/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#include<lemon/bits/solver_bits.h>
///\brief The interface of the LP solver interface.
///Common base class for LP and MIP solvers
///Usually this class is not used directly, please use one of the concrete
///implementations of the solver interface.
_solver_bits::VarIndex rows;
_solver_bits::VarIndex cols;
///Possible outcomes of an LP solving procedure
///This means that the problem has been successfully solved: either
///an optimal solution has been found or infeasibility/unboundedness
///Any other case (including the case when some user specified
///limit has been exceeded)
///Direction of the optimization
///The floating point type used by the solver
///The not a number constant
///Refer to a column of the LP.
///This type is used to refer to a column of the LP.
///Its value remains valid and correct even after the addition or erase of
///\note This class is similar to other Item types in LEMON, like
///Node and Arc types in digraph.
explicit Col(int id) : _id(id) {}
/// \warning The default constructor sets the Col to an
/// Invalid constructor \& conversion.
/// This constructor initializes the Col to be invalid.
/// \sa Invalid for more details.
Col(const Invalid&) : _id(-1) {}
/// Two \ref Col "Col"s are equal if and only if they point to
/// the same LP column or both are invalid.
bool operator==(Col c) const {return _id == c._id;}
/// \sa operator==(Col c)
bool operator!=(Col c) const {return _id != c._id;}
/// Artificial ordering operator.
/// To allow the use of this object in std::map or similar
/// associative container we require this.
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Col c) const {return _id < c._id;}
///Iterator for iterate over the columns of an LP problem
/// Its usage is quite simple, for example you can count the number
/// of columns in an LP \c lp:
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
class ColIt : public Col {
/// \warning The default constructor sets the iterator
/// to an undefined value.
/// Sets the iterator to the first Col
/// Sets the iterator to the first Col.
ColIt(const LpBase &solver) : _solver(&solver)
_solver->cols.firstItem(_id);
/// Invalid constructor \& conversion
/// Initialize the iterator to be invalid.
/// \sa Invalid for more details.
ColIt(const Invalid&) : Col(INVALID) {}
/// Assign the iterator to the next column.
_solver->cols.nextItem(_id);
/// \brief Returns the ID of the column.
static int id(const Col& col) { return col._id; }
/// \brief Returns the column with the given ID.
/// \pre The argument should be a valid column ID in the LP problem.
static Col colFromId(int id) { return Col(id); }
///Refer to a row of the LP.
///This type is used to refer to a row of the LP.
///Its value remains valid and correct even after the addition or erase of
///\note This class is similar to other Item types in LEMON, like
///Node and Arc types in digraph.
explicit Row(int id) : _id(id) {}
/// \warning The default constructor sets the Row to an
/// Invalid constructor \& conversion.
/// This constructor initializes the Row to be invalid.
/// \sa Invalid for more details.
Row(const Invalid&) : _id(-1) {}
/// Two \ref Row "Row"s are equal if and only if they point to
/// the same LP row or both are invalid.
bool operator==(Row r) const {return _id == r._id;}
/// \sa operator==(Row r)
bool operator!=(Row r) const {return _id != r._id;}
/// Artificial ordering operator.
/// To allow the use of this object in std::map or similar
/// associative container we require this.
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Row r) const {return _id < r._id;}
///Iterator for iterate over the rows of an LP problem
/// Its usage is quite simple, for example you can count the number
/// of rows in an LP \c lp:
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
class RowIt : public Row {
/// \warning The default constructor sets the iterator
/// to an undefined value.
/// Sets the iterator to the first Row
/// Sets the iterator to the first Row.
RowIt(const LpBase &solver) : _solver(&solver)
_solver->rows.firstItem(_id);
/// Invalid constructor \& conversion
/// Initialize the iterator to be invalid.
/// \sa Invalid for more details.
RowIt(const Invalid&) : Row(INVALID) {}
/// Assign the iterator to the next row.
_solver->rows.nextItem(_id);
/// \brief Returns the ID of the row.
static int id(const Row& row) { return row._id; }
/// \brief Returns the row with the given ID.
/// \pre The argument should be a valid row ID in the LP problem.
static Row rowFromId(int id) { return Row(id); }
///Linear expression of variables and a constant component
///This data structure stores a linear expression of the variables
///(\ref Col "Col"s) and also has a constant component.
///There are several ways to access and modify the contents of this
///or you can also iterate through its elements.
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
///(This code computes the primal value of the expression).
///- Numbers (<tt>double</tt>'s)
///and variables (\ref Col "Col"s) directly convert to an
///\ref Expr and the usual linear operations are defined, so
///v*2.1+(3*v+(v*12+w+6)*3)/2
///are valid expressions.
///The usual assignment operations are also defined.
///e+=2*v-3.12*(v-w/2)+2;
///- The constant member can be set and read by dereference
/// The key type of the expression
/// The value type of the expression
typedef LpBase::Value Value;
std::map<int, Value> comps;
/// Construct an empty expression, the coefficients and
/// the constant component are initialized to zero.
Expr() : const_comp(0) {}
/// Construct an expression from a column
/// Construct an expression, which has a term with \c c variable
Expr(const Col &c) : const_comp(0) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(c), 1));
/// Construct an expression from a constant
/// Construct an expression, which's constant component is \c v.
Expr(const Value &v) : const_comp(v) {}
/// Returns the coefficient of the column
Value operator[](const Col& c) const {
std::map<int, Value>::const_iterator it=comps.find(id(c));
/// Returns the coefficient of the column
Value& operator[](const Col& c) {
/// Sets the coefficient of the column
void set(const Col &c, const Value &v) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(c), v));
/// Returns the constant component of the expression
Value& operator*() { return const_comp; }
/// Returns the constant component of the expression
const Value& operator*() const { return const_comp; }
/// \brief Removes the coefficients which's absolute value does
/// not exceed \c epsilon. It also sets to zero the constant
/// component, if it does not exceed epsilon in absolute value.
void simplify(Value epsilon = 0.0) {
std::map<int, Value>::iterator it=comps.begin();
while (it != comps.end()) {
std::map<int, Value>::iterator jt=it;
if (std::fabs((*it).second) <= epsilon) comps.erase(it);
if (std::fabs(const_comp) <= epsilon) const_comp = 0;
void simplify(Value epsilon = 0.0) const {
const_cast<Expr*>(this)->simplify(epsilon);
///Sets all coefficients and the constant component to 0.
Expr &operator+=(const Expr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
comps[it->first]+=it->second;
const_comp+=e.const_comp;
Expr &operator-=(const Expr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
comps[it->first]-=it->second;
const_comp-=e.const_comp;
///Multiply with a constant
Expr &operator*=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
///Division with a constant
Expr &operator/=(const Value &c) {
for (std::map<int, Value>::iterator it=comps.begin();
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
std::map<int, Value>::iterator _it, _end;
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the column of the term
return colFromId(_it->first);
/// Returns the coefficient of the term
Value& operator*() { return _it->second; }
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Assign the iterator to the next term.
CoeffIt& operator++() { ++_it; return *this; }
bool operator==(Invalid) const { return _it == _end; }
bool operator!=(Invalid) const { return _it != _end; }
/// Const iterator over the expression
///The iterator iterates over the terms of the expression.
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
std::map<int, Value>::const_iterator _it, _end;
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
ConstCoeffIt(const Expr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the column of the term
return colFromId(_it->first);
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Assign the iterator to the next term.
ConstCoeffIt& operator++() { ++_it; return *this; }
bool operator==(Invalid) const { return _it == _end; }
bool operator!=(Invalid) const { return _it != _end; }
///This data stucture represents a linear constraint in the LP.
///Basically it is a linear expression with a lower or an upper bound
///(or both). These parts of the constraint can be obtained by the member
///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
///There are two ways to construct a constraint.
///- You can set the linear expression and the bounds directly
/// by the functions above.
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
/// are defined between expressions, or even between constraints whenever
/// it makes sense. Therefore if \c e and \c f are linear expressions and
/// \c s and \c t are numbers, then the followings are valid expressions
/// and thus they can be used directly e.g. in \ref addRow() whenever
///\warning The validity of a constraint is checked only at run
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
///compile, but will fail an assertion.
typedef LpBase::Expr Expr;
typedef Expr::Value Value;
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
Constr(Value lb, const Expr &e, Value ub) :
_expr(e), _lb(lb), _ub(ub) {}
_expr(e), _lb(NaN), _ub(NaN) {}
///Reference to the linear expression
Expr &expr() { return _expr; }
///Cont reference to the linear expression
const Expr &expr() const { return _expr; }
///Reference to the lower bound.
///- \ref INF "INF": the constraint is lower unbounded.
///- \ref NaN "NaN": lower bound has not been set.
///- finite number: the lower bound
Value &lowerBound() { return _lb; }
///The const version of \ref lowerBound()
const Value &lowerBound() const { return _lb; }
///Reference to the upper bound.
///- \ref INF "INF": the constraint is upper unbounded.
///- \ref NaN "NaN": upper bound has not been set.
///- finite number: the upper bound
Value &upperBound() { return _ub; }
///The const version of \ref upperBound()
const Value &upperBound() const { return _ub; }
///Is the constraint lower bounded?
bool lowerBounded() const {
return _lb != -INF && !std::isnan(_lb);
///Is the constraint upper bounded?
bool upperBounded() const {
return _ub != INF && !std::isnan(_ub);
///Linear expression of rows
///This data structure represents a column of the matrix,
///thas is it strores a linear expression of the dual variables
///There are several ways to access and modify the contents of this
///or you can also iterate through its elements.
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
///(This code computes the sum of all coefficients).
///- Numbers (<tt>double</tt>'s)
///and variables (\ref Row "Row"s) directly convert to an
///\ref DualExpr and the usual linear operations are defined, so
///v*2.1+(3*v+(v*12+w)*3)/2
///are valid \ref DualExpr dual expressions.
///The usual assignment operations are also defined.
/// The key type of the expression
/// The value type of the expression
typedef LpBase::Value Value;
std::map<int, Value> comps;
/// Construct an empty expression, the coefficients are
/// Construct an expression from a row
/// Construct an expression, which has a term with \c r dual
/// variable and 1.0 coefficient.
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(r), 1));
/// Returns the coefficient of the row
Value operator[](const Row& r) const {
std::map<int, Value>::const_iterator it = comps.find(id(r));
/// Returns the coefficient of the row
Value& operator[](const Row& r) {
/// Sets the coefficient of the row
void set(const Row &r, const Value &v) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(r), v));
/// \brief Removes the coefficients which's absolute value does
/// not exceed \c epsilon.
void simplify(Value epsilon = 0.0) {
std::map<int, Value>::iterator it=comps.begin();
while (it != comps.end()) {
std::map<int, Value>::iterator jt=it;
if (std::fabs((*it).second) <= epsilon) comps.erase(it);
void simplify(Value epsilon = 0.0) const {
const_cast<DualExpr*>(this)->simplify(epsilon);
///Sets all coefficients to 0.
DualExpr &operator+=(const DualExpr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
comps[it->first]+=it->second;
DualExpr &operator-=(const DualExpr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
comps[it->first]-=it->second;
///Multiply with a constant
DualExpr &operator*=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
///Division with a constant
DualExpr &operator/=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
std::map<int, Value>::iterator _it, _end;
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the row of the term
return rowFromId(_it->first);
/// Returns the coefficient of the term
Value& operator*() { return _it->second; }
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Assign the iterator to the next term.
CoeffIt& operator++() { ++_it; return *this; }
bool operator==(Invalid) const { return _it == _end; }
bool operator!=(Invalid) const { return _it != _end; }
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
std::map<int, Value>::const_iterator _it, _end;
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
ConstCoeffIt(const DualExpr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the row of the term
return rowFromId(_it->first);
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Assign the iterator to the next term.
ConstCoeffIt& operator++() { ++_it; return *this; }
bool operator==(Invalid) const { return _it == _end; }
bool operator!=(Invalid) const { return _it != _end; }
std::map<int, Value>& _host;
const _solver_bits::VarIndex& _index;
typedef std::output_iterator_tag iterator_category;
typedef void difference_type;
InsertIterator(std::map<int, Value>& host,
const _solver_bits::VarIndex& index)
: _host(host), _index(index) {}
InsertIterator& operator=(const std::pair<int, Value>& value) {
typedef std::map<int, Value>::value_type pair_type;
_host.insert(pair_type(_index[value.first], value.second));
InsertIterator& operator*() { return *this; }
InsertIterator& operator++() { return *this; }
InsertIterator operator++(int) { return *this; }
std::map<int, Value>::const_iterator _host_it;
const _solver_bits::VarIndex& _index;
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const std::pair<int, Value> value_type;
typedef value_type reference;
pointer(value_type& _value) : value(_value) {}
value_type* operator->() { return &value; }
ExprIterator(const std::map<int, Value>::const_iterator& host_it,
const _solver_bits::VarIndex& index)
: _host_it(host_it), _index(index) {}
return std::make_pair(_index(_host_it->first), _host_it->second);
return pointer(operator*());
ExprIterator& operator++() { ++_host_it; return *this; }
ExprIterator operator++(int) {
ExprIterator tmp(*this); ++_host_it; return tmp;
ExprIterator& operator--() { --_host_it; return *this; }
ExprIterator operator--(int) {
ExprIterator tmp(*this); --_host_it; return tmp;
bool operator==(const ExprIterator& it) const {
return _host_it == it._host_it;
bool operator!=(const ExprIterator& it) const {
return _host_it != it._host_it;
//Abstract virtual functions
virtual LpBase* _newSolver() const = 0;
virtual LpBase* _cloneSolver() const = 0;
virtual int _addColId(int col) { return cols.addIndex(col); }
virtual int _addRowId(int row) { return rows.addIndex(row); }
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
virtual int _addCol() = 0;
virtual int _addRow() = 0;
virtual void _eraseCol(int col) = 0;
virtual void _eraseRow(int row) = 0;
virtual void _getColName(int col, std::string& name) const = 0;
virtual void _setColName(int col, const std::string& name) = 0;
virtual int _colByName(const std::string& name) const = 0;
virtual void _getRowName(int row, std::string& name) const = 0;
virtual void _setRowName(int row, const std::string& name) = 0;
virtual int _rowByName(const std::string& name) const = 0;
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0;
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
virtual void _getColCoeffs(int i, InsertIterator b) const = 0;
virtual void _setCoeff(int row, int col, Value value) = 0;
virtual Value _getCoeff(int row, int col) const = 0;
virtual void _setColLowerBound(int i, Value value) = 0;
virtual Value _getColLowerBound(int i) const = 0;
virtual void _setColUpperBound(int i, Value value) = 0;
virtual Value _getColUpperBound(int i) const = 0;
virtual void _setRowLowerBound(int i, Value value) = 0;
virtual Value _getRowLowerBound(int i) const = 0;
virtual void _setRowUpperBound(int i, Value value) = 0;
virtual Value _getRowUpperBound(int i) const = 0;
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0;
virtual void _getObjCoeffs(InsertIterator b) const = 0;
virtual void _setObjCoeff(int i, Value obj_coef) = 0;
virtual Value _getObjCoeff(int i) const = 0;
virtual void _setSense(Sense) = 0;
virtual Sense _getSense() const = 0;
virtual void _clear() = 0;
virtual const char* _solverName() const = 0;
//Constant component of the objective function
LpBase() : rows(), cols(), obj_const_comp(0) {}
///Creates a new LP problem
LpBase* newSolver() {return _newSolver();}
///Makes a copy of the LP problem
LpBase* cloneSolver() {return _cloneSolver();}
///Gives back the name of the solver.
const char* solverName() const {return _solverName();}
///\name Build up and modify the LP
///Add a new empty column (i.e a new variable) to the LP
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
///\brief Adds several new columns (i.e variables) at once
///This magic function takes a container as its argument and fills
///its elements with new columns (i.e. variables)
///- a standard STL compatible iterable container with
///\ref Col as its \c values_type like
///std::vector<LpBase::Col>
///std::list<LpBase::Col>
///- a standard STL compatible iterable container with
///\ref Col as its \c mapped_type like
///std::map<AnyType,LpBase::Col>
///- an iterable lemon \ref concepts::WriteMap "write map" like
///ListGraph::NodeMap<LpBase::Col>
///ListGraph::ArcMap<LpBase::Col>
///\return The number of the created column.
int addColSet(T &t) { return 0;}
typename enable_if<typename T::value_type::LpCol,int>::type
addColSet(T &t,dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
typename enable_if<typename T::value_type::second_type::LpCol,
addColSet(T &t,dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
typename enable_if<typename T::MapIt::Value::LpCol,
addColSet(T &t,dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i)
///Set a column (i.e a dual constraint) of the LP
///\param c is the column to be modified
///\param e is a dual linear expression (see \ref DualExpr)
void col(Col c, const DualExpr &e) {
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), cols),
ExprIterator(e.comps.end(), cols));
///Get a column (i.e a dual constraint) of the LP
///\param c is the column to get
///\return the dual expression associated to the column
DualExpr col(Col c) const {
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows));
///Add a new column to the LP
///\param e is a dual linear expression (see \ref DualExpr)
///\param o is the corresponding component of the objective
///function. It is 0 by default.
///\return The created column.
Col addCol(const DualExpr &e, Value o = 0) {
///Add a new empty row (i.e a new constraint) to the LP
///This function adds a new empty row (i.e a new constraint) to the LP.
///\return The created row
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
///\brief Add several new rows (i.e constraints) at once
///This magic function takes a container as its argument and fills
///its elements with new row (i.e. variables)
///- a standard STL compatible iterable container with
///\ref Row as its \c values_type like
///std::vector<LpBase::Row>
///std::list<LpBase::Row>
///- a standard STL compatible iterable container with
///\ref Row as its \c mapped_type like
///std::map<AnyType,LpBase::Row>
///- an iterable lemon \ref concepts::WriteMap "write map" like
///ListGraph::NodeMap<LpBase::Row>
///ListGraph::ArcMap<LpBase::Row>
///\return The number of rows created.
int addRowSet(T &t) { return 0;}
typename enable_if<typename T::value_type::LpRow,int>::type
addRowSet(T &t, dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
typename enable_if<typename T::value_type::second_type::LpRow, int>::type
addRowSet(T &t, dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
typename enable_if<typename T::MapIt::Value::LpRow, int>::type
addRowSet(T &t, dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i)
///Set a row (i.e a constraint) of the LP
///\param r is the row to be modified
///\param l is lower bound (-\ref INF means no bound)
///\param e is a linear expression (see \ref Expr)
///\param u is the upper bound (\ref INF means no bound)
void row(Row r, Value l, const Expr &e, Value u) {
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols),
ExprIterator(e.comps.end(), cols));
_setRowLowerBound(rows(id(r)),l - *e);
_setRowUpperBound(rows(id(r)),u - *e);
///Set a row (i.e a constraint) of the LP
///\param r is the row to be modified
///\param c is a linear expression (see \ref Constr)
void row(Row r, const Constr &c) {
row(r, c.lowerBounded()?c.lowerBound():-INF,
c.expr(), c.upperBounded()?c.upperBound():INF);
///Get a row (i.e a constraint) of the LP
///\param r is the row to get
///\return the expression associated to the row
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols));
///Add a new row (i.e a new constraint) to the LP
///\param l is the lower bound (-\ref INF means no bound)
///\param e is a linear expression (see \ref Expr)
///\param u is the upper bound (\ref INF means no bound)
///\return The created row.
Row addRow(Value l,const Expr &e, Value u) {
///Add a new row (i.e a new constraint) to the LP
///\param c is a linear expression (see \ref Constr)
///\return The created row.
Row addRow(const Constr &c) {
///Erase a column (i.e a variable) from the LP
///\param c is the column to be deleted
_eraseColId(cols(id(c)));
///Erase a row (i.e a constraint) from the LP
///\param r is the row to be deleted
_eraseRowId(rows(id(r)));
/// Get the name of a column
///\param c is the coresponding column
///\return The name of the colunm
std::string colName(Col c) const {
_getColName(cols(id(c)), name);
/// Set the name of a column
///\param c is the coresponding column
///\param name The name to be given
void colName(Col c, const std::string& name) {
_setColName(cols(id(c)), name);
/// Get the column by its name
///\param name The name of the column
///\return the proper column or \c INVALID
Col colByName(const std::string& name) const {
int k = _colByName(name);
return k != -1 ? Col(cols[k]) : Col(INVALID);
/// Get the name of a row
///\param r is the coresponding row
///\return The name of the row
std::string rowName(Row r) const {
_getRowName(rows(id(r)), name);
/// Set the name of a row
///\param r is the coresponding row
///\param name The name to be given
void rowName(Row r, const std::string& name) {
_setRowName(rows(id(r)), name);
/// Get the row by its name
///\param name The name of the row
///\return the proper row or \c INVALID
Row rowByName(const std::string& name) const {
int k = _rowByName(name);
return k != -1 ? Row(rows[k]) : Row(INVALID);
/// Set an element of the coefficient matrix of the LP
///\param r is the row of the element to be modified
///\param c is the column of the element to be modified
///\param val is the new value of the coefficient
void coeff(Row r, Col c, Value val) {
_setCoeff(rows(id(r)),cols(id(c)), val);
/// Get an element of the coefficient matrix of the LP
///\param r is the row of the element
///\param c is the column of the element
///\return the corresponding coefficient
Value coeff(Row r, Col c) const {
return _getCoeff(rows(id(r)),cols(id(c)));
/// Set the lower bound of a column (i.e a variable)
/// The lower bound of a variable (column) has to be given by an
/// extended number of type Value, i.e. a finite number of type
void colLowerBound(Col c, Value value) {
_setColLowerBound(cols(id(c)),value);
/// Get the lower bound of a column (i.e a variable)
/// This function returns the lower bound for column (variable) \c c
/// (this might be -\ref INF as well).
///\return The lower bound for column \c c
Value colLowerBound(Col c) const {
return _getColLowerBound(cols(id(c)));
///\brief Set the lower bound of several columns
///(i.e variables) at once
///This magic function takes a container as its argument
///and applies the function on all of its elements.
///The lower bound of a variable (column) has to be given by an
///extended number of type Value, i.e. a finite number of type
void colLowerBound(T &t, Value value) { return 0;}
typename enable_if<typename T::value_type::LpCol,void>::type
colLowerBound(T &t, Value value,dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colLowerBound(*i, value);
typename enable_if<typename T::value_type::second_type::LpCol,
colLowerBound(T &t, Value value,dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colLowerBound(i->second, value);
typename enable_if<typename T::MapIt::Value::LpCol,
colLowerBound(T &t, Value value,dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i){
colLowerBound(*i, value);
/// Set the upper bound of a column (i.e a variable)
/// The upper bound of a variable (column) has to be given by an
/// extended number of type Value, i.e. a finite number of type
void colUpperBound(Col c, Value value) {
_setColUpperBound(cols(id(c)),value);
/// Get the upper bound of a column (i.e a variable)
/// This function returns the upper bound for column (variable) \c c
/// (this might be \ref INF as well).
/// \return The upper bound for column \c c
Value colUpperBound(Col c) const {
return _getColUpperBound(cols(id(c)));
///\brief Set the upper bound of several columns
///(i.e variables) at once
///This magic function takes a container as its argument
///and applies the function on all of its elements.
///The upper bound of a variable (column) has to be given by an
///extended number of type Value, i.e. a finite number of type
void colUpperBound(T &t, Value value) { return 0;}
typename enable_if<typename T::value_type::LpCol,void>::type
colUpperBound(T &t, Value value,dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colUpperBound(*i, value);
typename enable_if<typename T::value_type::second_type::LpCol,
colUpperBound(T &t, Value value,dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colUpperBound(i->second, value);
typename enable_if<typename T::MapIt::Value::LpCol,
colUpperBound(T &t, Value value,dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i){
colUpperBound(*i, value);
/// Set the lower and the upper bounds of a column (i.e a variable)
/// The lower and the upper bounds of
/// a variable (column) have to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value, -\ref INF or \ref INF.
void colBounds(Col c, Value lower, Value upper) {
_setColLowerBound(cols(id(c)),lower);
_setColUpperBound(cols(id(c)),upper);
///\brief Set the lower and the upper bound of several columns
///(i.e variables) at once
///This magic function takes a container as its argument
///and applies the function on all of its elements.
/// The lower and the upper bounds of
/// a variable (column) have to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value, -\ref INF or \ref INF.
void colBounds(T &t, Value lower, Value upper) { return 0;}
typename enable_if<typename T::value_type::LpCol,void>::type
colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colBounds(*i, lower, upper);
typename enable_if<typename T::value_type::second_type::LpCol, void>::type
colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colBounds(i->second, lower, upper);
typename enable_if<typename T::MapIt::Value::LpCol, void>::type
colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i){
colBounds(*i, lower, upper);
/// Set the lower bound of a row (i.e a constraint)
/// The lower bound of a constraint (row) has to be given by an
/// extended number of type Value, i.e. a finite number of type
void rowLowerBound(Row r, Value value) {
_setRowLowerBound(rows(id(r)),value);
/// Get the lower bound of a row (i.e a constraint)
/// This function returns the lower bound for row (constraint) \c c
/// (this might be -\ref INF as well).
///\return The lower bound for row \c r
Value rowLowerBound(Row r) const {
return _getRowLowerBound(rows(id(r)));
/// Set the upper bound of a row (i.e a constraint)
/// The upper bound of a constraint (row) has to be given by an
/// extended number of type Value, i.e. a finite number of type
void rowUpperBound(Row r, Value value) {
_setRowUpperBound(rows(id(r)),value);
/// Get the upper bound of a row (i.e a constraint)
/// This function returns the upper bound for row (constraint) \c c
/// (this might be -\ref INF as well).
///\return The upper bound for row \c r
Value rowUpperBound(Row r) const {
return _getRowUpperBound(rows(id(r)));
///Set an element of the objective function
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
///Get an element of the objective function
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
///Set the objective function
///\param e is a linear expression of type \ref Expr.
void obj(const Expr& e) {
_setObjCoeffs(ExprIterator(e.comps.begin(), cols),
ExprIterator(e.comps.end(), cols));
///Get the objective function
///\return the objective function as a linear expression of type
_getObjCoeffs(InsertIterator(e.comps, cols));
///Set the direction of optimization
void sense(Sense sense) { _setSense(sense); }
///Query the direction of the optimization
Sense sense() const {return _getSense(); }
///Set the sense to maximization
void max() { _setSense(MAX); }
///Set the sense to maximization
void min() { _setSense(MIN); }
void clear() { _clear(); }
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
///Multiply with constant
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
///Multiply with constant
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
///\relates LpBase::Constr
inline LpBase::Constr operator<=(const LpBase::Expr &e,
return LpBase::Constr(0, f - e, LpBase::INF);
///\relates LpBase::Constr
inline LpBase::Constr operator<=(const LpBase::Value &e,
return LpBase::Constr(e, f, LpBase::NaN);
///\relates LpBase::Constr
inline LpBase::Constr operator<=(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(- LpBase::INF, e, f);
///\relates LpBase::Constr
inline LpBase::Constr operator>=(const LpBase::Expr &e,
return LpBase::Constr(0, e - f, LpBase::INF);
///\relates LpBase::Constr
inline LpBase::Constr operator>=(const LpBase::Value &e,
return LpBase::Constr(LpBase::NaN, f, e);
///\relates LpBase::Constr
inline LpBase::Constr operator>=(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(f, e, LpBase::INF);
///\relates LpBase::Constr
inline LpBase::Constr operator==(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(f, e, f);
///\relates LpBase::Constr
inline LpBase::Constr operator==(const LpBase::Expr &e,
return LpBase::Constr(0, f - e, 0);
///\relates LpBase::Constr
inline LpBase::Constr operator<=(const LpBase::Value &n,
const LpBase::Constr &c) {
LEMON_ASSERT(std::isnan(tmp.lowerBound()), "Wrong LP constraint");
///\relates LpBase::Constr
inline LpBase::Constr operator<=(const LpBase::Constr &c,
LEMON_ASSERT(std::isnan(tmp.upperBound()), "Wrong LP constraint");
///\relates LpBase::Constr
inline LpBase::Constr operator>=(const LpBase::Value &n,
const LpBase::Constr &c) {
LEMON_ASSERT(std::isnan(tmp.upperBound()), "Wrong LP constraint");
///\relates LpBase::Constr
inline LpBase::Constr operator>=(const LpBase::Constr &c,
LEMON_ASSERT(std::isnan(tmp.lowerBound()), "Wrong LP constraint");
///\relates LpBase::DualExpr
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
const LpBase::DualExpr &b) {
///\relates LpBase::DualExpr
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
const LpBase::DualExpr &b) {
///Multiply with constant
///\relates LpBase::DualExpr
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
const LpBase::Value &b) {
///Multiply with constant
///\relates LpBase::DualExpr
inline LpBase::DualExpr operator*(const LpBase::Value &a,
const LpBase::DualExpr &b) {
///\relates LpBase::DualExpr
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
const LpBase::Value &b) {
/// \brief Common base class for LP solvers
/// This class is an abstract base class for LP solvers. This class
/// provides a full interface for set and modify an LP problem,
/// solve it and retrieve the solution. You can use one of the
/// descendants as a concrete implementation, or the \c Lp
/// default LP solver. However, if you would like to handle LP
/// solvers as reference or pointer in a generic way, you can use
class LpSolver : virtual public LpBase {
/// The problem types for primal and dual problems
///Feasible solution hasn't been found (but may exist).
///The problem has no feasible solution
///Feasible solution found
///Optimal solution exists and found
///The cost function is unbounded
///The basis status of variables
/// The variable is in the basis
/// The variable is free, but not basic
/// The variable has active lower bound
/// The variable has active upper bound
/// The variable is non-basic and fixed
virtual SolveExitStatus _solve() = 0;
virtual Value _getPrimal(int i) const = 0;
virtual Value _getDual(int i) const = 0;
virtual Value _getPrimalRay(int i) const = 0;
virtual Value _getDualRay(int i) const = 0;
virtual Value _getPrimalValue() const = 0;
virtual VarStatus _getColStatus(int i) const = 0;
virtual VarStatus _getRowStatus(int i) const = 0;
virtual ProblemType _getPrimalType() const = 0;
virtual ProblemType _getDualType() const = 0;
///\e Solve the LP problem at hand
///\return The result of the optimization procedure. Possible
///values and their meanings can be found in the documentation of
SolveExitStatus solve() { return _solve(); }
///\name Obtain the solution
/// The type of the primal problem
ProblemType primalType() const {
/// The type of the dual problem
ProblemType dualType() const {
/// Return the primal value of the column
/// Return the primal value of the column.
/// \pre The problem is solved.
Value primal(Col c) const { return _getPrimal(cols(id(c))); }
/// Return the primal value of the expression
/// Return the primal value of the expression, i.e. the dot
/// product of the primal solution and the expression.
/// \pre The problem is solved.
Value primal(const Expr& e) const {
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
/// Returns a component of the primal ray
/// The primal ray is solution of the modified primal problem,
/// where we change each finite bound to 0, and we looking for a
/// negative objective value in case of minimization, and positive
/// objective value for maximization. If there is such solution,
/// that proofs the unsolvability of the dual problem, and if a
/// feasible primal solution exists, then the unboundness of
/// \pre The problem is solved and the dual problem is infeasible.
/// \note Some solvers does not provide primal ray calculation
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
/// Return the dual value of the row
/// Return the dual value of the row.
/// \pre The problem is solved.
Value dual(Row r) const { return _getDual(rows(id(r))); }
/// Return the dual value of the dual expression
/// Return the dual value of the dual expression, i.e. the dot
/// product of the dual solution and the dual expression.
/// \pre The problem is solved.
Value dual(const DualExpr& e) const {
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
/// Returns a component of the dual ray
/// The dual ray is solution of the modified primal problem, where
/// we change each finite bound to 0 (i.e. the objective function
/// coefficients in the primal problem), and we looking for a
/// ositive objective value. If there is such solution, that
/// proofs the unsolvability of the primal problem, and if a
/// feasible dual solution exists, then the unboundness of
/// \pre The problem is solved and the primal problem is infeasible.
/// \note Some solvers does not provide dual ray calculation
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
/// Return the basis status of the column
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
/// Return the basis status of the row
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
///The value of the objective function
///- \ref INF or -\ref INF means either infeasibility or unboundedness
/// of the primal problem, depending on whether we minimize or maximize.
///- \ref NaN if no primal solution is found.
///- The (finite) objective value if an optimal solution is found.
Value primal() const { return _getPrimalValue()+obj_const_comp;}
LpSolver* newSolver() {return _newSolver();}
LpSolver* cloneSolver() {return _cloneSolver();}
virtual LpSolver* _newSolver() const = 0;
virtual LpSolver* _cloneSolver() const = 0;
/// \brief Common base class for MIP solvers
/// This class is an abstract base class for MIP solvers. This class
/// provides a full interface for set and modify an MIP problem,
/// solve it and retrieve the solution. You can use one of the
/// descendants as a concrete implementation, or the \c Lp
/// default MIP solver. However, if you would like to handle MIP
/// solvers as reference or pointer in a generic way, you can use
class MipSolver : virtual public LpBase {
/// The problem types for MIP problems
///Feasible solution hasn't been found (but may exist).
///The problem has no feasible solution
///Feasible solution found
///Optimal solution exists and found
///The cost function is unbounded
///The Mip or at least the relaxed problem is unbounded
/// Solve the MIP problem at hand
///\return The result of the optimization procedure. Possible
///values and their meanings can be found in the documentation of
SolveExitStatus solve() { return _solve(); }
///\name Setting column type
///Possible variable (column) types (e.g. real, integer, binary etc.)
///Continuous variable (default)
///Sets the type of the given column to the given type
///Sets the type of the given column to the given type.
void colType(Col c, ColTypes col_type) {
_setColType(cols(id(c)),col_type);
///Gives back the type of the column.
///Gives back the type of the column.
ColTypes colType(Col c) const {
return _getColType(cols(id(c)));
///\name Obtain the solution
/// The type of the MIP problem
ProblemType type() const {
/// Return the value of the row in the solution
/// Return the value of the row in the solution.
/// \pre The problem is solved.
Value sol(Col c) const { return _getSol(cols(id(c))); }
/// Return the value of the expression in the solution
/// Return the value of the expression in the solution, i.e. the
/// dot product of the solution and the expression.
/// \pre The problem is solved.
Value sol(const Expr& e) const {
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
///The value of the objective function
///- \ref INF or -\ref INF means either infeasibility or unboundedness
/// of the problem, depending on whether we minimize or maximize.
///- \ref NaN if no primal solution is found.
///- The (finite) objective value if an optimal solution is found.
Value solValue() const { return _getSolValue()+obj_const_comp;}
virtual SolveExitStatus _solve() = 0;
virtual ColTypes _getColType(int col) const = 0;
virtual void _setColType(int col, ColTypes col_type) = 0;
virtual ProblemType _getType() const = 0;
virtual Value _getSol(int i) const = 0;
virtual Value _getSolValue() const = 0;
MipSolver* newSolver() {return _newSolver();}
MipSolver* cloneSolver() {return _cloneSolver();}
virtual MipSolver* _newSolver() const = 0;
virtual MipSolver* _cloneSolver() const = 0;