_map() {}
/// Creates a subgraph for the given digraph or graph with the
/// given node filter map.
FilterNodes(GR& graph, NF& node_filter)
: Parent(), const_true_map()
Parent::initialize(graph, node_filter, const_true_map);
/// \brief Sets the status of the given node
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Returns the status of the given node
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Disables the given node
/// This function disables the given node, so the iteration
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Enables the given node
/// This function enables the given node.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
template<typename GR, typename NF>
class FilterNodes<GR, NF,
typename enable_if<UndirectedTagIndicator<GR> >::type> :
public GraphAdaptorExtender<
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
typedef NF NodeFilterMap;
typedef GraphAdaptorExtender<
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
typedef typename Parent::Node Node;
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
FilterNodes() : const_true_map() {}
FilterNodes(GR& graph, NodeFilterMap& node_filter) :
Parent(), const_true_map() {
Parent::initialize(graph, node_filter, const_true_map);
void status(const Node& n, bool v) const { Parent::status(n, v); }
bool status(const Node& n) const { return Parent::status(n); }
void disable(const Node& n) const { Parent::status(n, false); }
void enable(const Node& n) const { Parent::status(n, true); }
/// \brief Returns a read-only FilterNodes adaptor
/// This function just returns a read-only \ref FilterNodes adaptor.
/// \ingroup graph_adaptors
template<typename GR, typename NF>
FilterNodes<const GR, NF>
filterNodes(const GR& graph, NF& node_filter) {
return FilterNodes<const GR, NF>(graph, node_filter);
template<typename GR, typename NF>
FilterNodes<const GR, const NF>
filterNodes(const GR& graph, const NF& node_filter) {
return FilterNodes<const GR, const NF>(graph, node_filter);
/// \ingroup graph_adaptors
/// \brief Adaptor class for hiding arcs in a digraph.
/// FilterArcs adaptor can be used for hiding arcs in a digraph.
/// A \c bool arc map must be specified, which defines the filter for
/// the arcs. Only the arcs with \c true filter value are shown in the
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \tparam AF The type of the arc filter map.
/// It must be a \c bool (or convertible) arc map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
typename AF = typename DGR::template ArcMap<bool> >
public DigraphAdaptorExtender<
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
/// The type of the adapted digraph.
/// The type of the arc filter map.
typedef DigraphAdaptorExtender<
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
typedef typename Parent::Arc Arc;
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
FilterArcs() : const_true_map() {}
/// Creates a subdigraph for the given digraph with the given arc
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
: Parent(), const_true_map() {
Parent::initialize(digraph, const_true_map, arc_filter);
/// \brief Sets the status of the given arc
/// This function sets the status of the given arc.
/// It is done by simply setting the assigned value of \c a
/// to \c v in the arc filter map.
void status(const Arc& a, bool v) const { Parent::status(a, v); }
/// \brief Returns the status of the given arc
/// This function returns the status of the given arc.
/// It is \c true if the given arc is enabled (i.e. not hidden).
bool status(const Arc& a) const { return Parent::status(a); }
/// \brief Disables the given arc
/// This function disables the given arc in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(a, false)".
void disable(const Arc& a) const { Parent::status(a, false); }
/// \brief Enables the given arc
/// This function enables the given arc in the subdigraph.
/// It is the same as \ref status() "status(a, true)".
void enable(const Arc& a) const { Parent::status(a, true); }
/// \brief Returns a read-only FilterArcs adaptor
/// This function just returns a read-only \ref FilterArcs adaptor.
/// \ingroup graph_adaptors
template<typename DGR, typename AF>
FilterArcs<const DGR, AF>
filterArcs(const DGR& digraph, AF& arc_filter) {
return FilterArcs<const DGR, AF>(digraph, arc_filter);
template<typename DGR, typename AF>
FilterArcs<const DGR, const AF>
filterArcs(const DGR& digraph, const AF& arc_filter) {
return FilterArcs<const DGR, const AF>(digraph, arc_filter);
/// \ingroup graph_adaptors
/// \brief Adaptor class for hiding edges in a graph.
/// FilterEdges adaptor can be used for hiding edges in a graph.
/// A \c bool edge map must be specified, which defines the filter for
/// the edges. Only the edges with \c true filter value are shown in the
/// subgraph. This adaptor conforms to the \ref concepts::Graph
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam EF The type of the edge filter map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
/// adapted graph are convertible to each other.
typename EF = typename GR::template EdgeMap<bool> >
public GraphAdaptorExtender<
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
/// The type of the adapted graph.
/// The type of the edge filter map.
typedef EF EdgeFilterMap;
typedef GraphAdaptorExtender<
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
typedef typename Parent::Edge Edge;
ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
FilterEdges() : const_true_map(true) {
Parent::setNodeFilterMap(const_true_map);
/// Creates a subgraph for the given graph with the given edge
FilterEdges(GR& graph, EF& edge_filter)
: Parent(), const_true_map() {
Parent::initialize(graph, const_true_map, edge_filter);
/// \brief Sets the status of the given edge
/// This function sets the status of the given edge.
/// It is done by simply setting the assigned value of \c e
/// to \c v in the edge filter map.
void status(const Edge& e, bool v) const { Parent::status(e, v); }
/// \brief Returns the status of the given edge
/// This function returns the status of the given edge.
/// It is \c true if the given edge is enabled (i.e. not hidden).
bool status(const Edge& e) const { return Parent::status(e); }
/// \brief Disables the given edge
/// This function disables the given edge in the subgraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(e, false)".
void disable(const Edge& e) const { Parent::status(e, false); }
/// \brief Enables the given edge
/// This function enables the given edge in the subgraph.
/// It is the same as \ref status() "status(e, true)".
void enable(const Edge& e) const { Parent::status(e, true); }
/// \brief Returns a read-only FilterEdges adaptor
/// This function just returns a read-only \ref FilterEdges adaptor.
/// \ingroup graph_adaptors
template<typename GR, typename EF>
FilterEdges<const GR, EF>
filterEdges(const GR& graph, EF& edge_filter) {
return FilterEdges<const GR, EF>(graph, edge_filter);
template<typename GR, typename EF>
FilterEdges<const GR, const EF>
filterEdges(const GR& graph, const EF& edge_filter) {
return FilterEdges<const GR, const EF>(graph, edge_filter);
typedef UndirectorBase Adaptor;
typedef True UndirectedTag;
typedef typename Digraph::Arc Edge;
typedef typename Digraph::Node Node;
class Arc : public Edge {
friend class UndirectorBase;
Arc(const Edge& edge, bool forward) :
Edge(edge), _forward(forward) {}
Arc(Invalid) : Edge(INVALID), _forward(true) {}
bool operator==(const Arc &other) const {
return _forward == other._forward &&
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
bool operator!=(const Arc &other) const {
return _forward != other._forward ||
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
bool operator<(const Arc &other) const {
return _forward < other._forward ||
(_forward == other._forward &&
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
void first(Node& n) const {
void next(Node& n) const {
void first(Arc& a) const {
void next(Arc& a) const {
void first(Edge& e) const {
void next(Edge& e) const {
void firstOut(Arc& a, const Node& n) const {
if( static_cast<const Edge&>(a) != INVALID ) {
_digraph->firstOut(a, n);
void nextOut(Arc &a) const {
Node n = _digraph->target(a);
if (static_cast<const Edge&>(a) == INVALID ) {
_digraph->firstOut(a, n);
void firstIn(Arc &a, const Node &n) const {
_digraph->firstOut(a, n);
if (static_cast<const Edge&>(a) != INVALID ) {
void nextIn(Arc &a) const {
Node n = _digraph->source(a);
if( static_cast<const Edge&>(a) == INVALID ) {
void firstInc(Edge &e, bool &d, const Node &n) const {
_digraph->firstOut(e, n);
if (e != INVALID) return;
void nextInc(Edge &e, bool &d) const {
Node s = _digraph->source(e);
if (e != INVALID) return;
Node u(const Edge& e) const {
return _digraph->source(e);
Node v(const Edge& e) const {
return _digraph->target(e);
Node source(const Arc &a) const {
return a._forward ? _digraph->source(a) : _digraph->target(a);
Node target(const Arc &a) const {
return a._forward ? _digraph->target(a) : _digraph->source(a);
static Arc direct(const Edge &e, bool d) {
Arc direct(const Edge &e, const Node& n) const {
return Arc(e, _digraph->source(e) == n);
static bool direction(const Arc &a) { return a._forward; }
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
Arc arcFromId(int ix) const {
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
int id(const Node &n) const { return _digraph->id(n); }
int id(const Arc &a) const {
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
int id(const Edge &e) const { return _digraph->id(e); }
int maxNodeId() const { return _digraph->maxNodeId(); }
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
int maxEdgeId() const { return _digraph->maxArcId(); }
Node addNode() { return _digraph->addNode(); }
Edge addEdge(const Node& u, const Node& v) {
return _digraph->addArc(u, v);
void erase(const Node& i) { _digraph->erase(i); }
void erase(const Edge& i) { _digraph->erase(i); }
void clear() { _digraph->clear(); }
typedef NodeNumTagIndicator<Digraph> NodeNumTag;
int nodeNum() const { return _digraph->nodeNum(); }
typedef ArcNumTagIndicator<Digraph> ArcNumTag;
int arcNum() const { return 2 * _digraph->arcNum(); }
typedef ArcNumTag EdgeNumTag;
int edgeNum() const { return _digraph->arcNum(); }
typedef FindArcTagIndicator<Digraph> FindArcTag;
Arc findArc(Node s, Node t, Arc p = INVALID) const {
Edge arc = _digraph->findArc(s, t);
if (arc != INVALID) return direct(arc, true);
arc = _digraph->findArc(t, s);
if (arc != INVALID) return direct(arc, false);
} else if (direction(p)) {
Edge arc = _digraph->findArc(s, t, p);
if (arc != INVALID) return direct(arc, true);
arc = _digraph->findArc(t, s);
if (arc != INVALID) return direct(arc, false);
Edge arc = _digraph->findArc(t, s, p);
if (arc != INVALID) return direct(arc, false);
typedef FindArcTag FindEdgeTag;
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
Edge arc = _digraph->findArc(s, t);
if (arc != INVALID) return arc;
arc = _digraph->findArc(t, s);
if (arc != INVALID) return arc;
} else if (_digraph->source(p) == s) {
Edge arc = _digraph->findArc(s, t, p);
if (arc != INVALID) return arc;
arc = _digraph->findArc(t, s);
if (arc != INVALID) return arc;
Edge arc = _digraph->findArc(t, s, p);
if (arc != INVALID) return arc;
return _digraph->findArc(s, t, p);
typedef typename DGR::template ArcMap<V> MapImpl;
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
typedef typename MapTraits<MapImpl>::ReturnValue Reference;
ArcMapBase(const UndirectorBase<DGR>& adaptor) :
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
: _forward(*adaptor._digraph, value),
_backward(*adaptor._digraph, value) {}
void set(const Arc& a, const V& value) {
ConstReturnValue operator[](const Arc& a) const {
ReturnValue operator[](const Arc& a) {
MapImpl _forward, _backward;
class NodeMap : public DGR::template NodeMap<V> {
typedef typename DGR::template NodeMap<Value> Parent;
explicit NodeMap(const UndirectorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) { }
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> >
typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent;
explicit ArcMap(const UndirectorBase<DGR>& adaptor)
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
class EdgeMap : public Digraph::template ArcMap<V> {
typedef typename Digraph::template ArcMap<V> Parent;
explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) {}
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
EdgeMap& operator=(const CMap& cmap) {
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
UndirectorBase() : _digraph(0) {}
void initialize(DGR& digraph) {
/// \ingroup graph_adaptors
/// \brief Adaptor class for viewing a digraph as an undirected graph.
/// Undirector adaptor can be used for viewing a digraph as an undirected
/// graph. All arcs of the underlying digraph are showed in the
/// adaptor as an edge (and also as a pair of arcs, of course).
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \note The \c Node type of this adaptor and the adapted digraph are
/// convertible to each other, moreover the \c Edge type of the adaptor
/// and the \c Arc type of the adapted digraph are also convertible to
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
/// of the adapted digraph.)
public GraphAdaptorExtender<UndirectorBase<DGR> > {
/// The type of the adapted digraph.
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
/// Creates an undirected graph from the given digraph.
Undirector(DGR& digraph) {
/// \brief Arc map combined from two original arc maps
/// This map adaptor class adapts two arc maps of the underlying
/// digraph to get an arc map of the undirected graph.
/// Its value type is inherited from the first arc map type
template <typename ForwardMap, typename BackwardMap>
/// The key type of the map
typedef typename Parent::Arc Key;
/// The value type of the map
typedef typename ForwardMap::Value Value;
typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue;
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<ForwardMap>::ReturnValue Reference;
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference;
CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
: _forward(&forward), _backward(&backward) {}
/// Sets the value associated with the given key.
void set(const Key& e, const Value& a) {
if (Parent::direction(e)) {
/// Returns the value associated with the given key.
ConstReturnValue operator[](const Key& e) const {
if (Parent::direction(e)) {
/// Returns a reference to the value associated with the given key.
ReturnValue operator[](const Key& e) {
if (Parent::direction(e)) {
/// \brief Returns a combined arc map
/// This function just returns a combined arc map.
template <typename ForwardMap, typename BackwardMap>
static CombinedArcMap<ForwardMap, BackwardMap>
combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
template <typename ForwardMap, typename BackwardMap>
static CombinedArcMap<const ForwardMap, BackwardMap>
combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
return CombinedArcMap<const ForwardMap,
BackwardMap>(forward, backward);
template <typename ForwardMap, typename BackwardMap>
static CombinedArcMap<ForwardMap, const BackwardMap>
combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
return CombinedArcMap<ForwardMap,
const BackwardMap>(forward, backward);
template <typename ForwardMap, typename BackwardMap>
static CombinedArcMap<const ForwardMap, const BackwardMap>
combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
return CombinedArcMap<const ForwardMap,
const BackwardMap>(forward, backward);
/// \brief Returns a read-only Undirector adaptor
/// This function just returns a read-only \ref Undirector adaptor.
/// \ingroup graph_adaptors
Undirector<const DGR> undirector(const DGR& digraph) {
return Undirector<const DGR>(digraph);
template <typename GR, typename DM>
typedef typename GR::Node Node;
typedef typename GR::Edge Arc;
void reverseArc(const Arc& arc) {
_direction->set(arc, !(*_direction)[arc]);
void first(Node& i) const { _graph->first(i); }
void first(Arc& i) const { _graph->first(i); }
void firstIn(Arc& i, const Node& n) const {
_graph->firstInc(i, d, n);
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
void firstOut(Arc& i, const Node& n ) const {
_graph->firstInc(i, d, n);
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
void next(Node& i) const { _graph->next(i); }
void next(Arc& i) const { _graph->next(i); }
void nextIn(Arc& i) const {
bool d = !(*_direction)[i];
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
void nextOut(Arc& i) const {
bool d = (*_direction)[i];
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
Node source(const Arc& e) const {
return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
Node target(const Arc& e) const {
return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
typedef NodeNumTagIndicator<Graph> NodeNumTag;
int nodeNum() const { return _graph->nodeNum(); }
typedef EdgeNumTagIndicator<Graph> ArcNumTag;
int arcNum() const { return _graph->edgeNum(); }
typedef FindEdgeTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
Arc arc = _graph->findEdge(u, v, prev);
while (arc != INVALID && source(arc) != u) {
arc = _graph->findEdge(u, v, arc);
return Node(_graph->addNode());
Arc addArc(const Node& u, const Node& v) {
Arc arc = _graph->addEdge(u, v);
_direction->set(arc, _graph->u(arc) == u);
void erase(const Node& i) { _graph->erase(i); }
void erase(const Arc& i) { _graph->erase(i); }
void clear() { _graph->clear(); }
int id(const Node& v) const { return _graph->id(v); }
int id(const Arc& e) const { return _graph->id(e); }
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
int maxNodeId() const { return _graph->maxNodeId(); }
int maxArcId() const { return _graph->maxEdgeId(); }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const OrienterBase<GR, DM>& adapter)
: Parent(*adapter._graph) {}
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
class ArcMap : public GR::template EdgeMap<V> {
typedef typename Graph::template EdgeMap<V> Parent;
explicit ArcMap(const OrienterBase<GR, DM>& adapter)
: Parent(*adapter._graph) { }
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
: Parent(*adapter._graph, value) { }
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
void initialize(GR& graph, DM& direction) {
/// \ingroup graph_adaptors
/// \brief Adaptor class for orienting the edges of a graph to get a digraph
/// Orienter adaptor can be used for orienting the edges of a graph to
/// get a digraph. A \c bool edge map of the underlying graph must be
/// specified, which define the direction of the arcs in the adaptor.
/// The arcs can be easily reversed by the \c reverseArc() member function
/// This class conforms to the \ref concepts::Digraph "Digraph" concept.
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam DM The type of the direction map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
/// \note The \c Node type of this adaptor and the adapted graph are
/// convertible to each other, moreover the \c Arc type of the adaptor
/// and the \c Edge type of the adapted graph are also convertible to
typename DM = typename GR::template EdgeMap<bool> >
public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
/// The type of the adapted graph.
/// The type of the direction edge map.
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
typedef typename Parent::Arc Arc;
/// Constructor of the adaptor.
Orienter(GR& graph, DM& direction) {
Parent::initialize(graph, direction);
/// \brief Reverses the given arc
/// This function reverses the given arc.
/// It is done by simply negate the assigned value of \c a
/// in the direction map.
void reverseArc(const Arc& a) {
/// \brief Returns a read-only Orienter adaptor
/// This function just returns a read-only \ref Orienter adaptor.
/// \ingroup graph_adaptors
template<typename GR, typename DM>
orienter(const GR& graph, DM& direction) {
return Orienter<const GR, DM>(graph, direction);
template<typename GR, typename DM>
Orienter<const GR, const DM>
orienter(const GR& graph, const DM& direction) {
return Orienter<const GR, const DM>(graph, direction);
namespace _adaptor_bits {
template <typename DGR, typename CM, typename FM, typename TL>
typedef typename DGR::Arc Key;
ResForwardFilter(const CM& capacity, const FM& flow,
const TL& tolerance = TL())
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
bool operator[](const typename DGR::Arc& a) const {
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
template<typename DGR,typename CM, typename FM, typename TL>
class ResBackwardFilter {
typedef typename DGR::Arc Key;
ResBackwardFilter(const CM& capacity, const FM& flow,
const TL& tolerance = TL())
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
bool operator[](const typename DGR::Arc& a) const {
return _tolerance.positive((*_flow)[a]);
/// \ingroup graph_adaptors
/// \brief Adaptor class for composing the residual digraph for directed
/// flow and circulation problems.
/// ResidualDigraph can be used for composing the \e residual digraph
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
/// be a directed graph and let \f$ F \f$ be a number type.
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
/// This adaptor implements a digraph structure with node set \f$ V \f$
/// and arc set \f$ A_{forward}\cup A_{backward} \f$,
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
/// called residual digraph.
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
/// multiplicities are counted, i.e. the adaptor has exactly
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
/// This class conforms to the \ref concepts::Digraph "Digraph" concept.
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It is implicitly \c const.
/// \tparam CM The type of the capacity map.
/// It must be an arc map of some numerical type, which defines
/// the capacities in the flow problem. It is implicitly \c const.
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam FM The type of the flow map.
/// It must be an arc map of some numerical type, which defines
/// the flow values in the flow problem. The default type is \c CM.
/// \tparam TL The tolerance type for handling inexact computation.
/// The default tolerance type depends on the value type of the
/// \note This adaptor is implemented using Undirector and FilterArcs
/// \note The \c Node type of this adaptor and the adapted digraph are
/// convertible to each other, moreover the \c Arc type of the adaptor
/// is convertible to the \c Arc type of the adapted digraph.
template<typename DGR, typename CM, typename FM, typename TL>
typename CM = typename DGR::template ArcMap<int>,
typename TL = Tolerance<typename CM::Value> >
ConstMap<typename DGR::Node, Const<bool, true> >,
typename Undirector<const DGR>::template CombinedArcMap<
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
/// The type of the underlying digraph.
/// The type of the capacity map.
/// The type of the flow map.
typedef typename CapacityMap::Value Value;
typedef ResidualDigraph Adaptor;
typedef Undirector<const Digraph> Undirected;
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
typedef typename Undirected::
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
const CapacityMap* _capacity;
ForwardFilter _forward_filter;
BackwardFilter _backward_filter;
/// Constructor of the residual digraph adaptor. The parameters are the
/// digraph, the capacity map, the flow map, and a tolerance object.
ResidualDigraph(const DGR& digraph, const CM& capacity,
FM& flow, const TL& tolerance = Tolerance())
: Parent(), _capacity(&capacity), _flow(&flow),
_graph(digraph), _node_filter(),
_forward_filter(capacity, flow, tolerance),
_backward_filter(capacity, flow, tolerance),
_arc_filter(_forward_filter, _backward_filter)
Parent::initialize(_graph, _node_filter, _arc_filter);
typedef typename Parent::Arc Arc;
/// \brief Returns the residual capacity of the given arc.
/// Returns the residual capacity of the given arc.
Value residualCapacity(const Arc& a) const {
if (Undirected::direction(a)) {
return (*_capacity)[a] - (*_flow)[a];
/// \brief Augments on the given arc in the residual digraph.
/// Augments on the given arc in the residual digraph. It increases
/// or decreases the flow value on the original arc according to the
/// direction of the residual arc.
void augment(const Arc& a, const Value& v) const {
if (Undirected::direction(a)) {
_flow->set(a, (*_flow)[a] + v);
_flow->set(a, (*_flow)[a] - v);
/// \brief Returns \c true if the given residual arc is a forward arc.
/// Returns \c true if the given residual arc has the same orientation
/// as the original arc, i.e. it is a so called forward arc.
static bool forward(const Arc& a) {
return Undirected::direction(a);
/// \brief Returns \c true if the given residual arc is a backward arc.
/// Returns \c true if the given residual arc has the opposite orientation
/// than the original arc, i.e. it is a so called backward arc.
static bool backward(const Arc& a) {
return !Undirected::direction(a);
/// \brief Returns the forward oriented residual arc.
/// Returns the forward oriented residual arc related to the given
/// arc of the underlying digraph.
static Arc forward(const typename Digraph::Arc& a) {
return Undirected::direct(a, true);
/// \brief Returns the backward oriented residual arc.
/// Returns the backward oriented residual arc related to the given
/// arc of the underlying digraph.
static Arc backward(const typename Digraph::Arc& a) {
return Undirected::direct(a, false);
/// \brief Residual capacity map.
/// This map adaptor class can be used for obtaining the residual
/// capacities as an arc map of the residual digraph.
/// Its value type is inherited from the capacity map.
/// The key type of the map
/// The value type of the map
typedef typename CapacityMap::Value Value;
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
/// Returns the value associated with the given residual arc
Value operator[](const Arc& a) const {
return _adaptor->residualCapacity(a);
/// \brief Returns a residual capacity map
/// This function just returns a residual capacity map.
ResidualCapacity residualCapacity() const {
return ResidualCapacity(*this);
/// \brief Returns a (read-only) Residual adaptor
/// This function just returns a (read-only) \ref ResidualDigraph adaptor.
/// \ingroup graph_adaptors
/// \relates ResidualDigraph
template<typename DGR, typename CM, typename FM>
ResidualDigraph<DGR, CM, FM>
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
typedef DigraphAdaptorBase<const DGR> Parent;
typedef SplitNodesBase Adaptor;
typedef typename DGR::Node DigraphNode;
typedef typename DGR::Arc DigraphArc;
template <typename T> class NodeMapBase;
template <typename T> class ArcMapBase;
class Node : public DigraphNode {
friend class SplitNodesBase;
template <typename T> friend class NodeMapBase;
Node(DigraphNode node, bool in)
: DigraphNode(node), _in(in) {}
Node(Invalid) : DigraphNode(INVALID), _in(true) {}
bool operator==(const Node& node) const {
return DigraphNode::operator==(node) && _in == node._in;
bool operator!=(const Node& node) const {
bool operator<(const Node& node) const {
return DigraphNode::operator<(node) ||
(DigraphNode::operator==(node) && _in < node._in);
friend class SplitNodesBase;
template <typename T> friend class ArcMapBase;
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
explicit Arc(const DigraphArc& arc) : _item(arc) {}
explicit Arc(const DigraphNode& node) : _item(node) {}
Arc(Invalid) : _item(DigraphArc(INVALID)) {}
bool operator==(const Arc& arc) const {
if (_item.firstState()) {
if (arc._item.firstState()) {
return _item.first() == arc._item.first();
if (arc._item.secondState()) {
return _item.second() == arc._item.second();
bool operator!=(const Arc& arc) const {
bool operator<(const Arc& arc) const {
if (_item.firstState()) {
if (arc._item.firstState()) {
return _item.first() < arc._item.first();
if (arc._item.secondState()) {
return _item.second() < arc._item.second();
operator DigraphArc() const { return _item.first(); }
operator DigraphNode() const { return _item.second(); }
void first(Node& n) const {
void next(Node& n) const {
void first(Arc& e) const {
_digraph->first(e._item.second());
if (e._item.second() == INVALID) {
_digraph->first(e._item.first());
void next(Arc& e) const {
if (e._item.secondState()) {
_digraph->next(e._item.second());
if (e._item.second() == INVALID) {
_digraph->first(e._item.first());
_digraph->next(e._item.first());
void firstOut(Arc& e, const Node& n) const {
_digraph->firstOut(e._item.first(), n);
void nextOut(Arc& e) const {
if (!e._item.firstState()) {
e._item.setFirst(INVALID);
_digraph->nextOut(e._item.first());
void firstIn(Arc& e, const Node& n) const {
_digraph->firstIn(e._item.first(), n);
void nextIn(Arc& e) const {
if (!e._item.firstState()) {
e._item.setFirst(INVALID);
_digraph->nextIn(e._item.first());
Node source(const Arc& e) const {
if (e._item.firstState()) {
return Node(_digraph->source(e._item.first()), false);
return Node(e._item.second(), true);
Node target(const Arc& e) const {
if (e._item.firstState()) {
return Node(_digraph->target(e._item.first()), true);
return Node(e._item.second(), false);
int id(const Node& n) const {
return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
Node nodeFromId(int ix) const {
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
return 2 * _digraph->maxNodeId() + 1;
int id(const Arc& e) const {
if (e._item.firstState()) {
return _digraph->id(e._item.first()) << 1;
return (_digraph->id(e._item.second()) << 1) | 1;
Arc arcFromId(int ix) const {
return Arc(_digraph->arcFromId(ix >> 1));
return Arc(_digraph->nodeFromId(ix >> 1));
return std::max(_digraph->maxNodeId() << 1,
(_digraph->maxArcId() << 1) | 1);
static bool inNode(const Node& n) {
static bool outNode(const Node& n) {
static bool origArc(const Arc& e) {
return e._item.firstState();
static bool bindArc(const Arc& e) {
return e._item.secondState();
static Node inNode(const DigraphNode& n) {
static Node outNode(const DigraphNode& n) {
static Arc arc(const DigraphNode& n) {
static Arc arc(const DigraphArc& e) {
return 2 * countNodes(*_digraph);
return countArcs(*_digraph) + countNodes(*_digraph);
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
if (inNode(u) && outNode(v)) {
if (static_cast<const DigraphNode&>(u) ==
static_cast<const DigraphNode&>(v) && prev == INVALID) {
else if (outNode(u) && inNode(v)) {
return Arc(::lemon::findArc(*_digraph, u, v, prev));
: public MapTraits<typename Parent::template NodeMap<V> > {
typedef typename Parent::template NodeMap<V> NodeImpl;
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
NodeMapBase(const SplitNodesBase<DGR>& adaptor)
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
: _in_map(*adaptor._digraph, value),
_out_map(*adaptor._digraph, value) {}
void set(const Node& key, const V& val) {
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
else {_out_map.set(key, val); }
ReturnValue operator[](const Node& key) {
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
else { return _out_map[key]; }
ConstReturnValue operator[](const Node& key) const {
if (Adaptor::inNode(key)) { return _in_map[key]; }
else { return _out_map[key]; }
NodeImpl _in_map, _out_map;
: public MapTraits<typename Parent::template ArcMap<V> > {
typedef typename Parent::template ArcMap<V> ArcImpl;
typedef typename Parent::template NodeMap<V> NodeImpl;
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
ArcMapBase(const SplitNodesBase<DGR>& adaptor)
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
: _arc_map(*adaptor._digraph, value),
_node_map(*adaptor._digraph, value) {}
void set(const Arc& key, const V& val) {
if (SplitNodesBase<DGR>::origArc(key)) {
_arc_map.set(key._item.first(), val);
_node_map.set(key._item.second(), val);
ReturnValue operator[](const Arc& key) {
if (SplitNodesBase<DGR>::origArc(key)) {
return _arc_map[key._item.first()];
return _node_map[key._item.second()];
ConstReturnValue operator[](const Arc& key) const {
if (SplitNodesBase<DGR>::origArc(key)) {
return _arc_map[key._item.first()];
return _node_map[key._item.second()];
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> >
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent;
NodeMap(const SplitNodesBase<DGR>& adaptor)
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> >
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent;
ArcMap(const SplitNodesBase<DGR>& adaptor)
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
ArcMap& operator=(const CMap& cmap) {
SplitNodesBase() : _digraph(0) {}
void initialize(Digraph& digraph) {
/// \ingroup graph_adaptors
/// \brief Adaptor class for splitting the nodes of a digraph.
/// SplitNodes adaptor can be used for splitting each node into an
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
/// replaces each node \f$ u \f$ in the digraph with two nodes,
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
/// new target of the arc will be \f$ u_{in} \f$ and similarly the
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
/// The aim of this class is running an algorithm with respect to node
/// costs or capacities if the algorithm considers only arc costs or
/// In this case you can use \c SplitNodes adaptor, and set the node
/// costs/capacities of the original digraph to the \e bind \e arcs
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It is implicitly \c const.
/// \note The \c Node type of this adaptor is converible to the \c Node
/// type of the adapted digraph.
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
typedef typename DGR::Node DigraphNode;
typedef typename DGR::Arc DigraphArc;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
/// Constructor of the adaptor.
SplitNodes(const DGR& g) {
/// \brief Returns \c true if the given node is an in-node.
/// Returns \c true if the given node is an in-node.
static bool inNode(const Node& n) {
return Parent::inNode(n);
/// \brief Returns \c true if the given node is an out-node.
/// Returns \c true if the given node is an out-node.
static bool outNode(const Node& n) {
return Parent::outNode(n);
/// \brief Returns \c true if the given arc is an original arc.
/// Returns \c true if the given arc is one of the arcs in the
static bool origArc(const Arc& a) {
return Parent::origArc(a);
/// \brief Returns \c true if the given arc is a bind arc.
/// Returns \c true if the given arc is a bind arc, i.e. it connects
/// an in-node and an out-node.
static bool bindArc(const Arc& a) {
return Parent::bindArc(a);
/// \brief Returns the in-node created from the given original node.
/// Returns the in-node created from the given original node.
static Node inNode(const DigraphNode& n) {
return Parent::inNode(n);
/// \brief Returns the out-node created from the given original node.
/// Returns the out-node created from the given original node.
static Node outNode(const DigraphNode& n) {
return Parent::outNode(n);
/// \brief Returns the bind arc that corresponds to the given
/// Returns the bind arc in the adaptor that corresponds to the given
/// original node, i.e. the arc connecting the in-node and out-node
static Arc arc(const DigraphNode& n) {
/// \brief Returns the arc that corresponds to the given original arc.
/// Returns the arc in the adaptor that corresponds to the given
static Arc arc(const DigraphArc& a) {
/// \brief Node map combined from two original node maps
/// This map adaptor class adapts two node maps of the original digraph
/// to get a node map of the split digraph.
/// Its value type is inherited from the first node map type
template <typename InNodeMap, typename OutNodeMap>
/// The key type of the map
/// The value type of the map
typedef typename InNodeMap::Value Value;
typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue;
typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<InNodeMap>::ReturnValue Reference;
typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReference;
CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
: _in_map(in_map), _out_map(out_map) {}
/// Returns the value associated with the given key.
Value operator[](const Key& key) const {
if (SplitNodesBase<const DGR>::inNode(key)) {
/// Returns a reference to the value associated with the given key.
Value& operator[](const Key& key) {
if (SplitNodesBase<const DGR>::inNode(key)) {
/// Sets the value associated with the given key.
void set(const Key& key, const Value& value) {
if (SplitNodesBase<const DGR>::inNode(key)) {
_out_map.set(key, value);
/// \brief Returns a combined node map
/// This function just returns a combined node map.
template <typename InNodeMap, typename OutNodeMap>
static CombinedNodeMap<InNodeMap, OutNodeMap>
combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
template <typename InNodeMap, typename OutNodeMap>
static CombinedNodeMap<const InNodeMap, OutNodeMap>
combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
template <typename InNodeMap, typename OutNodeMap>
static CombinedNodeMap<InNodeMap, const OutNodeMap>
combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
template <typename InNodeMap, typename OutNodeMap>
static CombinedNodeMap<const InNodeMap, const OutNodeMap>
combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
return CombinedNodeMap<const InNodeMap,
const OutNodeMap>(in_map, out_map);
/// \brief Arc map combined from an arc map and a node map of the
/// This map adaptor class adapts an arc map and a node map of the
/// original digraph to get an arc map of the split digraph.
/// Its value type is inherited from the original arc map type
template <typename ArcMap, typename NodeMap>
/// The key type of the map
/// The value type of the map
typedef typename ArcMap::Value Value;
typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue;
typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<ArcMap>::ReturnValue Reference;
typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference;
CombinedArcMap(ArcMap& arc_map, NodeMap& node_map)
: _arc_map(arc_map), _node_map(node_map) {}
/// Returns the value associated with the given key.
Value operator[](const Key& arc) const {
if (SplitNodesBase<const DGR>::origArc(arc)) {
/// Returns a reference to the value associated with the given key.
Value& operator[](const Key& arc) {
if (SplitNodesBase<const DGR>::origArc(arc)) {
/// Sets the value associated with the given key.
void set(const Arc& arc, const Value& val) {
if (SplitNodesBase<const DGR>::origArc(arc)) {
/// \brief Returns a combined arc map
/// This function just returns a combined arc map.
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<ArcMap, NodeMap>
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<const ArcMap, NodeMap>
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<ArcMap, const NodeMap>
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<const ArcMap, const NodeMap>
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
/// \brief Returns a (read-only) SplitNodes adaptor
/// This function just returns a (read-only) \ref SplitNodes adaptor.
/// \ingroup graph_adaptors
splitNodes(const DGR& digraph) {
return SplitNodes<DGR>(digraph);
#endif //LEMON_ADAPTORS_H