Location: LEMON/LEMON-official/lemon/bits/solver_bits.h

Load file history
gravatar
kpeter (Peter Kovacs)
Support >= and <= constraints in NetworkSimplex (#219, #234) By default the same inequality constraints are supported as by Circulation (the GEQ form), but the LEQ form can also be selected using the problemType() function. The documentation of the min. cost flow module is reworked and extended with important notes and explanations about the different variants of the problem and about the dual solution and optimality conditions.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BITS_SOLVER_BITS_H
#define LEMON_BITS_SOLVER_BITS_H
#include <vector>
namespace lemon {
namespace _solver_bits {
class VarIndex {
private:
struct ItemT {
int prev, next;
int index;
};
std::vector<ItemT> items;
int first_item, last_item, first_free_item;
std::vector<int> cross;
public:
VarIndex()
: first_item(-1), last_item(-1), first_free_item(-1) {
}
void clear() {
first_item = -1;
first_free_item = -1;
items.clear();
cross.clear();
}
int addIndex(int idx) {
int n;
if (first_free_item == -1) {
n = items.size();
items.push_back(ItemT());
} else {
n = first_free_item;
first_free_item = items[n].next;
if (first_free_item != -1) {
items[first_free_item].prev = -1;
}
}
items[n].index = idx;
if (static_cast<int>(cross.size()) <= idx) {
cross.resize(idx + 1, -1);
}
cross[idx] = n;
items[n].prev = last_item;
items[n].next = -1;
if (last_item != -1) {
items[last_item].next = n;
} else {
first_item = n;
}
last_item = n;
return n;
}
int addIndex(int idx, int n) {
while (n >= static_cast<int>(items.size())) {
items.push_back(ItemT());
items.back().prev = -1;
items.back().next = first_free_item;
if (first_free_item != -1) {
items[first_free_item].prev = items.size() - 1;
}
first_free_item = items.size() - 1;
}
if (items[n].next != -1) {
items[items[n].next].prev = items[n].prev;
}
if (items[n].prev != -1) {
items[items[n].prev].next = items[n].next;
} else {
first_free_item = items[n].next;
}
items[n].index = idx;
if (static_cast<int>(cross.size()) <= idx) {
cross.resize(idx + 1, -1);
}
cross[idx] = n;
items[n].prev = last_item;
items[n].next = -1;
if (last_item != -1) {
items[last_item].next = n;
} else {
first_item = n;
}
last_item = n;
return n;
}
void eraseIndex(int idx) {
int n = cross[idx];
if (items[n].prev != -1) {
items[items[n].prev].next = items[n].next;
} else {
first_item = items[n].next;
}
if (items[n].next != -1) {
items[items[n].next].prev = items[n].prev;
} else {
last_item = items[n].prev;
}
if (first_free_item != -1) {
items[first_free_item].prev = n;
}
items[n].next = first_free_item;
items[n].prev = -1;
first_free_item = n;
while (!cross.empty() && cross.back() == -1) {
cross.pop_back();
}
}
int maxIndex() const {
return cross.size() - 1;
}
void shiftIndices(int idx) {
for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) {
cross[i - 1] = cross[i];
if (cross[i] != -1) {
--items[cross[i]].index;
}
}
cross.back() = -1;
cross.pop_back();
while (!cross.empty() && cross.back() == -1) {
cross.pop_back();
}
}
void relocateIndex(int idx, int jdx) {
cross[idx] = cross[jdx];
items[cross[jdx]].index = idx;
cross[jdx] = -1;
while (!cross.empty() && cross.back() == -1) {
cross.pop_back();
}
}
int operator[](int idx) const {
return cross[idx];
}
int operator()(int fdx) const {
return items[fdx].index;
}
void firstItem(int& fdx) const {
fdx = first_item;
}
void nextItem(int& fdx) const {
fdx = items[fdx].next;
}
};
}
}
#endif