/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Fibonacci Heap implementation.
///\brief Fibonacci Heap.
///This class implements the \e Fibonacci \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c CMP specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///The methods \ref increase and \ref erase are not efficient in a Fibonacci
///heap. In case of many calls to these operations, it is better to use a
///\ref BinHeap "binary heap".
///\param PRIO Type of the priority of the items.
///\param IM A read and writable Item int map, used internally
///to handle the cross references.
///\param CMP A class for the ordering of the priorities. The
///default is \c std::less<PRIO>.
template <typename PRIO, typename IM, typename CMP>
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
typedef typename ItemIntMap::Key Item;
typedef std::pair<Item,Prio> Pair;
std::vector<Store> _data;
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
/// \brief The constructor
/// \c map should be given to the constructor, since it is
/// used internally to handle the cross references.
explicit FibHeap(ItemIntMap &map)
: _minimum(0), _iim(map), _num() {}
/// \brief The constructor
/// \c map should be given to the constructor, since it is used
/// internally to handle the cross references. \c comp is an
/// object for ordering of the priorities.
FibHeap(ItemIntMap &map, const Compare &comp)
: _minimum(0), _iim(map), _comp(comp), _num() {}
/// \brief The number of items stored in the heap.
/// Returns the number of items stored in the heap.
int size() const { return _num; }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return _num==0; }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
_data.clear(); _minimum = 0; _num = 0;
/// \brief \c item gets to the heap with priority \c value independently
/// if \c item was already there.
/// This method calls \ref push(\c item, \c value) if \c item is not
/// stored in the heap and it calls \ref decrease(\c item, \c value) or
/// \ref increase(\c item, \c value) otherwise.
void set (const Item& item, const Prio& value) {
if ( i >= 0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
/// \brief Adds \c item to the heap with priority \c value.
/// Adds \c item to the heap with priority \c value.
/// \pre \c item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
_data[i].parent=_data[i].child=-1;
_data[_data[_minimum].right_neighbor].left_neighbor=i;
_data[i].right_neighbor=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=i;
_data[i].left_neighbor=_minimum;
if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
_data[i].right_neighbor=_data[i].left_neighbor=i;
/// \brief Returns the item with minimum priority relative to \c Compare.
/// This method returns the item with minimum priority relative to \c
/// \pre The heap must be nonempty.
Item top() const { return _data[_minimum].name; }
/// \brief Returns the minimum priority relative to \c Compare.
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
const Prio& prio() const { return _data[_minimum].prio; }
/// \brief Returns the priority of \c item.
/// It returns the priority of \c item.
/// \pre \c item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
/// \brief Deletes the item with minimum priority relative to \c Compare.
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
/*The first case is that there are only one root.*/
if ( _data[_minimum].left_neighbor==_minimum ) {
_data[_minimum].in=false;
if ( _data[_minimum].degree!=0 ) {
makeroot(_data[_minimum].child);
_minimum=_data[_minimum].child;
int right=_data[_minimum].right_neighbor;
_data[_minimum].in=false;
if ( _data[_minimum].degree > 0 ) {
int left=_data[_minimum].left_neighbor;
int child=_data[_minimum].child;
int last_child=_data[child].left_neighbor;
_data[left].right_neighbor=child;
_data[child].left_neighbor=left;
_data[right].left_neighbor=last_child;
_data[last_child].right_neighbor=right;
} // the case where there are more roots
/// \brief Deletes \c item from the heap.
/// This method deletes \c item from the heap, if \c item was already
/// stored in the heap. It is quite inefficient in Fibonacci heaps.
void erase (const Item& item) {
if ( i >= 0 && _data[i].in ) {
if ( _data[i].parent!=-1 ) {
_minimum=i; //As if its prio would be -infinity
/// \brief Decreases the priority of \c item to \c value.
/// This method decreases the priority of \c item to \c value.
/// \pre \c item must be stored in the heap with priority at least \c
/// value relative to \c Compare.
void decrease (Item item, const Prio& value) {
if ( p!=-1 && _comp(value, _data[p].prio) ) {
if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
/// \brief Increases the priority of \c item to \c value.
/// This method sets the priority of \c item to \c value. Though
/// there is no precondition on the priority of \c item, this
/// method should be used only if it is indeed necessary to increase
/// (relative to \c Compare) the priority of \c item, because this
/// method is inefficient.
void increase (Item item, const Prio& value) {
/// \brief Returns if \c item is in, has already been in, or has never
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &item) const {
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time _complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
std::vector<int> A(maxdeg,-1);
*Recall that now minimum does not point to the minimum prio element.
*We set minimum to this during balance().
int anchor=_data[_minimum].left_neighbor;
if ( anchor==active ) end=true;
int d=_data[active].degree;
next=_data[active].right_neighbor;
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
while ( _data[_minimum].parent >=0 )
_minimum=_data[_minimum].parent;
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
s=_data[s].right_neighbor;
s=_data[s].right_neighbor;
*Replacing a from the children of b.
if ( _data[b].degree !=0 ) {
int child=_data[b].child;
_data[b].child=_data[child].right_neighbor;
/*Lacing a to the roots.*/
int right=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=a;
_data[a].left_neighbor=_minimum;
_data[a].right_neighbor=right;
_data[right].left_neighbor=a;
if ( _data[a].parent!=-1 ) {
if ( _data[a].marked==false ) _data[a].marked=true;
void fuse(int a, int b) {
if (_data[a].degree==0) {
_data[b].left_neighbor=b;
_data[b].right_neighbor=b;
int child=_data[a].child;
int last_child=_data[child].left_neighbor;
_data[child].left_neighbor=b;
_data[b].right_neighbor=child;
_data[last_child].right_neighbor=b;
_data[b].left_neighbor=last_child;
*It is invoked only if a has siblings.
int leftn=_data[a].left_neighbor;
int rightn=_data[a].right_neighbor;
_data[leftn].right_neighbor=rightn;
_data[rightn].left_neighbor=leftn;
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
#endif //LEMON_FIB_HEAP_H