/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BITS_VARIANT_H
#define LEMON_BITS_VARIANT_H
#include <lemon/assert.h>
namespace _variant_bits {
template <int left, int right>
static const int value = left < right ? right : left;
// \brief Simple Variant type for two types
// Simple Variant type for two types. The Variant type is a type-safe
// union. C++ has strong limitations for using unions, for
// example you cannot store a type with non-default constructor or
// destructor in a union. This class always knowns the current
// state of the variant and it cares for the proper construction
template <typename _First, typename _Second>
// \brief The \c First type.
// \brief The \c Second type.
// This constructor initalizes to the default value of the \c First
new(reinterpret_cast<First*>(data)) First();
// This constructor initalizes to the given value of the \c First
BiVariant(const First& f) {
new(reinterpret_cast<First*>(data)) First(f);
// This constructor initalizes to the given value of the \c
BiVariant(const Second& s) {
new(reinterpret_cast<Second*>(data)) Second(s);
// \brief Copy constructor
BiVariant(const BiVariant& bivariant) {
new(reinterpret_cast<First*>(data)) First(bivariant.first());
new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
// \brief Set to the default value of the \c First type.
// This function sets the variant to the default value of the \c
new(reinterpret_cast<First*>(data)) First();
// \brief Set to the given value of the \c First type.
// This function sets the variant to the given value of the \c
BiVariant& setFirst(const First& f) {
new(reinterpret_cast<First*>(data)) First(f);
// \brief Set to the default value of the \c Second type.
// This function sets the variant to the default value of the \c
new(reinterpret_cast<Second*>(data)) Second();
// \brief Set to the given value of the \c Second type.
// This function sets the variant to the given value of the \c
BiVariant& setSecond(const Second& s) {
new(reinterpret_cast<Second*>(data)) Second(s);
// \brief Operator form of the \c setFirst()
BiVariant& operator=(const First& f) {
// \brief Operator form of the \c setSecond()
BiVariant& operator=(const Second& s) {
// \brief Assign operator
BiVariant& operator=(const BiVariant& bivariant) {
if (this == &bivariant) return *this;
new(reinterpret_cast<First*>(data)) First(bivariant.first());
new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
// \brief Reference to the value
// Reference to the value of the \c First type.
// \pre The BiVariant should store value of \c First type.
LEMON_DEBUG(flag, "Variant wrong state");
return *reinterpret_cast<First*>(data);
// \brief Const reference to the value
// Const reference to the value of the \c First type.
// \pre The BiVariant should store value of \c First type.
const First& first() const {
LEMON_DEBUG(flag, "Variant wrong state");
return *reinterpret_cast<const First*>(data);
// \brief Operator form of the \c first()
operator First&() { return first(); }
// \brief Operator form of the const \c first()
operator const First&() const { return first(); }
// \brief Reference to the value
// Reference to the value of the \c Second type.
// \pre The BiVariant should store value of \c Second type.
LEMON_DEBUG(!flag, "Variant wrong state");
return *reinterpret_cast<Second*>(data);
// \brief Const reference to the value
// Const reference to the value of the \c Second type.
// \pre The BiVariant should store value of \c Second type.
const Second& second() const {
LEMON_DEBUG(!flag, "Variant wrong state");
return *reinterpret_cast<const Second*>(data);
// \brief Operator form of the \c second()
operator Second&() { return second(); }
// \brief Operator form of the const \c second()
operator const Second&() const { return second(); }
// \brief %True when the variant is in the first state
// %True when the variant stores value of the \c First type.
bool firstState() const { return flag; }
// \brief %True when the variant is in the second state
// %True when the variant stores value of the \c Second type.
bool secondState() const { return !flag; }
reinterpret_cast<First*>(data)->~First();
reinterpret_cast<Second*>(data)->~Second();
char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
namespace _variant_bits {
template <int _idx, typename _TypeMap>
typedef typename _TypeMap::template Map<_idx>::Type Current;
static void destroy(int index, char* place) {
reinterpret_cast<Current*>(place)->~Current();
Memory<_idx - 1, _TypeMap>::destroy(index, place);
static void copy(int index, char* to, const char* from) {
new (reinterpret_cast<Current*>(to))
Current(reinterpret_cast<const Current*>(from));
Memory<_idx - 1, _TypeMap>::copy(index, to, from);
template <typename _TypeMap>
struct Memory<-1, _TypeMap> {
static void destroy(int, char*) {
LEMON_DEBUG(false, "Variant wrong index.");
static void copy(int, char*, const char*) {
LEMON_DEBUG(false, "Variant wrong index.");
template <int _idx, typename _TypeMap>
CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
Size<_idx - 1, _TypeMap>::value>::value;
template <typename _TypeMap>
struct Size<0, _TypeMap> {
sizeof(typename _TypeMap::template Map<0>::Type);
// Simple Variant type. The Variant type is a type-safe union.
// C++ has strong limitations for using unions, for example you
// cannot store type with non-default constructor or destructor in
// a union. This class always knowns the current state of the
// variant and it cares for the proper construction and
// \param _num The number of the types which can be stored in the
// \param _TypeMap This class describes the types of the Variant. The
// _TypeMap::Map<index>::Type should be a valid type for each index
// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
// class to define such type mappings up to 10 types.
// And the usage of the class:
// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
// std::cout << var.get<0>() << std::endl;
// std::cout << var.get<1>() << std::endl;
// std::cout << var.get<2>() << std::endl;
template <int _num, typename _TypeMap>
static const int num = _num;
typedef _TypeMap TypeMap;
// This constructor initalizes to the default value of the \c type
new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
typename TypeMap::template Map<0>::Type();
// \brief Copy constructor
Variant(const Variant& variant) {
_variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
// \brief Assign operator
Variant& operator=(const Variant& variant) {
if (this == &variant) return *this;
_variant_bits::Memory<num - 1, TypeMap>::
_variant_bits::Memory<num - 1, TypeMap>::
copy(flag, data, variant.data);
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
// \brief Set to the default value of the type with \c _idx index.
// This function sets the variant to the default value of the
// type with \c _idx index.
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
typename TypeMap::template Map<_idx>::Type();
// \brief Set to the given value of the type with \c _idx index.
// This function sets the variant to the given value of the type
Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
typename TypeMap::template Map<_idx>::Type(init);
// \brief Gets the current value of the type with \c _idx index.
// Gets the current value of the type with \c _idx index.
const typename TypeMap::template Map<_idx>::Type& get() const {
LEMON_DEBUG(_idx == flag, "Variant wrong index");
return *reinterpret_cast<const typename TypeMap::
template Map<_idx>::Type*>(data);
// \brief Gets the current value of the type with \c _idx index.
// Gets the current value of the type with \c _idx index.
typename _TypeMap::template Map<_idx>::Type& get() {
LEMON_DEBUG(_idx == flag, "Variant wrong index");
return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
// \brief Returns the current state of the variant.
// Returns the current state of the variant.
char data[_variant_bits::Size<num - 1, TypeMap>::value];
namespace _variant_bits {
template <int _index, typename _List>
typedef typename Get<_index - 1, typename _List::Next>::Type Type;
template <typename _List>
typedef typename _List::Type Type;
template <typename _Type, typename _List>
template <int _idx, typename _T0, typename _T1, typename _T2,
typename _T3, typename _T4, typename _T5, typename _T6,
typename _T7, typename _T8, typename _T9>
typedef Insert<_T9, L10> L9;
typedef Insert<_T8, L9> L8;
typedef Insert<_T7, L8> L7;
typedef Insert<_T6, L7> L6;
typedef Insert<_T5, L6> L5;
typedef Insert<_T4, L5> L4;
typedef Insert<_T3, L4> L3;
typedef Insert<_T2, L3> L2;
typedef Insert<_T1, L2> L1;
typedef Insert<_T0, L1> L0;
typedef typename Get<_idx, L0>::Type Type;
// \brief Helper class for Variant
// Helper class to define type mappings for Variant. This class
// converts the template parameters to be mappable by integer.
typename _T1 = void, typename _T2 = void, typename _T3 = void,
typename _T4 = void, typename _T5 = void, typename _T6 = void,
typename _T7 = void, typename _T8 = void, typename _T9 = void>
typedef typename _variant_bits::
Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type