/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_LIST_GRAPH_H
#define LEMON_LIST_GRAPH_H
///\brief ListDigraph and ListGraph classes.
#include <lemon/bits/graph_extender.h>
std::vector<NodeT> nodes;
typedef ListDigraphBase Digraph;
friend class ListDigraphBase;
friend class ListDigraph;
explicit Node(int pid) { id = pid;}
Node (Invalid) { id = -1; }
bool operator==(const Node& node) const {return id == node.id;}
bool operator!=(const Node& node) const {return id != node.id;}
bool operator<(const Node& node) const {return id < node.id;}
friend class ListDigraphBase;
friend class ListDigraph;
explicit Arc(int pid) { id = pid;}
Arc (Invalid) { id = -1; }
bool operator==(const Arc& arc) const {return id == arc.id;}
bool operator!=(const Arc& arc) const {return id != arc.id;}
bool operator<(const Arc& arc) const {return id < arc.id;}
: nodes(), first_node(-1),
first_free_node(-1), arcs(), first_free_arc(-1) {}
int maxNodeId() const { return nodes.size()-1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e.id].source); }
Node target(Arc e) const { return Node(arcs[e.id].target); }
void first(Node& node) const {
void next(Node& node) const {
node.id = nodes[node.id].next;
void first(Arc& arc) const {
n != -1 && nodes[n].first_out == -1;
arc.id = (n == -1) ? -1 : nodes[n].first_out;
void next(Arc& arc) const {
if (arcs[arc.id].next_out != -1) {
arc.id = arcs[arc.id].next_out;
for(n = nodes[arcs[arc.id].source].next;
n != -1 && nodes[n].first_out == -1;
arc.id = (n == -1) ? -1 : nodes[n].first_out;
void firstOut(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_out;
void nextOut(Arc &e) const {
e.id=arcs[e.id].next_out;
void firstIn(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_in;
void nextIn(Arc &e) const {
static int id(Node v) { return v.id; }
static int id(Arc e) { return e.id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
bool valid(Node n) const {
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
bool valid(Arc a) const {
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
arcs[a.id].prev_in != -2;
if(first_free_node==-1) {
nodes.push_back(NodeT());
first_free_node = nodes[n].next;
nodes[n].next = first_node;
if(first_node != -1) nodes[first_node].prev = n;
nodes[n].first_in = nodes[n].first_out = -1;
Arc addArc(Node u, Node v) {
if (first_free_arc == -1) {
first_free_arc = arcs[n].next_in;
arcs[n].next_out = nodes[u.id].first_out;
if(nodes[u.id].first_out != -1) {
arcs[nodes[u.id].first_out].prev_out = n;
arcs[n].next_in = nodes[v.id].first_in;
if(nodes[v.id].first_in != -1) {
arcs[nodes[v.id].first_in].prev_in = n;
arcs[n].prev_in = arcs[n].prev_out = -1;
nodes[u.id].first_out = nodes[v.id].first_in = n;
void erase(const Node& node) {
if(nodes[n].next != -1) {
nodes[nodes[n].next].prev = nodes[n].prev;
if(nodes[n].prev != -1) {
nodes[nodes[n].prev].next = nodes[n].next;
first_node = nodes[n].next;
nodes[n].next = first_free_node;
void erase(const Arc& arc) {
if(arcs[n].next_in!=-1) {
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
if(arcs[n].prev_in!=-1) {
arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
nodes[arcs[n].target].first_in = arcs[n].next_in;
if(arcs[n].next_out!=-1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
if(arcs[n].prev_out!=-1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
nodes[arcs[n].source].first_out = arcs[n].next_out;
arcs[n].next_in = first_free_arc;
first_node = first_free_node = first_free_arc = -1;
void changeTarget(Arc e, Node n)
if(arcs[e.id].next_in != -1)
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
if(arcs[e.id].prev_in != -1)
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
if (nodes[n.id].first_in != -1) {
arcs[nodes[n.id].first_in].prev_in = e.id;
arcs[e.id].target = n.id;
arcs[e.id].next_in = nodes[n.id].first_in;
nodes[n.id].first_in = e.id;
void changeSource(Arc e, Node n)
if(arcs[e.id].next_out != -1)
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
if(arcs[e.id].prev_out != -1)
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = e.id;
arcs[e.id].source = n.id;
arcs[e.id].prev_out = -1;
arcs[e.id].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = e.id;
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
///A general directed graph structure.
///\ref ListDigraph is a versatile and fast directed graph
///implementation based on linked lists that are stored in
///\c std::vector structures.
///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
///and it also provides several useful additional functionalities.
///Most of its member functions and nested classes are documented
///only in the concept class.
///This class provides only linear time counting for nodes and arcs.
class ListDigraph : public ExtendedListDigraphBase {
typedef ExtendedListDigraphBase Parent;
/// Digraphs are \e not copy constructible. Use DigraphCopy instead.
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
/// \brief Assignment of a digraph to another one is \e not allowed.
/// Use DigraphCopy instead.
void operator=(const ListDigraph &) {}
///Add a new node to the digraph.
///This function adds a new node to the digraph.
Node addNode() { return Parent::addNode(); }
///Add a new arc to the digraph.
///This function adds a new arc to the digraph with source node \c s
Arc addArc(Node s, Node t) {
return Parent::addArc(s, t);
///\brief Erase a node from the digraph.
///This function erases the given node along with its outgoing and
///incoming arcs from the digraph.
///\note All iterators referencing the removed node or the connected
///arcs are invalidated, of course.
void erase(Node n) { Parent::erase(n); }
///\brief Erase an arc from the digraph.
///This function erases the given arc from the digraph.
///\note All iterators referencing the removed arc are invalidated,
void erase(Arc a) { Parent::erase(a); }
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the digraph.
/// \warning A removed node could become valid again if new nodes are
/// added to the digraph.
bool valid(Node n) const { return Parent::valid(n); }
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the digraph.
/// \warning A removed arc could become valid again if new arcs are
/// added to the digraph.
bool valid(Arc a) const { return Parent::valid(a); }
/// Change the target node of an arc
/// This function changes the target node of the given arc \c a to \c n.
///\note \c ArcIt and \c OutArcIt iterators referencing the changed
///arc remain valid, but \c InArcIt iterators are invalidated.
///\warning This functionality cannot be used together with the Snapshot
void changeTarget(Arc a, Node n) {
Parent::changeTarget(a,n);
/// Change the source node of an arc
/// This function changes the source node of the given arc \c a to \c n.
///\note \c InArcIt iterators referencing the changed arc remain
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
///\warning This functionality cannot be used together with the Snapshot
void changeSource(Arc a, Node n) {
Parent::changeSource(a,n);
/// Reverse the direction of an arc.
/// This function reverses the direction of the given arc.
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
///the changed arc are invalidated.
///\warning This functionality cannot be used together with the Snapshot
changeTarget(a,source(a));
///This function contracts the given two nodes.
///Node \c v is removed, but instead of deleting its
///incident arcs, they are joined to node \c u.
///If the last parameter \c r is \c true (this is the default value),
///then the newly created loops are removed.
///\note The moved arcs are joined to node \c u using changeSource()
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
///invalidated for the outgoing arcs of node \c v and \c InArcIt
///iterators are invalidated for the incomming arcs of \c v.
///Moreover all iterators referencing node \c v or the removed
///loops are also invalidated. Other iterators remain valid.
///\warning This functionality cannot be used together with the Snapshot
void contract(Node u, Node v, bool r = true)
for(OutArcIt e(*this,v);e!=INVALID;) {
if(r && target(e)==u) erase(e);
for(InArcIt e(*this,v);e!=INVALID;) {
if(r && source(e)==u) erase(e);
///This function splits the given node. First, a new node is added
///to the digraph, then the source of each outgoing arc of node \c n
///is moved to this new node.
///If the second parameter \c connect is \c true (this is the default
///value), then a new arc from node \c n to the newly created node
///\return The newly created node.
///\note All iterators remain valid.
///\warning This functionality cannot be used together with the
Node split(Node n, bool connect = true) {
nodes[b.id].first_out=nodes[n.id].first_out;
nodes[n.id].first_out=-1;
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
if (connect) addArc(n,b);
///This function splits the given arc. First, a new node \c v is
///added to the digraph, then the target node of the original arc
///is set to \c v. Finally, an arc from \c v to the original target
///\return The newly created node.
///\note \c InArcIt iterators referencing the original arc are
///invalidated. Other iterators remain valid.
///\warning This functionality cannot be used together with the
///This function erases all nodes and arcs from the digraph.
///\note All iterators of the digraph are invalidated, of course.
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for arcs.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
void reserveArc(int m) { arcs.reserve(m); };
/// \brief Class to make a snapshot of the digraph and restore
/// Class to make a snapshot of the digraph and restore it later.
/// The newly added nodes and arcs can be removed using the
/// \note After a state is restored, you cannot restore a later state,
/// i.e. you cannot add the removed nodes and arcs again using
/// another Snapshot instance.
/// \warning Node and arc deletions and other modifications (e.g.
/// reversing, contracting, splitting arcs or nodes) cannot be
/// restored. These events invalidate the snapshot.
/// However, the arcs and nodes that were added to the digraph after
/// making the current snapshot can be removed without invalidating it.
typedef Parent::NodeNotifier NodeNotifier;
class NodeObserverProxy : public NodeNotifier::ObserverBase {
NodeObserverProxy(Snapshot& _snapshot)
using NodeNotifier::ObserverBase::attach;
using NodeNotifier::ObserverBase::detach;
using NodeNotifier::ObserverBase::attached;
virtual void add(const Node& node) {
virtual void add(const std::vector<Node>& nodes) {
for (int i = nodes.size() - 1; i >= 0; ++i) {
snapshot.addNode(nodes[i]);
virtual void erase(const Node& node) {
snapshot.eraseNode(node);
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
snapshot.eraseNode(nodes[i]);
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
for (int i = nodes.size() - 1; i >= 0; --i) {
snapshot.addNode(nodes[i]);
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
snapshot.eraseNode(node);
class ArcObserverProxy : public ArcNotifier::ObserverBase {
ArcObserverProxy(Snapshot& _snapshot)
using ArcNotifier::ObserverBase::attach;
using ArcNotifier::ObserverBase::detach;
using ArcNotifier::ObserverBase::attached;
virtual void add(const Arc& arc) {
virtual void add(const std::vector<Arc>& arcs) {
for (int i = arcs.size() - 1; i >= 0; ++i) {
snapshot.addArc(arcs[i]);
virtual void erase(const Arc& arc) {
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
snapshot.eraseArc(arcs[i]);
for (notifier()->first(arc); arc != INVALID;
for (int i = arcs.size() - 1; i >= 0; --i) {
snapshot.addArc(arcs[i]);
for (notifier()->first(arc); arc != INVALID;
NodeObserverProxy node_observer_proxy;
ArcObserverProxy arc_observer_proxy;
std::list<Node> added_nodes;
std::list<Arc> added_arcs;
void addNode(const Node& node) {
added_nodes.push_front(node);
void eraseNode(const Node& node) {
std::list<Node>::iterator it =
std::find(added_nodes.begin(), added_nodes.end(), node);
if (it == added_nodes.end()) {
arc_observer_proxy.detach();
throw NodeNotifier::ImmediateDetach();
void addArc(const Arc& arc) {
added_arcs.push_front(arc);
void eraseArc(const Arc& arc) {
std::list<Arc>::iterator it =
std::find(added_arcs.begin(), added_arcs.end(), arc);
if (it == added_arcs.end()) {
node_observer_proxy.detach();
throw ArcNotifier::ImmediateDetach();
void attach(ListDigraph &_digraph) {
node_observer_proxy.attach(digraph->notifier(Node()));
arc_observer_proxy.attach(digraph->notifier(Arc()));
node_observer_proxy.detach();
arc_observer_proxy.detach();
return node_observer_proxy.attached();
/// \brief Default constructor.
/// You have to call save() to actually make a snapshot.
: digraph(0), node_observer_proxy(*this),
arc_observer_proxy(*this) {}
/// \brief Constructor that immediately makes a snapshot.
/// This constructor immediately makes a snapshot of the given digraph.
Snapshot(ListDigraph &gr)
: node_observer_proxy(*this),
arc_observer_proxy(*this) {
/// \brief Make a snapshot.
/// This function makes a snapshot of the given digraph.
/// It can be called more than once. In case of a repeated
/// call, the previous snapshot gets lost.
void save(ListDigraph &gr) {
/// \brief Undo the changes until the last snapshot.
/// This function undos the changes until the last snapshot
/// created by save() or Snapshot(ListDigraph&).
/// \warning This method invalidates the snapshot, i.e. repeated
/// restoring is not supported unless you call save() again.
for(std::list<Arc>::iterator it = added_arcs.begin();
it != added_arcs.end(); ++it) {
for(std::list<Node>::iterator it = added_nodes.begin();
it != added_nodes.end(); ++it) {
/// \brief Returns \c true if the snapshot is valid.
/// This function returns \c true if the snapshot is valid.
std::vector<NodeT> nodes;
typedef ListGraphBase Graph;
friend class ListGraphBase;
explicit Node(int pid) { id = pid;}
Node (Invalid) { id = -1; }
bool operator==(const Node& node) const {return id == node.id;}
bool operator!=(const Node& node) const {return id != node.id;}
bool operator<(const Node& node) const {return id < node.id;}
friend class ListGraphBase;
explicit Edge(int pid) { id = pid;}
Edge (Invalid) { id = -1; }
bool operator==(const Edge& edge) const {return id == edge.id;}
bool operator!=(const Edge& edge) const {return id != edge.id;}
bool operator<(const Edge& edge) const {return id < edge.id;}
friend class ListGraphBase;
explicit Arc(int pid) { id = pid;}
return id != -1 ? edgeFromId(id / 2) : INVALID;
Arc (Invalid) { id = -1; }
bool operator==(const Arc& arc) const {return id == arc.id;}
bool operator!=(const Arc& arc) const {return id != arc.id;}
bool operator<(const Arc& arc) const {return id < arc.id;}
: nodes(), first_node(-1),
first_free_node(-1), arcs(), first_free_arc(-1) {}
int maxNodeId() const { return nodes.size()-1; }
int maxEdgeId() const { return arcs.size() / 2 - 1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
Node target(Arc e) const { return Node(arcs[e.id].target); }
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
static bool direction(Arc e) {
static Arc direct(Edge e, bool d) {
return Arc(e.id * 2 + (d ? 1 : 0));
void first(Node& node) const {
void next(Node& node) const {
node.id = nodes[node.id].next;
void first(Arc& e) const {
while (n != -1 && nodes[n].first_out == -1) {
e.id = (n == -1) ? -1 : nodes[n].first_out;
void next(Arc& e) const {
if (arcs[e.id].next_out != -1) {
e.id = arcs[e.id].next_out;
int n = nodes[arcs[e.id ^ 1].target].next;
while(n != -1 && nodes[n].first_out == -1) {
e.id = (n == -1) ? -1 : nodes[n].first_out;
void first(Edge& e) const {
e.id = nodes[n].first_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
void next(Edge& e) const {
int n = arcs[e.id * 2].target;
e.id = arcs[(e.id * 2) | 1].next_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
e.id = nodes[n].first_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
void firstOut(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_out;
void nextOut(Arc &e) const {
e.id = arcs[e.id].next_out;
void firstIn(Arc &e, const Node& v) const {
e.id = ((nodes[v.id].first_out) ^ 1);
if (e.id == -2) e.id = -1;
void nextIn(Arc &e) const {
e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
if (e.id == -2) e.id = -1;
void firstInc(Edge &e, bool& d, const Node& v) const {
int a = nodes[v.id].first_out;
void nextInc(Edge &e, bool& d) const {
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
static int id(Node v) { return v.id; }
static int id(Arc e) { return e.id; }
static int id(Edge e) { return e.id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
bool valid(Arc a) const {
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
arcs[a.id].prev_out != -2;
bool valid(Edge e) const {
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
arcs[2 * e.id].prev_out != -2;
if(first_free_node==-1) {
nodes.push_back(NodeT());
first_free_node = nodes[n].next;
nodes[n].next = first_node;
if (first_node != -1) nodes[first_node].prev = n;
Edge addEdge(Node u, Node v) {
if (first_free_arc == -1) {
first_free_arc = arcs[n].next_out;
arcs[n | 1].target = v.id;
arcs[n].next_out = nodes[v.id].first_out;
if (nodes[v.id].first_out != -1) {
arcs[nodes[v.id].first_out].prev_out = n;
nodes[v.id].first_out = n;
arcs[n | 1].next_out = nodes[u.id].first_out;
if (nodes[u.id].first_out != -1) {
arcs[nodes[u.id].first_out].prev_out = (n | 1);
arcs[n | 1].prev_out = -1;
nodes[u.id].first_out = (n | 1);
void erase(const Node& node) {
if(nodes[n].next != -1) {
nodes[nodes[n].next].prev = nodes[n].prev;
if(nodes[n].prev != -1) {
nodes[nodes[n].prev].next = nodes[n].next;
first_node = nodes[n].next;
nodes[n].next = first_free_node;
void erase(const Edge& edge) {
if (arcs[n].next_out != -1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
if (arcs[n].prev_out != -1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
if (arcs[n | 1].next_out != -1) {
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
if (arcs[n | 1].prev_out != -1) {
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
arcs[n].next_out = first_free_arc;
arcs[n | 1].prev_out = -2;
first_node = first_free_node = first_free_arc = -1;
void changeV(Edge e, Node n) {
if(arcs[2 * e.id].next_out != -1) {
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
if(arcs[2 * e.id].prev_out != -1) {
arcs[arcs[2 * e.id].prev_out].next_out =
nodes[arcs[(2 * e.id) | 1].target].first_out =
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
arcs[(2 * e.id) | 1].target = n.id;
arcs[2 * e.id].prev_out = -1;
arcs[2 * e.id].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = 2 * e.id;
void changeU(Edge e, Node n) {
if(arcs[(2 * e.id) | 1].next_out != -1) {
arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
arcs[(2 * e.id) | 1].prev_out;
if(arcs[(2 * e.id) | 1].prev_out != -1) {
arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
arcs[(2 * e.id) | 1].next_out;
nodes[arcs[2 * e.id].target].first_out =
arcs[(2 * e.id) | 1].next_out;
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
arcs[2 * e.id].target = n.id;
arcs[(2 * e.id) | 1].prev_out = -1;
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = ((2 * e.id) | 1);
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
///A general undirected graph structure.
///\ref ListGraph is a versatile and fast undirected graph
///implementation based on linked lists that are stored in
///\c std::vector structures.
///This type fully conforms to the \ref concepts::Graph "Graph concept"
///and it also provides several useful additional functionalities.
///Most of its member functions and nested classes are documented
///only in the concept class.
///This class provides only linear time counting for nodes, edges and arcs.
class ListGraph : public ExtendedListGraphBase {
typedef ExtendedListGraphBase Parent;
/// Graphs are \e not copy constructible. Use GraphCopy instead.
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use GraphCopy instead.
void operator=(const ListGraph &) {}
typedef Parent::OutArcIt IncEdgeIt;
/// \brief Add a new node to the graph.
/// This function adds a new node to the graph.
/// \return The new node.
Node addNode() { return Parent::addNode(); }
/// \brief Add a new edge to the graph.
/// This function adds a new edge to the graph between nodes
/// \c u and \c v with inherent orientation from node \c u to
/// \return The new edge.
Edge addEdge(Node u, Node v) {
return Parent::addEdge(u, v);
///\brief Erase a node from the graph.
/// This function erases the given node along with its incident arcs
/// \note All iterators referencing the removed node or the incident
/// edges are invalidated, of course.
void erase(Node n) { Parent::erase(n); }
///\brief Erase an edge from the graph.
/// This function erases the given edge from the graph.
/// \note All iterators referencing the removed edge are invalidated,
void erase(Edge e) { Parent::erase(e); }
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the graph.
/// \warning A removed node could become valid again if new nodes are
bool valid(Node n) const { return Parent::valid(n); }
/// This function gives back \c true if the given edge is valid,
/// i.e. it is a real edge of the graph.
/// \warning A removed edge could become valid again if new edges are
bool valid(Edge e) const { return Parent::valid(e); }
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the graph.
/// \warning A removed arc could become valid again if new edges are
bool valid(Arc a) const { return Parent::valid(a); }
/// \brief Change the first node of an edge.
/// This function changes the first node of the given edge \c e to \c n.
///\note \c EdgeIt and \c ArcIt iterators referencing the
///changed edge are invalidated and all other iterators whose
///base node is the changed node are also invalidated.
///\warning This functionality cannot be used together with the
void changeU(Edge e, Node n) {
/// \brief Change the second node of an edge.
/// This function changes the second node of the given edge \c e to \c n.
///\note \c EdgeIt iterators referencing the changed edge remain
///valid, but \c ArcIt iterators referencing the changed edge and
///all other iterators whose base node is the changed node are also
///\warning This functionality cannot be used together with the
void changeV(Edge e, Node n) {
/// \brief Contract two nodes.
/// This function contracts the given two nodes.
/// Node \c b is removed, but instead of deleting
/// its incident edges, they are joined to node \c a.
/// If the last parameter \c r is \c true (this is the default value),
/// then the newly created loops are removed.
/// \note The moved edges are joined to node \c a using changeU()
/// or changeV(), thus all edge and arc iterators whose base node is
/// \c b are invalidated.
/// Moreover all iterators referencing node \c b or the removed
/// loops are also invalidated. Other iterators remain valid.
///\warning This functionality cannot be used together with the
void contract(Node a, Node b, bool r = true) {
for(IncEdgeIt e(*this, b); e!=INVALID;) {
if (r && runningNode(e) == a) {
///This function erases all nodes and arcs from the graph.
///\note All iterators of the graph are invalidated, of course.
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for edges.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
void reserveEdge(int m) { arcs.reserve(2 * m); };
/// \brief Class to make a snapshot of the graph and restore
/// Class to make a snapshot of the graph and restore it later.
/// The newly added nodes and edges can be removed
/// using the restore() function.
/// \note After a state is restored, you cannot restore a later state,
/// i.e. you cannot add the removed nodes and edges again using
/// another Snapshot instance.
/// \warning Node and edge deletions and other modifications
/// (e.g. changing the end-nodes of edges or contracting nodes)
/// cannot be restored. These events invalidate the snapshot.
/// However, the edges and nodes that were added to the graph after
/// making the current snapshot can be removed without invalidating it.
typedef Parent::NodeNotifier NodeNotifier;
class NodeObserverProxy : public NodeNotifier::ObserverBase {
NodeObserverProxy(Snapshot& _snapshot)
using NodeNotifier::ObserverBase::attach;
using NodeNotifier::ObserverBase::detach;
using NodeNotifier::ObserverBase::attached;
virtual void add(const Node& node) {
virtual void add(const std::vector<Node>& nodes) {
for (int i = nodes.size() - 1; i >= 0; ++i) {
snapshot.addNode(nodes[i]);
virtual void erase(const Node& node) {
snapshot.eraseNode(node);
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
snapshot.eraseNode(nodes[i]);
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
for (int i = nodes.size() - 1; i >= 0; --i) {
snapshot.addNode(nodes[i]);
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
snapshot.eraseNode(node);
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
EdgeObserverProxy(Snapshot& _snapshot)
using EdgeNotifier::ObserverBase::attach;
using EdgeNotifier::ObserverBase::detach;
using EdgeNotifier::ObserverBase::attached;
virtual void add(const Edge& edge) {
virtual void add(const std::vector<Edge>& edges) {
for (int i = edges.size() - 1; i >= 0; ++i) {
snapshot.addEdge(edges[i]);
virtual void erase(const Edge& edge) {
snapshot.eraseEdge(edge);
virtual void erase(const std::vector<Edge>& edges) {
for (int i = 0; i < int(edges.size()); ++i) {
snapshot.eraseEdge(edges[i]);
for (notifier()->first(edge); edge != INVALID;
notifier()->next(edge)) {
for (int i = edges.size() - 1; i >= 0; --i) {
snapshot.addEdge(edges[i]);
for (notifier()->first(edge); edge != INVALID;
notifier()->next(edge)) {
snapshot.eraseEdge(edge);
NodeObserverProxy node_observer_proxy;
EdgeObserverProxy edge_observer_proxy;
std::list<Node> added_nodes;
std::list<Edge> added_edges;
void addNode(const Node& node) {
added_nodes.push_front(node);
void eraseNode(const Node& node) {
std::list<Node>::iterator it =
std::find(added_nodes.begin(), added_nodes.end(), node);
if (it == added_nodes.end()) {
edge_observer_proxy.detach();
throw NodeNotifier::ImmediateDetach();
void addEdge(const Edge& edge) {
added_edges.push_front(edge);
void eraseEdge(const Edge& edge) {
std::list<Edge>::iterator it =
std::find(added_edges.begin(), added_edges.end(), edge);
if (it == added_edges.end()) {
node_observer_proxy.detach();
throw EdgeNotifier::ImmediateDetach();
void attach(ListGraph &_graph) {
node_observer_proxy.attach(graph->notifier(Node()));
edge_observer_proxy.attach(graph->notifier(Edge()));
node_observer_proxy.detach();
edge_observer_proxy.detach();
return node_observer_proxy.attached();
/// \brief Default constructor.
/// You have to call save() to actually make a snapshot.
: graph(0), node_observer_proxy(*this),
edge_observer_proxy(*this) {}
/// \brief Constructor that immediately makes a snapshot.
/// This constructor immediately makes a snapshot of the given graph.
: node_observer_proxy(*this),
edge_observer_proxy(*this) {
/// \brief Make a snapshot.
/// This function makes a snapshot of the given graph.
/// It can be called more than once. In case of a repeated
/// call, the previous snapshot gets lost.
void save(ListGraph &gr) {
/// \brief Undo the changes until the last snapshot.
/// This function undos the changes until the last snapshot
/// created by save() or Snapshot(ListGraph&).
/// \warning This method invalidates the snapshot, i.e. repeated
/// restoring is not supported unless you call save() again.
for(std::list<Edge>::iterator it = added_edges.begin();
it != added_edges.end(); ++it) {
for(std::list<Node>::iterator it = added_nodes.begin();
it != added_nodes.end(); ++it) {
/// \brief Returns \c true if the snapshot is valid.
/// This function returns \c true if the snapshot is valid.