/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#include <lemon/bits/edge_set_extender.h>
/// \ingroup semi_adaptors
/// \brief ArcSet and EdgeSet classes.
/// Graphs which use another graph's node-set as own.
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
NodeT() : first_out(-1), first_in(-1) {}
typedef typename ItemSetTraits<GR, Node>::
template Map<NodeT>::Type NodesImplBase;
ArcT() : prev_out(-1), prev_in(-1) {}
void initalize(const GR& graph, NodesImplBase& nodes) {
friend class ListArcSetBase<GR>;
Arc(int _id) : id(_id) {}
bool operator==(const Arc& arc) const { return id == arc.id; }
bool operator!=(const Arc& arc) const { return id != arc.id; }
bool operator<(const Arc& arc) const { return id < arc.id; }
ListArcSetBase() : first_arc(-1), first_free_arc(-1) {}
Arc addArc(const Node& u, const Node& v) {
if (first_free_arc == -1) {
first_free_arc = arcs[first_free_arc].next_in;
arcs[n].next_in = (*_nodes)[v].first_in;
if ((*_nodes)[v].first_in != -1) {
arcs[(*_nodes)[v].first_in].prev_in = n;
(*_nodes)[v].first_in = n;
arcs[n].next_out = (*_nodes)[u].first_out;
if ((*_nodes)[u].first_out != -1) {
arcs[(*_nodes)[u].first_out].prev_out = n;
(*_nodes)[u].first_out = n;
void erase(const Arc& arc) {
if (arcs[n].prev_in != -1) {
arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
(*_nodes)[arcs[n].target].first_in = arcs[n].next_in;
if (arcs[n].next_in != -1) {
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
if (arcs[n].prev_out != -1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
(*_nodes)[arcs[n].source].first_out = arcs[n].next_out;
if (arcs[n].next_out != -1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
for (first(node); node != INVALID; next(node)) {
(*_nodes)[node].first_in = -1;
(*_nodes)[node].first_out = -1;
void first(Node& node) const {
void next(Node& node) const {
void first(Arc& arc) const {
while (node != INVALID && (*_nodes)[node].first_in == -1) {
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
void next(Arc& arc) const {
if (arcs[arc.id].next_in != -1) {
arc.id = arcs[arc.id].next_in;
Node node = arcs[arc.id].target;
while (node != INVALID && (*_nodes)[node].first_in == -1) {
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
void firstOut(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_out;
void nextOut(Arc& arc) const {
arc.id = arcs[arc.id].next_out;
void firstIn(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_in;
void nextIn(Arc& arc) const {
arc.id = arcs[arc.id].next_in;
int id(const Node& node) const { return _graph->id(node); }
int id(const Arc& arc) const { return arc.id; }
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return Arc(ix); }
int maxNodeId() const { return _graph->maxNodeId(); };
int maxArcId() const { return arcs.size() - 1; }
Node source(const Arc& arc) const { return arcs[arc.id].source;}
Node target(const Arc& arc) const { return arcs[arc.id].target;}
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const {
return _graph->notifier(Node());
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const ListArcSetBase<GR>& arcset)
: Parent(*arcset._graph) {}
NodeMap(const ListArcSetBase<GR>& arcset, const V& value)
: Parent(*arcset._graph, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
/// \ingroup semi_adaptors
/// \brief Digraph using a node set of another digraph or graph and
/// This structure can be used to establish another directed graph
/// over a node set of an existing one. This class uses the same
/// Node type as the underlying graph, and each valid node of the
/// original graph is valid in this arc set, therefore the node
/// objects of the original graph can be used directly with this
/// class. The node handling functions (id handling, observing, and
/// iterators) works equivalently as in the original graph.
/// This implementation is based on doubly-linked lists, from each
/// node the outgoing and the incoming arcs make up lists, therefore
/// one arc can be erased in constant time. It also makes possible,
/// that node can be removed from the underlying graph, in this case
/// all arcs incident to the given node is erased from the arc set.
/// \param GR The type of the graph which shares its node set with
/// this class. Its interface must conform to the
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
/// This class fully conforms to the \ref concepts::Digraph
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
typedef ArcSetExtender<ListArcSetBase<GR> > Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::NodesImplBase NodesImplBase;
void eraseNode(const Node& node) {
Parent::firstOut(arc, node);
while (arc != INVALID ) {
Parent::firstOut(arc, node);
Parent::firstIn(arc, node);
while (arc != INVALID ) {
Parent::firstIn(arc, node);
class NodesImpl : public NodesImplBase {
typedef NodesImplBase Parent;
NodesImpl(const GR& graph, ListArcSet& arcset)
: Parent(graph), _arcset(arcset) {}
virtual void erase(const Node& node) {
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
_arcset.eraseNode(nodes[i]);
/// \brief Constructor of the ArcSet.
/// Constructor of the ArcSet.
ListArcSet(const GR& graph) : _nodes(graph, *this) {
Parent::initalize(graph, _nodes);
/// \brief Add a new arc to the digraph.
/// Add a new arc to the digraph with source node \c s
/// and target node \c t.
Arc addArc(const Node& s, const Node& t) {
return Parent::addArc(s, t);
/// \brief Erase an arc from the digraph.
/// Erase an arc \c a from the digraph.
void erase(const Arc& a) {
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
NodeT() : first_out(-1) {}
typedef typename ItemSetTraits<GR, Node>::
template Map<NodeT>::Type NodesImplBase;
ArcT() : prev_out(-1), next_out(-1) {}
void initalize(const GR& graph, NodesImplBase& nodes) {
friend class ListEdgeSetBase;
explicit Edge(int _id) { id = _id;}
Edge (Invalid) { id = -1; }
bool operator==(const Edge& arc) const {return id == arc.id;}
bool operator!=(const Edge& arc) const {return id != arc.id;}
bool operator<(const Edge& arc) const {return id < arc.id;}
friend class ListEdgeSetBase;
Arc(int _id) : id(_id) {}
operator Edge() const { return edgeFromId(id / 2); }
bool operator==(const Arc& arc) const { return id == arc.id; }
bool operator!=(const Arc& arc) const { return id != arc.id; }
bool operator<(const Arc& arc) const { return id < arc.id; }
ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {}
Edge addEdge(const Node& u, const Node& v) {
if (first_free_arc == -1) {
first_free_arc = arcs[n].next_out;
arcs[n].next_out = (*_nodes)[v].first_out;
if ((*_nodes)[v].first_out != -1) {
arcs[(*_nodes)[v].first_out].prev_out = n;
(*_nodes)[v].first_out = n;
if ((*_nodes)[u].first_out != -1) {
arcs[(*_nodes)[u].first_out].prev_out = (n | 1);
arcs[n | 1].next_out = (*_nodes)[u].first_out;
(*_nodes)[u].first_out = (n | 1);
arcs[n | 1].prev_out = -1;
void erase(const Edge& arc) {
if (arcs[n].next_out != -1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
if (arcs[n].prev_out != -1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
(*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out;
if (arcs[n | 1].next_out != -1) {
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
if (arcs[n | 1].prev_out != -1) {
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
(*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out;
arcs[n].next_out = first_free_arc;
for (first(node); node != INVALID; next(node)) {
(*_nodes)[node].first_out = -1;
void first(Node& node) const {
void next(Node& node) const {
void first(Arc& arc) const {
while (node != INVALID && (*_nodes)[node].first_out == -1) {
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
void next(Arc& arc) const {
if (arcs[arc.id].next_out != -1) {
arc.id = arcs[arc.id].next_out;
Node node = arcs[arc.id ^ 1].target;
while(node != INVALID && (*_nodes)[node].first_out == -1) {
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
void first(Edge& edge) const {
while (node != INVALID) {
edge.id = (*_nodes)[node].first_out;
while ((edge.id & 1) != 1) {
edge.id = arcs[edge.id].next_out;
void next(Edge& edge) const {
Node node = arcs[edge.id * 2].target;
edge.id = arcs[(edge.id * 2) | 1].next_out;
while ((edge.id & 1) != 1) {
edge.id = arcs[edge.id].next_out;
while (node != INVALID) {
edge.id = (*_nodes)[node].first_out;
while ((edge.id & 1) != 1) {
edge.id = arcs[edge.id].next_out;
void firstOut(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_out;
void nextOut(Arc& arc) const {
arc.id = arcs[arc.id].next_out;
void firstIn(Arc& arc, const Node& node) const {
arc.id = (((*_nodes)[node].first_out) ^ 1);
if (arc.id == -2) arc.id = -1;
void nextIn(Arc& arc) const {
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
if (arc.id == -2) arc.id = -1;
void firstInc(Edge &arc, bool& dir, const Node& node) const {
int de = (*_nodes)[node].first_out;
void nextInc(Edge &arc, bool& dir) const {
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
static bool direction(Arc arc) {
return (arc.id & 1) == 1;
static Arc direct(Edge edge, bool dir) {
return Arc(edge.id * 2 + (dir ? 1 : 0));
int id(const Node& node) const { return _graph->id(node); }
static int id(Arc e) { return e.id; }
static int id(Edge e) { return e.id; }
Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
int maxNodeId() const { return _graph->maxNodeId(); };
int maxEdgeId() const { return arcs.size() / 2 - 1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return arcs[e.id ^ 1].target; }
Node target(Arc e) const { return arcs[e.id].target; }
Node u(Edge e) const { return arcs[2 * e.id].target; }
Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const {
return _graph->notifier(Node());
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const ListEdgeSetBase<GR>& arcset)
: Parent(*arcset._graph) {}
NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value)
: Parent(*arcset._graph, value) {}
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
/// \ingroup semi_adaptors
/// \brief Graph using a node set of another digraph or graph and an
/// This structure can be used to establish another graph over a
/// node set of an existing one. This class uses the same Node type
/// as the underlying graph, and each valid node of the original
/// graph is valid in this arc set, therefore the node objects of
/// the original graph can be used directly with this class. The
/// node handling functions (id handling, observing, and iterators)
/// works equivalently as in the original graph.
/// This implementation is based on doubly-linked lists, from each
/// node the incident edges make up lists, therefore one edge can be
/// erased in constant time. It also makes possible, that node can
/// be removed from the underlying graph, in this case all edges
/// incident to the given node is erased from the arc set.
/// \param GR The type of the graph which shares its node set
/// with this class. Its interface must conform to the
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
/// This class fully conforms to the \ref concepts::Graph "Graph"
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
typedef typename Parent::NodesImplBase NodesImplBase;
void eraseNode(const Node& node) {
Parent::firstOut(arc, node);
while (arc != INVALID ) {
Parent::firstOut(arc, node);
class NodesImpl : public NodesImplBase {
typedef NodesImplBase Parent;
NodesImpl(const GR& graph, ListEdgeSet& arcset)
: Parent(graph), _arcset(arcset) {}
virtual void erase(const Node& node) {
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
_arcset.eraseNode(nodes[i]);
/// \brief Constructor of the EdgeSet.
/// Constructor of the EdgeSet.
ListEdgeSet(const GR& graph) : _nodes(graph, *this) {
Parent::initalize(graph, _nodes);
/// \brief Add a new edge to the graph.
/// Add a new edge to the graph with node \c u
/// and node \c v endpoints.
/// \return The new edge.
Edge addEdge(const Node& u, const Node& v) {
return Parent::addEdge(u, v);
/// \brief Erase an edge from the graph.
/// Erase the edge \c e from the graph.
void erase(const Edge& e) {
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
NodeT() : first_out(-1), first_in(-1) {}
typedef typename ItemSetTraits<GR, Node>::
template Map<NodeT>::Type NodesImplBase;
void initalize(const GR& graph, NodesImplBase& nodes) {
friend class SmartArcSetBase<GR>;
Arc(int _id) : id(_id) {}
bool operator==(const Arc& arc) const { return id == arc.id; }
bool operator!=(const Arc& arc) const { return id != arc.id; }
bool operator<(const Arc& arc) const { return id < arc.id; }
Arc addArc(const Node& u, const Node& v) {
arcs[n].next_in = (*_nodes)[v].first_in;
(*_nodes)[v].first_in = n;
arcs[n].next_out = (*_nodes)[u].first_out;
(*_nodes)[u].first_out = n;
for (first(node); node != INVALID; next(node)) {
(*_nodes)[node].first_in = -1;
(*_nodes)[node].first_out = -1;
void first(Node& node) const {
void next(Node& node) const {
void first(Arc& arc) const {
arc.id = arcs.size() - 1;
void next(Arc& arc) const {
void firstOut(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_out;
void nextOut(Arc& arc) const {
arc.id = arcs[arc.id].next_out;
void firstIn(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_in;
void nextIn(Arc& arc) const {
arc.id = arcs[arc.id].next_in;
int id(const Node& node) const { return _graph->id(node); }
int id(const Arc& arc) const { return arc.id; }
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return Arc(ix); }
int maxNodeId() const { return _graph->maxNodeId(); };
int maxArcId() const { return arcs.size() - 1; }
Node source(const Arc& arc) const { return arcs[arc.id].source;}
Node target(const Arc& arc) const { return arcs[arc.id].target;}
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const {
return _graph->notifier(Node());
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const SmartArcSetBase<GR>& arcset)
: Parent(*arcset._graph) { }
NodeMap(const SmartArcSetBase<GR>& arcset, const V& value)
: Parent(*arcset._graph, value) { }
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
/// \ingroup semi_adaptors
/// \brief Digraph using a node set of another digraph or graph and
/// This structure can be used to establish another directed graph
/// over a node set of an existing one. This class uses the same
/// Node type as the underlying graph, and each valid node of the
/// original graph is valid in this arc set, therefore the node
/// objects of the original graph can be used directly with this
/// class. The node handling functions (id handling, observing, and
/// iterators) works equivalently as in the original graph.
/// \param GR The type of the graph which shares its node set with
/// this class. Its interface must conform to the
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
/// This implementation is slightly faster than the \c ListArcSet,
/// because it uses continuous storage for arcs and it uses just
/// single-linked lists for enumerate outgoing and incoming
/// arcs. Therefore the arcs cannot be erased from the arc sets.
/// \warning If a node is erased from the underlying graph and this
/// node is the source or target of one arc in the arc set, then
/// the arc set is invalidated, and it cannot be used anymore. The
/// validity can be checked with the \c valid() member function.
/// This class fully conforms to the \ref concepts::Digraph
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::NodesImplBase NodesImplBase;
void eraseNode(const Node& node) {
if (typename Parent::InArcIt(*this, node) == INVALID &&
typename Parent::OutArcIt(*this, node) == INVALID) {
throw typename NodesImplBase::Notifier::ImmediateDetach();
class NodesImpl : public NodesImplBase {
typedef NodesImplBase Parent;
NodesImpl(const GR& graph, SmartArcSet& arcset)
: Parent(graph), _arcset(arcset) {}
return Parent::attached();
virtual void erase(const Node& node) {
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
_arcset.eraseNode(nodes[i]);
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
/// \brief Constructor of the ArcSet.
/// Constructor of the ArcSet.
SmartArcSet(const GR& graph) : _nodes(graph, *this) {
Parent::initalize(graph, _nodes);
/// \brief Add a new arc to the digraph.
/// Add a new arc to the digraph with source node \c s
/// and target node \c t.
Arc addArc(const Node& s, const Node& t) {
return Parent::addArc(s, t);
/// \brief Validity check
/// This functions gives back false if the ArcSet is
/// invalidated. It occurs when a node in the underlying graph is
/// erased and it is not isolated in the ArcSet.
return _nodes.attached();
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
NodeT() : first_out(-1) {}
typedef typename ItemSetTraits<GR, Node>::
template Map<NodeT>::Type NodesImplBase;
void initalize(const GR& graph, NodesImplBase& nodes) {
friend class SmartEdgeSetBase;
explicit Edge(int _id) { id = _id;}
Edge (Invalid) { id = -1; }
bool operator==(const Edge& arc) const {return id == arc.id;}
bool operator!=(const Edge& arc) const {return id != arc.id;}
bool operator<(const Edge& arc) const {return id < arc.id;}
friend class SmartEdgeSetBase;
Arc(int _id) : id(_id) {}
operator Edge() const { return edgeFromId(id / 2); }
bool operator==(const Arc& arc) const { return id == arc.id; }
bool operator!=(const Arc& arc) const { return id != arc.id; }
bool operator<(const Arc& arc) const { return id < arc.id; }
Edge addEdge(const Node& u, const Node& v) {
arcs[n].next_out = (*_nodes)[v].first_out;
(*_nodes)[v].first_out = n;
arcs[n | 1].next_out = (*_nodes)[u].first_out;
(*_nodes)[u].first_out = (n | 1);
for (first(node); node != INVALID; next(node)) {
(*_nodes)[node].first_out = -1;
void first(Node& node) const {
void next(Node& node) const {
void first(Arc& arc) const {
arc.id = arcs.size() - 1;
void next(Arc& arc) const {
void first(Edge& arc) const {
arc.id = arcs.size() / 2 - 1;
void next(Edge& arc) const {
void firstOut(Arc& arc, const Node& node) const {
arc.id = (*_nodes)[node].first_out;
void nextOut(Arc& arc) const {
arc.id = arcs[arc.id].next_out;
void firstIn(Arc& arc, const Node& node) const {
arc.id = (((*_nodes)[node].first_out) ^ 1);
if (arc.id == -2) arc.id = -1;
void nextIn(Arc& arc) const {
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
if (arc.id == -2) arc.id = -1;
void firstInc(Edge &arc, bool& dir, const Node& node) const {
int de = (*_nodes)[node].first_out;
void nextInc(Edge &arc, bool& dir) const {
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
static bool direction(Arc arc) {
return (arc.id & 1) == 1;
static Arc direct(Edge edge, bool dir) {
return Arc(edge.id * 2 + (dir ? 1 : 0));
int id(Node node) const { return _graph->id(node); }
static int id(Arc arc) { return arc.id; }
static int id(Edge arc) { return arc.id; }
Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
static Arc arcFromId(int id) { return Arc(id); }
static Edge edgeFromId(int id) { return Edge(id);}
int maxNodeId() const { return _graph->maxNodeId(); };
int maxArcId() const { return arcs.size() - 1; }
int maxEdgeId() const { return arcs.size() / 2 - 1; }
Node source(Arc e) const { return arcs[e.id ^ 1].target; }
Node target(Arc e) const { return arcs[e.id].target; }
Node u(Edge e) const { return arcs[2 * e.id].target; }
Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const {
return _graph->notifier(Node());
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
explicit NodeMap(const SmartEdgeSetBase<GR>& arcset)
: Parent(*arcset._graph) { }
NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value)
: Parent(*arcset._graph, value) { }
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
NodeMap& operator=(const CMap& cmap) {
/// \ingroup semi_adaptors
/// \brief Graph using a node set of another digraph or graph and an
/// This structure can be used to establish another graph over a
/// node set of an existing one. This class uses the same Node type
/// as the underlying graph, and each valid node of the original
/// graph is valid in this arc set, therefore the node objects of
/// the original graph can be used directly with this class. The
/// node handling functions (id handling, observing, and iterators)
/// works equivalently as in the original graph.
/// \param GR The type of the graph which shares its node set
/// with this class. Its interface must conform to the
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
/// This implementation is slightly faster than the \c ListEdgeSet,
/// because it uses continuous storage for edges and it uses just
/// single-linked lists for enumerate incident edges. Therefore the
/// edges cannot be erased from the edge sets.
/// \warning If a node is erased from the underlying graph and this
/// node is incident to one edge in the edge set, then the edge set
/// is invalidated, and it cannot be used anymore. The validity can
/// be checked with the \c valid() member function.
/// This class fully conforms to the \ref concepts::Graph
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
typedef typename Parent::NodesImplBase NodesImplBase;
void eraseNode(const Node& node) {
if (typename Parent::IncEdgeIt(*this, node) == INVALID) {
throw typename NodesImplBase::Notifier::ImmediateDetach();
class NodesImpl : public NodesImplBase {
typedef NodesImplBase Parent;
NodesImpl(const GR& graph, SmartEdgeSet& arcset)
: Parent(graph), _arcset(arcset) {}
return Parent::attached();
virtual void erase(const Node& node) {
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
_arcset.eraseNode(nodes[i]);
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
/// \brief Constructor of the EdgeSet.
/// Constructor of the EdgeSet.
SmartEdgeSet(const GR& graph) : _nodes(graph, *this) {
Parent::initalize(graph, _nodes);
/// \brief Add a new edge to the graph.
/// Add a new edge to the graph with node \c u
/// and node \c v endpoints.
/// \return The new edge.
Edge addEdge(const Node& u, const Node& v) {
return Parent::addEdge(u, v);
/// \brief Validity check
/// This functions gives back false if the EdgeSet is
/// invalidated. It occurs when a node in the underlying graph is
/// erased and it is not isolated in the EdgeSet.
return _nodes.attached();