Location: LEMON/LEMON-official/lemon/euler.h

Load file history
gravatar
deba@inf.elte.hu
Fix critical bug in preflow (#372) The wrong transition between the bound decrease and highest active heuristics caused the bug. The last node chosen in bound decrease mode is used in the first iteration in highest active mode.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_EULER_H
#define LEMON_EULER_H
#include<lemon/core.h>
#include<lemon/adaptors.h>
#include<lemon/connectivity.h>
#include <list>
/// \ingroup graph_properties
/// \file
/// \brief Euler tour iterators and a function for checking the \e Eulerian
/// property.
///
///This file provides Euler tour iterators and a function to check
///if a (di)graph is \e Eulerian.
namespace lemon {
///Euler tour iterator for digraphs.
/// \ingroup graph_prop
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
///graph (if there exists) and it converts to the \c Arc type of the digraph.
///
///For example, if the given digraph has an Euler tour (i.e it has only one
///non-trivial component and the in-degree is equal to the out-degree
///for all nodes), then the following code will put the arcs of \c g
///to the vector \c et according to an Euler tour of \c g.
///\code
/// std::vector<ListDigraph::Arc> et;
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
/// et.push_back(e);
///\endcode
///If \c g has no Euler tour, then the resulted walk will not be closed
///or not contain all arcs.
///\sa EulerIt
template<typename GR>
class DiEulerIt
{
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
typedef typename GR::Arc Arc;
typedef typename GR::ArcIt ArcIt;
typedef typename GR::OutArcIt OutArcIt;
typedef typename GR::InArcIt InArcIt;
const GR &g;
typename GR::template NodeMap<OutArcIt> narc;
std::list<Arc> euler;
public:
///Constructor
///Constructor.
///\param gr A digraph.
///\param start The starting point of the tour. If it is not given,
///the tour will start from the first node that has an outgoing arc.
DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
: g(gr), narc(g)
{
if (start==INVALID) {
NodeIt n(g);
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
start=n;
}
if (start!=INVALID) {
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
while (narc[start]!=INVALID) {
euler.push_back(narc[start]);
Node next=g.target(narc[start]);
++narc[start];
start=next;
}
}
}
///Arc conversion
operator Arc() { return euler.empty()?INVALID:euler.front(); }
///Compare with \c INVALID
bool operator==(Invalid) { return euler.empty(); }
///Compare with \c INVALID
bool operator!=(Invalid) { return !euler.empty(); }
///Next arc of the tour
///Next arc of the tour
///
DiEulerIt &operator++() {
Node s=g.target(euler.front());
euler.pop_front();
typename std::list<Arc>::iterator next=euler.begin();
while(narc[s]!=INVALID) {
euler.insert(next,narc[s]);
Node n=g.target(narc[s]);
++narc[s];
s=n;
}
return *this;
}
///Postfix incrementation
/// Postfix incrementation.
///
///\warning This incrementation
///returns an \c Arc, not a \ref DiEulerIt, as one may
///expect.
Arc operator++(int)
{
Arc e=*this;
++(*this);
return e;
}
};
///Euler tour iterator for graphs.
/// \ingroup graph_properties
///This iterator provides an Euler tour (Eulerian circuit) of an
///\e undirected graph (if there exists) and it converts to the \c Arc
///and \c Edge types of the graph.
///
///For example, if the given graph has an Euler tour (i.e it has only one
///non-trivial component and the degree of each node is even),
///the following code will print the arc IDs according to an
///Euler tour of \c g.
///\code
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
/// std::cout << g.id(Edge(e)) << std::eol;
/// }
///\endcode
///Although this iterator is for undirected graphs, it still returns
///arcs in order to indicate the direction of the tour.
///(But arcs convert to edges, of course.)
///
///If \c g has no Euler tour, then the resulted walk will not be closed
///or not contain all edges.
template<typename GR>
class EulerIt
{
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
typedef typename GR::Arc Arc;
typedef typename GR::Edge Edge;
typedef typename GR::ArcIt ArcIt;
typedef typename GR::OutArcIt OutArcIt;
typedef typename GR::InArcIt InArcIt;
const GR &g;
typename GR::template NodeMap<OutArcIt> narc;
typename GR::template EdgeMap<bool> visited;
std::list<Arc> euler;
public:
///Constructor
///Constructor.
///\param gr A graph.
///\param start The starting point of the tour. If it is not given,
///the tour will start from the first node that has an incident edge.
EulerIt(const GR &gr, typename GR::Node start = INVALID)
: g(gr), narc(g), visited(g, false)
{
if (start==INVALID) {
NodeIt n(g);
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
start=n;
}
if (start!=INVALID) {
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
while(narc[start]!=INVALID) {
euler.push_back(narc[start]);
visited[narc[start]]=true;
Node next=g.target(narc[start]);
++narc[start];
start=next;
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
}
}
}
///Arc conversion
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
///Edge conversion
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
///Compare with \c INVALID
bool operator==(Invalid) const { return euler.empty(); }
///Compare with \c INVALID
bool operator!=(Invalid) const { return !euler.empty(); }
///Next arc of the tour
///Next arc of the tour
///
EulerIt &operator++() {
Node s=g.target(euler.front());
euler.pop_front();
typename std::list<Arc>::iterator next=euler.begin();
while(narc[s]!=INVALID) {
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
if(narc[s]==INVALID) break;
else {
euler.insert(next,narc[s]);
visited[narc[s]]=true;
Node n=g.target(narc[s]);
++narc[s];
s=n;
}
}
return *this;
}
///Postfix incrementation
/// Postfix incrementation.
///
///\warning This incrementation returns an \c Arc (which converts to
///an \c Edge), not an \ref EulerIt, as one may expect.
Arc operator++(int)
{
Arc e=*this;
++(*this);
return e;
}
};
///Check if the given graph is Eulerian
/// \ingroup graph_properties
///This function checks if the given graph is Eulerian.
///It works for both directed and undirected graphs.
///
///By definition, a digraph is called \e Eulerian if
///and only if it is connected and the number of incoming and outgoing
///arcs are the same for each node.
///Similarly, an undirected graph is called \e Eulerian if
///and only if it is connected and the number of incident edges is even
///for each node.
///
///\note There are (di)graphs that are not Eulerian, but still have an
/// Euler tour, since they may contain isolated nodes.
///
///\sa DiEulerIt, EulerIt
template<typename GR>
#ifdef DOXYGEN
bool
#else
typename enable_if<UndirectedTagIndicator<GR>,bool>::type
eulerian(const GR &g)
{
for(typename GR::NodeIt n(g);n!=INVALID;++n)
if(countIncEdges(g,n)%2) return false;
return connected(g);
}
template<class GR>
typename disable_if<UndirectedTagIndicator<GR>,bool>::type
#endif
eulerian(const GR &g)
{
for(typename GR::NodeIt n(g);n!=INVALID;++n)
if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
return connected(undirector(g));
}
}
#endif