Location: LEMON/LEMON-official/lemon/grosso_locatelli_pullan_mc.h

Load file history
gravatar
kpeter (Peter Kovacs)
Add a heuristic algorithm for the max clique problem (#380)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
/// \ingroup approx_algs
///
/// \file
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan
/// for the maximum clique problem
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/random.h>
namespace lemon {
/// \addtogroup approx_algs
/// @{
/// \brief Implementation of the iterated local search algorithm of Grosso,
/// Locatelli, and Pullan for the maximum clique problem
///
/// \ref GrossoLocatelliPullanMc implements the iterated local search
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
/// \e clique \e problem \ref grosso08maxclique.
/// It is to find the largest complete subgraph (\e clique) in an
/// undirected graph, i.e., the largest set of nodes where each
/// pair of nodes is connected.
///
/// This class provides a simple but highly efficient and robust heuristic
/// method that quickly finds a large clique, but not necessarily the
/// largest one.
///
/// \tparam GR The undirected graph type the algorithm runs on.
///
/// \note %GrossoLocatelliPullanMc provides three different node selection
/// rules, from which the most powerful one is used by default.
/// For more information, see \ref SelectionRule.
template <typename GR>
class GrossoLocatelliPullanMc
{
public:
/// \brief Constants for specifying the node selection rule.
///
/// Enum type containing constants for specifying the node selection rule
/// for the \ref run() function.
///
/// During the algorithm, nodes are selected for addition to the current
/// clique according to the applied rule.
/// In general, the PENALTY_BASED rule turned out to be the most powerful
/// and the most robust, thus it is the default option.
/// However, another selection rule can be specified using the \ref run()
/// function with the proper parameter.
enum SelectionRule {
/// A node is selected randomly without any evaluation at each step.
RANDOM,
/// A node of maximum degree is selected randomly at each step.
DEGREE_BASED,
/// A node of minimum penalty is selected randomly at each step.
/// The node penalties are updated adaptively after each stage of the
/// search process.
PENALTY_BASED
};
private:
TEMPLATE_GRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<char> BoolVector;
typedef std::vector<BoolVector> BoolMatrix;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
const GR &_graph;
IntNodeMap _id;
// Internal matrix representation of the graph
BoolMatrix _gr;
int _n;
// The current clique
BoolVector _clique;
int _size;
// The best clique found so far
BoolVector _best_clique;
int _best_size;
// The "distances" of the nodes from the current clique.
// _delta[u] is the number of nodes in the clique that are
// not connected with u.
IntVector _delta;
// The current tabu set
BoolVector _tabu;
// Random number generator
Random _rnd;
private:
// Implementation of the RANDOM node selection rule.
class RandomSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
public:
// Constructor
RandomSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n)
{}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i]) return i;
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i]) return i;
}
return -1;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
}
return -1;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0) return i;
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0) return i;
}
return -1;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class RandomSelectionRule
// Implementation of the DEGREE_BASED node selection rule.
class DegreeBasedSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
IntVector _deg;
public:
// Constructor
DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n), _deg(_n)
{
for (int i = 0; i != _n; i++) {
int d = 0;
BoolVector &row = mc._gr[i];
for (int j = 0; j != _n; j++) {
if (row[j]) d++;
}
_deg[i] = d;
}
}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class DegreeBasedSelectionRule
// Implementation of the PENALTY_BASED node selection rule.
class PenaltyBasedSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
IntVector _penalty;
public:
// Constructor
PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n), _penalty(_n, 0)
{}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class PenaltyBasedSelectionRule
public:
/// \brief Constructor.
///
/// Constructor.
/// The global \ref rnd "random number generator instance" is used
/// during the algorithm.
///
/// \param graph The undirected graph the algorithm runs on.
GrossoLocatelliPullanMc(const GR& graph) :
_graph(graph), _id(_graph), _rnd(rnd)
{}
/// \brief Constructor with random seed.
///
/// Constructor with random seed.
///
/// \param graph The undirected graph the algorithm runs on.
/// \param seed Seed value for the internal random number generator
/// that is used during the algorithm.
GrossoLocatelliPullanMc(const GR& graph, int seed) :
_graph(graph), _id(_graph), _rnd(seed)
{}
/// \brief Constructor with random number generator.
///
/// Constructor with random number generator.
///
/// \param graph The undirected graph the algorithm runs on.
/// \param random A random number generator that is used during the
/// algorithm.
GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
_graph(graph), _id(_graph), _rnd(random)
{}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \param step_num The maximum number of node selections (steps)
/// during the search process.
/// This parameter controls the running time and the success of the
/// algorithm. For larger values, the algorithm runs slower but it more
/// likely finds larger cliques. For smaller values, the algorithm is
/// faster but probably gives worse results.
/// \param rule The node selection rule. For more information, see
/// \ref SelectionRule.
///
/// \return The size of the found clique.
int run(int step_num = 100000,
SelectionRule rule = PENALTY_BASED)
{
init();
switch (rule) {
case RANDOM:
return start<RandomSelectionRule>(step_num);
case DEGREE_BASED:
return start<DegreeBasedSelectionRule>(step_num);
case PENALTY_BASED:
return start<PenaltyBasedSelectionRule>(step_num);
}
return 0; // avoid warning
}
/// @}
/// \name Query Functions
/// @{
/// \brief The size of the found clique
///
/// This function returns the size of the found clique.
///
/// \pre run() must be called before using this function.
int cliqueSize() const {
return _best_size;
}
/// \brief Gives back the found clique in a \c bool node map
///
/// This function gives back the characteristic vector of the found
/// clique in the given node map.
/// It must be a \ref concepts::WriteMap "writable" node map with
/// \c bool (or convertible) value type.
///
/// \pre run() must be called before using this function.
template <typename CliqueMap>
void cliqueMap(CliqueMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map[n] = static_cast<bool>(_best_clique[_id[n]]);
}
}
/// \brief Iterator to list the nodes of the found clique
///
/// This iterator class lists the nodes of the found clique.
/// Before using it, you must allocate a GrossoLocatelliPullanMc instance
/// and call its \ref GrossoLocatelliPullanMc::run() "run()" method.
///
/// The following example prints out the IDs of the nodes in the found
/// clique.
/// \code
/// GrossoLocatelliPullanMc<Graph> mc(g);
/// mc.run();
/// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc);
/// n != INVALID; ++n)
/// {
/// std::cout << g.id(n) << std::endl;
/// }
/// \endcode
class CliqueNodeIt
{
private:
NodeIt _it;
BoolNodeMap _map;
public:
/// Constructor
/// Constructor.
/// \param mc The algorithm instance.
CliqueNodeIt(const GrossoLocatelliPullanMc &mc)
: _map(mc._graph)
{
mc.cliqueMap(_map);
for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ;
}
/// Conversion to \c Node
operator Node() const { return _it; }
bool operator==(Invalid) const { return _it == INVALID; }
bool operator!=(Invalid) const { return _it != INVALID; }
/// Next node
CliqueNodeIt &operator++() {
for (++_it; _it != INVALID && !_map[_it]; ++_it) ;
return *this;
}
/// Postfix incrementation
/// Postfix incrementation.
///
/// \warning This incrementation returns a \c Node, not a
/// \c CliqueNodeIt as one may expect.
typename GR::Node operator++(int) {
Node n=*this;
++(*this);
return n;
}
};
/// @}
private:
// Adds a node to the current clique
void addCliqueNode(int u) {
if (_clique[u]) return;
_clique[u] = true;
_size++;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (!row[i]) _delta[i]++;
}
}
// Removes a node from the current clique
void delCliqueNode(int u) {
if (!_clique[u]) return;
_clique[u] = false;
_size--;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (!row[i]) _delta[i]--;
}
}
// Initialize data structures
void init() {
_n = countNodes(_graph);
int ui = 0;
for (NodeIt u(_graph); u != INVALID; ++u) {
_id[u] = ui++;
}
_gr.clear();
_gr.resize(_n, BoolVector(_n, false));
ui = 0;
for (NodeIt u(_graph); u != INVALID; ++u) {
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
int vi = _id[_graph.runningNode(e)];
_gr[ui][vi] = true;
_gr[vi][ui] = true;
}
++ui;
}
_clique.clear();
_clique.resize(_n, false);
_size = 0;
_best_clique.clear();
_best_clique.resize(_n, false);
_best_size = 0;
_delta.clear();
_delta.resize(_n, 0);
_tabu.clear();
_tabu.resize(_n, false);
}
// Executes the algorithm
template <typename SelectionRuleImpl>
int start(int max_select) {
// Options for the restart rule
const bool delta_based_restart = true;
const int restart_delta_limit = 4;
if (_n == 0) return 0;
if (_n == 1) {
_best_clique[0] = true;
_best_size = 1;
return _best_size;
}
// Iterated local search
SelectionRuleImpl sel_method(*this);
int select = 0;
IntVector restart_nodes;
while (select < max_select) {
// Perturbation/restart
if (delta_based_restart) {
restart_nodes.clear();
for (int i = 0; i != _n; i++) {
if (_delta[i] >= restart_delta_limit)
restart_nodes.push_back(i);
}
}
int rs_node = -1;
if (restart_nodes.size() > 0) {
rs_node = restart_nodes[_rnd[restart_nodes.size()]];
} else {
rs_node = _rnd[_n];
}
BoolVector &row = _gr[rs_node];
for (int i = 0; i != _n; i++) {
if (_clique[i] && !row[i]) delCliqueNode(i);
}
addCliqueNode(rs_node);
// Local search
_tabu.clear();
_tabu.resize(_n, false);
bool tabu_empty = true;
int max_swap = _size;
while (select < max_select) {
select++;
int u;
if ((u = sel_method.nextFeasibleAddNode()) != -1) {
// Feasible add move
addCliqueNode(u);
if (tabu_empty) max_swap = _size;
}
else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
// Feasible swap move
int v = -1;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (_clique[i] && !row[i]) {
v = i;
break;
}
}
addCliqueNode(u);
delCliqueNode(v);
_tabu[v] = true;
tabu_empty = false;
if (--max_swap <= 0) break;
}
else if ((u = sel_method.nextAddNode()) != -1) {
// Non-feasible add move
addCliqueNode(u);
}
else break;
}
if (_size > _best_size) {
_best_clique = _clique;
_best_size = _size;
if (_best_size == _n) return _best_size;
}
sel_method.update();
}
return _best_size;
}
}; //class GrossoLocatelliPullanMc
///@}
} //namespace lemon
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H