/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Fibonacci heap implementation.
/// \brief Fibonacci heap data structure.
/// This class implements the \e Fibonacci \e heap data structure.
/// It fully conforms to the \ref concepts::Heap "heap concept".
/// The methods \ref increase() and \ref erase() are not efficient in a
/// Fibonacci heap. In case of many calls of these operations, it is
/// better to use other heap structure, e.g. \ref BinHeap "binary heap".
/// \tparam PR Type of the priorities of the items.
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam CMP A functor class for comparing the priorities.
/// The default is \c std::less<PR>.
template <typename PR, typename IM, typename CMP>
template <typename PR, typename IM, typename CMP = std::less<PR> >
/// Type of the item-int map.
/// Type of the priorities.
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Type of the item-priority pairs.
typedef std::pair<Item,Prio> Pair;
/// Functor type for comparing the priorities.
std::vector<Store> _data;
/// \brief Type to represent the states of the items.
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit FibHeap(ItemIntMap &map)
: _minimum(0), _iim(map), _num() {}
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
/// \param comp The function object used for comparing the priorities.
FibHeap(ItemIntMap &map, const Compare &comp)
: _minimum(0), _iim(map), _comp(comp), _num() {}
/// \brief The number of items stored in the heap.
/// This function returns the number of items stored in the heap.
int size() const { return _num; }
/// \brief Check if the heap is empty.
/// This function returns \c true if the heap is empty.
bool empty() const { return _num==0; }
/// \brief Make the heap empty.
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
_data.clear(); _minimum = 0; _num = 0;
/// \brief Insert an item into the heap with the given priority.
/// This function inserts the given item into the heap with the
/// \param item The item to insert.
/// \param prio The priority of the item.
/// \pre \e item must not be stored in the heap.
void push (const Item& item, const Prio& prio) {
_data[i].parent=_data[i].child=-1;
_data[_data[_minimum].right_neighbor].left_neighbor=i;
_data[i].right_neighbor=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=i;
_data[i].left_neighbor=_minimum;
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
_data[i].right_neighbor=_data[i].left_neighbor=i;
/// \brief Return the item having minimum priority.
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const { return _data[_minimum].name; }
/// \brief The minimum priority.
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
Prio prio() const { return _data[_minimum].prio; }
/// \brief Remove the item having minimum priority.
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
/*The first case is that there are only one root.*/
if ( _data[_minimum].left_neighbor==_minimum ) {
_data[_minimum].in=false;
if ( _data[_minimum].degree!=0 ) {
makeRoot(_data[_minimum].child);
_minimum=_data[_minimum].child;
int right=_data[_minimum].right_neighbor;
_data[_minimum].in=false;
if ( _data[_minimum].degree > 0 ) {
int left=_data[_minimum].left_neighbor;
int child=_data[_minimum].child;
int last_child=_data[child].left_neighbor;
_data[left].right_neighbor=child;
_data[child].left_neighbor=left;
_data[right].left_neighbor=last_child;
_data[last_child].right_neighbor=right;
} // the case where there are more roots
/// \brief Remove the given item from the heap.
/// This function removes the given item from the heap if it is
/// \param item The item to delete.
/// \pre \e item must be in the heap.
void erase (const Item& item) {
if ( i >= 0 && _data[i].in ) {
if ( _data[i].parent!=-1 ) {
_minimum=i; //As if its prio would be -infinity
/// \brief The priority of the given item.
/// This function returns the priority of the given item.
/// \param item The item.
/// \pre \e item must be in the heap.
Prio operator[](const Item& item) const {
return _data[_iim[item]].prio;
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param item The item.
/// \param prio The priority.
void set (const Item& item, const Prio& prio) {
if ( i >= 0 && _data[i].in ) {
if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
if ( _comp(_data[i].prio, prio) ) increase(item, prio);
/// \brief Decrease the priority of an item to the given value.
/// This function decreases the priority of an item to the given value.
/// \param item The item.
/// \param prio The priority.
/// \pre \e item must be stored in the heap with priority at least \e prio.
void decrease (const Item& item, const Prio& prio) {
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
/// \brief Increase the priority of an item to the given value.
/// This function increases the priority of an item to the given value.
/// \param item The item.
/// \param prio The priority.
/// \pre \e item must be stored in the heap with priority at most \e prio.
void increase (const Item& item, const Prio& prio) {
/// \brief Return the state of an item.
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// \param item The item.
State state(const Item &item) const {
/// \brief Set the state of an item in the heap.
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
std::vector<int> A(maxdeg,-1);
*Recall that now minimum does not point to the minimum prio element.
*We set minimum to this during balance().
int anchor=_data[_minimum].left_neighbor;
if ( anchor==active ) end=true;
int d=_data[active].degree;
next=_data[active].right_neighbor;
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
while ( _data[_minimum].parent >=0 )
_minimum=_data[_minimum].parent;
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
s=_data[s].right_neighbor;
s=_data[s].right_neighbor;
*Replacing a from the children of b.
if ( _data[b].degree !=0 ) {
int child=_data[b].child;
_data[b].child=_data[child].right_neighbor;
/*Lacing a to the roots.*/
int right=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=a;
_data[a].left_neighbor=_minimum;
_data[a].right_neighbor=right;
_data[right].left_neighbor=a;
if ( _data[a].parent!=-1 ) {
if ( _data[a].marked==false ) _data[a].marked=true;
void fuse(int a, int b) {
if (_data[a].degree==0) {
_data[b].left_neighbor=b;
_data[b].right_neighbor=b;
int child=_data[a].child;
int last_child=_data[child].left_neighbor;
_data[child].left_neighbor=b;
_data[b].right_neighbor=child;
_data[last_child].right_neighbor=b;
_data[b].left_neighbor=last_child;
*It is invoked only if a has siblings.
int leftn=_data[a].left_neighbor;
int rightn=_data[a].right_neighbor;
_data[leftn].right_neighbor=rightn;
_data[rightn].left_neighbor=leftn;
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
#endif //LEMON_FIB_HEAP_H